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Abstract 
Motivation: Post-translational modifications (PTMs) regulate many key cellular processes. Numerous 

studies have linked the topology of protein-protein interaction (PPI) networks to many biological 

phenomena such as key regulatory processes and disease. However, these methods fail to give insight 

in the functional nature of these interactions. On the other hand, pathways are commonly used to gain 

biological insight into the function of PPIs in the context of cascading interactions, sacrificing the 

coverage of networks for rich functional annotations on each PPI. We present a machine learning 

approach that uses Gene Ontology, InterPro and Pfam annotations to infer the edge functions in PPI 

networks, allowing us to combine the high coverage of networks with the information richness of 

pathways. 

Results: An ensemble method with a combination Logistic Regression and Random Forest classifiers 

trained on a high-quality set of annotated interactions, with a total of 18 unique labels, achieves high a 

average F1 score 0.88 despite not taking advantage of multi-label dependencies. When applied to the 

human interactome, our method confidently classifies 62% of interactions at a probability of 0.7 or 

higher. 

Availability: Software and data are available at https://github.com/DavisLaboratory/pyPPI 
Contact: davis.m@wehi.edu.au 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  

Following the genomic era, there has been significant effort to identify the 

functional characteristics of individual proteins. Many experimental based 

techniques have been developed to determine the function of proteins, 

however experimental methods are expensive and time consuming. As a 

response to this, and leveraging the large collections of sequence data that 

have emerged in the last two decades, numerous computational methods 

have been developed to infer the function of individual proteins. Proteins, 

however, do not function alone, and the normal functions of proteins are 

established through networks of interactions that form structural 

components, cascades of signalling, and regulatory complexes, among 

many other functions. This places protein-protein interactions (PPIs) at the 

heart of understanding molecular function. 

This has inspired techniques using topological analysis of protein-

protein interaction networks to infer protein function. Previous work has 

established that the structural organisation of the interactome can provide 

insight into the functional characteristics of proteins. For example, highly 

connected vertices, commonly referred to as network hubs, may be 

indicative of proteins with central biochemical roles (Barabasi & Oltvai, 

2004). In one study, detailed topological analyses highlighted how the 

dynamics connectivity of the interactome can relate to disease pathology 

and progression (Ma, Gao, & Tan, 2014). Despite their large coverage, 
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PPI networks lack the functionally rich information found in pathways, so 

we lose information regarding the functional nature and dynamics of 

individual molecular interactions. Conversely, pathways focus on much 

smaller groups of interacting proteins, annotating rich functional 

information such as the post-translational modifications (PTMs) occurring 

in each PPI at the cost of coverage As proteomic technologies continue to 

improve, we are uncovering the importance that PTMs have in shaping the 

function of cells. 

Post-translational modifications typically involve the addition or 

removal of chemical groups, and are key regulators in many cellular 

processes (Bode & Dong, 2004). Moreover, studies have shown the 

importance of the interplay between PTMs have in the cross-talk and fine-

tuning of pathway activity (Hunter, 2007). As research uncovers the 

intricacies of the effects on PTMs on cell function and behaviour, it is 

becoming more apparent that PTMs may represent something akin to a 

readable code allowing the fine-tuning of transcriptional regulation and 

protein activity (Winter, Erce, & Wilkins, 2014). Hence, protein-protein 

interactions from the point of view of PTMs is critical for understanding 

the biological function of cells and pathogenesis of disease. By combining 

the large coverage of PPI networks with the information richness of 

pathways, we can bring more biological insight into interactome-wide 

analyses. 

Several algorithms have been proposed that investigate the type of 

protein-protein interactions based on various sources of data. Zhu et al. 

(2006) make use of X-ray crystallographic data to characterise interaction 

types into three classes: obligate, non-obligate and crystal packing. The 

drawback of this method is that it can only provide a low-level 

classification of the type of interaction. Silberberg et al. (2014) proposed 

a method to predict higher level PTM types based on experimental assay 

type in a machine learning approach. This method classifies protein-

protein interactions into 10 high level types: cleavage, covalent binding, 

deacetylation, methylation, phosphorylation, dephosphorylation, 

ubiquitination, disulphide bonding, ribosylation and protein cleavage (at 

the time of publication, no implementation has been made available).  

One limitation of the latter approach is that it does not make use of 

the rich information stored in functional and domain annotation databases 

such as the Gene Ontology (GO), InterPro and Pfam (Ashburner et al., 

2000; Bateman et al., 2004; Zdobnov & Apweiler, 2001). There have been 

numerous successful approaches in using functional annotations in PPI 

inference. De Bodt et al. (2009) combined the maximum depth of the 

common ancestors of the GO annotations with sequence orthology and 

expression data to drive PPI prediction. Other methods have been 

employed that combine gene ontology terms into a semantic similarity 

score that uses the information content of ontology terms. Pesquita et al. 

(2008) provide a comprehensive review of various similarity measures 

used in PPI inference. Maetschke et al. (2012) have shown that exploiting 

the structural information contained with the GO directed acyclic graph 

(DAG) can provide superior PPI inference when compared to methods 

relying on semantic similarity based measures, or methods relying on 

annotations at the leaf nodes. The use of GO annotations has also been 

combined with domain and family annotations when performing PPI 

inference. Nan et al. (2004) and Lu et al. (2005) both provide 

comprehensive reviews of the various features used in PPI prediction 

tasks. Specifically, the use of the GO annotations was found to be among 

the most indicative features of a protein-protein interaction. Given the 

evidence presented by such studies, using functional annotations of 

proteins may prove to be excellent predictors of post-translational 

modifications in binary interactions. A second limitation is in the use of 

assay information as predictors, which are not as readily available as 

functional annotations. 

Of the two prior approaches, neither method explores the use of 

multi-label classification algorithms. Attempting to predict the PTM types 

of a PPI introduces a significant challenge; two proteins may interact in 

several ways depending on the pathway and context meaning a PPI can 

have multiple PTM labels at once. This creates fuzzy decision boundaries 

which challenge conventional classification algorithms. A typical 

approach to multi-label classification is called Binary Relevance (BR), 

where a one-vs-rest classifier is trained for each label. Training an 

independent classifier for each label in this fashion has benefit of being 

simple to implement, and allows the analysis of the performance 

characteristics of each individual label. We also retain access to many 

advanced machine learning algorithms such as random forests (Breiman, 

2001) and support vector machines that work well with single label data. 

The disadvantage of using BR is that each label is learned independently, 

effectively ignoring dependencies between labels that may exist if a 

dataset has significant label correlations. For example, seeing a 

phosphorylation label may be positively correlated with seeing an 

inhibition reaction.  

In this paper, we present the first publicly available software package 

for the general prediction of post-translational modifications on protein 

interaction networks. The software package in the provided link is written 

in Python 3.6 and makes use of the Scikit-Learn machine learning library 

(Pedregosa et al., 2011). 

2 Methods 

Data Collection: The Kyoto Encyclopedia of Genes and Genomes 

(KEGG) is a knowledge base, organising different aspects of molecular 

biology into higher order information such as pathway maps (Kanehisa & 

Goto, 2000). We specifically make use of the databases relating to gene 

products, enzymes and pathways for Homo sapiens. The pathway database 

maps out molecular interactions and the type of interactions occurring 

between proteins. For this research, version 85.1 of KEGG (released 

9/3/2018) has been used. KGG pathway maps are defined as a series of 

relations corresponding to molecular interactions. We filter these relations 

based on the interaction subtype, allowing only PPIs annotated to one or 

more of: ubiquitination, proteolytic-cleavage, methylation, prenylation, 

dissociation, inhibition, activation, state-change, glycosylation, 

sumoylation, deacetylation, acetylation, phosphorylation, 

dephosphorylation, binding/association, carboxylation, sulfation and 

myristoylation. The KEGG gene accessions were mapped to Uniprot 

Swissprot accessions using the KEGG’s LinkDB service. Samples for 

which TrEMBL only accessions were available were discarded to 

maintain a high quality training set. 

We also mined labeled PPI samples from the Human Reference 

Protein Database (HPRD) (Keshava Prasad et al., 2008) PTM collection 

(release 9, 4/13/10). This was for several reasons: boosting the numbers 

of infrequent labels obtained from KEGG, obtaining more detailed 

reaction labels and to set aside an independent testing set for the labels 

already in the KEGG dataset and present in high numbers. Namely, the 

phosphorylation and dephosphorylation labels. The resulting PPIs were 

mapped to SwissProt using the mapping files provided by HPRD, which 

were then further mapped using UniProt to remove samples with obsolete, 

old or isoform variant accessions. Again, we filtered out PPIs which 

contained TrEMBL proteins to maintain a high quality testing and training 

set. Furthermore, labels having fewer than 5 samples were removed. 

Samples that were not labeled with phosphorylation and 

dephosphorylation were merged with the KEGG dataset to create the final 

multi-label training set. 
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To test the biological significance of model predictions, an unlabeled 

set of PPIs representing the human interactome from the Protein 

Interaction Analysis Platform (PINA, latest version released 21/05/2014) 

(Cowley et al., 2011), BioPlex network (Version 4a) (Huttlin et al., 2015) 

and InnateDB (version 5.4) (Lynn et al., 2008) were downloaded and 

parsed. These datasets were combined and processed, taking care to 

remove duplicate entires. Again, an additional mapping step was 

performed using the UniProt mapping service to remove non-human, 

obsolete and isoform variants. 

Feature extraction: The UniProt database (Consortium, 2016) provides 

a central resource for cataloging information on proteins and protein 

sequences from several different sources. We have used SwissProt and 

TrEMBL (release 9/3/2018) to extract functional annotations from GO, 

InterPro and Pfam for all proteins. The UniProt mapping service has also 

been used on all datasets to map outdated and isoform variant accessions 

and to filter protein interactions containing non-human or obsolete 

accessions. We use annotations obtained from all three ontologies; 

Molecular Function, Biological Process and Cellular Component. As 

described in the following section, when using the inducer concept 

introduced by Maetschke et al. (2012) to construct feature vectors, only 

the ‘is a’ and ‘part of’ edge relationships of the GO DAG are used. Format 

version 1.2 released on 3/7/2018 has been used. 

The features of a PPI are computed as the combined annotations of 

each protein, retaining duplicate annotations. When using textual features 

such as annotations, it is most common to represent these with a bag-of-

words vector space model. To do this, we use binary encoding: a 0 if a 

term is not present for a PPI or a 1 if present from either protein. 

Additionally, we explore the use of ternary encoding. This encodes a 0 if 

a term is not present, 1 if it is present for one member and 2 if it is present 

for both. 

To exploit additional information within the structure of the GO 

DAG, we use the concept of term inducers, which was shown to provide 

superior performance than using leaf annotations only or semantic 

similarity based methods (Maetschke et al., 2012). We use this under the 

assumption that inducing additional terms between two proteins will 

provide a classifier with richer functional information than simply taking 

the union of annotations for each protein. We specifically use the ‘up to 

lowest common ancestor’ (ULCA) term inducer, which finds the lowest 

common ancestors of two proteins within the GO DAG, and then includes 

all terms along the path from the leaf nodes to these ancestors. We 

compare this method to classifiers using only the leaf node annotations to 

explore its effectiveness. 

 

Classification: In all experiments, bootstrapped 5-fold cross-

validation repeated 3 times has been used. The folds were generated using 

multi-label iterative stratification (Sechidis, Tsoumakas, & Vlahavas, 

2011). Using this algorithm, each training instance appears in the training 

and validation fold at least once. Within each fold, hyperparameters have 

been tuned using a randomised grid search (Bergstra & Bengio, 2012) on 

the training folds using a nested 3-fold cross-validation. During BR, a 

single classifier is trained for each label. Within each label, the class 

targets become binary indicator variables where a 1 indicates membership 

to that label or 0 otherwise. Using this method, each PPI is given a 

probability vector of label memberships. During classification, we use a 

probability threshold of 0.5 to determine label membership. We note that 

because of large class imbalances between present in our training dataset, 

scores such as accuracy and AUC may provide misleadingly optimistic 

results. Therefore, we rely on metrics such as the F1 score averaged across 

all folds, and then further averaged over each repeated iteration. We also 

measure multi-label performance using the ranking loss and the hamming 

loss functions applied to the binary predictions. Ranking loss is indicative 

of how well a classifier is predicting the positive labels of each sample, 

while the hamming loss represents the loss over positive and negative 

labels. Due to the nature of molecular biology and biases during PTM 

curation processes, it is inevitable that some labels will have significantly 

smaller sample sizes. For example, phosphorylation tends to be more 

commonly studied given that it is much easier to detect via mass 

spectroscopy and tends to play a central role in many biological processes 

(Hunter, 2007). This class imbalance presents difficulty for many 

classification algorithms, which will favour the majority class. Biased 

sampling approaches have been shown to provide little benefit for highly 

dimensional datasets (Blagus & Lusa, 2013). Alternative techniques that 

avoid sampling strategies are those based on cost-sensitive learning 

algorithms. By using a misclassification penalty inversely proportional to 

label frequency, we can place a higher penalty for misclassified instances 

belonging to the minority class. 

 

Interactome predictions: We trained a classifier for each label on 

the combined training and testing dataset from KEGG and HPRD. Hyper-

parameters are tuned by using 3-fold cross-validation with the best 

parameters being used to train the final classifiers using the whole dataset. 

The type of vector encoding was also included as a hyper-parameter. 

Unless stated otherwise, the features were computed from InterPro, Pfam 

and leaf node GO annotations. For each, PPI in the interactome, we predict 

a vector of probability estimates corresponding to each label in the training 

set.  

To assess the strengths and weaknesses of our predictions over the 

interactome, we extracted a myristoylation interaction subnetwork 

containing all edges with a myristoylation probability of at least 0.5, and 

a sulfation interaction subnetwork containing all edges with a lower 

sulfation probability of at least 0.1 to demonstrate the topological effects 

of thresholding. Since our method relies on quality functional annotations 

to make meaningful predictions, annotation sparsity in uncharacterised or 

recently characterised proteins presents a potential issue. 

3 Results 

Label distribution: The final multi-label training set 26,716 unique 

multi-labelled samples The testing set from HPRD contained 1688 

samples (1580 phosphorylation, 112 dephosphorylation). Unlike the 

training PPIs, the testing PPIs were not multi-label. The combined training 

set used during the interactome prediction contained 28,784 unique multi-

labelled samples annotated to 18 labels, including those excluded during 

cross-validation (380 samples) to keep the training and testing sets 

disjoint. The distribution of labels amongst these protein interactions was 

found to be highly imbalanced with small handful of the labels making 

appearing in most of the interactions. This skewed distribution can be seen 

in table 1. 

 

data characteristics: We computed the pairwise correlation between 

labels using the Spearman correlation coefficient to test for dependencies 

between labels. A heat map representing the strength of label correlations 

can be seen in figure 1a. We have used Jaccard's similarity measure to 

assess how distinct the features annotated to each label are. For each label, 

the set of GO, InterPro and Pfam annotations from the PPIs annotated with 

the label were collected. Pairwise similarity scores between labels were 

computed using Jaccard’s measure over these respective annotation sets 

(figure 1b). 
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Fig. 1. (a) The Spearman correlation between labels in the multi-label samples. (b) The Jaccard correlation coefficient between label pairs calculated from the proportion of shared features 

over all samples for each label. 

 

Table 1. Label distribution in the full multi-label dataset and in the training set used 

during cross-fold validation. 

 

Cross-validation Performance: For each label, we have trained a 

baseline classifier using a logistic regression classifier with binary feature 

encoding, where features are the annotations from the Gene Ontology, 

InterPro and Pfam. The F1 scores for each label are presented in table 2. 

Additional experiments have been performed with a single parameter 

varied relative to the baseline, and are also presented in table 2. 

Specifically, we have tested the effect of ternary encoding, the use of 

ULCA inducers and the use of random forests relative to the baseline. 

Additionally, each of the feature databases, InterPro, Pfam and have been 

trained over separately using the baseline configuration and these results 

are presented in supplementary table A.1. Testing performance for each 

experiment was computed for the labels phosphorylation and 

dephosphorylation over the heldout HPRD testing set. Other linear and 

nonlinear classifiers were also tested however generally, we found logistic 

regression and random forests to be the most efficient and best performing. 

When attempting to perform multi-label classification using classifiers 

such as structural SVMs and classifier chains, either worse or no 

significant performance gains were observed. Since they present 

significant computational burdens without any benefits, no further results 

on these methods will be presented. 

 

Interactome: The interactome dataset contained 250,606 

samples. We found that approximately 2.54% of the PPIs in the 

interactome appear in the training data. We note that PPI instances in the 

interactome suffer from additional feature vector sparsity due to 

annotations being present that were not seen during training, rendering 

them unusable. In the interactome dataset, InterPro and Pfam domains 

showed significant sparsity when compared to annotations from the Gene 

Ontology, with an average of 87% and 83% of features being usable. 

Conversely, Gene Ontology annotations showed much less sparsity with 

approximately 99% being useable. Alternatively stated, 17% of the PPI 

instances had less than half of their Pfam annotations being usable during 

prediction, 13% in their InterPro annotations and 0.1% in their GO 

annotations. 

The final model used to classify the interactome was an ensemble 

classifier trained over all three annotation databases. For each label, we 

have used the results presented in table 2 as a guide to select the optimal 

classifier type. The full configuration is provided in supplementary table 

A.3. Vector encoding was included as an additional hyperparameter 

during randomised grid search. To give an indication of how well the final 

model was able to classify PTMs over the interactome, we measured the 

proportion of the interactome having maximum prediction probability for 

any label over a specific threshold. In practice, despite the apparent 

sparsity in the feature vectors, we were still able to confidently classify 

approximately 61% of the interactome at a probability of 0.7 or greater 

using the full model (figure 2). We investigated the distributions of 

Label # samples total # samples in training 

Acetylation 49 49 

Activation 17290 17039 

Binding/Association* 4055 4027 

Carboxylation 5 5 

Deacetylation 5 5 

Dephosphorylation 1212 1067 

Dissociation* 133 133 

Glycosylation 35 35 

Inhibition 6308 6214 

Methylation* 35 35 

Myristoylation 7 6 

Phosphorylation 7549 5606 

Prenylation 13 13 

Proteolytic-cleavage* 491 490 

State-change 172 172 

Sulfation* 14 14 

Sumoylation 40 40 

Ubiquitination* 196 194 
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predictions for each label using the same model over the individual 

annotations databases and provide this in table A.2 in the supplementary 

material.  

 Table 2. Cross-validated F1 scores for each label and overall multi-label performance. The baseline condition refers to a logistic regression classifier trained using ternary encoding with 

leaf-term GO, InterPro and Pfam features. Each column title refers to the condition modified for that experiment with respect to the baseline. Labels with ‘HPRD’ in parentheses represent 

the F1 performance over the HPRD testing set. Bold columns indicate overall highest performance determined by considering both the validation and testing scores. 

Figure 3 shows the sub-networks induced for the sulfation and the 

myristoylation subnetwork. Red nodes indicate presence in the training 

dataset and red edges indicated the presence of that edge in the training 

data. Thicker edges indicate a higher label probability for sulfation and 

myristoylation respectively. 

Fig. 2. Relation between a probability threshold, t, and the proportion of the 

interactome classifiable at this threshold. A sample is counted as classifiable if the 

maximum probability observed across each label is greater than or equal to the given 

threshold. 

4 Discussion 

In our modelling approach, we have used the binary relevance 

transformation turning each label into an independent binary classification 

problem. Despite binary relevance being a relatively naive approach to 

modelling multi-label datasets, we see excellent validation performance 

across each label, the exception being the label deacetylation. In terms of 

being able to identify multi-label samples, we see a very low ranking-loss. 

In the test set, that the labels phosphorylation and dephosphorylation 

show a dip in F1 score, particularly the latter. We have attributed this to 

two main causes, the first being significant label correlations which create 

label dependencies. Since binary relevance ignores label correlations, we 

may lose additional information from the dependencies existing primarily 

between activation, phosphorylation, inhibition, dephosphorylation and 

binding/association as seen in figure 1a. The second reason is that 

phosphorylation and dephosphorylation (figure 1b) show higher 

annotation similarity with binding/association, activation and inhibition; 

the labels often confused with during testing predictions. The random 

forest classifier can more effectively learn these labels given these 

apparent non-linearities in the features. 

When fitting the baseline model on Pfam annotations only 

(supplementary table A.1), labels such as sulfation, dissociation and 

methylation have significantly worse performance. We found that the two 

proteins O60507/TPST1 and O60704/TPST2 participating in most 

sulfation interactions had no Pfam annotations ex-plaining why the F1 

scores for the partial model fit on Pfam annotations were so low. The label 

methylation showed similarities to sulfation in that the protein 

Q99873/PRMT common to a moderate amount of interactions had no 

Pfam annotations. For the label dissociation, the central proteins 

participating in most interactions had only one Pfam domain making it 

highly likely that the classifier was over-fitting to this feature. Using Pfam 

presents additional complexities since it generally provides a less diverse 

Label Baseline Ternary encoding ULCA Inducer Random Forest 

Acetylation 0.78 ± 0.015 0.77 ± 0.008 0.81 ± 0.009 0.77 ± 0.029 

Activation 0.95 ± 0.000 0.94 ± 0.000 0.95 ± 0.000 0.97 ± 0.004 

Binding/Association 0.89 ± 0.002 0.87 ± 0.000 0.89 ± 0.002 0.91 ± 0.010 

Carboxylation 1.00 ± 0.000 0.98 ± 0.022 1.00 ± 0.000 0.81 ± 0.105 

Deacetylation 0.17 ± 0.048 0.18 ± 0.049 0.05 ± 0.017 0.38 ± 0.036 

Dephosphorylation 0.98 ± 0.001 0.97 ± 0.001 0.97 ± 0.001 0.96 ± 0.001 

Dephosphorylation (HPRD) 0.64 ± 0.004 0.63 ± 0.005 0.54 ± 0.004 0.77 ± 0.009 

Dissociation 0.84 ± 0.010 0.84 ± 0.020 0.84 ± 0.012 0.87 ± 0.008 

Glycosylation 0.95 ± 0.005 0.95 ± 0.006 0.95 ± 0.004 0.87 ± 0.023 

Inhibition 0.90 ± 0.000 0.89 ± 0.000 0.91 ± 0.001 0.95 ± 0.007 

Methylation 0.84 ± 0.014 0.87 ± 0.006 0.80 ± 0.013 0.82 ± 0.011 

Myristoylation 1.00 ± 0.000 1.00 ± 0.000 0.91 ± 0.059 0.89 ± 0.080 

Phosphorylation 0.92 ± 0.001 0.91 ± 0.001 0.93 ± 0.001 0.95 ± 0.008 

Phosphorylation (HPRD) 0.67 ± 0.009 0.64 ± 0.010 0.67 ± 0.005 0.83 ± 0.016 

Prenylation 0.97 ± 0.033 0.97 ± 0.033 0.99 ± 0.013 0.75 ± 0.062 

Proteolytic-cleavage 0.83 ± 0.002 0.83 ± 0.002 0.83 ± 0.007 0.83 ± 0.014 

State-change 0.89 ± 0.002 0.92 ± 0.001 0.92 ± 0.009 0.85 ± 0.004 

Sulfation 0.87 ± 0.015 0.84 ± 0.015 0.92 ± 0.018 0.94 ± 0.012 

Sumoylation 0.79 ± 0.018 0.69 ± 0.014 0.77 ± 0.015 0.84 ± 0.013 

Ubiquitination 0.88 ± 0.009 0.86 ± 0.008 0.89 ± 0.006 0.87 ± 0.028 

F1 (averaged) 0.86 ± 0.002 0.85  ± 0.004 0.85 ± 0.004 0.85 ± 0.021 

Ranking loss 0.062 ± 0.000 0.069 ± 0.001 0.064 ± 0.001 0.046 ± 0.005 

Hamming loss 0.011 ± 0.000 0.013 ± 0.000 0.010 ± 0.000 0.007 ± 0.001 
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range of annotations, hence a combination approach by using all feature 

databases may be superior. 

 

 

Fig. 3. Post-translational modification predictions resulting from the application of the trained classifier on the interactome network. (Top and bottom) Nodes and edges highlighted 

in red appear in the training data. Grey edges represent newly classified post-translational modifications with a minimum probability of at least 0.5 for myristoyaltion and 0.1 for sulfation. 

Thicker edges indicate a higher classification probability (a) Top shows the induced myristoylation network showing an independently classified myristylation hub around NMT2. (b) Bottom 

shows the induced network for the label sulfation showing how the threshold probability can impact the connectedness of the subnetwork. 

 

The goal of using the ULCA inducer was to include additional 

semantic and structural information from the GO-DAG into the feature 

vector. In table 2 we see a similar scenario when comparing the effect the 

ULCA inducer; most labels seem to show negligible benefits, with the 

exception of a select handful which may help in providing greater diversity 

in the features classified on, offsetting the previous issues of low protein 

diversity and low sample sizes. The use of inducers adds significant 

computational cost to both feature computation and classifier training, 

without providing any significant benefit to a random forest classifier 

trained on leaf terms. An alternate method is to use GO Slim variants of 

the ontology, however related studies have shown GO Slims to be inferior 

in prediction related tasks due to loss of information (Maetschke et al., 

2012). 

When using various partial and full models to make predictions over 

the interactome, we see large discrepancies in the distribution of predicted 

labels starred in table 1. For example, using a partial model fit only on 

Pfam we see very large number of predictions for sulfation, methylation, 

proteolytic-cleavage and dissociation. A likely cause for this difference is 

that, on average the density of Pfam feature vectors for PPIs in the 

interactome is significantly lower due to annotation sparsity. 

(a) 

(b) 
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Consequently, what we end up with is an inflation of unreliable 

predictions. This is where using a model based on all three annotation 

databases can help to balance out predictions and providing a richer source 

of information when Pfam, and to a lesser extent InterPro, annotations are 

less reliable. We also note that some labels, most notably 

binding/association, ubiquitination and proteolytic-cleavage have much 

higher predicted proportions (supplementary table A.2) than in the training 

data. This may represent an artefact of the curation process, which tends 

to focus on more common PTMs that are easier to detect (Mann & Jensen, 

2003). 

As illustrative examples, we have taken the sub-networks 

corresponding to myristoylation and sulfation to highlight the strengths 

and weaknesses of our classification method. Figure 3a shows the 

predicted myristoylation sub-network using a threshold of 0.5. The red 

edges and nodes represent those found in the training data. At this 

threshold, we have predicted the majority of edges and additionally, 

predicted the presence of a secondary module around the hub NMT2 not 

seen in the training data. Altering the probability threshold was found to 

significantly impact the network topology as can be observed in figure 3b. 

For example, setting the probability too low can result in module 

fragmentation and the identification of orphaned interaction pairs. Hence, 

we propose that when using our method, domain information may be 

useful to guide the selection on an appropriate threshold when inducing 

networks for analysis. 
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