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Abstract

Recognition of the functional sites of genes, such as translation initiation sites, donor
and acceptor splice sites and stop codons, is a relevant part of many current problems
in bioinformatics. Recognition of the functional sites of genes is also a fundamental
step in gene structure predictions in the most powerful programs. The best
approaches to this type of recognition use sophisticated classifiers, such as support
vector machines. However, with the rapid accumulation of sequence data, methods for
combining many sources of evidence are necessary as it is unlikely that a single
classifier can solve this type of problem with the best possible performance.

A major issue is that the number of possible models to combine is large and the
use of all of these models is impractical. In this paper, we present a framework that is
based on floating search for combining as many classifiers as needed for the recognition
of any functional sites of a gene. The methodology can be used for the recognition of
translation initiation sites, donor and acceptor splice sites and stop codons.
Furthermore, we can combine any number of classifiers that are trained on any species.
The method is also scalable to large datasets, as is shown in experiments in which the
whole human genome is used. The method is also applicable to other recognition tasks.

We present experiments on the recognition of these four functional sites in the
human genome, which is used as the target genome, and use another 20 species as
sources of evidence. The proposed methodology shows significant improvement over
state-of-the-art methods for use in a thorough evaluation process. The proposed
method is also able to improve heuristic selection of species to be used as sources of
evidence as the search finds the most useful datasets.

Author summary

In this paper we present a methodology for combining many sources of information to
recognize some of the most important functional sites in a genomic sequence. The
functional sites of the sequences, such as, translation start sites, translation initiation
sites, acceptor and donor splice sites and stop codons, play a very relevant role in
many Bioinformatics tasks. Their accurate recognition is an important task by itself
and also as part of gene structure prediction programs.

Our approach uses a methodology usually termed in Computer Science as “floating
search”. This is a powerful heuristics applicable when the cost of evaluating each
possible solution is high. The methodology is applied to the recognition of four
different functional sites in the human genome using as additional sources of evidence
the annotated genomes of other twenty different species.
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The results show an advantage of the proposed method and also challenge the
standard assumption of using only genomes not very close and not very far from the
human to improve the recognition of functional sites in the human genome.

Introduction

The recognition of functional sites within the genome is one of the most important
problems in bioinformatics research. Determining where different functional sites, such
as promoters, translation start sites, translation initiation sites (TISs), donors,
acceptors and stop codons are located provides useful information for many tasks [1].
For instance, the recognition of translation initiation sites, donors, acceptors and stop
codons [2] is one of the most critical tasks for gene structure prediction.

Many of the most successful gene recognizers that are currently in use implement
an initial step of site recognition [3], which is followed by a process of combining the
sites into meaningful gene structures. Accurate recognition is of the utmost
importance for the whole gene structure prediction process. Actual sites that are not
found by the classification models likely result in exons not being considered by the
remaining steps of the recognition program. Furthermore, many false positives might
inundate the second step, thereby making it difficult to predict gene structures
accurately. State-of-the-art approaches use powerful classifiers, such as support vector
machines (SVMs), and consider moderately large sequences around the functional site
of interest [2,4-6].

In recent years, information about the genomes of many species has been
accumulated. This information can be used to improve the recognition of functional
sites. However, the arbitrary selection of species using the widely assumed hypothesis
that we must consider moderately distant evolutionary relatives is clearly a
suboptimal procedure [7]. In addition, the classifier models are chosen a priori,
without considering the possible benefits of combining various models.

It would be more efficient to learn all of the available classification models and
obtain the best combination using an automatic method. The problem of finding the
best combination can be tackled as a search problem over all possible combinations.
An exhaustive search is unfeasible even for a small number of models. Other common
search heuristics, such as evolutionary computation and swarm intelligence, are also
prohibitively costly in terms of running time.

In cases when those heuristics cannot be used, floating search is an inexpensive yet
sufficiently powerful methodology that is able to achieve very good solutions. Floating
search has been used when the cost of each search step is high [8]. Thus, in this work,
we propose using floating search to obtain a near-optimal combination of classification
models, in which we can consider as many sources of evidence as are available and use
as many classifiers as needed using various floating search methods, namely, Sequential
Forward Selection, Sequential Backward Selection, Plus-I Minus-r Selection,
Sequential Forward Floating Selection, Sequential Backward Floating Selection,
Random Sequential Forward Floating Selection and Random Sequential Backward
Floating Selection. Although the first two methods are not actually floating search
methods but sequential greedy approaches, we included them for completeness.

To evaluate the proposed method, we show results for the recognition of the four
functional sites that are cited above in five chromosomes of the human genome. To
demonstrate the ability of our method to combine many classifiers we used for TIS
and stop codon recognition 6 models for each of the 21 complete genomes, for a total
of 126 classifiers. For donor and acceptor recognition, we used 5 models for the same
21 genomes, for a total of 105 classifiers.
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Materials and methods

As stated in the introduction, our major aim is to develop a combination method for
obtaining optimal, or near-optimal, subsets of classification models that are trained for
site recognition in DNA sequences. An exhaustive search would require the evaluation
of 2V — 1 combinations of models given a set of N trained classifiers. This type of
search is infeasible even for a small value of N. Therefore, we must use a search
algorithm to find the best possible model combination efficiently. Many powerful
metaheuristics are available in the machine learning literature, such as evolutionary
computation [9], particle swarm optimization [10], ant colonies [11] and differential
evolution [12]. However, all of these methodologies require the repetitive evaluation of
many solutions to achieve their optimization goal. In the problem of site recognition,
the evaluation of a possible solution is a costly process due to the large datasets that
are involved. Thus, these metaheuristics are not feasible.

Instead, we propose a simpler approach, namely, floating search, which has
obtained successful results in other research fields, such as feature selection [13-16].
Floating search, which will be described in depth in the following section, is a set of
stepwise search methods that are fast and efficient at solving problems in which the
evaluation of many possible candidate solutions is too computationally expensive.

The process for obtaining the best combination of classifiers for various species is
composed of two steps: a training step and validation step. Before starting the
learning process, we need to obtain the training datasets, testing dataset and
validation dataset. Without a loss of generality and to provide the necessary focus for
our description, we use the same setup as in the experiments that are reported below.
We address the problem of site recognition in the human genome. To solve this
problem, we use a test set of sites of a specific chromosome, which we denote as T
The training set includes all of the remaining human chromosomes and genomes of all
of the species we choose to evaluate. For validation, we use one of the human
chromosomes in the training set, which we denote as V' and remove it from the
training set.

Floating search

As stated above, the use of complex heuristics for combining tens or hundreds of
models would incur an infeasible computational cost. Thus, we propose the use of
simpler, yet still powerful, heuristics. We state our problem as a search problem to
enable the application of those heuristics. We have N trained classifiers

C ={c1,ca,...,cn}, which are trained using any types of sequences that could be
useful, and use any genome that we consider interesting. Our aim is to obtain a subset
of classifiers C’ C C that is the best possible combination. Evaluation of the
combination of models is carried out using cross-validation. Thus, our objective
function for maximization is the accuracy of the combination of classifiers over a
validation set V', which is denoted as J(V).

Among the simplest methods, Sequential Forward Selection (SFS) [17] (see
Algorithm 1) and Sequential Backward Selection (SBS) [18] (see Algorithm 2) are
widely used because of their easy implementation and speed. The SFS method starts
with an empty set and adds one classifier at a time to the selected subset by choosing
the classifier that maximizes J(V'). The method terminates when the value of J(V) is
no longer improving or a desired number of classifiers has been reached. SBS starts
from the opposite side by considering all of the classifiers and removing one classifier
at a time. For classifier removal, J(V') is evaluated and the model that maximizes
J(V) is removed. The stop criterion could be a number of classifiers that are removed
or a decrease of J(V') is observed. In our experiments, we removed classifiers while
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J(V) does not decrease. These two methods can be generalized to add or remove r > 1
classifiers in every iteration. These methods are fast and can obtain good results, but
have two major problems: They easily become trapped in local minima and suffer
from the “nesting effect” [19]. The nesting effect means that to obtain an optimal
solution of size M, it must contain the optimal solution of size M — 1, which is not
often the case in practice.

Algorithm 1 Sequential Forward Selection (SFS).

Data : A set of trained classifiers C = {c1,c2,...,cn} and a validation set V.
Result : The selected subset of classifiers Copt C C.
1 Copt = 0
do
2 Select the next best classifier ¢ = argmax.¢c,,, [Jv (Copt + ¢)]
if Jy (Copt +¢) > Jy(Copt) then
3 ‘ Update Copt = Copt + ¢
else
‘ break
end

while true
4 Return the best subset of classifiers Copt

Algorithm 2 Sequential Backward Selection (SBS).

Data : A set of trained classifiers C = {c1,c2,...,cn} and a validation set V.
Result : The selected subset of classifiers Copt C C'.
1 Copt =C
do
2 Select the next worst classifier ¢ = argmaxcec,,,, [Jv (Copt — ¢)]
if Jy (Copt —¢) > Jy(Copt) then
3 ‘ Update Copt = Copt — ¢
else
| break
end

while true
4 Return the best subset of classifiers Copt

The nesting problem can be avoided using the Plus-l Minus-r Selection (LRS)
search method [20]. LRS adds backtracking capabilities by using SFS to add [ models
and SBS to remove r models. However, one major problem is that there is no rule for
choosing the best values of [ and r. The LRS method is shown as Algorithm 3.

A more advanced approach is floating search. In floating search, we let the size of
the solution “float” and adapt to the problem using a backtracking mechanism. In
that way, Sequential Forward Floating Selection (SFFS) and Sequential Backward
Floating Selection (SBFS) [8] overcome the nesting problem and the local minimum
problem by backtracking after adding (or removing) a new model. SFFS starts with
an empty set and proceeds as SFS. However, after adding a new model, SFFS allows
any of the previously added models to be removed until the value of J worsens. SBFS
does the opposite: it follows the SBS method and allows removed models to be added.
Algorithms 4 and 5 show the SFFS and SBFS methods, respectively. The
comparisons [21] usually demonstrate better performances of SFFS and SBFS
compared to SFS and SBS.

Somole et al. [13] proposed an adaptive version for feature selection in which the
number of models to add or remove was incremented when the desired number of
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Algorithm 3 Plus-l Minus-r Selection (LRS).

Data : A set of trained classifiers C = {c1,c2,...,cn} and a validation set V.
Result : The selected subset of classifiers Cope C C'.
if [ > r then
1 ‘ Copt = @
else
2 ‘ Copt =C
end
do
3 added_model = removed_model = false

for k=1 tol do

4 Select the next best classifier ¢ = argmax.¢c,,, [Jv (Copt + ¢)]
if JV(Copt —+ C) > J\/(Copt) then
5 Update Copt = Copt + ¢
6 added_model = true
else
| break
end
end
for k=1 tor do
7 Select the next worst classifier ¢ = arg maxcec,p, [Jv (Copt — ©)]
if JV(Copt — C) > Jv(copt) then
8 Update Copt = Copt —cC
9 removed_model = true
else
‘ break
end
end

while added_model V' removed_model
10 Return the best subset of classifiers Copt

Algorithm 4 Sequential Forward Floating Selection (SFFS).

Data : A set of trained classifiers C' = {c1,c2,...,cn} and a validation set V.
Result : The selected subset of classifiers Copt C C.
1 Copt =0
do
2 Select the next best classifier ¢ = argmax.¢c,,, [Jv (Copt + ¢)]
if Jv(Copt + C) > Jv(copt) then
3 ‘ Update Copt = Copt + ¢
else
‘ break
end
do
4 removed_model = false
5 Select the worst classifier ¢ = arg maxcec,,, [Jv (Copt — ¢)]
if Jv(Copt — C) Z Jv(Copt) then
6 Update Copt = Copt — ¢
7 removed_model = true
end
while removed_model

while true
8 Return the best subset of classifiers Cop¢
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Algorithm 5 Sequential Backward Floating Selection (SBFS).

Data : A set of trained classifiers C' = {c1,c2,...,cny} and a validation set V.
Result : The selected subset of classifiers Copt C C.
1 Copt =C
do
2 Select the next worst classifier ¢ = arg maxcec,p. [Jv (Copt — ©)]
if Jv(copt — C) 2 Jv(oopt) then
3 ‘ Update Copt = Copt — ¢
else
‘ break
end
do
4 added_model = false
5 Select the best classifier ¢ = argmax.¢c,,, [Jv (Copt + )]
if Jv(Copt + C) > Jv(Copt) then
6 Update Copt = Copt + ¢
7 added_model = true
end
while added_model

while true
8 Return the best subset of classifiers Cop¢

features was small. However, the method achieved only marginal improvement and
required a longer execution time.

We can also consider randomized versions of SFFS and SFBS as possible
improvements. These algorithms are a combination of the random generation of a
subset of models and a floating search selection algorithm. We propose the use of
Random Sequential Forward Floating Selection (RSFFS) and Random Sequential
Backward Floating Selection (RSBFS). Both algorithms start with a random subset of
models', and with this random subset, an SFFS or SBFS algorithm is implemented.
Thus, in the experiment, we will consider the SFS, SBS, LRS (with [ = 3,7 = 1 and
l=1,r =3), SFFS, SBFS, RSFFS and RSBFS algorithms.

As we are combining various models, there are many ways of combining the
outputs of those models. For the combination, we use three simple methods as our
major aim is efficient execution. Although there are more complex approaches [22],
their advantage is not large due to over-fitting problems. These methods are: i) the
sum of the outputs of the classifiers; ii) the majority voting; and iii) the maximum
output, where the sequence is classified using only the model with the highest output.
In the machine learning literature, combining different sources of evidence for a
classification problem is a common task [23]. Although various sophisticated methods
have been developed for combining many classifiers [24-27]; in practice, none of them
are able to significantly outperform the simpler methods on a regular basis.

Two of the problems of combining many different classification models that are
trained on different datasets are that their outputs may not be in the same range and
the optimal classification threshold might be different for each model. The problem of
the different ranges is solved by scaling all of the outputs to the interval [—1,1].
Regarding the threshold, we obtain the optimal threshold for each model, which is
denoted as O, using the validation set, and for the inclusion of the model in any
combination, we use y(x) — O, Where y(x) is the actual output of the model for
sequence X.

For the training stage, we can select as many species as we deem useful for our

n our experiment, this subset was obtained selecting each classifier with a probability of 0.5.
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problem. We need not select the most appropriate species because the floating search
will discard the useless classifiers. Once we have selected the set of species whose
genomes we are going to use, we train as many classifiers as we want from those
species. For every organism, we can train various classifiers, such as support vector
machines (SVMs), neural networks (NNs), decision trees (DTs), and the k-Nearest
Neighbor (k-NN) rule, and the same classifiers with different parameters. Because the
validation stage can consider hundreds of classifiers, any method of potential interest
can be used. Again, the floating search process will remove unneeded classifiers.

Experimental setup

To test our model, we chose the human genome together with those of other 20 species.

Our aim was to test whether any species, regardless of the similarity of its genome
with the human genome, could be useful. The following species were considered:
Anolis carolinensis, Bos primigenius taurus, Caenorhabditis elegans, Callithriz jacchus,
Canis lupus familiaris, Danio rerio, Drosophila melanogaster, Equus caballus, Ficedula
albicollis, Gallus gallus, Homo sapiens, Macaca mulatta, Monodelphis domestica, Mus
musculus, Ornithorhynchus anatinus, Oryctolagus cuniculus, Pan troglodytes, Rattus
norvegicus, Schistosoma mansoni, Sus scrofa and Tokifugu rubripes. These genomes
were selected to consider a wide variety of organisms whose genomes are fully
annotated.

Five classifiers were trained from every dataset for the four functional sites: a
decision tree, a k-nearest neighbor rule, a positional weight matrix, a support vector
machine with a string kernel and a support vector machine with a spectrum kernel.
Additionally, for TIS and stop codon recognition, we used the stop codon method [28].
The parameters for every classifier were obtained using 10-fold cross-validation.

To evaluate our approach, we used five human chromosomes for testing purposes,
namely, chromosomes 1, 3, 13, 19 and 21, and we used chromosome 16 for validation
purposes. For each chromosome, we trained the classifiers with all of the remaining
chromosomes except 16 and obtained the best combination method using our
approach, and we used chromosome 16 for validation. We tested the selected models
with all of the true TIS, donor and acceptor sites and stop codons and all of the
negative samples of the given chromosome. That is, for chromosome 1, we trained the
models with chromosomes 2 to 22 and X and Y, leaving out chromosome 16. Then, we
chose the best combination method using chromosome 16 and tested this combination
of models using chromosome 1. A summary of these datasets is shown in Table 1. The
chromosomes were selected with the aim of choosing chromosomes of different lengths
and coding densities. Chromosome 16 was chosen as a validation set because it is a
chromosome of average length and coding density. We used the CCDS Update
Released for Human of September 7, 2011. This update uses Human NCBI build 37.3
and includes a total of 26,473 CCDS IDs, which correspond to 18,471 GenelDs. The
validation set consisted of 836 positives samples and 2,721,460 negative samples for
TIS, 28,567 positive samples and 8,011,785 negative samples for donor sites, 28,567
positive samples and 11,448,673 negative samples for acceptor sites and 838 positive
samples and 7,480,457 negative samples for stop codons.

One of the key aspects of the evaluation of any newly proposed method is the set of
previous methods that are considered in the comparison. Many methods have been
proposed for recognizing functional sites [2,28-30]. However, these previous works and
our own research [7,31] have shown that an SVM with a string kernel is the best
state-of-the-art method for TISs, stop codons and splice sites [6]. To evaluate the
general advantage of SVMs with string kernels, we performed a preliminary study of
the available methods, which included position weight matrices, decision trees,
k-nearest neighbors, the stop codon method [28], Wang et al.’s method [30], Salzberg’s

PLOS

7/54

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199


https://doi.org/10.1101/320309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/320309; this version posted May 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

@PLOS | susmission

aCC-BY 4.0 International license.

Table 1. Summary of datasets for chromosomes 1, 3, 13, 19 and 21. Random
undersampling was used for training; thus, the number of negative instances was equal
to the number of positive instances for the training dataset.

Dataset | Site Training data Testing data
Positives/Negatives | Positives | Negatives
Chr. 1 | TIS 17,638 2,156 8,074,590
STOP 17,404 2,154 23,573,031
DONOR 630,985 81,378 | 22,634,283
ACCEPTOR 630,985 81,378 | 32,121,966
Chr. 3 | TIS 18,631 1,163 7,291,951
STOP 18,444 1,114 21,522,500
DONOR 663,884 48,479 | 19,578,976
ACCEPTOR 663,884 48,479 | 26,998,110
Chr. 13 | TIS 19,454 340 3,664,164
STOP 19,225 333 10,878,302
DONOR 696,352 16,011 9,613,960
ACCEPTOR 696,352 16,011 | 12,871,316
Chr. 19 | TIS 18,383 1,411 1,698,891
STOP 18,136 1,422 4,665,804
DONOR 678,673 33,690 5,673,086
ACCEPTOR 678,673 33,690 8,298,325
Chr. 21 | TIS 19,561 233 1,303,634
STOP 19,558 237 3,726,959
DONOR 704,725 7,638 3,555,622
ACCEPTOR 704,725 7,638 4,819,053

method [32] and SVMs with linear and Gaussian kernels and four string kernels: the
locality improved (LI) kernel, the weighted degree kernel (WD), the weighted degree
kernel with shifts [33] (WDS) and the spectrum kernel [34]. SVMs with WD kernels
consistently provided the best results. Thus, we chose this method as the method to
be compared with our proposed method. WDS provided marginally better results
than WD, but with a far higher computational complexity. To ensure a fair
comparison, we considered not only these methods but also all of the others that were
used as classifiers. Then, for every experiment, we compared our approach to the best
performing method in terms of the validation performance. SVM with WD kernel was
always the best individual classifier.

Another key parameter of the learning process is the window around the functional
site that is used to train the classifiers. An additional advantage of our approach is
that it allows the use of a suitable window for each dataset and even the combination
of models that are trained using different windows. The value of the window for each
classifier was obtained by cross-validation. We considered the site to be offset by 0
and tested the performance of the following windows: [—100, 0], [—75, 25], [—50, 0],
[—50, 50], [-25,0], [—25, 25], [—25, 75], [-10, 15], [-10, 40], [—10, 90], [0, 25], [0, 50] and
[0,100]. For each trained classifier, the best window was chosen. For the stop codon
method, we used the additional window values of [0, 200], [0,300], [0,400] and [0, 500]
for TIS recognition and the window values of [—-200, 0], [-300, 0], [-400, 0] and
[—500, 0] for stop codon recognition. For donor and acceptor sites, due to the many
training instances, validation of the window around the site was not feasible. Thus, we
chose a fixed window for both sites of [—25, 25].

Furthermore, SVMs are very sensitive to the learning parameters; thus, we also
performed cross-validation to obtain their values. The WD kernel has two parameters:
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the standard C' parameter of any SVM and the window width of the string kernel. We
tested values of 1,10,100 and 1000 for C' and 12 and 24 for the window width. All 8
combinations were evaluated using 10-fold cross-validation, and the best combinations
was chosen. Although it can be argued that this method might result in suboptimal
parameters, it represents a good compromise between the high performance of SVM
and the high computational cost of evaluating each set of parameters. The spectrum
kernel is too time consuming for cross-validation of the parameters in the same way as
the WD kernel. Therefore, we fixed the values of the kernel to the values that are
recommended by the authors [34] and only validated the value of C' using the same
values as for the WD kernel.

For PWM and C4.5, there are no parameters that have a significant effect on their
performance. For k-NN, the number of neighbors k was chosen by cross-validation in
the interval [1,100].

To train the models, we used random undersampling [35] because previous studies
have demonstrated its usefulness for TIS recognition [31]. For random undersampling,
we used a ratio of 1, which means that the majority class was randomly undersampled
until both classes had the same number of instances. To avoid any contamination of
the experiments, for every training set, regardless of the species, we removed the genes
that were shared with the test chromosome for all the training datasets.

To evaluate the obtained classifiers, we used the standard measures for imbalanced
data. Given the number of true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN), we used the sensitivity (Sn):

TP

- - 1
= TP Y EN (1)
and the specificity (Sp):
TN
V= TN P 2)

The geometric mean of these two measures, namely, G — mean = /Sp - Sn, was our
first classification metric. As a second measure, we used the area under the receiver
operating characteristic (ROC) curve (auROC). However, auROC is independent of
the class ratios and can be less meaningful when we have very unbalanced datasets [6].
In such cases, the area under the precision-recall curve (auPRC) can be used. The
recall measure is equivalent to the sensitivity measure that was defined above. The
precision (P) is given by:

TP
P_7P+FP (3)

The auPRc measure is especially relevant if we are mainly interested in the positive
class. However, the auPRc measure can be very sensitive to subsampling. In our
results, we use all the positive and negative instances for each of the five tested
chromosomes; thus, no subsampling is used. This also yields small auPRC values.

We use these three metrics because they provide two views of the performance of
the classifiers. The auROC and auPRC values describe the general behavior of the
classifier. However, when used in practice, we must establish a threshold for the
classification of a query pattern. G-mean provides the required snapshot of the
performance of the classifier when we set the required threshold.

The recognition of sites is usually a first step within a larger task, such as a gene
structure prediction program. Therefore, depending on the subsequent steps, our focus
was centered on obtaining models that perform well in terms of various accuracy
measures. Thus, we performed experiments that were aimed at optimizing the three
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measures that were described above. We carried out experiments with eight search
algorithms, namely, SFS, SBS, LRS (with { = 3,7 =1 and [ = 1,r = 3), SFFS, SBFS,
RSFFS and RSBFS; three combination methods, namely, the sum of outputs, majority
voting and maximum; and three measures as optimization objectives, namely, G-mean,
auROC and auPRC. The best model was always selected using the validation set.

Results and Discussion

We performed experiments on the recognition of TISs, donor and acceptor sites and
stop codons to address the four most important sites in any gene recognition task.
However, our approach is applicable to other recognition tasks, such as promoter and
transcription start site (T'SS) prediction. Our method has two main advantages: First,
it has the ability to improve the performance of previous methods. Second, the chosen
combination of classifiers that are trained on different genomes can provide
information on which species are more interesting for human site recognition. In the
following four sections, we discuss the results of the recognition of the four sites.

One of the main advantages of our approach is that we can optimize the
performance measure in which we are interested, which can be the G-mean, auROC,
auPRC or any other measure that is useful for our application. Thus, we conducted
our experiments using three performance measures: G-mean, auROC and auPRC. The
first relevant result is that the combination of the best models that was obtained for
each measure was different. This result means that, depending on the aim of the work,
different combinations of classifiers are needed. For each of the five studied
chromosomes, we obtained three combinations of models, each optimized for one of the
three measures that are discussed above.

Results for TIS recognition

The results for the recognition of TISs for human chromosomes 1, 3, 13, 19 and 21 are
shown in Table 2. Regarding the search method, the results for TIS support our
approach of using different methods and selecting the best method for each case, as
there is no clear winner. Although SFFS achieved the best results most often, SFS,
LRS and RSFBS also perform well. For the combination method, the sum of outputs
was always the best method for auROC and auPRC, with the exception of auROC for
chromosome 13. For G-mean, majority voting was always the best-performing
approach.

In terms of auROC, our approach achieved a clear improvement over the SVM
method alone. The improvement ranged from 3.32% for the worst case, namely,
chromosome 19, to 5.74% for the best case, namely, chromosome 21. We must take
into account that improvement refers to many sites being correctly classified compared
to the standard approach. The standard approach obtained a total of 1,536,902 FPs;
this number was reduced to 299,766, which means more than one million fewer FPs.
For any gene recognition program, that would mean a far better point from which to
start for constructing correct genes.

For auPRC, the improvement was more dramatic?. The improvement is greater
than 10% for all five chromosomes. This is a remarkable result if we take into account

2We always tested all the methods with all the negative samples, which means that the ratio of
the minority/majority class was more than 1:3200 for the worst case, namely, stop codon recognition
for chromosome 13 (see Table 1), which yielded low auPRC values. We must take into account that
with only a few thousand FPs among several million TNs, we obtain a very low precision value. The
situation for stop codon recognition is even worse, as the number of TNs is multiplied by three.
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Table 2. Results for TIS recognition for human chromosomes 1, 3, 13, 19 and 21. The table shows the results
for the three considered measures, auROCm auPRC and G-mean. The best search method, the best combination method
and the classification performance values are shown.

Chrom. | Objective ‘ Method ‘ Combination G auROC | auPRC TP | FN TN FP
State-of-the-art 0.8528 | 0.9390 | 0.0701 | 1,697 | 459 | 7,460,252 | 614,338
auROC SFFS Sum 0.8782 | 0.9781 | 0.1296 | 1,688 | 468 | 7,954,516 | 120,074
1 auPRC SFFS Sum 0.8344 | 0.9690 | 0.1701 | 1,518 | 638 | 7,984,683 | 89,907
G LRS Majority 0.9284 | 0.9701 | 0.0157 | 1,956 | 200 | 7,671,456 | 403,134
State-of-the-art 0.8316 | 0.9265 | 0.0578 862 | 301 | 6,804,392 | 487,559
auROC SFFS Sum 0.8428 | 0.9732 | 0.1295 834 | 329 | 7,222,397 | 69,554
3 auPRC RSFBS | Sum 0.8030 | 0.9623 | 0.1720 | 756 | 407 | 7,233,272 | 58,679
G SFFS Majority 0.9142 | 0.9284 | 0.0037 | 1,033 | 130 | 6,861,085 | 430,866
State-of-the-art 0.8520 | 0.9396 | 0.0575 264 | 76| 3,425,104 | 239,060
auROC RSFBS | Majority 0.8678 | 0.9748 | 0.0610 259 | 813,622,541 | 41,623
13 auPRC LRS Sum 0.8033 | 0.9670 | 0.1611 221 | 119 | 3,637,190 | 26,974
G SFFS Majority 0.9083 | 0.9239 | 0.0045 299 | 41| 3,437,702 | 226,462
State-of-the-art 0.8437 | 0.9368 | 0.0997 | 1,084 | 327 | 1,574,213 | 124,678
auROC SFFS Sum 0.8748 | 0.9680 | 0.1555 | 1,114 | 297 | 1,646,904 | 51,987
19 auPRC LRS Sum 0.8496 | 0.9587 | 0.1841 | 1,048 | 363 | 1,650,949 | 47,942
G SFFS Majority 0.9229 | 0.9482 | 0.0107 | 1,335 | 76 | 1,529,295 | 169,596
State-of-the-art 0.8132 | 0.9183 | 0.0434 163 | 70 | 1,232,367 | 71,267
auROC SFS Sum 0.8462 | 0.9757 | 0.1098 169 | 64 | 1,287,106 | 16,528
21 auPRC LRS Sum 0.8339 | 0.9683 | 0.1658 164 | 69 | 1,287,965 | 15,669
G SFFS Majority 0.9274 | 0.9439 | 0.0036 215 | 18| 1,215,086 | 88,548

the low values of auPRC for all methods. For G-mean, the results also showed a clear
advantage of our method with an improvement of over 5% for the worst case.

The reported reduction is relevant because most current gene recognizers heavily
rely on the classification of sites as a basic step; therefore, it is very likely that those
genes whose TIS is not recognized would be completely missed by any gene recognizer.
Our approach has the potential to significantly improve the accuracy of any
annotation system.

Another interesting result is that the behaviors of the TPs, FNs, TNs and FPs
values depended on the measure that we were optimizing. Thus, if we are interested in
obtaining the best TP and FN results, we should select the optimization of G-mean. If
our interest is in TNs and FPs, auPRC should be our objective. If we want a
satisfactory overall behavior of the four measures, we should use auROC as our
objective. The ability of our proposed method to offer such flexibility is an important
asset in any practical application.

Once we established the usefulness of our proposed method in terms of
performance, we examined the results in terms of the species that were involved in the
best combinations. Table 3 shows the models that were selected for the best
combination for each measure and each chromosome. Regardless of the optimized
measure, there was no species that never appeared in the best combination. This
result indicates that although the contributions of some species are more relevant than
those of others, the information of all of the genomes was useful for the prediction of
human TISs, even those species that are very distant relatives of humans. Another
interesting result is that for the three measures, namely, auROC, auPRC and G-mean,
the obtained combinations of models were substantially different. This result indicates
that we must consider our aims before designing our classifier. In most previous works,
that is not taken into account.
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Table 3. Models selected for TIS recognition.

Chromosome 1 3 13 19 21
Objective ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G
#Models 6 28 |4 7 34 |2 28 |31 2 6 32 |2 6 34 |2
Homo C4.5
sapiens k-NN
PWM
WD
Spectrum
STOP
Anolis C4.5
carolinensis k-NN
PWM
WD
Spectrum
STOP
Schistosoma  C4.5
mansoni k-NN
PWM
WD
Spectrum
STOP
Bos C4.5
primigenius  k-NN
taurus PWM
WD
Spectrum
STOP
Caenor- C4.5
habditis k-NN
elegans PWM
WD
Spectrum
STOP
Callithrix C4.5
jacchus k-NN
PWM
WD
Spectrum
STOP
Drosophila C4.5
melanogaster k-NN
PWM
WD
Spectrum
STOP
Takifugu C4.5
rubripes k-NN
PWM
WD
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Table 3. Models selected for TIS recognition (cont.).
Chromosome 1 3 13 19 21
Objective ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G
Spectrum
STOP
Oryctolagus  C4.5
cuniculus k-NN
PWM
WD
Spectrum
STOP
Gallus C4.5
gallus k-NN
PWM
WD
Spectrum
STOP
Pan C4.5
troglodytes k-NN
PWM
WD
Spectrum
STOP
Canis C4.5
lupus k-NN
familiaris PWM

WD

Spectrum
STOP
Danio C4.5

rerio k-NN

PWM

WD

Spectrum

STOP
Macaca C4.5

mulatta k-NN

PWM

WD

Spectrum

STOP
Mododelphis C4.5

domestica k-NN

PWM

WD

Spectrum

STOP
Mus C4.5

musculus k-NN
PWM

WD
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Table 3. Models selected for TIS recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G
Spectrum
STOP
Rattus C4.5
norvegicus k-NN
PWM
WD
Spectrum
STOP
Ornitho- C4.5
rhynchus k-NN
anatinus PWM
WD
Spectrum
STOP
Equus C4.5
caballus k-NN
PWM
WD
Spectrum
STOP
Ficedula C4.5
albicollis k-NN
PWM
WD
Spectrum
STOP
Sus C4.5
scrofa k-NN
PWM
WD
Spectrum
STOP
Regarding the classification models, all methods were selected at least once. The
k-NN rule and SVM with a string kernel were the most frequently selected methods.
The case of k-NN is remarkable as this approach is not usually used for this
task [2,28-30]. It appears that the diversity that A-NN introduced into the models was
useful for the overall performance of the combinations, despite that k-NN alone
showed a worse performance than SVM alone. The explanation of this result may be
found in the behavior of the ensembles of classifiers. It is well known [36] that a
diverse ensemble of classifiers improves the performance of the set of classifiers.
The five most frequently used genomes were Macaca mulatta, Pan troglodytes,
FEquus caballus, Callithriz jacchus and Rattus norvegicus. Homo sapiens was not
among the most often used genomes. Moreover, other genomes that are further
removed from the human genome, such as Takifugu rubripes, were also frequently used.
With respect to the three objectives, optimizing the G-mean yielded the most
stable results. For the five chromosomes, the selected models were always the SVM
method for Macaca mulatta and Pan troglodytes, with the exception of chromosome 13,
PLOS 14/54
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where Pan troglodytes was replaced with Bos primigenius taurus. For chromosome 1,
another two classification models were used. For auROC, six or seven models were
usually selected, with chromosome 13 requiring 28. The SVM method was always
chosen for Macaca mulatta and Pan troglodytes, but the remaining methods and
species depended on the chromosome. This is another interesting result because most
TIS recognition programs mainly rely on common models for any task. Finally, for
auPRC, significantly more models were selected, from 28 to 34, with a significant
variation among the chromosomes. Here, the large number of negative samples made
this task harder than optimizing the other two criteria.

The ROC and PRC curves are shown in Figs. 1-5. These figures show that our
approach improved the auROC and auPRC for all five studied chromosomes. These
results demonstrate that the proposed method outperformed the best model overall.
The ROC and PRC curves show that the curves that correspond to our proposed
method are always above the curves of the best model. This result indicates better
performance for all the possible thresholds of classification.

Results for donor site recognition

The results for the recognition of donor sites for human chromosomes 1, 3, 13, 19 and
21 are shown in Table 4. For auROC, the achieved results were close to or above 99%,
so there was little room for improvement. A similar trend was followed by G-mean,
with an improvement of approximately 1%. auPRC was significantly improved, from
5% in the worst case to 11% in the best case. However, since the number of negative
samples was large, these small improvements corresponded to the correction of many
erroneous predictions. For example, the standard approach obtained 3,616,750 FPs,
while our approach for auROC optimization reduced this number by almost one
million to 2,796,742 FPs.

Table 4. Results for donor site recognition for human chromosomes 1, 3, 13, 19 and 21.

Chrom. | Objective ‘ Method ‘ Combination G auROC | auPRC TP FN TN FP
State-of-the-art 0.9498 | 0.9857 | 0.2344 | 78,283 | 3,095 | 21,226,663 | 1,407,620
auROC LRS Sum 0.9598 | 0.9898 | 0.3081 | 78,572 | 2,806 | 21,593,907 | 1,040,376
1 auPRC SFFS Sum 0.9579 | 0.9887 | 0.3148 | 78,686 | 2,692 | 21,481,000 | 1,153,283
G LRS Sum 0.9603 | 0.9891 | 0.2868 | 79,127 | 2,251 | 21,465,908 | 1,168,375
State-of-the-art 0.9506 | 0.9857 | 0.1766 | 46,552 | 1,927 | 18,422,872 | 1,156,104
auROC LRS Sum 0.9599 | 0.9899 | 0.2488 | 46,724 | 1,755 | 18,719,317 | 859,659
3 auPRC SFFS Sum 0.9580 | 0.9892 | 0.2555 | 46,636 | 1,843 | 18,677,583 901,393
G SFFS Sum 0.9611 | 0.9898 | 0.2477 | 46,947 | 1,532 | 18,676,662 902,314
State-of-the-art 0.9491 | 0.9847 | 0.1249 | 15,305 706 | 9,059,378 554,582
auROC SFFS Sum 0.9578 | 0.9886 | 0.1668 | 15,411 600 | 9,163,374 | 450,586
13 auPRC LRS Sum 0.9554 | 0.9878 | 0.1721 | 15,320 691 | 9,171,491 442,469
G SFFS Sum 0.9590 | 0.9884 | 0.1675 | 15,439 572 | 9,168,476 445,484
State-of-the-art 0.9567 | 0.9886 | 0.3978 | 32,648 | 1,042 | 5,357,463 315,623
auROC SFFS Sum 0.9660 | 0.9924 | 0.5037 | 33,020 670 | 5,400,748 272,338
19 auPRC SFFS Sum 0.9619 | 0.9916 | 0.5139 | 32,970 720 | 5,363,622 309,464
G SFFS Sum 0.9660 | 0.9921 | 0.4902 | 33,056 634 | 5,395,050 278,036
State-of-the-art 0.9556 | 0.9873 | 0.1902 | 7,352 286 | 3,372,801 182,821
auROC LRS Sum 0.9637 | 0.9914 | 0.2770 | 7,458 180 | 3,381,839 173,783
21 auPRC LRS Sum 0.9588 | 0.9896 | 0.2782 | 7,403 235 | 3,372,518 183,104
G LRS Majority 0.9634 | 0.9840 | 0.0739 | 7,456 182 | 3,380,899 174,723
Table 5 shows the classification models and genomes that were selected for every
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Figure 1. ROC and PRC curves for TIS and chromosome 1. ROC and PRC
curves for chromosome 1 and the standard approach and our proposed method when
auROC and auPRC are optimized.
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Figure 2. ROC and PRC curves for TIS and chromosome 1. ROC and PRC
curves for chromosome 3 and the standard approach and our proposed method when
auROC and auPRC are optimized.
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Figure 3. ROC and PRC curves for TIS and chromosome 1. ROC and PRC

curves for chromosome 13 and the standard approach and our proposed method when
auROC and auPRC are optimized.
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Figure 4. ROC and PRC curves for TIS and chromosome 19. ROC and PRC
curves for chromosome 19 and the standard approach and our proposed method when
auROC and auPRC are optimized.
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Figure 5. ROC and PRC curves for TIS and chromosome 1. ROC and PRC
curves for chromosome 21 and the standard approach and our proposed method when
auROC and auPRC are optimized.
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case. There are several differences with TIS recognition. First, there are a few
genomes that were not used at all in any final best model, namely, Anolis carolinensis,
Drosopila melanogaster, Takifugu rubripes, Danio rerio, Monodelphis domestica and
Ornithorhynchus anatinus. Second, G-mean and auROC optimization required more
models, whereas auPRC used significantly fewer models for TIS prediction. The
models that were selected for every optimized measure showed a large variety, thereby
supporting the claim of our work that as many genomes as available should be used
instead of selecting some of them a priori.

Table 5. Models selected for donor site recognition.

Chromosome 1 3 13 19 21
Objective ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC ROC| PRC| G
#Models 17 15 |6 15 15 |9 18 19 11 17 16 17 14 |7
Homo C4.5
sapiens k-NN
PWM
WD
Spectrum
Anolis C4.5
carolinensis k-NN
PWM
WD
Spectrum
Schistosoma  C4.5
mansoni k-NN
PWM
WD
Spectrum
Bos C4.5
primigenius  k-NN
taurus PWM
WD
Spectrum
Caenor- C4.5
habditis k-NN
elegans PWM
WD
Spectrum
Callithrix C4.5
jacchus k-NN
PWM
WD
Spectrum
Drosophila C4.5
melanogaster k-NN
PWM
WD
Spectrum
Takifugu C4.5
rubripes k-NN
PWM
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Table 5. Models selected for donor site recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G
WD
Spectrum
Oryctolagus  C4.5
cuniculus k-NN
PWM
WD
Spectrum
Gallus C4.5
gallus k-NN
PWM
WD
Spectrum
Pan C4.5
troglodytes k-NN
PWM
WD
Spectrum
Canis C4.5
lupus k-NN
familiaris PWM
WD
Spectrum
Danio C4.5
rerio k-NN
PWM
WD
Spectrum
Macaca C4.5
mulatta k-NN
PWM
WD
Spectrum
Mododelphis  C4.5
domestica k-NN
PWM
WD
Spectrum
Mus C4.5
musculus k-NN
PWM
WD
Spectrum
Rattus C4.5
norvegicus k-NN
PWM
WD
Spectrum
Ornitho- C4.5
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Table 5. Models selected for donor site recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G
rhynchus k-NN
anatinus PWM
WD
Spectrum
Equus C4.5
caballus k-NN
PWM
WD
Spectrum
Ficedula C4.5
albicollis k-NN
PWM
WD
Spectrum
Sus C4.5
scrofa k-NN
PWM
WD
Spectrum

Regarding the classification models, the behavior was more similar. k-NN and
SVM with a string kernel were the models that were more frequently used, with a
large difference with the remaining methods. PWM was never used, and C4.5 and the
SVM with the spectrum kernel were used only on a few occasions. The ROC and PRC
curves for our approach and the standard method are shown in Figs. 6 to 10.
Results for acceptor site recognition
The results for the recognition of acceptor sites for human chromosomes 1, 3, 13, 19
and 21 are shown in Table 6. The results for the acceptor site prediction were similar
to those for the donor site prediction. The improvement in terms of auROC was small
due to the little room for increasing the values of the standard method. However, the
small improvement corresponded to many negative instances being correctly classified.
The standard method obtained 6,053,645 FPs, whereas our approach when optimizing
the auROC measure achieved 4,345,285 FPs, reducing by more than 1.5 million the
total FPs.

The models that were selected for every chromosome are shown in Table 7. The
selected classification methods and genomes were similar to those in the previous
donor site recognition. The number of models for every measure was also similar, with
the exception of auPRC for chromosome 21, which required more models, namely, 46.
Anolis carolinensis was the only genome that was never used, although Danio rerio,
Drosophila melanogaster and Schistosoma mansoni appeared only rarely. As in
previous results, k-NN and SVM with a string kernel were the most commonly
selected classification methods.

Table 7. Models selected for acceptor site recognition.
Chromosome 1 3 13 19 21
Objective ROC\ PRC\ G ROC\ PRC\ G ROC\ PRC\ G ROC\ PRC\ G ROC\ PRC\ G
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Table 7. Models selected for acceptor site recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G
#Models 12 19 13 17 |16 |9 14 19 |7 16 15 12 16 | 46 15
Homo C4.5
sapiens k-NN
PWM
WD
Spectrum
Anolis C4.5
carolinensis k-NN
PWM
WD
Spectrum
Schistosoma  C4.5
mansoni k-NN
PWM
WD
Spectrum
Bos C4.5
primigenius  k-NN
taurus PWM
WD
Spectrum
Caenor- C4.5
habditis k-NN
elegans PWM
WD
Spectrum
Callithrix C4.5
jacchus k-NN
PWM
WD
Spectrum
Drosophila C4.5
melanogaster k-NN
PWM
WD
Spectrum
Takifugu C4.5
rubripes k-NN
PWM
WD
Spectrum
Oryctolagus  C4.5
cuniculus k-NN
PWM
WD
Spectrum
Gallus C4.5
gallus k-NN
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Table 7. Models selected for acceptor site recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G
PWM
WD
Spectrum
Pan C4.5
troglodytes k-NN
PWM
WD
Spectrum
Canis C4.5
lupus k-NN
familiaris PWM
WD
Spectrum
Danio C4.5
rerio k-NN
PWM
WD
Spectrum
Macaca C4.5
mulatta k-NN
PWM
WD
Spectrum

Mododelphis C4.5
domestica k-NN
PWM
WD
Spectrum
Mus C4.5
musculus k-NN
PWM
WD
Spectrum
Rattus C4.5
norvegicus k-NN
PWM
WD
Spectrum
Ornitho- C4.5
rhynchus k-NN
anatinus PWM
WD
Spectrum
Equus C4.5
caballus k-NN
PWM
WD
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Table 7. Models selected for acceptor site recognition (cont.).

Chromosome

1 3 13 19 21

Objective

ROC

PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G

Spectrum

Ficedula
albicollis

C4.5

k-NN

PWM

WD

Spectrum

Sus
scrofa,

C4.5

k-NN

PWM

WD

Spectrum

The ROC and PRC curves for our approach and standard method are shown in
Figs. 11 to 15. These results demonstrate that the overall performance of the
proposed method was better than the performance of the best model.

Results for stop codon recognition

Stop codon recognition is the most difficult task of the four types of recognition. One
of the major sources of this increased complexity is the number of negative instances,
which means a much larger minority:majority ratio. The global majority:minority
ratio for TISs is 1:4,155, for donors 1:326, for acceptors 1:455 and for stop codons
1:12,237. Table 8 shows the results for the five chromosomes and the three
optimization measures.

For auROC, the results showed a clear improvement. In the worst case, our

approach improved the results by more than 4% and in the best case by more than 6%.

These improvements were also achieved for the auPRC and G-mean measures. The
usefulness of our approach can be corroborated by comparing the number of FPs
between the standard method and our proposed method. Overall, for the five
chromosomes, the standard approach obtained 6,739,588 FPs, whereas our method
reduced that number to 1,459,923, which means that more than five million FPs were
removed. The effect of that dramatic improvement on the recognition ability for stop
codons must be significant over any gene structure prediction program.

As in previous results, the most common combination method was to sum the
outputs, although majority voting was selected as a general rule for the G-mean
measure, with the exception of chromosome 1. The searching strategies that obtained
the best results depended on the experiment, which demonstrates the advantage of
using all of them.

The numbers of models and selected classifiers and genomes for every case are
shown in Table 9. G-mean, as in the previous results, was the measure that required
fewer models, from 2 for chromosome 13 to 6 for chromosomes 1, 3 and 21. auROC
selected from 7 to 15 models. Again, auPRC required a comparatively large number of
models, from 31 to 58 selected models.

Table 9. Models selected for stop codon recognition.

Chromosome

1 3 13 19 21

Objective

ROC

PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G

#Models

31 |6 15 |58 |6 7 40 |2 7 32 |4 14 |42 |6
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Table 9. Models selected for stop codon recognition (cont.).
Chromosome 1 3 13 19 21
Objective ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G
Homo C4.5
sapiens k-NN
PWM
WD
Spectrum
STOP
Anolis C4.5
carolinensis ~ k-NN
PWM
WD
Spectrum
STOP
Schistosoma  C4.5
mansoni k-NN
PWM
WD
Spectrum
STOP
Bos C4.5
primigenius  k-NN
taurus PWM
WD
Spectrum
STOP
Caenor- C4.5
habditis k-NN
elegans PWM
WD
Spectrum
STOP
Callithrix C4.5
jacchus k-NN
PWM
WD
Spectrum
STOP
Drosophila C4.5
melanogaster k-NN
PWM
WD
Spectrum
STOP
Takifugu C4.5
rubripes k-NN
PWM
WD
Spectrum
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Table 9. Models selected for stop codon recognition (cont.).
Chromosome 1 3 13 19 21
Objective ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G
STOP
Oryctolagus  C4.5
cuniculus k-NN
PWM
WD
Spectrum
STOP
Gallus C4.5
gallus k-NN
PWM
WD
Spectrum
STOP
Pan C4.5
troglodytes k-NN
PWM
WD
Spectrum
STOP
Canis C4.5
lupus k-NN
familiaris PWM
WD
Spectrum
STOP
Danio C4.5
rerio k-NN
PWM
WD
Spectrum
STOP
Macaca C4.5
mulatta k-NN
PWM
WD
Spectrum
STOP
Mododelphis C4.5
domestica k-NN
PWM
WD
Spectrum
STOP
Mus C4.5
musculus k-NN
PWM
WD
Spectrum
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Table 9. Models selected for stop codon recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G ROC| PRC| G
STOP
Rattus C4.5
norvegicus k-NN
PWM
WD
Spectrum
STOP
Ornitho- C4.5
rhynchus k-NN
anatinus PWM
WD
Spectrum
STOP
Equus C4.5
caballus k-NN
PWM
WD
Spectrum
STOP
Ficedula C4.5
albicollis k-NN
PWM
WD
Spectrum
STOP
Sus C4.5
scrofa k-NN
PWM
WD
Spectrum
STOP

Caenorhabditis elegans was the only genome that was never used. The use of all
the genomes was more balanced for the recognition of stop codons, using even
genomes that were far removed from the human genome, such as those of Takifugu
rubripes of Danio rerio. The use of classifiers was also more equally distributed among
the six methods, with the exception of PWM, which was never used.

With respect to the three objectives, optimizing the G-mean required fewer models,
from 2 to 6. For the five chromosomes, the SVM method for Macaca mulatta and Pan
troglodytes was always selected. Callithriz jacchus and Canis lupus familiaris were also
selected in most chromosomes. For auROC, more models were selected, from 7 to 15.
The SVM method for Macaca mulatta and Pan troglodytes was always chosen, but the
remaining methods depended on the chromosome. This is another interesting result
because most stop codon recognition programs rely on common models for any task.
Finally, for auPRC, significantly more models were selected, from 31 to 58, with a
significant variation among the chromosomes.

The actual ROC and PRC curves, which are shown in Figs. 16-20, show that the
curves that correspond to our proposed method are always above the curves of the

PLOS 29/54

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452


https://doi.org/10.1101/320309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/320309; this version posted May 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

@ PLOS aCC-BY 4.0 International license.
'_ . | SUBMISSION

Figure 6. ROC and PRC curves for the donor site and chromosome 1. ROC
and PRC curves for chromosome 1 and the standard approach and our proposed
method when auROC and auPRC are optimized.
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Figure 7. ROC and PRC curves for the donor site and chromosome 1. ROC
and PRC curves for chromosome 3 and the standard approach and our proposed
method when auROC and auPRC are optimized.
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Figure 8. ROC and PRC curves for the donor site and chromosome 1. ROC
and PRC curves for chromosome 13 and the standard approach and our proposed
method when auROC and auPRC are optimized.
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Figure 9. ROC and PRC curves for the donor site and chromosome 19.
ROC and PRC curves for chromosome 19 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Figure 10. ROC and PRC curves for the donor site and chromosome 1.
ROC and PRC curves for chromosome 21 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Table 6. Results for acceptor site recognition for human chromosomes 1, 3, 13, 19 and 21.

Chrom. | Objective \ Method \ Combination G auROC | auPRC TP FN TN FP
State-of-the-art 0.9442 | 0.9843 | 0.2242 | 78,145 | 3,233 | 29,823,601 | 2,298,365
auROC SFFS Sum 0.9562 | 0.9894 | 0.2912 | 78,284 | 3,094 | 30,530,255 | 1,591,711
1 auPRC LRS Sum 0.9550 | 0.9892 | 0.2940 | 78,179 | 3,199 | 30,496,996 | 1,624,970
G LRS Majority 0.9553 | 0.9827 | 0.0954 | 78,694 | 2,684 | 30,312,652 | 1,809,314
State-of-the-art 0.9397 | 0.9826 | 0.1620 | 46,158 | 2,321 | 25,037,728 | 1,960,382
auROC LRS Sum 0.9543 | 0.9885 | 0.2280 | 46,467 | 2,012 | 25,652,104 | 1,346,006
3 auPRC SFFS Sum 0.9537 | 0.9880 | 0.2274 | 46,485 | 1,994 | 25,607,518 | 1,390,592
G LRS Sum 0.9555 | 0.9884 | 0.2250 | 46,796 | 1,683 | 25,537,090 | 1,461,020
State-of-the-art 0.9428 | 0.9832 | 0.1123 | 15,357 654 | 11,928,112 943,204
auROC SFFS Sum 0.9561 | 0.9881 | 0.1517 | 15,496 515 | 12,157,237 714,079
13 auPRC SFFS Sum 0.9555 | 0.9881 | 0.1545 | 15,441 570 | 12,185,657 685,659
G SFFS Sum 0.9554 | 0.9880 | 0.1530 | 15,459 552 | 12,169,043 702,273
State-of-the-art 0.9455 | 0.9846 | 0.3016 | 32,213 | 1,477 | 7,758,186 540,139
auROC LRS Sum 0.9601 | 0.9906 | 0.4209 | 32,796 894 | 7,857,893 440,432
19 auPRC LRS Sum 0.9594 | 0.9905 | 0.4275 | 32,766 924 | 7,853,884 444,441
G LRS Sum 0.9596 | 0.9903 | 0.4171 | 32,752 938 | 7,860,411 437,914
State-of-the-art 0.9400 | 0.9840 | 0.1470 | 7,216 422 | 4,507,498 311,555
auROC SFFS Sum 0.9551 | 0.9887 | 0.2314 | 7,353 285 | 4,565,996 253,057
21 auPRC SBS Sum 0.9484 | 0.9870 | 0.2185 | 7,266 372 | 4,556,928 262,125
G LRS Majority 0.9531 | 0.9809 | 0.0621 7,360 278 | 4,543,109 275,944

Table 8. Results for stop codon recognition for human chromosomes 1, 3, 13, 19 and 21.

Chrom. | Objective ‘ Method ‘ Combination G auROC | auPRC TP | FN TN FP
State-of-the-art 0.8363 | 0.9233 | 0.0100 | 1,690 | 464 | 21,015,2752 | 2,557,756
auROC SFFS Sum 0.8769 | 0.9692 | 0.0285 | 1,704 | 450 | 22,912,5416 660,490
1 auPRC LRS Sum 0.8211 | 0.9567 | 0.0518 | 1,487 | 667 | 23,019,3613 553,670
G LRS Sum 0.9079 | 0.9705 | 0.0322 | 1,856 | 298 | 22,548,6526 | 1,024,379
State-of-the-art 0.8298 | 0.9177 | 0.0060 862 | 252 | 19,149,9512 | 2,372,549
auROC SFBS Sum 0.8758 | 0.9691 | 0.0314 875 | 239 | 21,019,7347 502,766
3 auPRC SBS Sum 0.8204 | 0.9568 | 0.0349 764 | 350 | 21,123,6862 398,814
G SFFS Majority 0.9097 | 0.9592 | 0.0028 979 | 135 | 20,268,8975 | 1,253,603
State-of-the-art 0.8120 | 0.9163 | 0.0031 242 | 91| 9,870,9594 | 1,007,343
auROC SFFS Sum 0.8462 | 0.9598 | 0.0116 243 | 90| 10,673,3721 204,930
13 auPRC SEFBS Sum 0.7584 | 0.9497 | 0.0317 194 | 139 | 10,740,1530 138,149
G SFF'S Majority 0.8961 | 0.9057 | 0.0004 287 | 46 | 10,134,5112 743,791
State-of-the-art 0.8426 | 0.9284 | 0.0295 | 1,141 | 281 | 4,128,2713 537,533
auROC SFF'S Sum 0.9055 | 0.9697 | 0.0824 | 1,236 | 186 | 4,400,9924 264,812
19 auPRC RSFBS | Sum 0.8818 | 0.9634 | 0.1167 | 1,176 | 246 | 4,386,4729 279,332
G SFFS Majority 0.9145 | 0.9630 | 0.0066 | 1,319 | 103 | 4,207,1045 458,700
State-of-the-art 0.7820 | 0.9017 | 0.0065 156 | 81 | 3,462,5527 264,407
auROC SFBS Sum 0.8487 | 0.9681 | 0.0254 175 | 62| 3,635,8196 91,140
21 auPRC SBS Sum 0.7989 | 0.9600 | 0.0362 155 | 82| 3,637,0015 89,958
G SFFE'S Majority 0.8994 | 0.9610 | 0.0025 205 | 32| 3,485,0936 241,866
best model. This indicates better performance for all the possible thresholds of 453
classification. 154
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Figure 11. ROC and PRC curves for the acceptor site and chromosome 1.
ROC and PRC curves for chromosome 1 and the standard approach and our proposed

method when auROC and auPRC are optimized.
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Figure 12. ROC and PRC curves for the acceptor site and chromosome 1.
ROC and PRC curves for chromosome 3 and the standard approach and our proposed

method when auROC and auPRC are optimized.
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Figure 13. ROC and PRC curves for the acceptor site and chromosome 1.

ROC and PRC curves for chromosome 13 and the standard approach and our

proposed method when auROC and auPRC are optimized.
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Figure 14. ROC and PRC curves for the acceptor site and chromosome 19.
ROC and PRC curves for chromosome 19 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Figure 15. ROC and PRC curves for the acceptor site and chromosome 1.

ROC and PRC curves for chromosome 21 and the standard approach and our

proposed method when auROC and auPRC are optimized.
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Figure 16. ROC and PRC curves for the STOP codon and chromosome 1.
ROC and PRC curves for chromosome 1 and the standard approach and our proposed

method when auROC and auPRC are optimized.
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Figure 17. ROC and PRC curves for the STOP codon and chromosome 1.
ROC and PRC curves for chromosome 3 and the standard approach and our proposed
method when auROC and auPRC are optimized.
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Figure 18. ROC and PRC curves for the STOP codon and chromosome 1.
ROC and PRC curves for chromosome 13 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Figure 19. ROC and PRC curves for the STOP codon and chromosome 19.
ROC and PRC curves for chromosome 19 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Figure 20. ROC and PRC curves for the STOP codon and chromosome 1.

ROC and PRC curves for chromosome 21 and the standard approach and our

proposed method when auROC and auPRC are optimized.
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Summary of the comparison

As a summary of the comparison for the five chromosomes and four sites, Figs. 21, 22,
23, 24 and 25 show the improvements for all four sites and five chromosomes. The
figures show the relative improvement of our approach in terms of G-mean, auROC
and auPRC. All of the figures show the improvement that obtained using the floating
search strategy.

Figure 21. Chromosome 1 result comparison. Relative improvement in the
chromosome 1 results of our method against a state-of-the-art standard method.
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Figure 22. Chromosome 3 result comparison. Relative improvement in the
chromosome 3 results of our method against a state-of-the-art standard method.

Hl G-mean [ auROC | auPRC]

s g
& S = |
ool 2 : E 500.0%
O 8:0%- L 400.0%
2
5 60%- F300.0% 2
g 5 E
g 5 N
& 40% - L 200.0%
2.0% A L 100.0%
0.0% - L 0.0%

TIS DONOR  ACCEPTOR STOP

PLOS

46/54

456

457

458


https://doi.org/10.1101/320309
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/320309; this version posted May 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

®PLOS

SUBMISSION

aCC-BY 4.0 International license.

Figure 23. Chromosome 13 result comparison. Relative improvement in the
chromosome 13 results of our method against a state-of-the-art standard method.
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Figure 24. Chromosome 19 result comparison. Relative improvement in the
chromosome 19 results of our method against a state-of-the-art standard method.
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Finally, to study the effect on the performance of the proposed method of the
optimization measure, we show in Figs. 26, 27 and 28 the overall improvements in
terms of TPs, FNs, TNs and FNs for all of the chromosomes and the four sites. The
first conclusion is that the optimization objective has a relevant impact on the
distribution of the errors. That is a very important aspect if we plan to use site
recognition as an initial step in a gene structure prediction task, as our prediction
program might be more sensitive to a specific type of errors.

For positive site prediction, the best results were obtained using G-mean as the
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Figure 25. Chromosome 21 result comparison. Relative improvement in the
chromosome 21 results of our method against a state-of-the-art standard method.
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objective, whereas auROC only showed a minor improvement and auPRC was even
worse than the standard approach for TIS and stop codon prediction. For negative
instances, auROC and auPRC performed very well, with a small advantage of auPRC
for TISs and stop codons and of auROC for donors and acceptors. G-mean achieved a
marked improvement over the standard method but not as dramatic as those of
auROC and auPRC. The best overall performance on both positive and negative
samples was achieved by G-mean, which showed a more balanced behavior.

Figure 26. TP, FN, TN, and FP improvements for all four sites using
auROC as the optimization objective. Overall improvement results of our
method against a state-of-the-art standard method.
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Figure 27. TP, FN, TN, and FP improvements for all four sites using
auPRC as the optimization objective. Overall improvement results of our

method against a state-of-the-art standard method.
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Figure 28. TP, FN, TN, and FP improvements for all four sites using
G-mean as the optimization objective. Overall improvement results of our

method against a state-of-the-art standard method.
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Effect on gene prediction

We stated in the introduction that the improvement of the site prediction that was
introduced by our method would have a significant impact on the prediction of the
complete structure of genes, as site prediction is a relevant step in most current gene
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structure prediction programs. To test that statement, we performed a final
experiment on gene prediction for chromosome 21. We constructed a very simple
predictor that searched for exons using the sites that were found by the recognition
program, which was either the standard approach or our proposed method, and
constructed a gene using these exons. This simple program is not intended for gene
structure prediction but only to test the ability of our proposed method in improving
gene recognition.

To evaluate gene predictor performance over a test sequence, the predicted gene
structure is compared with the annotated gene structure on the target sequence. The
accuracy is evaluated at different levels of resolution. Commonly, these levels are the
nucleotide, exon and gene levels. Due to the use of a very simple program, no
gene-level accuracy is reported. Regarding nucleotide-level performance, we used as
comparison measures Sensitivity (Sn):

TP
- 4
TP+ FN )

which is a relevant measure if we are interested only in the performance on the positive

Sn

class, and Specificity (Sp), in its traditional machine learning form, which is defined as:

TN
= 5)
TN+ FP
In bioinformatics, and particularly in gene prediction, specificity is usually defined
in a different way. Specificity (Sp(BIO)) is calculated by dividing the number of
correct predictions by the total number of predictions:

Sp

TP
SP(BIO) = 75 Fp (6)

However, neither sensitivity nor specificity by itself constitutes a measure of global
accuracy. A good measure that summarizes both at the nucleotide level is the
Correlation Coefficient (CC):

_ TP xTN—-FPxFN
- VPP x PN x AP x AN
where PP is the number of predicted positives, AP the actual positives, PN the

predicted negatives and AN the actual negatives. We also calculate the Average
Conditional Probability (ACP) measure:

cc

ACP_], TP N TP N TN N TN ®)
" 4|TP+FN TP+FP TN+FP TN+FN|’

and the Approximate Correlation (AC):

AC = (ACP — 0.5) x 2. (9)

At the exon level, an exon is considered to have been correctly predicted when
both boundaries are correctly predicted. If a predicted exon contains at least one
actual base, it will be considered a partially correct exon. At the exon level, we show
Sp, Sn and the numbers of missed exons (ME), which are exons that are not found by
the program, and wrong exons (WE), which are predicted exons that do not
correspond to any actual exon. As a representative of our proposed method, we used
the model that was obtained when optimizing G-mean, as the previous section showed
that it achieved the best overall behavior.

Fig 29 shows the performances of our proposed method and the standard method
for the ten measures that are presented above. Fig 30 shows the relative improvement
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of our method with respect to the standard approach. Our approach improved the
results of the standard method in terms of all measures. At the nucleotide level, CC
and AC were improved by over 100%. At the exon level, Sn and Sp were improved
significantly, while the numbers of ME and WE were also improved, but only
marginally. These results show how our approach can be used to improve gene
structure prediction.

Figure 29. Chromosome 21 gene structure prediction. Chromosome 21 results
of our method against a state-of-the-art standard method.
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Conclusions

In this paper, we presented a floating-search-based strategy for functional site
recognition in genomic sequences. The use of floating search enables an efficient search
for the best combination of more than a hundred of classification models that are
trained on the genomes of many species. The presented approach can also be used for
other combination tasks.

The proposed method also enabled the optimization of various performance
measures. In the reported experiments, we showed results on searching for the best
combination that optimizes three measures: auROC, auPRC and G-mean. The
method was successfully applied to the recognition of TIS, donor and acceptor sites
and stop codons. The reported experiments showed a clear improvement over the
current best methods. The reported results also showed that to obtain the best
classification rates, many species should be used. Our approach efficiently improved
the performance of a very simple program for gene structure prediction.
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Figure 30. Chromosome 21 gene structure prediction. Relative improvement
for chromosome 21 results of our method against a state-of-the-art standard method.
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