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Abstract

Motivation: Post-translational modifications (PTMs) regulate many key cellular processes. Numerous
studies have linked the topology of protein-protein interaction (PPI) networks to many biological
phenomena such as key regulatory processes and disease. However, these methods fail to give insight
in the functional nature of these interactions. On the other hand, pathways are commonly used to gain
biological insight into the function of PPIs in the context of cascading interactions, sacrificing the
coverage of networks for rich functional annotations on each PPIl. We present a machine learning
approach that uses Gene Ontology, InterPro and Pfam annotations to infer the edge functions in PPI
networks, allowing us to combine the high coverage of networks with the information richness of
pathways.

Results: An ensemble method with a combination Logistic Regression and Random Forest classifiers
trained on a high-quality set of annotated interactions, with a total of 18 unique labels, achieves high a
average F1 score 0.88 despite not taking advantage of multi-label dependencies. When applied to the
human interactome, our method confidently classifies 62% of interactions at a probability of 0.7 or
higher.

Availability: Software and data are available at https://github.com/DavisLaboratory/pyPPI

Contact: davis.m@wehi.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

components, cascades of signalling, and regulatory complexes, among
many other functions. This places protein-protein interactions (PP1s) at the

1 Introduction
heart of understanding molecular function.

Following the genomic era, there has been significant effort to identify the
functional characteristics of individual proteins. Many experimental based
techniques have been developed to determine the function of proteins,
however experimental methods are expensive and time consuming. As a
response to this, and leveraging the large collections of sequence data that
have emerged in the last two decades, numerous computational methods
have been developed to infer the function of individual proteins. Proteins,
however, do not function alone, and the normal functions of proteins are
established through networks of interactions that form structural

This has inspired techniques using topological analysis of protein-
protein interaction networks to infer protein function. Previous work has
established that the structural organisation of the interactome can provide
insight into the functional characteristics of proteins. For example, highly
connected vertices, commonly referred to as network hubs, may be
indicative of proteins with central biochemical roles (Barabasi & Oltvai,
2004). In one study, detailed topological analyses highlighted how the
dynamics connectivity of the interactome can relate to disease pathology
and progression (Ma, Gao, & Tan, 2014). Despite their large coverage,
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PPI networks lack the functionally rich information found in pathways, so
we lose information regarding the functional nature and dynamics of
individual molecular interactions. Conversely, pathways focus on much
smaller groups of interacting proteins, annotating rich functional
information such as the post-translational modifications (PTMs) occurring
in each PP at the cost of coverage As proteomic technologies continue to
improve, we are uncovering the importance that PTMs have in shaping the
function of cells.

Post-translational modifications typically involve the addition or
removal of chemical groups, and are key regulators in many cellular
processes (Bode & Dong, 2004). Moreover, studies have shown the
importance of the interplay between PTMs have in the cross-talk and fine-
tuning of pathway activity (Hunter, 2007). As research uncovers the
intricacies of the effects on PTMs on cell function and behaviour, it is
becoming more apparent that PTMs may represent something akin to a
readable code allowing the fine-tuning of transcriptional regulation and
protein activity (Winter, Erce, & Wilkins, 2014). Hence, protein-protein
interactions from the point of view of PTMs is critical for understanding
the biological function of cells and pathogenesis of disease. By combining
the large coverage of PPl networks with the information richness of
pathways, we can bring more biological insight into interactome-wide
analyses.

Several algorithms have been proposed that investigate the type of
protein-protein interactions based on various sources of data. Zhu et al.
(2006) make use of X-ray crystallographic data to characterise interaction
types into three classes: obligate, non-obligate and crystal packing. The
drawback of this method is that it can only provide a low-level
classification of the type of interaction. Silberberg et al. (2014) proposed
a method to predict higher level PTM types based on experimental assay
type in a machine learning approach. This method classifies protein-
protein interactions into 10 high level types: cleavage, covalent binding,
deacetylation,  methylation, phosphorylation,  dephosphorylation,
ubiquitination, disulphide bonding, ribosylation and protein cleavage (at
the time of publication, no implementation has been made available).

One limitation of the latter approach is that it does not make use of
the rich information stored in functional and domain annotation databases
such as the Gene Ontology (GO), InterPro and Pfam (Ashburner et al.,
2000; Bateman et al., 2004; Zdobnov & Apweiler, 2001). There have been
numerous successful approaches in using functional annotations in PPI
inference. De Bodt et al. (2009) combined the maximum depth of the
common ancestors of the GO annotations with sequence orthology and
expression data to drive PPl prediction. Other methods have been
employed that combine gene ontology terms into a semantic similarity
score that uses the information content of ontology terms. Pesquita et al.
(2008) provide a comprehensive review of various similarity measures
used in PPI inference. Maetschke et al. (2012) have shown that exploiting
the structural information contained with the GO directed acyclic graph
(DAG) can provide superior PPI inference when compared to methods
relying on semantic similarity based measures, or methods relying on
annotations at the leaf nodes. The use of GO annotations has also been
combined with domain and family annotations when performing PPI
inference. Nan et al. (2004) and Lu et al. (2005) both provide
comprehensive reviews of the various features used in PPI prediction
tasks. Specifically, the use of the GO annotations was found to be among
the most indicative features of a protein-protein interaction. Given the
evidence presented by such studies, using functional annotations of
proteins may prove to be excellent predictors of post-translational
modifications in binary interactions. A second limitation is in the use of
assay information as predictors, which are not as readily available as
functional annotations.

Of the two prior approaches, neither method explores the use of
multi-label classification algorithms. Attempting to predict the PTM types
of a PPI introduces a significant challenge; two proteins may interact in
several ways depending on the pathway and context meaning a PPl can
have multiple PTM labels at once. This creates fuzzy decision boundaries
which challenge conventional classification algorithms. A typical
approach to multi-label classification is called Binary Relevance (BR),
where a one-vs-rest classifier is trained for each label. Training an
independent classifier for each label in this fashion has benefit of being
simple to implement, and allows the analysis of the performance
characteristics of each individual label. We also retain access to many
advanced machine learning algorithms such as random forests (Breiman,
2001) and support vector machines that work well with single label data.
The disadvantage of using BR is that each label is learned independently,
effectively ignoring dependencies between labels that may exist if a
dataset has significant label correlations. For example, seeing a
phosphorylation label may be positively correlated with seeing an
inhibition reaction.

In this paper, we present the first publicly available software package
for the general prediction of post-translational modifications on protein
interaction networks. The software package in the provided link is written
in Python 3.6 and makes use of the Scikit-Learn machine learning library
(Pedregosa et al., 2011).

2 Methods

Data Collection: The Kyoto Encyclopedia of Genes and Genomes
(KEGG) is a knowledge base, organising different aspects of molecular
biology into higher order information such as pathway maps (Kanehisa &
Goto, 2000). We specifically make use of the databases relating to gene
products, enzymes and pathways for Homo sapiens. The pathway database
maps out molecular interactions and the type of interactions occurring
between proteins. For this research, version 85.1 of KEGG (released
9/3/2018) has been used. KGG pathway maps are defined as a series of
relations corresponding to molecular interactions. We filter these relations
based on the interaction subtype, allowing only PPIs annotated to one or
more of: ubiquitination, proteolytic-cleavage, methylation, prenylation,
dissociation, inhibition, activation, state-change, glycosylation,
sumoylation, deacetylation, acetylation, phosphorylation,
dephosphorylation, binding/association, carboxylation, sulfation and
myristoylation. The KEGG gene accessions were mapped to Uniprot
Swissprot accessions using the KEGG’s LinkDB service. Samples for
which TrEMBL only accessions were available were discarded to
maintain a high quality training set.

We also mined labeled PPl samples from the Human Reference
Protein Database (HPRD) (Keshava Prasad et al., 2008) PTM collection
(release 9, 4/13/10). This was for several reasons: boosting the numbers
of infrequent labels obtained from KEGG, obtaining more detailed
reaction labels and to set aside an independent testing set for the labels
already in the KEGG dataset and present in high numbers. Namely, the
phosphorylation and dephosphorylation labels. The resulting PPIs were
mapped to SwissProt using the mapping files provided by HPRD, which
were then further mapped using UniProt to remove samples with obsolete,
old or isoform variant accessions. Again, we filtered out PPIs which
contained TrEMBL proteins to maintain a high quality testing and training
set. Furthermore, labels having fewer than 5 samples were removed.
Samples that were not labeled with phosphorylation and
dephosphorylation were merged with the KEGG dataset to create the final
multi-label training set.
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To test the biological significance of model predictions, an unlabeled

set of PPIs representing the human interactome from the Protein
Interaction Analysis Platform (PINA, latest version released 21/05/2014)
(Cowley et al., 2011), BioPlex network (Version 4a) (Huttlin et al., 2015)
and InnateDB (version 5.4) (Lynn et al., 2008) were downloaded and
parsed. These datasets were combined and processed, taking care to
remove duplicate entires. Again, an additional mapping step was
performed using the UniProt mapping service to remove non-human,
obsolete and isoform variants.
Feature extraction:  The UniProt database (Consortium, 2016) provides
a central resource for cataloging information on proteins and protein
sequences from several different sources. We have used SwissProt and
TrEMBL (release 9/3/2018) to extract functional annotations from GO,
InterPro and Pfam for all proteins. The UniProt mapping service has also
been used on all datasets to map outdated and isoform variant accessions
and to filter protein interactions containing non-human or obsolete
accessions. We use annotations obtained from all three ontologies;
Molecular Function, Biological Process and Cellular Component. As
described in the following section, when using the inducer concept
introduced by Maetschke et al. (2012) to construct feature vectors, only
the ‘isa’ and ‘part of” edge relationships of the GO DAG are used. Format
version 1.2 released on 3/7/2018 has been used.

The features of a PPI are computed as the combined annotations of
each protein, retaining duplicate annotations. When using textual features
such as annotations, it is most common to represent these with a bag-of-
words vector space model. To do this, we use binary encoding: a 0 if a
term is not present for a PPl or a 1 if present from either protein.
Additionally, we explore the use of ternary encoding. This encodes a 0 if
atermis not present, 1 if it is present for one member and 2 if it is present
for both.

To exploit additional information within the structure of the GO
DAG, we use the concept of term inducers, which was shown to provide
superior performance than using leaf annotations only or semantic
similarity based methods (Maetschke et al., 2012). We use this under the
assumption that inducing additional terms between two proteins will
provide a classifier with richer functional information than simply taking
the union of annotations for each protein. We specifically use the “up to
lowest common ancestor’ (ULCA) term inducer, which finds the lowest
common ancestors of two proteins within the GO DAG, and then includes
all terms along the path from the leaf nodes to these ancestors. We
compare this method to classifiers using only the leaf node annotations to
explore its effectiveness.

Classification: In all experiments, bootstrapped 5-fold cross-
validation repeated 3 times has been used. The folds were generated using
multi-label iterative stratification (Sechidis, Tsoumakas, & Vlahavas,
2011). Using this algorithm, each training instance appears in the training
and validation fold at least once. Within each fold, hyperparameters have
been tuned using a randomised grid search (Bergstra & Bengio, 2012) on
the training folds using a nested 3-fold cross-validation. During BR, a
single classifier is trained for each label. Within each label, the class
targets become binary indicator variables where a 1 indicates membership
to that label or O otherwise. Using this method, each PPI is given a
probability vector of label memberships. During classification, we use a
probability threshold of 0.5 to determine label membership. We note that
because of large class imbalances between present in our training dataset,
scores such as accuracy and AUC may provide misleadingly optimistic
results. Therefore, we rely on metrics such as the F1 score averaged across
all folds, and then further averaged over each repeated iteration. We also

measure multi-label performance using the ranking loss and the hamming
loss functions applied to the binary predictions. Ranking loss is indicative
of how well a classifier is predicting the positive labels of each sample,
while the hamming loss represents the loss over positive and negative
labels. Due to the nature of molecular biology and biases during PTM
curation processes, it is inevitable that some labels will have significantly
smaller sample sizes. For example, phosphorylation tends to be more
commonly studied given that it is much easier to detect via mass
spectroscopy and tends to play a central role in many biological processes
(Hunter, 2007). This class imbalance presents difficulty for many
classification algorithms, which will favour the majority class. Biased
sampling approaches have been shown to provide little benefit for highly
dimensional datasets (Blagus & Lusa, 2013). Alternative techniques that
avoid sampling strategies are those based on cost-sensitive learning
algorithms. By using a misclassification penalty inversely proportional to
label frequency, we can place a higher penalty for misclassified instances
belonging to the minority class.

Interactome predictions: We trained a classifier for each label on
the combined training and testing dataset from KEGG and HPRD. Hyper-
parameters are tuned by using 3-fold cross-validation with the best
parameters being used to train the final classifiers using the whole dataset.
The type of vector encoding was also included as a hyper-parameter.
Unless stated otherwise, the features were computed from InterPro, Pfam
and leaf node GO annotations. For each, PPl inthe interactome, we predict
a vector of probability estimates corresponding to each label in the training
set.

To assess the strengths and weaknesses of our predictions over the
interactome, we extracted a myristoylation interaction subnetwork
containing all edges with a myristoylation probability of at least 0.5, and
a sulfation interaction subnetwork containing all edges with a lower
sulfation probability of at least 0.1 to demonstrate the topological effects
of thresholding. Since our method relies on quality functional annotations
to make meaningful predictions, annotation sparsity in uncharacterised or
recently characterised proteins presents a potential issue.

3 Results

Label distribution: ~ The final multi-label training set 26,716 unique
multi-labelled samples The testing set from HPRD contained 1688
samples (1580 phosphorylation, 112 dephosphorylation). Unlike the
training PPIs, the testing PPIs were not multi-label. The combined training
set used during the interactome prediction contained 28,784 unique multi-
labelled samples annotated to 18 labels, including those excluded during
cross-validation (380 samples) to keep the training and testing sets
disjoint. The distribution of labels amongst these protein interactions was
found to be highly imbalanced with small handful of the labels making
appearing in most of the interactions. This skewed distribution can be seen
in table 1.

data characteristics: We computed the pairwise correlation between
labels using the Spearman correlation coefficient to test for dependencies
between labels. A heat map representing the strength of label correlations
can be seen in figure 1a. We have used Jaccard's similarity measure to
assess how distinct the features annotated to each label are. For each label,
the set of GO, InterPro and Pfam annotations from the PPIs annotated with
the label were collected. Pairwise similarity scores between labels were
computed using Jaccard’s measure over these respective annotation sets
(figure 1b).
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Fig. 1. (a) The Spearman correlation between labels in the multi-label samples. (b) The Jaccard correlation coefficient between label pairs calculated from the proportion of shared features

over all samples for each label.
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are presented in supplementary table A.1. Testing performance for each
experiment was computed for the labels phosphorylation and
dephosphorylation over the heldout HPRD testing set. Other linear and
nonlinear classifiers were also tested however generally, we found logistic

Table 1. Label distribution in the full multi-label dataset and in the training set used
during cross-fold validation.

Label # samples total # samples in training regression and random forests to be the most efficient and best performing.
When attempting to perform multi-label classification using classifiers
Acetylation 49 49 such as structural SVMs and classifier chains, either worse or no
Activation 17290 17039 significant performance gains were observed. Since they present
Binding/Association* 4055 4027 significant computational burdens without any benefits, no further results
Carboxylation 5 5 on these methods will be presented.
Deacetylation 5 5
Dephosphorylation 1212 1067 Interactome: The interactome dataset contained 250,606
Dissociation* 133 133 samples. We found that approximately 2.54% of the PPIs in the
Glycosylation 35 35 interactome appear in the training data. We note that PPI instances in the
Inhibition 6308 6214 interactome suffer from additional feature vector sparsity due to
Methylation* 35 35 annotations being present that were not seen during training, rendering
Myristoylation 7 6 them unusable. In the interactome dataset, InterPro and Pfam domains
Phosphorylation 7549 5606 showed significant sparsity when compared to annotations from the Gene
Prenylation 13 13 Ontology, with an average of 87% and 83% of features being usable.
Proteolytic-cleavage* 491 490 Conversely, Gene Ontology annotations showed much less sparsity with
State-change 172 172 approximately 99% being useable. Alternatively stated, 17% of the PPI
Sulfation* 14 14 instances had less than half of their Pfam annotations being usable during
Sumoylation 40 40 prediction, 13% in their InterPro annotations and 0.1% in their GO
Ubiquitination* 196 194 annotations.

The final model used to classify the interactome was an ensemble
classifier trained over all three annotation databases. For each label, we
have used the results presented in table 2 as a guide to select the optimal
classifier type. The full configuration is provided in supplementary table
A.3. Vector encoding was included as an additional hyperparameter
during randomised grid search. To give an indication of how well the final
model was able to classify PTMs over the interactome, we measured the
proportion of the interactome having maximum prediction probability for
any label over a specific threshold. In practice, despite the apparent
sparsity in the feature vectors, we were still able to confidently classify
approximately 61% of the interactome at a probability of 0.7 or greater
using the full model (figure 2). We investigated the distributions of

Cross-validation Performance: For each label, we have trained a
baseline classifier using a logistic regression classifier with binary feature
encoding, where features are the annotations from the Gene Ontology,
InterPro and Pfam. The F1 scores for each label are presented in table 2.
Additional experiments have been performed with a single parameter
varied relative to the baseline, and are also presented in table 2.
Specifically, we have tested the effect of ternary encoding, the use of
ULCA inducers and the use of random forests relative to the baseline.
Additionally, each of the feature databases, InterPro, Pfam and have been
trained over separately using the baseline configuration and these results
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predictions for each label using the same model over the individual
annotations databases and provide this in table A.2 in the supplementary
material.

Label Baseline Ternary encoding ULCA Inducer Random Forest
Acetylation 0.78 £0.015 0.77 £0.008 0.81 +£0.009 0.77 £0.029
Activation 0.95 £ 0.000 0.94 £ 0.000 0.95 £ 0.000 0.97 £0.004
Binding/Association 0.89 £ 0.002 0.87 £ 0.000 0.89 £ 0.002 0.91 £0.010
Carboxylation 1.00 £ 0.000 0.98 +£0.022 1.00 + 0.000 0.81 £0.105
Deacetylation 0.17 £0.048 0.18 £ 0.049 0.05+0.017 0.38 £ 0.036
Dephosphorylation 0.98 £0.001 0.97 £0.001 0.97 £0.001 0.96 £ 0.001
Dephosphorylation (HPRD) 0.64 +0.004 0.63 +0.005 0.54 +0.004 0.77 +0.009
Dissociation 0.84 £0.010 0.84 +0.020 0.84 £0.012 0.87 +0.008
Glycosylation 0.95 £ 0.005 0.95 £+ 0.006 0.95 £ 0.004 0.87 £0.023
Inhibition 0.90 £ 0.000 0.89 +0.000 0.91£0.001 0.95 £ 0.007
Methylation 0.84 £0.014 0.87 +0.006 0.80 £0.013 0.82 £0.011
Myristoylation 1.00 £ 0.000 1.00 £ 0.000 0.91£0.059 0.89 £+ 0.080
Phosphorylation 0.92 £0.001 0.91 £0.001 0.93+£0.001 0.95 +0.008
Phosphorylation (HPRD) 0.67 +0.009 0.64 +0.010 0.67 +0.005 0.83 £0.016
Prenylation 0.97 £0.033 0.97 £0.033 0.99 £0.013 0.75 £ 0.062
Proteolytic-cleavage 0.83 +0.002 0.83 +0.002 0.83 +0.007 0.83 +0.014
State-change 0.89 +0.002 0.92 +0.001 0.92 +0.009 0.85 + 0.004
Sulfation 0.87 £0.015 0.84 £0.015 0.92£0.018 0.94 £0.012
Sumoylation 0.79+0.018 0.69 +0.014 0.77 £0.015 0.84 £0.013
Ubigquitination 0.88 +0.009 0.86 + 0.008 0.89 + 0.006 0.87 +0.028
F1 (averaged) 0.86 £ 0.002 0.85 +0.004 0.85 £ 0.004 0.85 +£0.021
Ranking loss 0.062 £+ 0.000 0.069 + 0.001 0.064 £ 0.001 0.046 + 0.005
Hamming loss 0.011 £ 0.000 0.013 +£0.000 0.010 £ 0.000 0.007 +0.001

Table 2. Cross-validated F1 scores for each label and overall multi-label performance. The baseline condition refers to a logistic regression classifier trained using ternary encoding with
leaf-term GO, InterPro and Pfam features. Each column title refers to the condition modified for that experiment with respect to the baseline. Labels with ‘HPRD’ in parentheses represent

the F1 performance over the HPRD testing set. Bold columns indicate overall highest performance determined by considering both the validation and testing scores.

Figure 3 shows the sub-networks induced for the sulfation and the
myristoylation subnetwork. Red nodes indicate presence in the training
dataset and red edges indicated the presence of that edge in the training
data. Thicker edges indicate a higher label probability for sulfation and
myristoylation respectively.

1.0

0.5

Proportion classified

0 0.5 1.0
Threshold probability
Fig. 2. Relation between a probability threshold, t, and the proportion of the
interactome classifiable at this threshold. A sample is counted as classifiable if the
maximum probability observed across each label is greater than or equal to the given
threshold.

4 Discussion

In our modelling approach, we have used the binary relevance
transformation turning each label into an independent binary classification

problem. Despite binary relevance being a relatively naive approach to
modelling multi-label datasets, we see excellent validation performance
across each label, the exception being the label deacetylation. In terms of
being able to identify multi-label samples, we see a very low ranking-loss.

In the test set, that the labels phosphorylation and dephosphorylation
show a dip in F1 score, particularly the latter. We have attributed this to
two main causes, the first being significant label correlations which create
label dependencies. Since binary relevance ignores label correlations, we
may lose additional information from the dependencies existing primarily
between activation, phosphorylation, inhibition, dephosphorylation and
binding/association as seen in figure la. The second reason is that
phosphorylation and dephosphorylation (figure 1b) show higher
annotation similarity with binding/association, activation and inhibition;
the labels often confused with during testing predictions. The random
forest classifier can more effectively learn these labels given these
apparent non-linearities in the features.

When fitting the baseline model on Pfam annotations only
(supplementary table A.1), labels such as sulfation, dissociation and
methylation have significantly worse performance. We found that the two
proteins O60507/TPST1 and O60704/TPST2 participating in most
sulfation interactions had no Pfam annotations ex-plaining why the F1
scores for the partial model fit on Pfam annotations were so low. The label
methylation showed similarities to sulfation in that the protein
Q99873/PRMT common to a moderate amount of interactions had no
Pfam annotations. For the label dissociation, the central proteins
participating in most interactions had only one Pfam domain making it
highly likely that the classifier was over-fitting to this feature. Using Pfam
presents additional complexities since it generally provides a less diverse
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range of annotations, hence a combination approach by using all feature

databases may be superior.
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Fig. 3. Post-translational modification predictions resulting from the application of the trained classifier on the interactome network. (Top and bottom) Nodes and edges highlighted
in red appear in the training data. Grey edges represent newly classified post-translational modifications with a minimum probability of at least 0.5 for myristoyaltion and 0.1 for sulfation.
Thicker edges indicate a higher classification probability (a) Top shows the induced myristoylation network showing an independently classified myristylation hub around NMT2. (b) Bottom
shows the induced network for the label sulfation showing how the threshold probability can impact the connectedness of the subnetwork.

The goal of using the ULCA inducer was to include additional
semantic and structural information from the GO-DAG into the feature
vector. In table 2 we see a similar scenario when comparing the effect the
ULCA inducer; most labels seem to show negligible benefits, with the
exception of a select handful which may help in providing greater diversity
in the features classified on, offsetting the previous issues of low protein
diversity and low sample sizes. The use of inducers adds significant
computational cost to both feature computation and classifier training,
without providing any significant benefit to a random forest classifier
trained on leaf terms. An alternate method is to use GO Slim variants of

the ontology, however related studies have shown GO Slims to be inferior
in prediction related tasks due to loss of information (Maetschke et al.,
2012).

When using various partial and full models to make predictions over
the interactome, we see large discrepancies in the distribution of predicted
labels starred in table 1. For example, using a partial model fit only on
Pfam we see very large number of predictions for sulfation, methylation,
proteolytic-cleavage and dissociation. A likely cause for this difference is
that, on average the density of Pfam feature vectors for PPIs in the
interactome is significantly lower due to annotation sparsity.
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Consequently, what we end up with is an inflation of unreliable
predictions. This is where using a model based on all three annotation
databases can help to balance out predictions and providing a richer source
of information when Pfam, and to a lesser extent InterPro, annotations are
less reliable. We also note that some labels, most notably
binding/association, ubiquitination and proteolytic-cleavage have much
higher predicted proportions (supplementary table A.2) than in the training
data. This may represent an artefact of the curation process, which tends
to focus on more common PTMs that are easier to detect (Mann & Jensen,
2003).

As illustrative examples, we have taken the sub-networks
corresponding to myristoylation and sulfation to highlight the strengths
and weaknesses of our classification method. Figure 3a shows the
predicted myristoylation sub-network using a threshold of 0.5. The red
edges and nodes represent those found in the training data. At this
threshold, we have predicted the majority of edges and additionally,
predicted the presence of a secondary module around the hub NMT2 not
seen in the training data. Altering the probability threshold was found to
significantly impact the network topology as can be observed in figure 3b.
For example, setting the probability too low can result in module
fragmentation and the identification of orphaned interaction pairs. Hence,
we propose that when using our method, domain information may be
useful to guide the selection on an appropriate threshold when inducing
networks for analysis.
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