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Abstract
People can learn about the effects of their actions either by
performing physical experiments or by running mental sim-
ulations. Physical experiments are reliable but risky; mental
simulations are unreliable but safe. We investigate how peo-
ple negotiate the balance between these strategies. Participants
attempted to shoot a ball at a target, and could pay to take
practice shots (physical experiments). They could also simply
think (run mental simulations), but were incentivized to act
quickly by paying for time. We demonstrate that the amount
of thinking time and physical experiments is sensitive to trial
characteristics in a way that is consistent with a model that
integrates information across simulation and experimentation
and decides online when to perform each.
Keywords: Mental Simulation; Intuitive Physics; Sampling;
Metareasoning

Introduction

Craik (1943) famously proposed that an advanced organism

might hold “a ‘small-scale model’ of external reality and of its

own possible actions in its head... to try out various alterna-

tives, conclude which is the best of them... [and] to react in a

much fuller, safer, and more competent manner.” These sim-

ulatable models allow us to gain information about the effect

of our actions without needing to incur the cost of perform-

ing those actions. Simulation using mental models has ex-

plained how we perform not just spatial (Kosslyn et al., 1978;

Shepard & Metzler, 1971) and physical (Battaglia et al., 2013;

Hegarty, 2004) reasoning, but has also been suggested to un-

derlie language understanding (Bergen, 2012) and theory of

mind (Gallese & Goldman, 1998).

While simulations are cheaper, safer, and faster than act-

ing on the world, they are not perfect substitutes. Because

any mental model only approximates the world, simulation

provides uncertain predictions of the effects of our actions

(Smith & Vul, 2013). Furthermore, simulations are less costly

than actions but are not costless – they require mental effort

and time to perform (Vul et al., 2014). Thus, when we want to

learn about the world, we need to decide how to combine rel-

atively cheap and imprecise simulations with more costly and

accurate physical experiments. To do this rationally requires

integrating information from both simulation and action and

assessing their expected benefits and costs (Gershman et al.,

2015; Lieder & Griffiths, 2017).

We study this problem in a physical action planning task,

which serves as a suitable test bed because we have mod-

els of uncertainty in people’s physical predictions (Smith &

Vul, 2013), and because there is evidence that people make

rational trade-offs about how much simulation to use when

physical experiments are not possible (Hamrick et al., 2015).

We use a task in which participants are asked to aim a ball

at a goal, but can think about it or take practice shots before-

hand (Fig. 1). We find that people modulate the number of

experiments and time spent thinking based on trial character-

istics that cannot be explained solely by simple measures of

difficulty.

We then propose a model of how people combine simu-

lation and experimentation. This model is based on the the-

ory that just as we can learn mappings between actions and

outcomes by real-world observations, we can gain informa-

tion about this mapping using simulations in place of obser-

vations (Gershman et al., 2017; Sutton, 1991). This model

uses a type of Bayesian optimization – Gaussian process en-

tropy optimization (Hernández-Lobato et al., 2014) – that

integrates different sources of information and decides be-

tween performing noisy but cheap simulations and running

more expensive but near-deterministic experiments. It cap-

tures aspects of how many experiments people perform, how

much time they spend thinking, as well as their ultimate ac-

tion choices.

Experiment

We developed a physical reasoning task in which participants

choose an angle to launch a ball at a target. On each trial (see

Fig. 1), they could choose to perform physical experiments as

well as think about how to shoot the ball. Once they decided

they were ready, they had to perform an action in the exact

same scenario and earned points based on the success of their

action as well as on how much time they had spent thinking

about the task and how many experiments they had run.

Participants. We recruited 60 participants from Amazon

Mechanical Turk using the psiTurk framework (Gureckis

et al., 2016). Each participant was paid a participation fee of

$2.50 and randomly assigned to the cheap experiments con-

dition or costly experiments condition.

Procedure. On each trial, participants observed a rectangu-

lar table of 1000 × 600 pixels on their screen. On this table

was a single blue ball, any number of black walls, and on the

edge of the table were green and red colored patches (see Fig

1). Participants were instructed that their task was to deter-

mine the angle to launch the ball so that it would touch the

green goal before touching the red area or traveling too far a

distance.

Each trial was divided into two phases: information gather-

ing and the final action phase. In the first phase, participants

started with 100 points. They were instructed that they could

think or take practice shots, but both would cost points. The

score would decay at a rate of 6 points/second, and each prac-

tice shot would incur a cost depending on the experimental

condition: 10 points in the cheap condition and 20 points in

the costly condition.
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Figure 1: Diagram of the experimental trials. A: Participants observe a table and are asked to shoot the ball into the green goal without hitting
the red areas. Participants could aim the ball and take practice shots at a cost to the score. B: The trajectory and outcome of shots were shown.
Once participants had finished practicing and thinking, they could click the ‘Take a shot’ button and would have one chance to score. C: The
18 trials used in the experiment, ordered from least to most likely to succeed by chance.

Participants could take a practice shot by positioning their

mouse within 250px of the center of the ball and clicking.

If the mouse was within this range, a straight line would ex-

tend from the ball indicating the direction of the shot. Once a

practice shot was clicked, the ball would travel in that direc-

tion, bouncing off of any walls or table edges until it either

reached the green or red areas, or had traveled a distance of

3000px (which would take ∼ 1.5s, though could vary based

on the participant’s computer speed). During a practice shot,

the score decay was paused.

When participants believed they knew how to shoot the

ball, they could click a button below the table to move to

the final phase. As soon as this button was clicked, the

score would stop decaying, and a yellow border would appear

around the table to indicate the final action phase. Participants

would have three seconds to take their final shot, which could

be performed in the same way as a practice shot. If this fi-

nal shot hit the green goal, the participant would earn a score

equal to the number of points remaining from the information

gathering phase. If the final shot hit the red area or timed out,

the participant would lose 10 points from their total score. If

the participant did not make a shot within the three second

limit, they would also lose 10 points. Afterwards, the partic-

ipant would be notified of the outcome and move on to the

next trial.

If the score decayed to zero during the information gath-

ering phase, the final shot phase would immediately begin

(including the yellow border notification). Participants would

then earn no points for a successful shot, but could lose points

for a miss or failure to act.

The total score was displayed in the lower right of the

screen as a motivation for participants, but did not affect com-

pensation.

Materials. Participants performed a total of 25 trials. The

first seven trials were always presented in the same order and

were designed as introductory trials to familiarize participants

with the interface; these trials were not included in any anal-

yses. The remaining 18 trials (see Fig. 1, right) were pre-

sented in a randomized order for each participant. These trials

were designed by hand to provide a range of difficulties for

an agent that took shots at random angles: six trials would be

solved by fewer than 10% of random shots, six trials would

be solved by between 10-30% of random shots, and six tri-

als would be solved by greater than 30% of random shots.

This probability of succeeding by guessing is used as a rough

proxy for difficulty, and to assess whether participants were

adapting their practice experiments or actual shots to new in-

formation or simply guessing. Trials were labeled by number

in increasing probability of guessing.

Data exclusions. We removed data from three participants

for whom we did not record actions for all 18 trials, and from

seven additional participants who ‘timed out’ in either the in-

formation seeking or final action phase on more than half of

the trials (indicating low attention). This left 27 participants

in the cheap condition and 23 participants in the costly con-

dition. We further excluded from analysis any trials in which

the participants timed out only for the final shot (5.7%) and

trials in which the participant minimized or browsed away

from the experimental window (0.1%).

Behavioral results

Overall, participants performed well in this task and hit the

target on their final shot more frequently than would be ex-

pected under chance performance (61% accuracy versus 25%

accuracy at chance; t(17) = 5.01, p < .001, d = 2.43).

There was no good evidence that participants performed

fewer practice shots on average between the two experimen-

tal conditions (cheap: 0.68, costly: 0.48, t(47.3) = 1.08,

p = .29, d = 0.31), nor was there evidence that the aver-

age time spent thinking differed by condition (cheap: 2.5s,

costly: 2.4s, t(46.2) = 0.26, p = .79, d = 0.08). Participants

were also roughly equally accurate across the two conditions

(cheap: 63%, costly: 60%, t(40.0)= 0.82, p= .42, d = 0.26).

Because we found no difference in behavior by cost condi-

tion, we ignore this manipulation for all future analyses.

Across individuals, simulation and experimentation were

tightly linked: the average time participants spent thinking on

a trial (excluding time watching practice shots) was correlated

with the number of practice shots they took (r(48) = 0.76,

p < .001).

At the trial level, participants were sensitive to the gross

difficulty: as the probability of shooting the ball in the goal
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Figure 2: Plot of trial difficulty (chance of random shot being suc-
cessful) versus number of practice shots (left) and average thinking
time (right) for each trial. Points are labeled with trial indicators.
See Fig. 1 for trials by number, and Fig. 3 for results from colored
trials.

by chance increased they were more accurate (averaged over

trials, r(16) = 0.72, p< .001), performed fewer experimental

shots (r(16)=−0.52, p= .027, see Fig. 2, left), and took less

time to think (r(16) =−0.65, p = .004, see Fig. 2, right).

Participants were sensitive to trial features beyond this

gross difficulty measure. Even for trials with similar proba-

bilities of guessing, there was a wide variation in the average

number of practice shots participants took; including trial in-

dicators provided better predictions of the number of practice

shots participants used as compared to predictions based only

on the chance of a successful guess (χ2(16) = 115, p < .001).

This can also be observed when comparing specific trials: for

example, looking at the difference between Trial 7 (blue in

Fig. 2), and both Trial 6 (red) and Trial 18 (green). While

Trial 6 & 7 have roughly the same “chance” difficulty (9% vs

12%), participants rarely took practice shots in Trial 7 (0.18

/ participant) but used a large number of practices for Trial

6 (1.21 / participant). Conversely, while the random chance

of success are very different between Trial 7 & 18 (12% vs

84%) participants use a comparable number of practice shots

in both (0.18 / participant for Trial 7 and 0.31 / participant for

Trial 18).

We next investigated whether executing physical exper-

iments improved participants’ performance across partici-

pants; however, we found no evidence for this. There was no

evidence that participants who performed more practice shots

were more accurate (r(48) = −0.07, p = .62), nor did they

spend less time thinking (r(48) = −0.16, p = .26). While

we would expect that experimentation would improve perfor-

mance, it is possible that less skilled participants need this

additional information, while more skilled participants can

perform just as well without it.

In summary, participants modulated their simula-

tion/experiment policy in response to trial difficulty, but not

to relative action cost. Next, we turn to a model that can

integrate information from simulation and physical actions

to explain this pattern of information seeking across trials.

Computational model

The integration model was designed to map actions (shot an-

gles) to outcomes (probability of hitting the goal) by com-

bining information from both simulation and experimenta-

tion. Let θ be the shooting angle and f (θ) be the log odds

that θ will lead to a target hit. People learn this function

by sampling physical paths, either through simulation or an

experiment. Simulations are derived from the probability of

hitting the target using the noisy physics model of Smith &

Vul (2013), and experimental outcomes are sampled from a

smoothed function mapping the actions to actual outcomes

according to the physics engine used in the experiment.

To capture how people generalize from sampled paths to

new paths, we assume that people learn a Gaussian pro-

cess (GP) regression model of f (θ) (Rasmussen & Williams,

2006), a flexible nonparametric framework for function learn-

ing that has previously been successfully applied to model

mental simulations (Hamrick & Griffiths, 2014). A GP prior

over functions is specified by a mean (typically assumed to be

0) and a covariance function, or kernel, k(θ,θ′) which gov-

erns the smoothness of the function. Given this prior, the

posterior over functions is Gaussian and can be computed in

closed form (Rasmussen & Williams, 2006).

While mental simulations are fast, they are also noisier than

physical experiments, and hence not as informative. To inte-

grate information from both of these sources of information,

we follow the proposal put forward by Marco et al. (2017) for

a kernel that can integrate simulations and experiments:

k(θ,θ′) = ksim(θ,θ
′)+δ(θ)δ(θ′)kdiff(θ,θ

′), (1)

where δ(θ) = 1 indicates that θ was used to generate an ex-

periment, and δ(θ) = 0 indicates that θ was used to generate

a simulation. The kernel ksim models the contribution from

simulations, and kdiff models the difference between simula-

tion and experiment. This is similar to exemplar-based mod-

els that generalize based on the distance (similarity) to previ-

ous observations (Griffiths et al., 2009), except observations

here can be either simulations or experiments. To account

for the differences in uncertainty from these two sources, we

weight the distances to previous examples differently for each

source, with a weaker generalization for simulations (using

kernel ksim) and a stronger one for experiments (using kernel

ksim + kdiff). We use a radial basis function for both kernels.

In order to find the angle θ∗ that optimizes f (θ), our model

has to query informative angles. When choosing angles to

query, it also has to account for a differences in costs of each

information source. This requires us to have a principled way

to quantify how valuable an observation from each of these

sources of information is, relative to its cost. One such mea-

sure is how much an observation from each source reduces

the entropy over the maxima of f (θ).
An acquisition function that utilizes this metric is predic-

tive entropy search (PES, Hernández-Lobato et al., 2014). We

adapt this acquisition function following Marco et al. (2017)

to accommodate the two information sources. The mapping

between query angle θ and how much it reduces entropy over

the maxima of f (θ) is given by PESsim(θ) and PESexpt(θ),
depending on if the query is a simulation or a physical ex-

periment. The simulations are more noisy so PESsim(θ) <

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 15, 2018. ; https://doi.org/10.1101/321497doi: bioRxiv preprint 

https://doi.org/10.1101/321497
http://creativecommons.org/licenses/by/4.0/


Figure 3: Qualitative behavior of the model. A: Screen shots of the three different trials (see main text for logic behind selection of trials).
B: Polar plots showing the results of one run of the model, with probability of success from simulation and experiment. Dots indicate
observations with blue dots marking simulations and orange dots marking experiments. The black line indicates the final estimate from the
model (from that run) for probability of success. C: Density of final shots taken by the model, overlaid with final shots taken by participants.
D: Number of experiments and simulations as generated by our model and humans (with amount of time spent not doing an experiments
before taking the final shot as a proxy for number of simulations, with an assumption of 0.7 s/simulation, for ease of visualization) E:
Evolution of one run of the model’s prediction over simulation/action choices, from top to bottom. The black line is the model’s belief (with
grey indicating ± 1sd), the blue line is simulation probability, and the orange line is experimentation probability; dots indicate observations,
with the same corresponding colors, and circles are the most recent observation. Top: the model initially simulates which increases probability
of success in the region but is still uncertain. Middle: an experiment gives much more certainty, but it is still unclear if clockwise (right) or
anticlockwise (left) from that point is better. Bottom: the final experiment updates belief that shooting clockwise from the first experiment
would likely miss.

PESexpt(θ). To account for the difference in cost, we asso-

ciate an effort measure with both kinds of evaluations tsim for

the simulation and texp for the physical experiments. While

simulations are less informative, they are normally cheaper

than experiments, so tsim < texp. We then select the next angle

to evaluate, θn+1, and whether it is a simulation or exper-

iment, δ(θn+1), according to argmaxθ,i∈{sim,exp} PESi(θ)/ti.

The predictive entropy search first tries four randomly se-

lected mental simulations, and afterwards chooses to evaluate

new points based on the PES acquisition function.

We discretized the possible shots into 100 different angles

spanning the circle, and precomputed for each trial and angle

the following variables: (a) whether that shot would hit the

green goal according to the game physics, and (b) the prob-

ability that a simulation would hit the green goal based on

50 random simulations from the noisy physics model. These

variables are then smoothed using a Gaussian window, to ac-

count for perceptual error in distinguishing angles. We then

take the logit of these functions to transform them onto the

real line in order to carry out unconstrained Gaussian process

regression.

There are four free parameters in this model: the ratio of

the cost of simulations versus experiments (texp/tsim), the sim-

ulation noise variance relative to the experiment noise vari-

ance, and two stopping criteria for the optimization: an en-

tropy threshold that stops if a lower bound for the relative

change in PES is reached, and a probability threshold if an up-

per bound for the best-so-far probability of success is reached.

We used grid search to select the parameter values that min-

imized the sum-squared error between the number of experi-

ments predicted by the model and the participants.∗

Model results

Our model closely tracked the frequency of experiments par-

ticipants chose to perform across trials, r(16) = 0.68, p =
0.002 (Fig. 4, left). We then compared the number of sim-

ulations done by the model with the number of simulations

done by participants. Since the number of simulations done

by a participant is not explicitly available, a rough proxy is the

amount of time participants spent thinking. We found a mod-

erate correlation between the predicted number of simula-

tions and participant’s thinking time (r(16) = 0.48, p = .042;

∗Our results are robust to fairly large variations in the parame-
ter settings we searched. The only parameter that explained a large
portion (32%) of the variance in the sum of squared errors over all
parameter settings was the cost factor between experiment and sim-
ulation, with other factors explaining less than 1% of the variance.
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Figure 4: Correlations between model predictions and average par-
ticipant behavior for each trial. Left: number of experiments. Right:
time spent thinking (calculated based on a linear regression from
number of model simulations, in seconds).

Fig. 4, right).

While there was a strong correlation in participants’ data

between the number of practice shots and thinking time

per trial (r(16) = 0.93, p < .001), the model predicts that

there should be no appreciable correlation between the num-

ber of experiments and simulations (r(16) = .15, p = .54).

Nonetheless, the number of simulations expected by the

model does predict part of the unexplained variance in think-

ing time above and beyond the number of practice shots

(F(1,15) = 4.55, p = .05), indicating that the number of sim-

ulations predicted by the model is still reflected in the amount

of time spent thinking. Further, the correlation between sim-

ulations and thinking time (r = 0.48) is almost unchanged

when partialing out the number of observed practice shots per

trial (rpart = 0.48), indicating that the model’s predicted sim-

ulations are explaining independent information to the num-

ber of practice shots.

We also see that our model is able to replicate the qual-

itative patterns of information seeking behavior in humans

across trials, as highlighted by Trials 6, 7 and 18 in Figure 3:

trials that are intuitively obvious and have very few practice

shots (Trials 7 & 18) are solved by the model using simulation

alone, while more difficult trials that spur participants to take

practice shots (e.g., Trial 6) also spur the integration model to

experiment.

In order to highlight the importance of integrating simula-

tion and experiment for explaining the human data, we also

test a model that cannot simulate, and fit it to the number

of observed experiments from the data with a grid search

through the stopping criteria parameters (the other parameters

do not apply to this lesioned model). This model by definition

cannot explain thinking time, though it can predict the num-

ber of practice shots (r(16) = 0.42, p = 0.08) which is not

significantly worse than the full model (z = 0.21, p = 0.83).

However, this is because the lesioned model was fit to the

number of practice shots. Next, we investigate how the model

uses those experiments to produce a final shot. Assessing

the log-likelihood (LLH) of participants’ final shots under a

smoothed distribution of model-predicted shots, we find that

the full model (LLH f ull =−968, estimated kernel bandwidth

= 0.295 radians) predicts participants’ shots better than the

lesioned model (LLHlesion =−1,563, estimated bandwidth =
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Figure 5: Density of final shots taken for each trial by partici-
pants (left), the full model (middle), and the experiment-only model
(right). The green areas below the axes indicate angles that would
be successful.

2.7 radians), making each final shot 2.02 times more likely to

have occurred under the full vs. the lesioned model.

In summary, the lesioned, experiment-only model is not

an adequate account of the data, and because we did observe

practice shots, a simulation-only model could not account for

participants’ behavior either. Our integrated model provides

a good qualitative explanation for the information seeking be-

havior we see across trials and corresponds well to the final

shots people take. It also provides reasonably good quantita-

tive correlations with the number of experiments humans do

across different trials, as well as the time they spent thinking.

Discussion

Using a novel experimental paradigm that requires integrat-

ing simulation and experimentation to gather information, we

found that people use both strategies, and furthermore that

people’s use of both of these strategies varies across differ-

ent scenarios. We can explain much of the variation in ex-

perimentation, time spent thinking, and final decisions using

a single information gathering model that treats knowledge

gained from both simulations and experiments in a common

currency and uses an expected cost/benefit analysis to deter-

mine which strategy to use next.

This finding provides a starting framework to address the

question of how people can flexibly integrate cheap but noisy

information gathering in their heads and accurate but poten-

tially expensive information gathering in the world. We find

that people’s behavior is roughly consistent with a rational
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process model that chooses actions based on a measure of

information gain. While this experiment focused on physi-

cal action planning, there are many domains in which people

can gather information from both thinking and acting that this

framework could be applied to, from problem solving to re-

inforcement learning (e.g., Gershman et al., 2017).

This is not the only possible model of people’s active in-

formation seeking (cf. Nelson, 2005): there are other ways of

integrating information, assessing the expected benefits from

each information source, or determining whether to simulate

or act based on the current information. In future work we

will assess further information seeking models that integrate

simulation and experiment.

Limitations

There are features of this integration problem that we will

need to further investigate. For instance, according to our

model there should be relatively little correlation between ex-

periments and simulation, yet we find a large correlation be-

tween practice shots and thinking time in the empirical data.

By assuming that thinking time is linearly related to the num-

ber of simulations, we could explain some of the variance in

thinking time across trials, but left a large part unexplained.

Future work needs to determine whether this is because our

model of thinking time is incorrect (e.g., it should include

time to set up practice shots), or if this points to an area of the

integration process that requires further consideration.

Our participants were extremely consistent in the ultimate

angle at which they shot the ball – in almost all cases choosing

almost identical or one of two directions (Fig. 5, left). The in-

tegration model could explain why there were some accurate

shots that people did not consider, but still picked out some

angles that people did not (e.g., shooting at the opposite wall

from a straight shot in Trials 7 & 18, Fig. 3). This may re-

flect preferences not built into the model (e.g., for shorter path

lengths) or priors on the action-outcome mapping that can be

gleaned before any simulations or actions occur.

And finally, if we assume that people are sensitive to the

costs of simulation versus action, we would expect to see

a difference in behavior when experiments were cheaper or

more costly, yet none was found here. Because this manipu-

lation was performed across participants, perhaps people had

set different expectations for points in each condition, and so

any cost trade-offs would cancel out. This theory would be

consistent with findings that between-subject incentive ma-

nipulations can be ineffective while the same incentive ma-

nipulations are effective within-subject (Harley, 1965).

Conclusion

Mental simulation is a powerful tool that can help us plan

ahead and solve complex problems without having to per-

form an action. Nonetheless, complex tasks often require

both mental simulation and actual experiments. We have de-

veloped both a computational framework and reported pre-

liminary behavioral findings that take a step towards under-

standing how people integrate simulation and experiments.
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