

1

2

3

4 **Prenatal growth map of the mouse knee joint by mean of deformable
5 registration technique**

6

7 Mario Giorgi^{1,2,3*}, Vivien Sotiriou⁴, Niccolo' Fanchini⁵, Simone Conigliaro⁵, Cristina Bignardi⁵,
8 Niamh C. Nowlan⁴, Enrico Dall'Ara^{1,2}

9

10

11

12 ¹ Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK

13 ² INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, UK

14 ³ Certara QSP, Certara UK Limited, Simcyp division, Sheffield, UK

15 ⁴ Department of Bioengineering, Imperial College London, London, UK

16 ⁵ Department of Mechanics, Politecnico di Torino, Torino, IT

17

18

19 *Corresponding author

20 Dr Mario Giorgi

21 E-mail: m.giorgi@sheffield.ac.uk (MG)

22

23

24

25

26

27 Abstract

28 Joint morphogenesis is the process during which distinct and functional joint shapes emerge during pre- and
29 post-natal joint development. In this study, a repeatable semi-automatic protocol capable of providing a 3D
30 realistic developmental map of the prenatal mouse knee joint was designed by combining Optical Projection
31 Tomography imaging (OPT) and a deformable registration algorithm (Sheffield Image Registration toolkit,
32 ShIRT). Eleven left limbs of healthy murine embryos were scanned with OPT (voxel size: 14.63 μ m) at two
33 different stages of development: Theiler stage (TS) 23 (approximately 14.5 embryonic days) and 24
34 (approximately 15.5 embryonic days). One TS23 limb was used to evaluate the precision of the displacement
35 predictions for this specific case. The remaining limbs were then used to estimate Developmental Tibia and
36 Femur Maps. Acceptable uncertainties of the displacement predictions were found for both epiphyses
37 (between 0.7 and 1.4 μ m, along all directions and anatomical sites) for nodal spacing of 1 voxel. The
38 protocol was found to be reproducible with maximum Modified Hausdorff Distance differences equal to 1.9
39 μ m and 1.5 μ m for the tibial and femoral epiphyses respectively. The effect of the initial shape of the
40 rudiment affected the developmental maps by 21.7 μ m and 21.9 μ m for the tibial and femoral epiphyses
41 respectively, which correspond to 1.4 and 1.5 times the voxel size. To conclude, this study proposes a
42 repeatable semi-automatic protocol capable of providing mean 3D realistic developmental map of a
43 developing rudiment allowing researchers to study how growth and adaptation are directed by biological and
44 mechanobiological factors.

46 Introduction

47 Growth and morphogenesis are two fundamental processes which every living system undergo during both
48 the prenatal and juvenile phase. If growth is more related to an increase in size and mass of an organism over
49 a period of time, morphogenesis is the biological process responsible for any organism to develop its shape.
50 Joint morphogenesis is the key process through which the two opposing cartilaginous rudiments of a joint
51 develop their reciprocal and fully functional shapes, and which starts during prenatal joint development. This
52 process is described in details by Pacifici et al., [1] and subsequently updated by Nowlan and Sharpe [2]. The
53 consequences of incomplete or abnormal joint morphogenesis can be very debilitating and may lead to
54 musculoskeletal diseases such as osteoarthritis (OA) [3, 4]. The formation of a skeletal joint is a highly
55 regulated process which is controlled by several biochemical factors (e.g. growth factors, Hox genes) [5].
56 Moreover, several studies have experimentally found a relationship between prenatal joint motion and
57 physiological joint morphogenesis in mice [6, 7] and chicks [8-11], demonstrating the importance of
58 mechanical loads in the morphogenic process. For example, 2D histological assessment of chick embryos
59 immobilised with neuromuscular blocking agents showed a reduction in width of the intercondylar fossa of
60 the distal femur and of the proximal epiphysis of the tibiotarsus and fibula during knee joint morphogenesis
61 [10], and up to 50% reduction in the epiphyseal width of the proximal and distal regions of the knee,
62 tibiotarsus and metatarsus [9]. Despite the clinical relevance of morphogenesis, there is very little
63 understanding about the factors driving this complex process [1]. Mechanobiological growth models have
64 also been used to deepen our understanding on morphogenesis by exploring the role of motion or loading on
65 joint shape [5, 12-15]. However, despite their undeniable importance these models have a series of
66 limitations. For example, the 3D prenatal joint kinematics and kinetics are not measured accurately, and so
67 far only generic loading conditions have been used for the Finite Element (FE) models. Moreover, idealised
68 joint shapes were used instead of realistic shapes. Finally, due to a lack of information, the cascade of
69 biochemical factors determining the amount of biological growth on which the mechanical stimuli operates
70 were extremely simplified and considered to be proportional to the chondrocytes density in the region of
71 interest [12, 13].

72 This study focuses on defining a methodology for better assessment of realistic shapes in the prenatal joint
73 morphogenesis. Principal Component Analyses (PCA) [16, 17] is the gold standard method for the
74 assessment of shape changes from medical images. However, this method is based on predefined modes of
75 deformation and, due to the lack of large databases of prenatal rudiment shape changes, this approach could
76 not be used for this application. The approach used in this study is based on deformable image registration
77 [18, 19], which, due to the large number of degrees of freedom of the transformation, can feasibly be used to
78 measure the heterogeneous variations of the developing rudiments.

79 In this study, we developed a repeatable semi-automatic protocol capable of providing a 3D realistic
80 developmental map of the developing mouse knee joint by applying a deformable registration algorithm
81 (Sheffield Image Registration toolkit, ShIRT [18-20]) to 3D images acquired ex vivo using Optical
82 Projection Tomography (OPT) [21]. The robustness and repeatability of the protocol was evaluated with
83 inter- and intra-operator tests. The developed protocol can be used to study the effect of mechanical and
84 biological stimuli on the joint growth and morphogenesis, and to populate and validate computational models
85 for prediction of joint development.

86 **Materials and methods**

87 **Specimen preparation and imaging with Optical Projection**

88 **Tomography**

89 The limbs of mouse embryos were stained for cartilage using Alcian Blue (as reported in [22]) and scanned
90 in 3D with Optical Projection Tomography (OPT) [21]. All samples were healthy embryos, either wildtype
91 or heterozygous, for the Pax3 mutation from the Spd (Splotch delayed) strain. Eleven limbs in total were
92 used for this study, six of which were staged as Theiler Stage (TS23 [23] equivalent to approximately 14.5
93 embryonic days, and the remaining five which were staged as TS24 equivalent to approximately 15.5
94 embryonic days). One of the six TS23 embryos was scanned twice and the obtained images were registered
95 to evaluate the precision of the deformable registration algorithm used to measure the developmental map
96 [20]. All procedures performed complied with the ethical European Legislation. The project license used was
97 approved by the Home Office and by the Governance Board for Animal Research at Imperial College
98 London.

99 **Elastic registration protocol**

100 After image reconstruction of each scanned rudiment (NRecon, Bruker microCT, Belgium) the
101 eleven distal femoral and the eleven proximal tibial epiphyses were cropped from the images of the
102 hindlimbs by applying a single level threshold followed by a manual refinement of the initial
103 segmentation based on visual checks in each orthogonal plane (AMIRA software 2017, Thermo
104 Fisher Scientific). The two developmental stages used in this study (TS23 and TS24) were selected
105 due to the fact that at earlier stages (<TS23) incomplete separation of the rudiments did not allow
106 their proper identification, while at later stages (>T24), epiphyseal segmentation was compromised
107 by advanced ossification in the diaphysis. Next, two of the TS23 images (a femoral epiphysis and a
108 tibial epiphysis) were removed from the analysis and used to evaluate the precision of the
109 deformable registration algorithm as described later in this section. A bounding box was then used
110 to crop every remaining specimen by including a similar portion of the diaphysis (Fig 1, A). The

111 analyses were performed on the distal femur and on the proximal tibia to avoid the diaphysis, a
112 region with limited or absent contrast in the OPT images due to the advanced ossification for the
113 TS24 samples. In addition, one TS23 femoral epiphysis was excluded due to incomplete separation
114 of the rudiments. All remaining TS23 tibial (N=5) and femoral (N=4) epiphyses were rigidly
115 registered to each TS24 epiphyses through an automatic alignment of the centres of mass (AMIRA
116 software function) followed by a manual adjustment of the orientation to align the main features of
117 the rudiments (see Fig 1, A-B). A total of 25 and 20 rigid registrations were performed for the
118 proximal tibia and the distal femur, respectively. The same bounding box was then used to resample
119 all the images with a Lanczos interpolator [24]. To minimize the imperfections due to manual
120 segmentation, a 3D erosion algorithm of 1 voxel was applied to all the images. Each pair of rigidly
121 registered TS23-TS24 images was then registered with a deformable registration algorithm (ShIRT)
122 [18, 20] in order to compute the displacements at the nodes of an isotropic grid superimposed to the
123 images with nodal spacing (NS) equal to one voxel (14.63 μ m), for maximizing the number of
124 degrees of freedom in the registration displacement map. In order to analyse only the results
125 obtained for the rudiments, every cell of the grid with all nodes outside the TS23 binary image was
126 removed by using a custom-made script (Matlab, The MathWorks, Inc.) [25].

127

128 **Fig 1. Reconstructed epiphyses used for the study and example of rigid registration.** (a) femoral and
129 tibial epiphyses (TS23 and TS24) used for the study; (b) example of rigidly registered femoral (top) and
130 tibial (bottom) epiphyses. The TS23 epiphyses are represented in blue and the TS24 epiphyses in yellow.

131

132 The excluded TS23 sample was used to evaluate the uncertainties in the displacement predictions
133 by registering two pairs of repeated scans of the whole prenatal femur and tibia following a
134 procedure used for different bone structures [26, 27]. The precision of the method was evaluated
135 for the three Cartesian directions using the standard deviation of the displacement components over
136 the whole registration grid for tibia and femur. Uncertainties equal to 1.4 μ m, 1.4 μ m and 1.3 μ m

137 were found for the tibia along X, Y and Z directions, and uncertainties of 1.0 μm , 1.0 μm and 0.7
138 μm were found for the femur along X, Y and Z directions, respectively. These errors were
139 considered acceptable for this application where displacements were at least one order of magnitude
140 larger than the measured uncertainties.

141 Considering the absence of an in vivo longitudinal imaging modality for OPT measurements and
142 the intrinsic variability of the shape of the rudiments at TS23 and TS24 (Fig 1, A), the effect of
143 including different input images on the final developmental map was estimated as follows
144 (overview of the procedure in Fig 2).

145

146 **Fig 2. Methodological pipeline.** Two OPT images at different developmental stages were acquired and
147 rigidly registered. The new resampled images, together with a B/W image of the latest developmental stage
148 (TS24) were then given as input to ShIRT. The calculated displacement were then filtered thought the Voxel
149 detection toolkit.

150

151 Twenty displacement maps were generated by deformable registration of four randomly picked
152 stack of images from the TS23 tibial epiphysis group with every image of the TS24 tibial epiphysis
153 group. The obtained displacement values were averaged in order to generate a mean growth map
154 (from now on referred to as “Developmental Tibia Map”, DTM). Furthermore, the average of five
155 displacement maps obtained by registering the remaining image of the TS23 tibial epiphyses group
156 with each one of the images in the TS24 tibial epiphysis group was computed in order to evaluate a
157 control map (from now on referred to as “Single Tibia Map”, STM) (Fig 3, A). The same procedure
158 was then applied to the femur samples in order to generate the “Developmental Femur Map”
159 (DFM), and “Single Femur Map” (SFM) (see Fig 3, B).

160 For the visualization of the displacement maps for tibia and femur, the registration grids of the
161 TS23 control specimens were converted into meshes of 8-node hexahedron elements, and the

162 “Developmental Maps” and “Single Maps” were applied as kinematic boundary conditions. A finite
163 element (FE) software package (ANSYS, Mechanical APDL v.15.0, Ansys Inc, USA) was used to
164 visualize and compare the maps.

165

166 **Fig 3. Schematic representation for the generation of both tibial and femoral maps.** (a) Schematic
167 representation of the twenty displacement maps (green box) and five displacement maps (blue box)
168 generated by deformable registration for the tibia. The obtained maps were then averaged in order to
169 generate a Developmental Tibia Map (DTM), and a Single Tibia Map (STM); (b) Schematic representation
170 of the fifteen displacement maps (green box) and five displacement maps (blue box) generated by
171 deformable registration for the femur. The obtained maps were then averaged in order to generate a
172 Developmental Femur Map (DFM), and a Single Femur Map (SFM); (c) qualitative comparison between the
173 DTM and the STM showing similar developmental patterns; (d) qualitative comparison between the DFM
174 and the SFM showing similar developmental patterns.

175 **Analyses and comparison of the growth maps**

176 Two different analyses, briefly described below, were performed in this study: 1) Comparison of
177 the Developmental and Single Maps for tibia (DTM, STM) and femur (DFM, SFM); 2) Evaluation
178 of the protocol repeatability.

179 **Comparison of the Developmental and Single Maps for both anatomical sites**

180 For both epiphyses, the displacement distributions of the Developmental Map and the Single Map
181 were qualitatively compared after their application to the TS23 control FE mesh. Then, all the
182 surface nodes of the new rudiment shapes were extracted using a custom-made script (Matlab, The
183 MathWorks, Inc.), and their differences quantified using the Modified Hausdorff Distance (MHD)
184 [28] and the Average Displacement Distance (ADD). For visualization purposes, two STL surfaces
185 were then generated by using the ball-pivoting technique [29] available in Meshlab.

186 **Evaluation of the protocol repeatability**

187 The repeatability of the protocol was evaluated through intra- (three repetitions) and inter-operator
188 (one expert operator and two operators who followed guidelines) tests. For the tibial epiphyses,
189 both tests were performed, while only the intra-operator test was performed on the femoral
190 epiphyses. The part of the protocol mostly affected by operator decisions is the initial manual
191 orientation of the rudiments. Therefore, the protocol was repeated from the initial upload of the raw
192 images into Amira until the generation of the DTM, STM, DFM and SFM. The standard deviation
193 of the MHD and ADD values for the three intra-operator repetitions and for the three inter-operator
194 repetitions were computed.

195

196 **Results**

197 **Comparison of the Developmental and Single Maps for both** 198 **anatomical sites**

199 A qualitative comparison between the Developmental Tibia and Femur Maps (DTM, DFM), and between the
200 Single Tibia and Femur maps (STM, SFM) showed similar developmental patterns, with higher displacement
201 values on the lateral and medial condyles of both rudiments compared to the inter-condylar region (Fig 3, C-
202 D). On a more quantitative aspect, displacements up to 150 μm and 100 μm were observed in the condyles
203 region for the Developmental Tibia and Single Tibia maps respectively (DTM, STM), and displacements of
204 approximately 60 μm were measured in the intercondylar region for both maps (Fig 3, C). Similarly,
205 displacements of up to 160 μm were observed in the condyles region for the Developmental Femur and
206 Single Femur Maps (DFM, SFM) respectively, and displacements of approximately 80 μm were measured in
207 the inter-condylar region for both maps (Fig 3, D). When the effect of the initial shape of the rudiment
208 over the developmental maps was quantified, MHD value of 21.7 μm and ADD values of 32.5 μm
209 along X axis, of 35.6 μm along Y axis, and of 29.2 μm along Z axis were found between the
210 Developmental Tibia Map (DTM) and the Single Tibia Map (STM) (Table 1).

211

212

213 **Table 1. Modified Hausdorff Distance (MHD) and Average Displacement Distance (ADD) values for**
214 **all performed analyses for both tibial and femoral epiphyses. Values expressed in μm .**

Tibial Epiphysis	MHD	MHD (range)	MHD (max difference)	ADD	ADD-X	ADD-Y	ADD-Z
Inter-Operator Test	20.0 ± 0.2	19.8 – 20.2	0.4	28.8 ± 0.2	28.6 ± 0.5	31.9 ± 0.6	25.8 ± 0.3
Intra-Operator Test	21.1 ± 0.3	22.2 – 22.4	0.4	29.9 ± 0.8	30.0 ± 2.2	33.7 ± 1.6	28.5 ± 1.0
Femoral Epiphysis	MHD	MHD (range)	MHD (max difference)	ADD	ADD-X	ADD-Y	ADD-Z
Intra-Operator Test	22.8 ± 0.7	22.3 – 23.4	1.1	34.2 ± 0.4	34.8 ± 0.8	34.8 ± 0.1	31.9 ± 1.4

215

216 When the same analysis was performed on the femoral epiphyses an MHD of $21.9 \mu\text{m}$ and an ADD
217 of $34.2 \mu\text{m}$, $34.9 \mu\text{m}$, and $30.3 \mu\text{m}$ were found along X, Y, and Z axes respectively (Table 1). A
218 qualitative comparison between the Developmental Tibia Map (DTM) and the Single Tibia Map
219 (STM), and between Developmental Femur Map (DFM) and the Single Femur Map (SFM) is
220 reported in Fig 4, A.

221

222 **Fig 4. Qualitative comparison between maps.** (a) Qualitative comparison between DTM (red) and STM
223 (blue). (b) Qualitative comparison between DFM (red) and SFM (blue). (c) Qualitative comparison between
224 the DTM (red) and STM (blue) for the two tibial femoral intra-operator tests. (d) Qualitative comparison
225 between the DTM (red) and STM (blue) for the two tibial femoral inter-operator tests. (e) Qualitative
226 comparison between the DFM (red) and SFM (blue) for the two tibial femoral intra-operator tests.

227

228 **Evaluation of the protocol repeatability**

229 For the tibial epiphyses, MHD values of $22.1 \pm 0.4 \mu\text{m}$ and $20.0 \pm 0.3 \mu\text{m}$ were measured for the intra- and
230 inter-operator test, respectively (see Table 1). A similar MHD intra-operator value was measured for the
231 femoral rudiment ($22.5 \pm 0.8 \mu\text{m}$) (see Table 1). For intra-operator assessment of the tibial rudiment, ADD
232 values of $30.0 \pm 2.2 \mu\text{m}$, $33.7 \pm 1.6 \mu\text{m}$, and $28.5 \pm 1.1 \mu\text{m}$ along X, Y, and Z axis respectively were calculated

233 (see Table 1). Similar values were observed for the inter-operator test performed on the same rudiment with
234 $28.6 \pm 0.6 \mu\text{m}$, $31.9 \pm 0.6 \mu\text{m}$, and $25.8 \pm 0.4 \mu\text{m}$ along X, Y, and Z axis, respectively (see Table 1). ADD values
235 for the femoral rudiment, showed intra-operator values of $34.8 \pm 0.9 \mu\text{m}$, $34.8 \pm 0.1 \mu\text{m}$, and $31.9 \pm 1.4 \mu\text{m}$
236 along X, Y, and Z axis respectively (see Table 1). A qualitative comparison between intra- and inter-operator
237 generated maps for both epiphyses is reported in Fig 4, C-E.

238

239 Discussion

240 The aim of this study was to develop a repeatable semi-automatic protocol capable of providing a 3D
241 realistic developmental map of the tibial and femoral developing rudiments in a prenatal mouse model. This
242 was achieved by combining OPT imaging [21] and a deformable registration algorithm [18-20].

243 The process of joint morphogenesis is key for physiological skeletal development. However, due to its
244 complexity, there is very little understanding about the factors driving it [1]. Computational models have
245 been used to deepen our understanding on the importance of fetal movement during development [12-14],
246 but, these models are usually based on idealized shapes. The protocol developed in this study can be used to
247 quantify the shape changes of a developing rudiment and provide 3D realistic displacement maps for
248 studying the joint development, at different stages, in healthy or diseased animals and to populate
249 computational models to study morphogenesis and its dependency on mechanical and biological stimuli. The
250 protocol was found to be strongly reproducible for both epiphyses, with small intra- (SD of ADD below 2.2
251 μm for tibia and $1.4 \mu\text{m}$ for femur) and inter-operator (SD of ADD below $0.6 \mu\text{m}$ for tibia) displacement
252 uncertainties (Table 1). The high reproducibility of this protocol enables researchers not familiar with elastic
253 registration to generate reliable developmental maps. In addition, the maximum reproducibility error
254 measured in terms of ADD ($2.2 \mu\text{m}$) suggests that this method is suitable to study all deformations of at least
255 one order of magnitude higher (all deformations higher than $22 \mu\text{m}$) and this method could be used in the
256 future to generate growth maps for earlier stages where the experimentally observed deformations have not
257 yet been quantified precisely. The robustness of the method is also highlighted by the similarity between the
258 reproducibility errors for the two anatomical rudiments and among the Cartesian directions.

259 For the developmental stages analysed (TS23 and TS24), the generated maps for both anatomical sites

260 showed higher growth corresponding to the condyle regions and lower growth in the intercondylar fossa. In
261 addition, the DTM and the DFM showed mean displacement values of 75 μm and 81 μm , with maxima
262 values of 150 μm and 160 μm for the tibia and femur respectively (Fig 3, C, D). When the DTM and DFM
263 were qualitatively compared with the STM and SFM, the analyses showed, as expected, similar but not
264 identical developmental patterns (Fig 3, C, D). Maximum MHD between the measured displacement maps
265 of 21 μm and 22 μm were found for the tibial and femoral maps, showing the variability of the growth
266 among specimens. This value, ten times higher than the estimated uncertainties, underlines the important role
267 that the input images play. In fact, the high variability in the developmental maps found in this study is
268 probably based on the differences in shape found especially at TS23 for both tibial and femoral rudiments
269 (see Fig 1 for examples). Such variability could be probably reduced by increasing the sample size, to
270 account for intrinsic differences among the specimens, or by extending the OPT imaging to *in vivo*
271 application, something which is not possible right now.

272 This study has mainly two limitations. Firstly, the analyses were performed on the distal femur and on the
273 proximal tibia only due to the limited or absent contrast in the OPT images due to the advanced diaphysis
274 ossification for the TS24 samples. A combination between OPT and micro-CT (micro-computer
275 tomography) imaging could help to overcome this problem and allow the application of this protocol to the
276 whole rudiments. Secondly, a more comprehensive developmental map including earlier and later
277 developmental stages could not be generated. The former because at earlier developmental stages the joints
278 were not fully cavitated, making very difficult the identification of specific joint segments. The latter due to
279 the advanced ossification process, which started involving the epiphyses. Finally, the analyses was
280 performed on only 4 or 5 specimens. As the final goal is to create a mean biological growth map, including
281 more specimens (and therefore more registrations) would reduce the influence of the differences in initial
282 shape of the joints at the two TS.

283 In conclusion, in this study we have shown how a combination of OPT imaging and deformable registration
284 can be used to generate 3D realistic transformations of a developing rudiment in the prenatal mouse knee
285 joint. The method is highly reproducible and will allow us to study how growth and adaptation are directed
286 by biological and mechanobiological factors. Moreover, the realistic shapes can be used to generate more
287 accurate computational models capable of exploring the influence of both physiological and non-

288 physiological mechanical conditions on the process of morphogenesis and joint development.

289

290 **Acknowledgements**

291 The authors gratefully acknowledge Dr. Gareth Fletcher for implementing the DVC service, Sara Oliviero
292 and Maria Cristiana Costa for helping with the repeatability tests.

293

294 References

1. Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: Recent advances, but many lingering mysteries. *Birth Defects Research Part C: Embryo Today: Reviews*. 2005;75(3):237-48. doi: 10.1002/bdrc.20050.
2. Nowlan NC, Sharpe J. Joint shape morphogenesis precedes cavitation of the developing hip joint. *Journal of Anatomy*. 2014;224(4):482-9. doi: 10.1111/joa.12143. PubMed PMID: PMC4098681.
3. Hogervorst T, Eilander W, Fikkens JT, Meulenbelt I. Hip ontogenesis: how evolution, genes, and load history shape hip morphotype and cartilotype. *Clinical orthopaedics and related research*. 2012;470(12):3284-96. Epub 2012/08/29. doi: 10.1007/s11999-012-2511-4. PubMed PMID: 22926490; PubMed Central PMCID: PMCPMC3492609.
4. Sandell LJ. Etiology of osteoarthritis: genetics and synovial joint development. *Nature Reviews Rheumatology*. 2012;8:77. doi: 10.1038/nrrheum.2011.199.
5. Comellas E, Carriero A, Giorgi M, Pereira A, Shefelbine SJ. Chapter 2 - Modeling the Influence of Mechanics on Biological Growth. *Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes*: Academic Press; 2018. p. 17-35.
6. Nowlan NC, Bourdon C, Dumas G, Tajbakhsh S, Prendergast PJ, Murphy P. Developing bones are differentially affected by compromised skeletal muscle formation. *Bone*. 2010;46(5):1275-85. Epub 2009/12/02. doi: 10.1016/j.bone.2009.11.026. PubMed PMID: 19948261; PubMed Central PMCID: PMCPMC2860222.
7. Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, et al. Muscle contraction is necessary to maintain joint progenitor cell fate. *Developmental cell*. 2009;16(5):734-43. Epub 2009/05/23. doi: 10.1016/j.devcel.2009.04.013. PubMed PMID: 19460349.
8. Mikic B, Wong M, Chiquet M, Hunziker EB. Mechanical modulation of tenascin-C and collagen-XII expression during avian synovial joint formation. *Journal of Orthopaedic Research*. 2000;18(3):406-15. doi: 10.1002/jor.1100180312.
9. Osborne AC, Lamb KJ, Lewthwaite JC, Dowthwaite GP, Pitsillides AA. Short-term rigid and flaccid paralyses diminish growth of embryonic chick limbs and abrogate joint cavity formation but differentially preserve pre-cavitated joints. *Journal of musculoskeletal & neuronal interactions*. 2002;2(5):448-56. Epub 2005/03/11. PubMed PMID: 15758413.
10. Roddy KA, Prendergast PJ, Murphy P. Mechanical Influences on Morphogenesis of the Knee Joint Revealed through Morphological, Molecular and Computational Analysis of Immobilised Embryos. *PLOS ONE*. 2011;6(2):e17526. doi: 10.1371/journal.pone.0017526.
11. Nowlan NC, Chandaria V, Sharpe J. Immobilized chicks as a model system for early-onset developmental dysplasia of the hip. *Journal of Orthopaedic Research*. 2014;32(6):777-85.
12. Heegaard JH, Beaupré GS, Carter DR. Mechanically modulated cartilage growth may regulate joint surface morphogenesis. *Journal of Orthopaedic Research*. 1999;17(4):509-17. doi: 10.1002/jor.1100170408.
13. Giorgi M, Carriero A, Shefelbine SJ, Nowlan NC. Mechanobiological simulations of prenatal joint morphogenesis. *Journal of biomechanics*. 2014;47(5):989-95.
14. Giorgi M, Carriero A, Shefelbine SJ, Nowlan NC. Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: application to hip dysplasia. *Journal of biomechanics*. 2015;48(12):3390-7.
15. Giorgi M, Verbruggen SW, Lacroix D. In silico bone mechanobiology: modeling a multifaceted biological system. *Wiley interdisciplinary reviews Systems biology and medicine*. 2016;8(6):485-505. Epub 2016/09/08. doi: 10.1002/wsbm.1356. PubMed PMID: 27600060; PubMed Central PMCID: PMCPMC5082538.
16. Galea GL, Hannuna S, Meakin LB, Delisser PJ, Lanyon LE, Price JS. Quantification of Alterations in Cortical Bone Geometry Using Site Specificity Software in Mouse models of Aging

343 and the Responses to Ovariectomy and Altered Loading. *Frontiers in Endocrinology*. 2015;6:52.
344 doi: 10.3389/fendo.2015.00052. PubMed PMID: PMC4407614.

345 17. Varzi D, Coupaud SAF, Purcell M, Allan DB, Gregory JS, Barr RJ. Bone morphology of the
346 femur and tibia captured by statistical shape modelling predicts rapid bone loss in acute spinal cord
347 injury patients. *Bone*. 2015;81(Supplement C):495-501. doi:
348 <https://doi.org/10.1016/j.bone.2015.08.026>.

349 18. Barber D, Hose D. Automatic segmentation of medical images using image registration:
350 diagnostic and simulation applications. *Journal of medical engineering & technology*.
351 2005;29(2):53-63.

352 19. Barber DC, Oubel E, Frangi AF, Hose D. Efficient computational fluid dynamics mesh
353 generation by image registration. *Medical image analysis*. 2007;11(6):648-62.

354 20. Dall'Ara E, Barber D, Viceconti M. About the inevitable compromise between spatial
355 resolution and accuracy of strain measurement for bone tissue: A 3D zero-strain study. *Journal of
356 biomechanics*. 2014;47(12):2956-63.

357 21. Sharpe J. Optical Projection Tomography. *Annual Review of Biomedical Engineering*.
358 2004;6(1):209-28. doi: 10.1146/annurev.bioeng.6.040803.140210. PubMed PMID: 15255768.

359 22. Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of
360 embryonic skeletal development: insights from animal models. *Birth Defects Research Part C: Embryo Today: Reviews*. 2010;90(3):203-13.

361 23. Theiler K. The house mouse. Development and normal stages from fertilization to 4 weeks
362 of age. Berlin\Heidelberg, New York, Springer-Verlag. 1972. 168 pp. p.

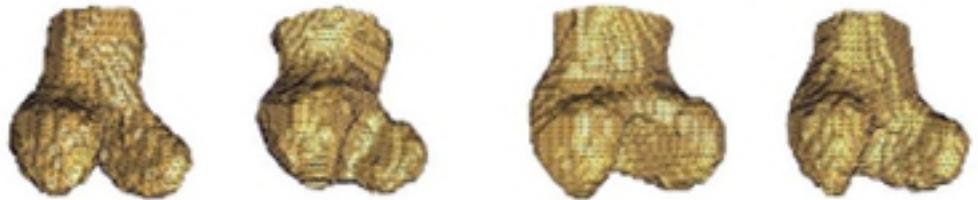
363 24. Turkowski K. Filters for common resampling tasks. In: Andrew SG, editor. *Graphics gems*:
364 Academic Press Professional, Inc.; 1990. p. 147-65.

365 25. Giorgi M, Dall'Ara E. Variability in strain distribution in the mice tibia loading model
366 estimated with Digital Volume Correlation. *Medical Engineering & Physics*. Under Review.

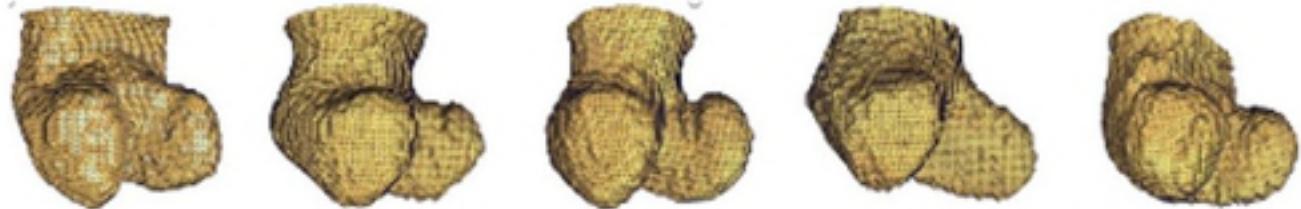
367 26. Dall'Ara E, Peña-Fernández M, Palanca M, Giorgi M, Cristofolini L, Tozzi G. Precision of
368 Digital Volume Correlation Approaches for Strain Analysis in Bone Imaged with Micro-Computed
369 Tomography at Different Dimensional Levels. *Frontiers in Materials*. 2017;4(31). doi:
370 10.3389/fmats.2017.00031.

371 27. Palanca M, Bodey AJ, Giorgi M, Viceconti M, Lacroix D, Cristofolini L, et al. Local
372 displacement and strain uncertainties in different bone types by digital volume correlation of
373 synchrotron microtomograms. *Journal of biomechanics*. 2017;58:27-36. Epub 2017/05/02. doi:
374 10.1016/j.jbiomech.2017.04.007. PubMed PMID: 28457604.

375 28. Huttenlocher DP, Klanderman GA, Rucklidge WJ. Comparing images using the Hausdorff
376 distance. *IEEE Transactions on Pattern Analysis and Machine Intelligence*. 1993;15(9):850-63. doi:
377 10.1109/34.232073.


378 29. Bernardini F, Mittleman J, Rushmeier H, Cl, #225, Silva u, et al. The Ball-Pivoting
379 Algorithm for Surface Reconstruction. *IEEE Transactions on Visualization and Computer Graphics*.
380 1999;5(4):349-59. doi: 10.1109/2945.817351.

381


382

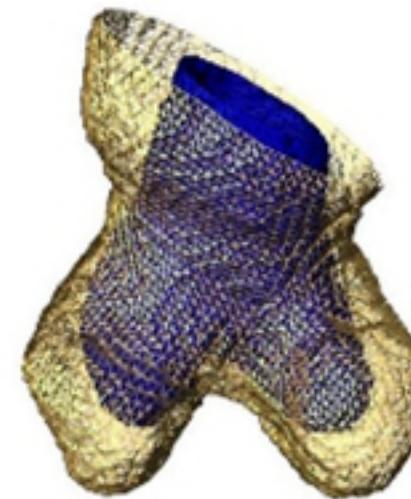
Femoral epiphyses

TS23

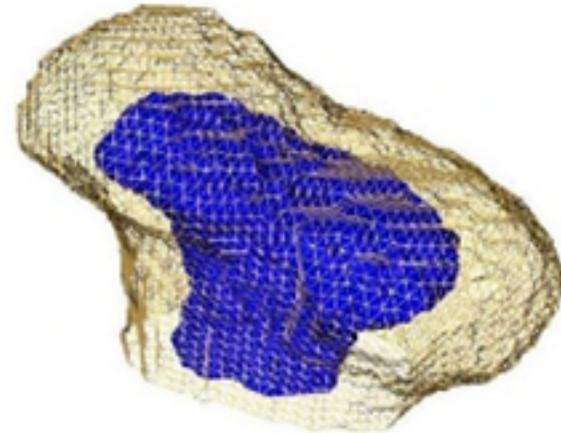
TS24

Tibial epiphyses

TS23

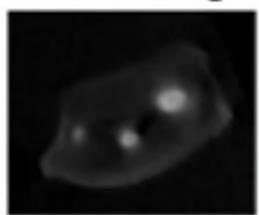


TS24

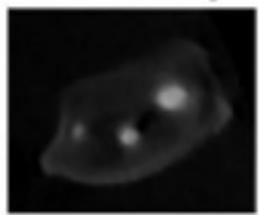


(a)

Rigid registration example



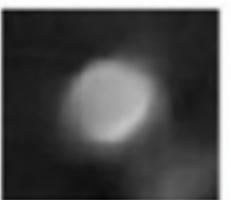
(b)



Original Images

TS23 Image

TS24 Image

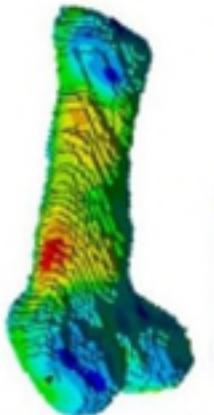


AMIRA

Rigid registration

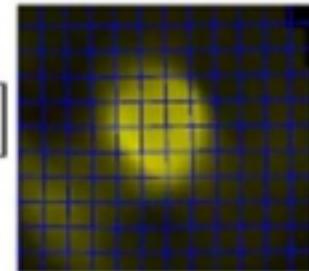
TS24 resampled

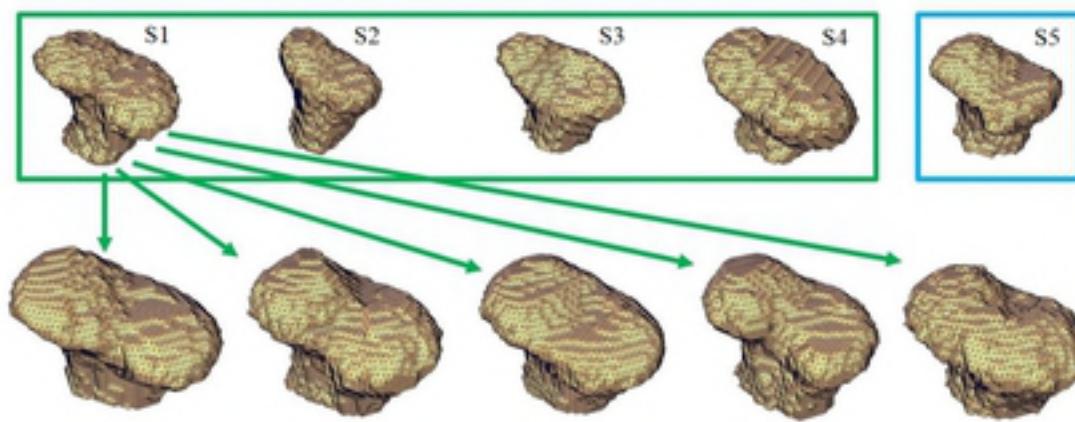
TS23 resampled



Mask

Voxel Detection


- Displacements
- Nodes
- Elements

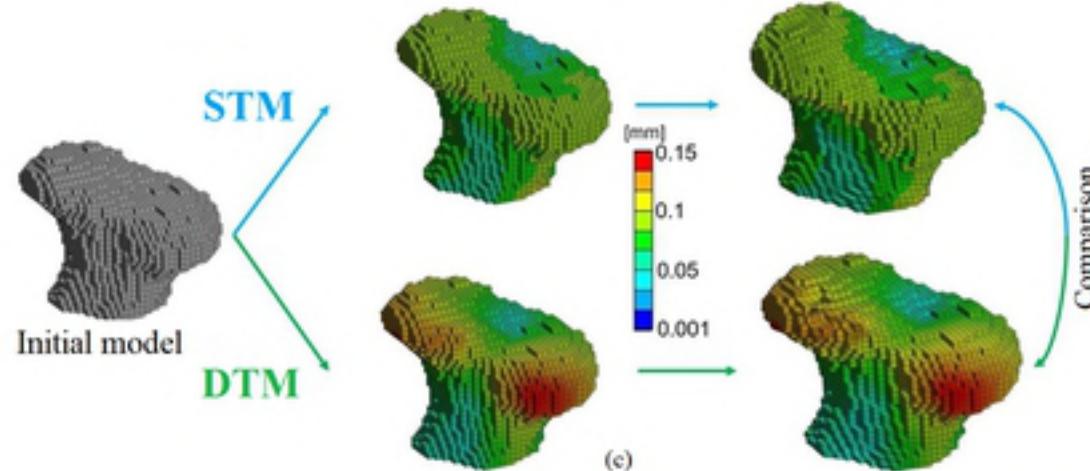

ShIRT

- Displacements
- Nodes
- Elements

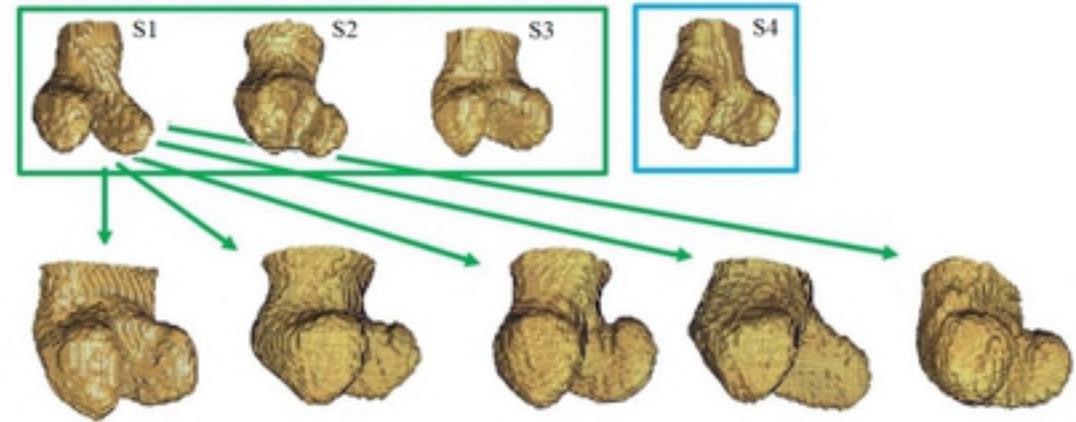
Elastic registration

$$[NS]_1$$

1523


$$\text{DTM} = \frac{\sum_{s=1}^4 \sum_{m=1}^5 s_{sm}}{20}$$

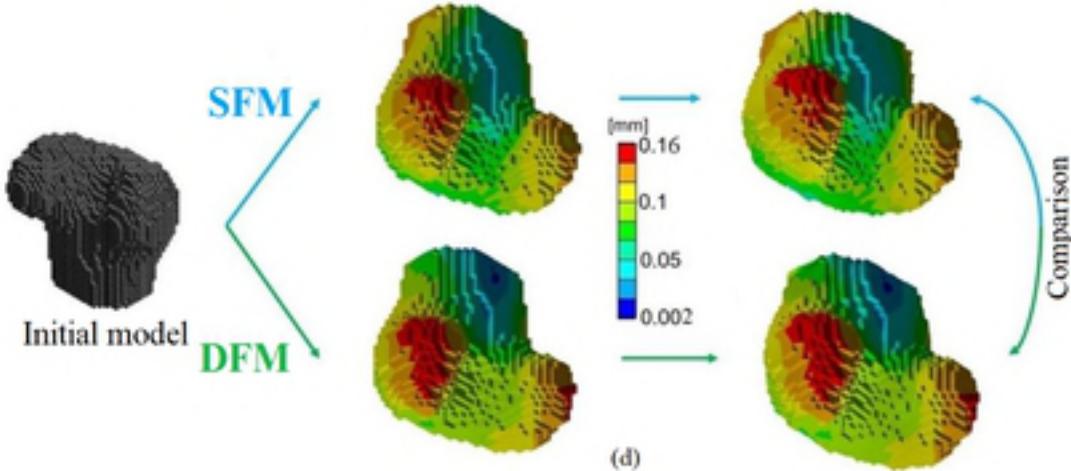
$$\text{STM} = \frac{\sum_{m=1}^5 s_m}{5}$$


(n)

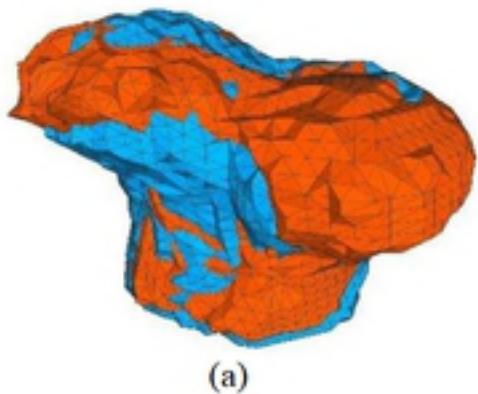
STM and DTM maps on input model

Applied maps

523

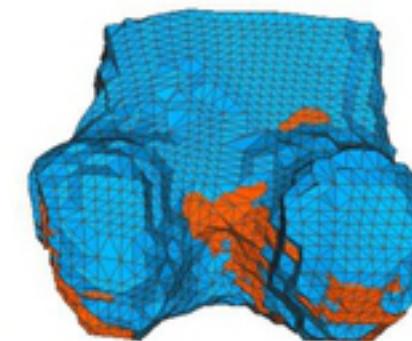

$$DFM = \frac{\sum_{s=1}^4 \sum_{m=1}^5 s_{sm}}{15}$$

$$\text{SFM} = \frac{\sum_{m=1}^5 s_m}{5}$$

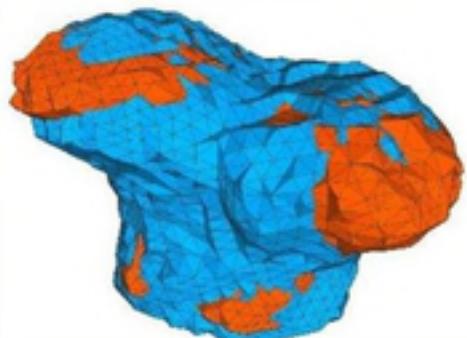

(b)

STM and DTM maps on input model

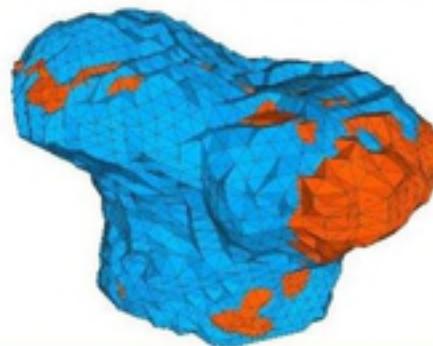
Applied maps


DTM - STM qualitative comparison

(a)

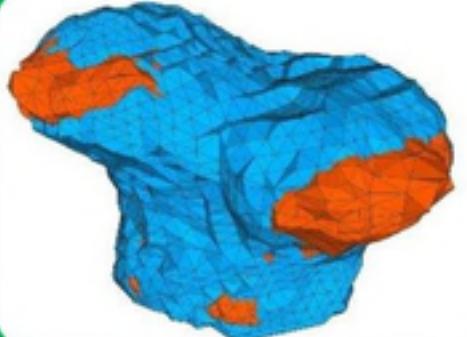

Red = DTM
Blue = STM

DFM - SFM qualitative comparison



(b)

Intra-operator



(c)

(e)

Inter-operator

(d)