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Abstract

Recognition of the functional sites of genes, such as translation initiation sites, donor
and acceptor splice sites and stop codons, is a relevant part of many current problems
in bioinformatics. Recognition of the functional sites of genes is also a fundamental
step in gene structure predictions in the most powerful programs. The best
approaches to this type of recognition use sophisticated classifiers, such as support
vector machines. However, with the rapid accumulation of sequence data, methods for
combining many sources of evidence are necessary as it is unlikely that a single
classifier can solve this type of problem with the best possible performance.

A major issue is that the number of possible models to combine is large and the
use of all of these models is impractical. In this paper, we present a framework that is
based on floating search for combining as many classifiers as needed for the recognition
of any functional sites of a gene. The methodology can be used for the recognition of
translation initiation sites, donor and acceptor splice sites and stop codons.
Furthermore, we can combine any number of classifiers that are trained on any species.
The method is also scalable to large datasets, as is shown in experiments in which the
whole human genome is used. The method is also applicable to other recognition tasks.

We present experiments on the recognition of these four functional sites in the
human genome, which is used as the target genome, and use another 20 species as
sources of evidence. The proposed methodology shows significant improvement over
state-of-the-art methods for use in a thorough evaluation process. The proposed
method is also able to improve heuristic selection of species to be used as sources of
evidence as the search finds the most useful datasets.

Author summary

In this paper we present a methodology for combining many sources of information to
recognize some of the most important functional sites in a genomic sequence. The
functional sites of the sequences, such as, translation start sites, translation initiation
sites, acceptor and donor splice sites and stop codons, play a very relevant role in
many Bioinformatics tasks. Their accurate recognition is an important task by itself
and also as part of gene structure prediction programs.

Our approach uses a methodology usually termed in Computer Science as “floating
search”. This is a powerful heuristics applicable when the cost of evaluating each
possible solution is high. The methodology is applied to the recognition of four
different functional sites in the human genome using as additional sources of evidence
the annotated genomes of other twenty different species.
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The results show an advantage of the proposed method and also challenge the
standard assumption of using only genomes not very close and not very far from the
human to improve the recognition of functional sites in the human genome.

Introduction 1

The recognition of functional sites within the genome is one of the most important 2

problems in bioinformatics research. Determining where different functional sites, such 3

as promoters, translation start sites, translation initiation sites (TISs), donors, 4

acceptors and stop codons are located provides useful information for many tasks [1]. 5

For instance, the recognition of translation initiation sites, donors, acceptors and stop 6

codons [2] is one of the most critical tasks for gene structure prediction. 7

Many of the most successful gene recognizers that are currently in use implement 8

an initial step of site recognition [3], which is followed by a process of combining the 9

sites into meaningful gene structures. Accurate recognition is of the utmost 10

importance for the whole gene structure prediction process. Actual sites that are not 11

found by the classification models likely result in exons not being considered by the 12

remaining steps of the recognition program. Furthermore, many false positives might 13

inundate the second step, thereby making it difficult to predict gene structures 14

accurately. State-of-the-art approaches use powerful classifiers, such as support vector 15

machines (SVMs), and consider moderately large sequences around the functional site 16

of interest [2, 4–6]. 17

In recent years, information about the genomes of many species has been 18

accumulated. This information can be used to improve the recognition of functional 19

sites. However, the arbitrary selection of species using the widely assumed hypothesis 20

that we must consider moderately distant evolutionary relatives is clearly a 21

suboptimal procedure [7]. In addition, the classifier models are chosen a priori, 22

without considering the possible benefits of combining various models. 23

It would be more efficient to learn all of the available classification models and 24

obtain the best combination using an automatic method. The problem of finding the 25

best combination can be tackled as a search problem over all possible combinations. 26

An exhaustive search is unfeasible even for a small number of models. Other common 27

search heuristics, such as evolutionary computation and swarm intelligence, are also 28

prohibitively costly in terms of running time. 29

In cases when those heuristics cannot be used, floating search is an inexpensive yet 30

sufficiently powerful methodology that is able to achieve very good solutions. Floating 31

search has been used when the cost of each search step is high [8]. Thus, in this work, 32

we propose using floating search to obtain a near-optimal combination of classification 33

models, in which we can consider as many sources of evidence as are available and use 34

as many classifiers as needed using various floating search methods, namely, Sequential 35

Forward Selection, Sequential Backward Selection, Plus-l Minus-r Selection, 36

Sequential Forward Floating Selection, Sequential Backward Floating Selection, 37

Random Sequential Forward Floating Selection and Random Sequential Backward 38

Floating Selection. Although the first two methods are not actually floating search 39

methods but sequential greedy approaches, we included them for completeness. 40

To evaluate the proposed method, we show results for the recognition of the four 41

functional sites that are cited above in five chromosomes of the human genome. To 42

demonstrate the ability of our method to combine many classifiers we used for TIS 43

and stop codon recognition 6 models for each of the 21 complete genomes, for a total 44

of 126 classifiers. For donor and acceptor recognition, we used 5 models for the same 45

21 genomes, for a total of 105 classifiers. 46
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Materials and methods 47

As stated in the introduction, our major aim is to develop a combination method for 48

obtaining optimal, or near-optimal, subsets of classification models that are trained for 49

site recognition in DNA sequences. An exhaustive search would require the evaluation 50

of 2N − 1 combinations of models given a set of N trained classifiers. This type of 51

search is infeasible even for a small value of N . Therefore, we must use a search 52

algorithm to find the best possible model combination efficiently. Many powerful 53

metaheuristics are available in the machine learning literature, such as evolutionary 54

computation [9], particle swarm optimization [10], ant colonies [11] and differential 55

evolution [12]. However, all of these methodologies require the repetitive evaluation of 56

many solutions to achieve their optimization goal. In the problem of site recognition, 57

the evaluation of a possible solution is a costly process due to the large datasets that 58

are involved. Thus, these metaheuristics are not feasible. 59

Instead, we propose a simpler approach, namely, floating search, which has 60

obtained successful results in other research fields, such as feature selection [13–16]. 61

Floating search, which will be described in depth in the following section, is a set of 62

stepwise search methods that are fast and efficient at solving problems in which the 63

evaluation of many possible candidate solutions is too computationally expensive. 64

The process for obtaining the best combination of classifiers for various species is 65

composed of two steps: a training step and validation step. Before starting the 66

learning process, we need to obtain the training datasets, testing dataset and 67

validation dataset. Without a loss of generality and to provide the necessary focus for 68

our description, we use the same setup as in the experiments that are reported below. 69

We address the problem of site recognition in the human genome. To solve this 70

problem, we use a test set of sites of a specific chromosome, which we denote as T . 71

The training set includes all of the remaining human chromosomes and genomes of all 72

of the species we choose to evaluate. For validation, we use one of the human 73

chromosomes in the training set, which we denote as V and remove it from the 74

training set. 75

Floating search 76

As stated above, the use of complex heuristics for combining tens or hundreds of 77

models would incur an infeasible computational cost. Thus, we propose the use of 78

simpler, yet still powerful, heuristics. We state our problem as a search problem to 79

enable the application of those heuristics. We have N trained classifiers 80

C = {c1, c2, . . . , cN}, which are trained using any types of sequences that could be 81

useful, and use any genome that we consider interesting. Our aim is to obtain a subset 82

of classifiers C ′ ⊂ C that is the best possible combination. Evaluation of the 83

combination of models is carried out using cross-validation. Thus, our objective 84

function for maximization is the accuracy of the combination of classifiers over a 85

validation set V , which is denoted as J(V ). 86

Among the simplest methods, Sequential Forward Selection (SFS) [17] (see 87

Algorithm 1) and Sequential Backward Selection (SBS) [18] (see Algorithm 2) are 88

widely used because of their easy implementation and speed. The SFS method starts 89

with an empty set and adds one classifier at a time to the selected subset by choosing 90

the classifier that maximizes J(V ). The method terminates when the value of J(V ) is 91

no longer improving or a desired number of classifiers has been reached. SBS starts 92

from the opposite side by considering all of the classifiers and removing one classifier 93

at a time. For classifier removal, J(V ) is evaluated and the model that maximizes 94

J(V ) is removed. The stop criterion could be a number of classifiers that are removed 95

or a decrease of J(V ) is observed. In our experiments, we removed classifiers while 96
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J(V ) does not decrease. These two methods can be generalized to add or remove r ≥ 1 97

classifiers in every iteration. These methods are fast and can obtain good results, but 98

have two major problems: They easily become trapped in local minima and suffer 99

from the “nesting effect” [19]. The nesting effect means that to obtain an optimal 100

solution of size M , it must contain the optimal solution of size M − 1, which is not 101

often the case in practice. 102

Algorithm 1 Sequential Forward Selection (SFS).

Data : A set of trained classifiers C = {c1, c2, . . . , cN} and a validation set V .

Result : The selected subset of classifiers Copt ⊂ C.

1 Copt = ∅
do

2 Select the next best classifier c = argmaxc/∈Copt
[JV (Copt + c)]

if JV (Copt + c) > JV (Copt) then

3 Update Copt = Copt + c

else

break
end

while true

4 Return the best subset of classifiers Copt

Algorithm 2 Sequential Backward Selection (SBS).

Data : A set of trained classifiers C = {c1, c2, . . . , cN} and a validation set V .

Result : The selected subset of classifiers Copt ⊂ C.

1 Copt = C

do

2 Select the next worst classifier c = argmaxc∈Copt
[JV (Copt − c)]

if JV (Copt − c) ≥ JV (Copt) then

3 Update Copt = Copt − c

else

break
end

while true

4 Return the best subset of classifiers Copt

The nesting problem can be avoided using the Plus-l Minus-r Selection (LRS) 103

search method [20]. LRS adds backtracking capabilities by using SFS to add l models 104

and SBS to remove r models. However, one major problem is that there is no rule for 105

choosing the best values of l and r. The LRS method is shown as Algorithm 3. 106

A more advanced approach is floating search. In floating search, we let the size of 107

the solution “float” and adapt to the problem using a backtracking mechanism. In 108

that way, Sequential Forward Floating Selection (SFFS) and Sequential Backward 109

Floating Selection (SBFS) [8] overcome the nesting problem and the local minimum 110

problem by backtracking after adding (or removing) a new model. SFFS starts with 111

an empty set and proceeds as SFS. However, after adding a new model, SFFS allows 112

any of the previously added models to be removed until the value of J worsens. SBFS 113

does the opposite: it follows the SBS method and allows removed models to be added. 114

Algorithms 4 and 5 show the SFFS and SBFS methods, respectively. The 115

comparisons [21] usually demonstrate better performances of SFFS and SBFS 116

compared to SFS and SBS. 117

Somole et al. [13] proposed an adaptive version for feature selection in which the 118

number of models to add or remove was incremented when the desired number of 119
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Algorithm 3 Plus-l Minus-r Selection (LRS).

Data : A set of trained classifiers C = {c1, c2, . . . , cN} and a validation set V .

Result : The selected subset of classifiers Copt ⊂ C.

if l ≥ r then

1 Copt = ∅

else

2 Copt = C

end

do

3 added model = removed model = false
for k = 1 to l do

4 Select the next best classifier c = argmaxc/∈Copt
[JV (Copt + c)]

if JV (Copt + c) > JV (Copt) then

5 Update Copt = Copt + c

6 added model = true

else

break
end

end

for k = 1 to r do

7 Select the next worst classifier c = argmaxc∈Copt
[JV (Copt − c)]

if JV (Copt − c) ≥ JV (Copt) then

8 Update Copt = Copt − c

9 removed model = true
else

break
end

end

while added model ∨ removed model

10 Return the best subset of classifiers Copt

Algorithm 4 Sequential Forward Floating Selection (SFFS).

Data : A set of trained classifiers C = {c1, c2, . . . , cN} and a validation set V .

Result : The selected subset of classifiers Copt ⊂ C.

1 Copt = ∅
do

2 Select the next best classifier c = argmaxc/∈Copt
[JV (Copt + c)]

if JV (Copt + c) > JV (Copt) then

3 Update Copt = Copt + c

else

break
end

do

4 removed model = false
5 Select the worst classifier c = argmaxc∈Copt

[JV (Copt − c)]
if JV (Copt − c) ≥ JV (Copt) then

6 Update Copt = Copt − c

7 removed model = true
end

while removed model

while true

8 Return the best subset of classifiers Copt
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Algorithm 5 Sequential Backward Floating Selection (SBFS).

Data : A set of trained classifiers C = {c1, c2, . . . , cN} and a validation set V .

Result : The selected subset of classifiers Copt ⊂ C.

1 Copt = C

do

2 Select the next worst classifier c = argmaxc∈Copt
[JV (Copt − c)]

if JV (Copt − c) ≥ JV (Copt) then

3 Update Copt = Copt − c

else

break

end

do

4 added model = false
5 Select the best classifier c = argmaxc/∈Copt

[JV (Copt + c)]

if JV (Copt + c) > JV (Copt) then

6 Update Copt = Copt + c

7 added model = true
end

while added model

while true

8 Return the best subset of classifiers Copt

features was small. However, the method achieved only marginal improvement and 120

required a longer execution time. 121

We can also consider randomized versions of SFFS and SFBS as possible 122

improvements. These algorithms are a combination of the random generation of a 123

subset of models and a floating search selection algorithm. We propose the use of 124

Random Sequential Forward Floating Selection (RSFFS) and Random Sequential 125

Backward Floating Selection (RSBFS). Both algorithms start with a random subset of 126

models1, and with this random subset, an SFFS or SBFS algorithm is implemented. 127

Thus, in the experiment, we will consider the SFS, SBS, LRS (with l = 3, r = 1 and 128

l = 1, r = 3), SFFS, SBFS, RSFFS and RSBFS algorithms. 129

As we are combining various models, there are many ways of combining the 130

outputs of those models. For the combination, we use three simple methods as our 131

major aim is efficient execution. Although there are more complex approaches [22], 132

their advantage is not large due to over-fitting problems. These methods are: i) the 133

sum of the outputs of the classifiers; ii) the majority voting; and iii) the maximum 134

output, where the sequence is classified using only the model with the highest output. 135

In the machine learning literature, combining different sources of evidence for a 136

classification problem is a common task [23]. Although various sophisticated methods 137

have been developed for combining many classifiers [24–27]; in practice, none of them 138

are able to significantly outperform the simpler methods on a regular basis. 139

Two of the problems of combining many different classification models that are 140

trained on different datasets are that their outputs may not be in the same range and 141

the optimal classification threshold might be different for each model. The problem of 142

the different ranges is solved by scaling all of the outputs to the interval [−1, 1]. 143

Regarding the threshold, we obtain the optimal threshold for each model, which is 144

denoted as Θopt, using the validation set, and for the inclusion of the model in any 145

combination, we use y(x)−Θopt, where y(x) is the actual output of the model for 146

sequence x. 147

For the training stage, we can select as many species as we deem useful for our 148

1In our experiment, this subset was obtained selecting each classifier with a probability of 0.5.
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problem. We need not select the most appropriate species because the floating search 149

will discard the useless classifiers. Once we have selected the set of species whose 150

genomes we are going to use, we train as many classifiers as we want from those 151

species. For every organism, we can train various classifiers, such as support vector 152

machines (SVMs), neural networks (NNs), decision trees (DTs), and the k-Nearest 153

Neighbor (k-NN) rule, and the same classifiers with different parameters. Because the 154

validation stage can consider hundreds of classifiers, any method of potential interest 155

can be used. Again, the floating search process will remove unneeded classifiers. 156

Experimental setup 157

To test our model, we chose the human genome together with those of other 20 species. 158

Our aim was to test whether any species, regardless of the similarity of its genome 159

with the human genome, could be useful. The following species were considered: 160

Anolis carolinensis, Bos primigenius taurus, Caenorhabditis elegans, Callithrix jacchus, 161

Canis lupus familiaris, Danio rerio, Drosophila melanogaster, Equus caballus, Ficedula 162

albicollis, Gallus gallus, Homo sapiens, Macaca mulatta, Monodelphis domestica, Mus 163

musculus, Ornithorhynchus anatinus, Oryctolagus cuniculus, Pan troglodytes, Rattus 164

norvegicus, Schistosoma mansoni, Sus scrofa and Takifugu rubripes. These genomes 165

were selected to consider a wide variety of organisms whose genomes are fully 166

annotated. 167

Five classifiers were trained from every dataset for the four functional sites: a 168

decision tree, a k-nearest neighbor rule, a positional weight matrix, a support vector 169

machine with a string kernel and a support vector machine with a spectrum kernel. 170

Additionally, for TIS and stop codon recognition, we used the stop codon method [28]. 171

The parameters for every classifier were obtained using 10-fold cross-validation. 172

To evaluate our approach, we used five human chromosomes for testing purposes, 173

namely, chromosomes 1, 3, 13, 19 and 21, and we used chromosome 16 for validation 174

purposes. For each chromosome, we trained the classifiers with all of the remaining 175

chromosomes except 16 and obtained the best combination method using our 176

approach, and we used chromosome 16 for validation. We tested the selected models 177

with all of the true TIS, donor and acceptor sites and stop codons and all of the 178

negative samples of the given chromosome. That is, for chromosome 1, we trained the 179

models with chromosomes 2 to 22 and X and Y, leaving out chromosome 16. Then, we 180

chose the best combination method using chromosome 16 and tested this combination 181

of models using chromosome 1. A summary of these datasets is shown in Table 1. The 182

chromosomes were selected with the aim of choosing chromosomes of different lengths 183

and coding densities. Chromosome 16 was chosen as a validation set because it is a 184

chromosome of average length and coding density. We used the CCDS Update 185

Released for Human of September 7, 2011. This update uses Human NCBI build 37.3 186

and includes a total of 26,473 CCDS IDs, which correspond to 18,471 GeneIDs. The 187

validation set consisted of 836 positives samples and 2,721,460 negative samples for 188

TIS, 28,567 positive samples and 8,011,785 negative samples for donor sites, 28,567 189

positive samples and 11,448,673 negative samples for acceptor sites and 838 positive 190

samples and 7,480,457 negative samples for stop codons. 191

One of the key aspects of the evaluation of any newly proposed method is the set of 192

previous methods that are considered in the comparison. Many methods have been 193

proposed for recognizing functional sites [2, 28–30]. However, these previous works and 194

our own research [7, 31] have shown that an SVM with a string kernel is the best 195

state-of-the-art method for TISs, stop codons and splice sites [6]. To evaluate the 196

general advantage of SVMs with string kernels, we performed a preliminary study of 197

the available methods, which included position weight matrices, decision trees, 198

k-nearest neighbors, the stop codon method [28], Wang et al.’s method [30], Salzberg’s 199

PLOS 7/54

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/320309doi: bioRxiv preprint 

https://doi.org/10.1101/320309
http://creativecommons.org/licenses/by/4.0/


Table 1. Summary of datasets for chromosomes 1, 3, 13, 19 and 21. Random
undersampling was used for training; thus, the number of negative instances was equal
to the number of positive instances for the training dataset.

Dataset Site Training data Testing data
Positives/Negatives Positives Negatives

Chr. 1 TIS 17,638 2,156 8,074,590
STOP 17,404 2,154 23,573,031
DONOR 630,985 81,378 22,634,283
ACCEPTOR 630,985 81,378 32,121,966

Chr. 3 TIS 18,631 1,163 7,291,951
STOP 18,444 1,114 21,522,500
DONOR 663,884 48,479 19,578,976
ACCEPTOR 663,884 48,479 26,998,110

Chr. 13 TIS 19,454 340 3,664,164
STOP 19,225 333 10,878,302
DONOR 696,352 16,011 9,613,960
ACCEPTOR 696,352 16,011 12,871,316

Chr. 19 TIS 18,383 1,411 1,698,891
STOP 18,136 1,422 4,665,804
DONOR 678,673 33,690 5,673,086
ACCEPTOR 678,673 33,690 8,298,325

Chr. 21 TIS 19,561 233 1,303,634
STOP 19,558 237 3,726,959
DONOR 704,725 7,638 3,555,622
ACCEPTOR 704,725 7,638 4,819,053

method [32] and SVMs with linear and Gaussian kernels and four string kernels: the 200

locality improved (LI) kernel, the weighted degree kernel (WD), the weighted degree 201

kernel with shifts [33] (WDS) and the spectrum kernel [34]. SVMs with WD kernels 202

consistently provided the best results. Thus, we chose this method as the method to 203

be compared with our proposed method. WDS provided marginally better results 204

than WD, but with a far higher computational complexity. To ensure a fair 205

comparison, we considered not only these methods but also all of the others that were 206

used as classifiers. Then, for every experiment, we compared our approach to the best 207

performing method in terms of the validation performance. SVM with WD kernel was 208

always the best individual classifier. 209

Another key parameter of the learning process is the window around the functional 210

site that is used to train the classifiers. An additional advantage of our approach is 211

that it allows the use of a suitable window for each dataset and even the combination 212

of models that are trained using different windows. The value of the window for each 213

classifier was obtained by cross-validation. We considered the site to be offset by 0 214

and tested the performance of the following windows: [−100, 0], [−75, 25], [−50, 0], 215

[−50, 50], [−25, 0], [−25, 25], [−25, 75], [−10, 15], [−10, 40], [−10, 90], [0, 25], [0, 50] and 216

[0, 100]. For each trained classifier, the best window was chosen. For the stop codon 217

method, we used the additional window values of [0, 200], [0, 300], [0, 400] and [0, 500] 218

for TIS recognition and the window values of [−200, 0], [−300, 0], [−400, 0] and 219

[−500, 0] for stop codon recognition. For donor and acceptor sites, due to the many 220

training instances, validation of the window around the site was not feasible. Thus, we 221

chose a fixed window for both sites of [−25, 25]. 222

Furthermore, SVMs are very sensitive to the learning parameters; thus, we also 223

performed cross-validation to obtain their values. The WD kernel has two parameters: 224
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the standard C parameter of any SVM and the window width of the string kernel. We 225

tested values of 1, 10, 100 and 1000 for C and 12 and 24 for the window width. All 8 226

combinations were evaluated using 10-fold cross-validation, and the best combinations 227

was chosen. Although it can be argued that this method might result in suboptimal 228

parameters, it represents a good compromise between the high performance of SVM 229

and the high computational cost of evaluating each set of parameters. The spectrum 230

kernel is too time consuming for cross-validation of the parameters in the same way as 231

the WD kernel. Therefore, we fixed the values of the kernel to the values that are 232

recommended by the authors [34] and only validated the value of C using the same 233

values as for the WD kernel. 234

For PWM and C4.5, there are no parameters that have a significant effect on their 235

performance. For k-NN, the number of neighbors k was chosen by cross-validation in 236

the interval [1, 100]. 237

To train the models, we used random undersampling [35] because previous studies 238

have demonstrated its usefulness for TIS recognition [31]. For random undersampling, 239

we used a ratio of 1, which means that the majority class was randomly undersampled 240

until both classes had the same number of instances. To avoid any contamination of 241

the experiments, for every training set, regardless of the species, we removed the genes 242

that were shared with the test chromosome for all the training datasets. 243

To evaluate the obtained classifiers, we used the standard measures for imbalanced 244

data. Given the number of true positives (TP), false positives (FP), true negatives 245

(TN) and false negatives (FN), we used the sensitivity (Sn): 246

Sn =
TP

TP + FN
, (1)

and the specificity (Sp): 247

Sp =
TN

TN + FP
. (2)

. 248

The geometric mean of these two measures, namely, G−mean =
√
Sp · Sn, was our 249

first classification metric. As a second measure, we used the area under the receiver 250

operating characteristic (ROC) curve (auROC). However, auROC is independent of 251

the class ratios and can be less meaningful when we have very unbalanced datasets [6]. 252

In such cases, the area under the precision-recall curve (auPRC) can be used. The 253

recall measure is equivalent to the sensitivity measure that was defined above. The 254

precision (P) is given by: 255

P =
TP

TP + FP
. (3)

The auPRc measure is especially relevant if we are mainly interested in the positive 256

class. However, the auPRc measure can be very sensitive to subsampling. In our 257

results, we use all the positive and negative instances for each of the five tested 258

chromosomes; thus, no subsampling is used. This also yields small auPRC values. 259

We use these three metrics because they provide two views of the performance of 260

the classifiers. The auROC and auPRC values describe the general behavior of the 261

classifier. However, when used in practice, we must establish a threshold for the 262

classification of a query pattern. G-mean provides the required snapshot of the 263

performance of the classifier when we set the required threshold. 264

The recognition of sites is usually a first step within a larger task, such as a gene 265

structure prediction program. Therefore, depending on the subsequent steps, our focus 266

was centered on obtaining models that perform well in terms of various accuracy 267

measures. Thus, we performed experiments that were aimed at optimizing the three 268
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measures that were described above. We carried out experiments with eight search 269

algorithms, namely, SFS, SBS, LRS (with l = 3, r = 1 and l = 1, r = 3), SFFS, SBFS, 270

RSFFS and RSBFS; three combination methods, namely, the sum of outputs, majority 271

voting and maximum; and three measures as optimization objectives, namely, G-mean, 272

auROC and auPRC. The best model was always selected using the validation set. 273

Results and Discussion 274

We performed experiments on the recognition of TISs, donor and acceptor sites and 275

stop codons to address the four most important sites in any gene recognition task. 276

However, our approach is applicable to other recognition tasks, such as promoter and 277

transcription start site (TSS) prediction. Our method has two main advantages: First, 278

it has the ability to improve the performance of previous methods. Second, the chosen 279

combination of classifiers that are trained on different genomes can provide 280

information on which species are more interesting for human site recognition. In the 281

following four sections, we discuss the results of the recognition of the four sites. 282

One of the main advantages of our approach is that we can optimize the 283

performance measure in which we are interested, which can be the G-mean, auROC, 284

auPRC or any other measure that is useful for our application. Thus, we conducted 285

our experiments using three performance measures: G-mean, auROC and auPRC. The 286

first relevant result is that the combination of the best models that was obtained for 287

each measure was different. This result means that, depending on the aim of the work, 288

different combinations of classifiers are needed. For each of the five studied 289

chromosomes, we obtained three combinations of models, each optimized for one of the 290

three measures that are discussed above. 291

Results for TIS recognition 292

The results for the recognition of TISs for human chromosomes 1, 3, 13, 19 and 21 are 293

shown in Table 2. Regarding the search method, the results for TIS support our 294

approach of using different methods and selecting the best method for each case, as 295

there is no clear winner. Although SFFS achieved the best results most often, SFS, 296

LRS and RSFBS also perform well. For the combination method, the sum of outputs 297

was always the best method for auROC and auPRC, with the exception of auROC for 298

chromosome 13. For G-mean, majority voting was always the best-performing 299

approach. 300

In terms of auROC, our approach achieved a clear improvement over the SVM 301

method alone. The improvement ranged from 3.32% for the worst case, namely, 302

chromosome 19, to 5.74% for the best case, namely, chromosome 21. We must take 303

into account that improvement refers to many sites being correctly classified compared 304

to the standard approach. The standard approach obtained a total of 1,536,902 FPs; 305

this number was reduced to 299,766, which means more than one million fewer FPs. 306

For any gene recognition program, that would mean a far better point from which to 307

start for constructing correct genes. 308

For auPRC, the improvement was more dramatic2. The improvement is greater 309

than 10% for all five chromosomes. This is a remarkable result if we take into account 310

2We always tested all the methods with all the negative samples, which means that the ratio of
the minority/majority class was more than 1:3200 for the worst case, namely, stop codon recognition
for chromosome 13 (see Table 1), which yielded low auPRC values. We must take into account that
with only a few thousand FPs among several million TNs, we obtain a very low precision value. The
situation for stop codon recognition is even worse, as the number of TNs is multiplied by three.
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Table 2. Results for TIS recognition for human chromosomes 1, 3, 13, 19 and 21. The table shows the results
for the three considered measures, auROCm auPRC and G-mean. The best search method, the best combination method
and the classification performance values are shown.

Chrom. Objective Method Combination G auROC auPRC TP FN TN FP

State-of-the-art 0.8528 0.9390 0.0701 1,697 459 7,460,252 614,338
auROC SFFS Sum 0.8782 0.9781 0.1296 1,688 468 7,954,516 120,074

1 auPRC SFFS Sum 0.8344 0.9690 0.1701 1,518 638 7,984,683 89,907
G LRS Majority 0.9284 0.9701 0.0157 1,956 200 7,671,456 403,134
State-of-the-art 0.8316 0.9265 0.0578 862 301 6,804,392 487,559
auROC SFFS Sum 0.8428 0.9732 0.1295 834 329 7,222,397 69,554

3 auPRC RSFBS Sum 0.8030 0.9623 0.1720 756 407 7,233,272 58,679
G SFFS Majority 0.9142 0.9284 0.0037 1,033 130 6,861,085 430,866
State-of-the-art 0.8520 0.9396 0.0575 264 76 3,425,104 239,060
auROC RSFBS Majority 0.8678 0.9748 0.0610 259 81 3,622,541 41,623

13 auPRC LRS Sum 0.8033 0.9670 0.1611 221 119 3,637,190 26,974
G SFFS Majority 0.9083 0.9239 0.0045 299 41 3,437,702 226,462
State-of-the-art 0.8437 0.9368 0.0997 1,084 327 1,574,213 124,678
auROC SFFS Sum 0.8748 0.9680 0.1555 1,114 297 1,646,904 51,987

19 auPRC LRS Sum 0.8496 0.9587 0.1841 1,048 363 1,650,949 47,942
G SFFS Majority 0.9229 0.9482 0.0107 1,335 76 1,529,295 169,596
State-of-the-art 0.8132 0.9183 0.0434 163 70 1,232,367 71,267
auROC SFS Sum 0.8462 0.9757 0.1098 169 64 1,287,106 16,528

21 auPRC LRS Sum 0.8339 0.9683 0.1658 164 69 1,287,965 15,669
G SFFS Majority 0.9274 0.9439 0.0036 215 18 1,215,086 88,548

the low values of auPRC for all methods. For G-mean, the results also showed a clear 311

advantage of our method with an improvement of over 5% for the worst case. 312

The reported reduction is relevant because most current gene recognizers heavily 313

rely on the classification of sites as a basic step; therefore, it is very likely that those 314

genes whose TIS is not recognized would be completely missed by any gene recognizer. 315

Our approach has the potential to significantly improve the accuracy of any 316

annotation system. 317

Another interesting result is that the behaviors of the TPs, FNs, TNs and FPs 318

values depended on the measure that we were optimizing. Thus, if we are interested in 319

obtaining the best TP and FN results, we should select the optimization of G-mean. If 320

our interest is in TNs and FPs, auPRC should be our objective. If we want a 321

satisfactory overall behavior of the four measures, we should use auROC as our 322

objective. The ability of our proposed method to offer such flexibility is an important 323

asset in any practical application. 324

Once we established the usefulness of our proposed method in terms of 325

performance, we examined the results in terms of the species that were involved in the 326

best combinations. Table 3 shows the models that were selected for the best 327

combination for each measure and each chromosome. Regardless of the optimized 328

measure, there was no species that never appeared in the best combination. This 329

result indicates that although the contributions of some species are more relevant than 330

those of others, the information of all of the genomes was useful for the prediction of 331

human TISs, even those species that are very distant relatives of humans. Another 332

interesting result is that for the three measures, namely, auROC, auPRC and G-mean, 333

the obtained combinations of models were substantially different. This result indicates 334

that we must consider our aims before designing our classifier. In most previous works, 335

that is not taken into account. 336
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Table 3. Models selected for TIS recognition.

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G

#Models 6 28 4 7 34 2 28 31 2 6 32 2 6 34 2

Homo C4.5
sapiens k-NN

PWM
WD
Spectrum
STOP

Anolis C4.5
carolinensis k-NN

PWM
WD
Spectrum
STOP

Schistosoma C4.5
mansoni k-NN

PWM
WD
Spectrum
STOP

Bos C4.5
primigenius k-NN
taurus PWM

WD
Spectrum
STOP

Caenor- C4.5
habditis k-NN
elegans PWM

WD
Spectrum
STOP

Callithrix C4.5
jacchus k-NN

PWM
WD
Spectrum
STOP

Drosophila C4.5
melanogaster k-NN

PWM
WD
Spectrum
STOP

Takifugu C4.5
rubripes k-NN

PWM
WD
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Table 3. Models selected for TIS recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G

Spectrum
STOP

Oryctolagus C4.5
cuniculus k-NN

PWM
WD
Spectrum
STOP

Gallus C4.5
gallus k-NN

PWM
WD
Spectrum
STOP

Pan C4.5
troglodytes k-NN

PWM
WD
Spectrum
STOP

Canis C4.5
lupus k-NN
familiaris PWM

WD
Spectrum
STOP

Danio C4.5
rerio k-NN

PWM
WD
Spectrum
STOP

Macaca C4.5
mulatta k-NN

PWM
WD
Spectrum
STOP

Mododelphis C4.5
domestica k-NN

PWM
WD
Spectrum
STOP

Mus C4.5
musculus k-NN

PWM
WD
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Table 3. Models selected for TIS recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G

Spectrum
STOP

Rattus C4.5
norvegicus k-NN

PWM
WD
Spectrum
STOP

Ornitho- C4.5
rhynchus k-NN
anatinus PWM

WD
Spectrum
STOP

Equus C4.5
caballus k-NN

PWM
WD
Spectrum
STOP

Ficedula C4.5
albicollis k-NN

PWM
WD
Spectrum
STOP

Sus C4.5
scrofa k-NN

PWM
WD
Spectrum
STOP

Regarding the classification models, all methods were selected at least once. The 337

k-NN rule and SVM with a string kernel were the most frequently selected methods. 338

The case of k-NN is remarkable as this approach is not usually used for this 339

task [2,28–30]. It appears that the diversity that k-NN introduced into the models was 340

useful for the overall performance of the combinations, despite that k-NN alone 341

showed a worse performance than SVM alone. The explanation of this result may be 342

found in the behavior of the ensembles of classifiers. It is well known [36] that a 343

diverse ensemble of classifiers improves the performance of the set of classifiers. 344

The five most frequently used genomes were Macaca mulatta, Pan troglodytes, 345

Equus caballus, Callithrix jacchus and Rattus norvegicus. Homo sapiens was not 346

among the most often used genomes. Moreover, other genomes that are further 347

removed from the human genome, such as Takifugu rubripes, were also frequently used. 348

With respect to the three objectives, optimizing the G-mean yielded the most 349

stable results. For the five chromosomes, the selected models were always the SVM 350

method for Macaca mulatta and Pan troglodytes, with the exception of chromosome 13, 351
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where Pan troglodytes was replaced with Bos primigenius taurus. For chromosome 1, 352

another two classification models were used. For auROC, six or seven models were 353

usually selected, with chromosome 13 requiring 28. The SVM method was always 354

chosen for Macaca mulatta and Pan troglodytes, but the remaining methods and 355

species depended on the chromosome. This is another interesting result because most 356

TIS recognition programs mainly rely on common models for any task. Finally, for 357

auPRC, significantly more models were selected, from 28 to 34, with a significant 358

variation among the chromosomes. Here, the large number of negative samples made 359

this task harder than optimizing the other two criteria. 360

The ROC and PRC curves are shown in Figs. 1–5. These figures show that our 361

approach improved the auROC and auPRC for all five studied chromosomes. These 362

results demonstrate that the proposed method outperformed the best model overall. 363

The ROC and PRC curves show that the curves that correspond to our proposed 364

method are always above the curves of the best model. This result indicates better 365

performance for all the possible thresholds of classification. 366

Results for donor site recognition 367

The results for the recognition of donor sites for human chromosomes 1, 3, 13, 19 and 368

21 are shown in Table 4. For auROC, the achieved results were close to or above 99%, 369

so there was little room for improvement. A similar trend was followed by G-mean, 370

with an improvement of approximately 1%. auPRC was significantly improved, from 371

5% in the worst case to 11% in the best case. However, since the number of negative 372

samples was large, these small improvements corresponded to the correction of many 373

erroneous predictions. For example, the standard approach obtained 3,616,750 FPs, 374

while our approach for auROC optimization reduced this number by almost one 375

million to 2,796,742 FPs. 376

Table 4. Results for donor site recognition for human chromosomes 1, 3, 13, 19 and 21.

Chrom. Objective Method Combination G auROC auPRC TP FN TN FP

State-of-the-art 0.9498 0.9857 0.2344 78,283 3,095 21,226,663 1,407,620
auROC LRS Sum 0.9598 0.9898 0.3081 78,572 2,806 21,593,907 1,040,376

1 auPRC SFFS Sum 0.9579 0.9887 0.3148 78,686 2,692 21,481,000 1,153,283
G LRS Sum 0.9603 0.9891 0.2868 79,127 2,251 21,465,908 1,168,375
State-of-the-art 0.9506 0.9857 0.1766 46,552 1,927 18,422,872 1,156,104
auROC LRS Sum 0.9599 0.9899 0.2488 46,724 1,755 18,719,317 859,659

3 auPRC SFFS Sum 0.9580 0.9892 0.2555 46,636 1,843 18,677,583 901,393
G SFFS Sum 0.9611 0.9898 0.2477 46,947 1,532 18,676,662 902,314
State-of-the-art 0.9491 0.9847 0.1249 15,305 706 9,059,378 554,582
auROC SFFS Sum 0.9578 0.9886 0.1668 15,411 600 9,163,374 450,586

13 auPRC LRS Sum 0.9554 0.9878 0.1721 15,320 691 9,171,491 442,469
G SFFS Sum 0.9590 0.9884 0.1675 15,439 572 9,168,476 445,484
State-of-the-art 0.9567 0.9886 0.3978 32,648 1,042 5,357,463 315,623
auROC SFFS Sum 0.9660 0.9924 0.5037 33,020 670 5,400,748 272,338

19 auPRC SFFS Sum 0.9619 0.9916 0.5139 32,970 720 5,363,622 309,464
G SFFS Sum 0.9660 0.9921 0.4902 33,056 634 5,395,050 278,036
State-of-the-art 0.9556 0.9873 0.1902 7,352 286 3,372,801 182,821
auROC LRS Sum 0.9637 0.9914 0.2770 7,458 180 3,381,839 173,783

21 auPRC LRS Sum 0.9588 0.9896 0.2782 7,403 235 3,372,518 183,104
G LRS Majority 0.9634 0.9840 0.0739 7,456 182 3,380,899 174,723

Table 5 shows the classification models and genomes that were selected for every 377
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Figure 1. ROC and PRC curves for TIS and chromosome 1. ROC and PRC
curves for chromosome 1 and the standard approach and our proposed method when
auROC and auPRC are optimized.
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Figure 2. ROC and PRC curves for TIS and chromosome 1. ROC and PRC
curves for chromosome 3 and the standard approach and our proposed method when
auROC and auPRC are optimized.
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Figure 3. ROC and PRC curves for TIS and chromosome 1. ROC and PRC
curves for chromosome 13 and the standard approach and our proposed method when
auROC and auPRC are optimized.
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Figure 4. ROC and PRC curves for TIS and chromosome 19. ROC and PRC
curves for chromosome 19 and the standard approach and our proposed method when
auROC and auPRC are optimized.
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Figure 5. ROC and PRC curves for TIS and chromosome 1. ROC and PRC
curves for chromosome 21 and the standard approach and our proposed method when
auROC and auPRC are optimized.
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case. There are several differences with TIS recognition. First, there are a few 378

genomes that were not used at all in any final best model, namely, Anolis carolinensis, 379

Drosopila melanogaster, Takifugu rubripes, Danio rerio, Monodelphis domestica and 380

Ornithorhynchus anatinus. Second, G-mean and auROC optimization required more 381

models, whereas auPRC used significantly fewer models for TIS prediction. The 382

models that were selected for every optimized measure showed a large variety, thereby 383

supporting the claim of our work that as many genomes as available should be used 384

instead of selecting some of them a priori. 385

Table 5. Models selected for donor site recognition.

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G

#Models 17 15 6 15 15 9 18 19 11 17 16 8 17 14 7

Homo C4.5
sapiens k-NN

PWM
WD
Spectrum

Anolis C4.5
carolinensis k-NN

PWM
WD
Spectrum

Schistosoma C4.5
mansoni k-NN

PWM
WD
Spectrum

Bos C4.5
primigenius k-NN
taurus PWM

WD
Spectrum

Caenor- C4.5
habditis k-NN
elegans PWM

WD
Spectrum

Callithrix C4.5
jacchus k-NN

PWM
WD
Spectrum

Drosophila C4.5
melanogaster k-NN

PWM
WD
Spectrum

Takifugu C4.5
rubripes k-NN

PWM
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Table 5. Models selected for donor site recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G

WD
Spectrum

Oryctolagus C4.5
cuniculus k-NN

PWM
WD
Spectrum

Gallus C4.5
gallus k-NN

PWM
WD
Spectrum

Pan C4.5
troglodytes k-NN

PWM
WD
Spectrum

Canis C4.5
lupus k-NN
familiaris PWM

WD
Spectrum

Danio C4.5
rerio k-NN

PWM
WD
Spectrum

Macaca C4.5
mulatta k-NN

PWM
WD
Spectrum

Mododelphis C4.5
domestica k-NN

PWM
WD
Spectrum

Mus C4.5
musculus k-NN

PWM
WD
Spectrum

Rattus C4.5
norvegicus k-NN

PWM
WD
Spectrum

Ornitho- C4.5
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Table 5. Models selected for donor site recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G

rhynchus k-NN
anatinus PWM

WD
Spectrum

Equus C4.5
caballus k-NN

PWM
WD
Spectrum

Ficedula C4.5
albicollis k-NN

PWM
WD
Spectrum

Sus C4.5
scrofa k-NN

PWM
WD
Spectrum

Regarding the classification models, the behavior was more similar. k-NN and 386

SVM with a string kernel were the models that were more frequently used, with a 387

large difference with the remaining methods. PWM was never used, and C4.5 and the 388

SVM with the spectrum kernel were used only on a few occasions. The ROC and PRC 389

curves for our approach and the standard method are shown in Figs. 6 to 10. 390

Results for acceptor site recognition 391

The results for the recognition of acceptor sites for human chromosomes 1, 3, 13, 19 392

and 21 are shown in Table 6. The results for the acceptor site prediction were similar 393

to those for the donor site prediction. The improvement in terms of auROC was small 394

due to the little room for increasing the values of the standard method. However, the 395

small improvement corresponded to many negative instances being correctly classified. 396

The standard method obtained 6,053,645 FPs, whereas our approach when optimizing 397

the auROC measure achieved 4,345,285 FPs, reducing by more than 1.5 million the 398

total FPs. 399

The models that were selected for every chromosome are shown in Table 7. The 400

selected classification methods and genomes were similar to those in the previous 401

donor site recognition. The number of models for every measure was also similar, with 402

the exception of auPRC for chromosome 21, which required more models, namely, 46. 403

Anolis carolinensis was the only genome that was never used, although Danio rerio, 404

Drosophila melanogaster and Schistosoma mansoni appeared only rarely. As in 405

previous results, k-NN and SVM with a string kernel were the most commonly 406

selected classification methods. 407

Table 7. Models selected for acceptor site recognition.

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G
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Table 7. Models selected for acceptor site recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G
#Models 12 19 13 17 16 9 14 19 7 16 15 12 16 46 15

Homo C4.5
sapiens k-NN

PWM
WD
Spectrum

Anolis C4.5
carolinensis k-NN

PWM
WD
Spectrum

Schistosoma C4.5
mansoni k-NN

PWM
WD
Spectrum

Bos C4.5
primigenius k-NN
taurus PWM

WD
Spectrum

Caenor- C4.5
habditis k-NN
elegans PWM

WD
Spectrum

Callithrix C4.5
jacchus k-NN

PWM
WD
Spectrum

Drosophila C4.5
melanogaster k-NN

PWM
WD
Spectrum

Takifugu C4.5
rubripes k-NN

PWM
WD
Spectrum

Oryctolagus C4.5
cuniculus k-NN

PWM
WD
Spectrum

Gallus C4.5
gallus k-NN
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Table 7. Models selected for acceptor site recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G

PWM
WD
Spectrum

Pan C4.5
troglodytes k-NN

PWM
WD
Spectrum

Canis C4.5
lupus k-NN
familiaris PWM

WD
Spectrum

Danio C4.5
rerio k-NN

PWM
WD
Spectrum

Macaca C4.5
mulatta k-NN

PWM
WD
Spectrum

Mododelphis C4.5
domestica k-NN

PWM
WD
Spectrum

Mus C4.5
musculus k-NN

PWM
WD
Spectrum

Rattus C4.5
norvegicus k-NN

PWM
WD
Spectrum

Ornitho- C4.5
rhynchus k-NN
anatinus PWM

WD
Spectrum

Equus C4.5
caballus k-NN

PWM
WD
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Table 7. Models selected for acceptor site recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G

Spectrum
Ficedula C4.5
albicollis k-NN

PWM
WD
Spectrum

Sus C4.5
scrofa k-NN

PWM
WD
Spectrum

The ROC and PRC curves for our approach and standard method are shown in 408

Figs. 11 to 15. These results demonstrate that the overall performance of the 409

proposed method was better than the performance of the best model. 410

Results for stop codon recognition 411

Stop codon recognition is the most difficult task of the four types of recognition. One 412

of the major sources of this increased complexity is the number of negative instances, 413

which means a much larger minority:majority ratio. The global majority:minority 414

ratio for TISs is 1:4,155, for donors 1:326, for acceptors 1:455 and for stop codons 415

1:12,237. Table 8 shows the results for the five chromosomes and the three 416

optimization measures. 417

For auROC, the results showed a clear improvement. In the worst case, our 418

approach improved the results by more than 4% and in the best case by more than 6%. 419

These improvements were also achieved for the auPRC and G-mean measures. The 420

usefulness of our approach can be corroborated by comparing the number of FPs 421

between the standard method and our proposed method. Overall, for the five 422

chromosomes, the standard approach obtained 6,739,588 FPs, whereas our method 423

reduced that number to 1,459,923, which means that more than five million FPs were 424

removed. The effect of that dramatic improvement on the recognition ability for stop 425

codons must be significant over any gene structure prediction program. 426

As in previous results, the most common combination method was to sum the 427

outputs, although majority voting was selected as a general rule for the G-mean 428

measure, with the exception of chromosome 1. The searching strategies that obtained 429

the best results depended on the experiment, which demonstrates the advantage of 430

using all of them. 431

The numbers of models and selected classifiers and genomes for every case are 432

shown in Table 9. G-mean, as in the previous results, was the measure that required 433

fewer models, from 2 for chromosome 13 to 6 for chromosomes 1, 3 and 21. auROC 434

selected from 7 to 15 models. Again, auPRC required a comparatively large number of 435

models, from 31 to 58 selected models. 436

Table 9. Models selected for stop codon recognition.

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G

#Models 7 31 6 15 58 6 7 40 2 7 32 4 14 42 6
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Table 9. Models selected for stop codon recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G
Homo C4.5
sapiens k-NN

PWM
WD
Spectrum
STOP

Anolis C4.5
carolinensis k-NN

PWM
WD
Spectrum
STOP

Schistosoma C4.5
mansoni k-NN

PWM
WD
Spectrum
STOP

Bos C4.5
primigenius k-NN
taurus PWM

WD
Spectrum
STOP

Caenor- C4.5
habditis k-NN
elegans PWM

WD
Spectrum
STOP

Callithrix C4.5
jacchus k-NN

PWM
WD
Spectrum
STOP

Drosophila C4.5
melanogaster k-NN

PWM
WD
Spectrum
STOP

Takifugu C4.5
rubripes k-NN

PWM
WD
Spectrum
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Table 9. Models selected for stop codon recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G

STOP
Oryctolagus C4.5
cuniculus k-NN

PWM
WD
Spectrum
STOP

Gallus C4.5
gallus k-NN

PWM
WD
Spectrum
STOP

Pan C4.5
troglodytes k-NN

PWM
WD
Spectrum
STOP

Canis C4.5
lupus k-NN
familiaris PWM

WD
Spectrum
STOP

Danio C4.5
rerio k-NN

PWM
WD
Spectrum
STOP

Macaca C4.5
mulatta k-NN

PWM
WD
Spectrum
STOP

Mododelphis C4.5
domestica k-NN

PWM
WD
Spectrum
STOP

Mus C4.5
musculus k-NN

PWM
WD
Spectrum
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Table 9. Models selected for stop codon recognition (cont.).

Chromosome 1 3 13 19 21
Objective ROC PRC G ROC PRC G ROC PRC G ROC PRC G ROC PRC G

STOP
Rattus C4.5
norvegicus k-NN

PWM
WD
Spectrum
STOP

Ornitho- C4.5
rhynchus k-NN
anatinus PWM

WD
Spectrum
STOP

Equus C4.5
caballus k-NN

PWM
WD
Spectrum
STOP

Ficedula C4.5
albicollis k-NN

PWM
WD
Spectrum
STOP

Sus C4.5
scrofa k-NN

PWM
WD
Spectrum
STOP

Caenorhabditis elegans was the only genome that was never used. The use of all 437

the genomes was more balanced for the recognition of stop codons, using even 438

genomes that were far removed from the human genome, such as those of Takifugu 439

rubripes of Danio rerio. The use of classifiers was also more equally distributed among 440

the six methods, with the exception of PWM, which was never used. 441

With respect to the three objectives, optimizing the G-mean required fewer models, 442

from 2 to 6. For the five chromosomes, the SVM method for Macaca mulatta and Pan 443

troglodytes was always selected. Callithrix jacchus and Canis lupus familiaris were also 444

selected in most chromosomes. For auROC, more models were selected, from 7 to 15. 445

The SVM method for Macaca mulatta and Pan troglodytes was always chosen, but the 446

remaining methods depended on the chromosome. This is another interesting result 447

because most stop codon recognition programs rely on common models for any task. 448

Finally, for auPRC, significantly more models were selected, from 31 to 58, with a 449

significant variation among the chromosomes. 450

The actual ROC and PRC curves, which are shown in Figs. 16–20, show that the 451

curves that correspond to our proposed method are always above the curves of the 452

PLOS 29/54

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/320309doi: bioRxiv preprint 

https://doi.org/10.1101/320309
http://creativecommons.org/licenses/by/4.0/


Figure 6. ROC and PRC curves for the donor site and chromosome 1. ROC
and PRC curves for chromosome 1 and the standard approach and our proposed
method when auROC and auPRC are optimized.
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Figure 7. ROC and PRC curves for the donor site and chromosome 1. ROC
and PRC curves for chromosome 3 and the standard approach and our proposed
method when auROC and auPRC are optimized.
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Figure 8. ROC and PRC curves for the donor site and chromosome 1. ROC
and PRC curves for chromosome 13 and the standard approach and our proposed
method when auROC and auPRC are optimized.
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Figure 9. ROC and PRC curves for the donor site and chromosome 19.
ROC and PRC curves for chromosome 19 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Figure 10. ROC and PRC curves for the donor site and chromosome 1.
ROC and PRC curves for chromosome 21 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Table 6. Results for acceptor site recognition for human chromosomes 1, 3, 13, 19 and 21.

Chrom. Objective Method Combination G auROC auPRC TP FN TN FP

State-of-the-art 0.9442 0.9843 0.2242 78,145 3,233 29,823,601 2,298,365
auROC SFFS Sum 0.9562 0.9894 0.2912 78,284 3,094 30,530,255 1,591,711

1 auPRC LRS Sum 0.9550 0.9892 0.2940 78,179 3,199 30,496,996 1,624,970
G LRS Majority 0.9553 0.9827 0.0954 78,694 2,684 30,312,652 1,809,314
State-of-the-art 0.9397 0.9826 0.1620 46,158 2,321 25,037,728 1,960,382
auROC LRS Sum 0.9543 0.9885 0.2280 46,467 2,012 25,652,104 1,346,006

3 auPRC SFFS Sum 0.9537 0.9880 0.2274 46,485 1,994 25,607,518 1,390,592
G LRS Sum 0.9555 0.9884 0.2250 46,796 1,683 25,537,090 1,461,020
State-of-the-art 0.9428 0.9832 0.1123 15,357 654 11,928,112 943,204
auROC SFFS Sum 0.9561 0.9881 0.1517 15,496 515 12,157,237 714,079

13 auPRC SFFS Sum 0.9555 0.9881 0.1545 15,441 570 12,185,657 685,659
G SFFS Sum 0.9554 0.9880 0.1530 15,459 552 12,169,043 702,273
State-of-the-art 0.9455 0.9846 0.3016 32,213 1,477 7,758,186 540,139
auROC LRS Sum 0.9601 0.9906 0.4209 32,796 894 7,857,893 440,432

19 auPRC LRS Sum 0.9594 0.9905 0.4275 32,766 924 7,853,884 444,441
G LRS Sum 0.9596 0.9903 0.4171 32,752 938 7,860,411 437,914
State-of-the-art 0.9400 0.9840 0.1470 7,216 422 4,507,498 311,555
auROC SFFS Sum 0.9551 0.9887 0.2314 7,353 285 4,565,996 253,057

21 auPRC SBS Sum 0.9484 0.9870 0.2185 7,266 372 4,556,928 262,125
G LRS Majority 0.9531 0.9809 0.0621 7,360 278 4,543,109 275,944

Table 8. Results for stop codon recognition for human chromosomes 1, 3, 13, 19 and 21.

Chrom. Objective Method Combination G auROC auPRC TP FN TN FP

State-of-the-art 0.8363 0.9233 0.0100 1,690 464 21,015,2752 2,557,756
auROC SFFS Sum 0.8769 0.9692 0.0285 1,704 450 22,912,5416 660,490

1 auPRC LRS Sum 0.8211 0.9567 0.0518 1,487 667 23,019,3613 553,670
G LRS Sum 0.9079 0.9705 0.0322 1,856 298 22,548,6526 1,024,379
State-of-the-art 0.8298 0.9177 0.0060 862 252 19,149,9512 2,372,549
auROC SFBS Sum 0.8758 0.9691 0.0314 875 239 21,019,7347 502,766

3 auPRC SBS Sum 0.8204 0.9568 0.0349 764 350 21,123,6862 398,814
G SFFS Majority 0.9097 0.9592 0.0028 979 135 20,268,8975 1,253,603
State-of-the-art 0.8120 0.9163 0.0031 242 91 9,870,9594 1,007,343
auROC SFFS Sum 0.8462 0.9598 0.0116 243 90 10,673,3721 204,930

13 auPRC SFBS Sum 0.7584 0.9497 0.0317 194 139 10,740,1530 138,149
G SFFS Majority 0.8961 0.9057 0.0004 287 46 10,134,5112 743,791
State-of-the-art 0.8426 0.9284 0.0295 1,141 281 4,128,2713 537,533
auROC SFFS Sum 0.9055 0.9697 0.0824 1,236 186 4,400,9924 264,812

19 auPRC RSFBS Sum 0.8818 0.9634 0.1167 1,176 246 4,386,4729 279,332
G SFFS Majority 0.9145 0.9630 0.0066 1,319 103 4,207,1045 458,700
State-of-the-art 0.7820 0.9017 0.0065 156 81 3,462,5527 264,407
auROC SFBS Sum 0.8487 0.9681 0.0254 175 62 3,635,8196 91,140

21 auPRC SBS Sum 0.7989 0.9600 0.0362 155 82 3,637,0015 89,958
G SFFS Majority 0.8994 0.9610 0.0025 205 32 3,485,0936 241,866

best model. This indicates better performance for all the possible thresholds of 453

classification. 454
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Figure 11. ROC and PRC curves for the acceptor site and chromosome 1.
ROC and PRC curves for chromosome 1 and the standard approach and our proposed
method when auROC and auPRC are optimized.
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Figure 12. ROC and PRC curves for the acceptor site and chromosome 1.
ROC and PRC curves for chromosome 3 and the standard approach and our proposed
method when auROC and auPRC are optimized.
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Figure 13. ROC and PRC curves for the acceptor site and chromosome 1.
ROC and PRC curves for chromosome 13 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Figure 14. ROC and PRC curves for the acceptor site and chromosome 19.
ROC and PRC curves for chromosome 19 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Figure 15. ROC and PRC curves for the acceptor site and chromosome 1.
ROC and PRC curves for chromosome 21 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Figure 16. ROC and PRC curves for the STOP codon and chromosome 1.
ROC and PRC curves for chromosome 1 and the standard approach and our proposed
method when auROC and auPRC are optimized.
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Figure 17. ROC and PRC curves for the STOP codon and chromosome 1.
ROC and PRC curves for chromosome 3 and the standard approach and our proposed
method when auROC and auPRC are optimized.
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Figure 18. ROC and PRC curves for the STOP codon and chromosome 1.
ROC and PRC curves for chromosome 13 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Figure 19. ROC and PRC curves for the STOP codon and chromosome 19.
ROC and PRC curves for chromosome 19 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Figure 20. ROC and PRC curves for the STOP codon and chromosome 1.
ROC and PRC curves for chromosome 21 and the standard approach and our
proposed method when auROC and auPRC are optimized.
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Summary of the comparison 455

As a summary of the comparison for the five chromosomes and four sites, Figs. 21, 22, 456

23, 24 and 25 show the improvements for all four sites and five chromosomes. The 457

figures show the relative improvement of our approach in terms of G-mean, auROC 458

and auPRC. All of the figures show the improvement that obtained using the floating 459

search strategy. 460

Figure 21. Chromosome 1 result comparison. Relative improvement in the
chromosome 1 results of our method against a state-of-the-art standard method.
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Figure 22. Chromosome 3 result comparison. Relative improvement in the
chromosome 3 results of our method against a state-of-the-art standard method.
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Figure 23. Chromosome 13 result comparison. Relative improvement in the
chromosome 13 results of our method against a state-of-the-art standard method.
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Figure 24. Chromosome 19 result comparison. Relative improvement in the
chromosome 19 results of our method against a state-of-the-art standard method.
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Finally, to study the effect on the performance of the proposed method of the 461

optimization measure, we show in Figs. 26, 27 and 28 the overall improvements in 462

terms of TPs, FNs, TNs and FNs for all of the chromosomes and the four sites. The 463

first conclusion is that the optimization objective has a relevant impact on the 464

distribution of the errors. That is a very important aspect if we plan to use site 465

recognition as an initial step in a gene structure prediction task, as our prediction 466

program might be more sensitive to a specific type of errors. 467

For positive site prediction, the best results were obtained using G-mean as the 468
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Figure 25. Chromosome 21 result comparison. Relative improvement in the
chromosome 21 results of our method against a state-of-the-art standard method.
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objective, whereas auROC only showed a minor improvement and auPRC was even 469

worse than the standard approach for TIS and stop codon prediction. For negative 470

instances, auROC and auPRC performed very well, with a small advantage of auPRC 471

for TISs and stop codons and of auROC for donors and acceptors. G-mean achieved a 472

marked improvement over the standard method but not as dramatic as those of 473

auROC and auPRC. The best overall performance on both positive and negative 474

samples was achieved by G-mean, which showed a more balanced behavior. 475

Figure 26. TP, FN, TN, and FP improvements for all four sites using
auROC as the optimization objective. Overall improvement results of our
method against a state-of-the-art standard method.
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Figure 27. TP, FN, TN, and FP improvements for all four sites using
auPRC as the optimization objective. Overall improvement results of our
method against a state-of-the-art standard method.
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Figure 28. TP, FN, TN, and FP improvements for all four sites using
G-mean as the optimization objective. Overall improvement results of our
method against a state-of-the-art standard method.
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Effect on gene prediction 476

We stated in the introduction that the improvement of the site prediction that was 477

introduced by our method would have a significant impact on the prediction of the 478

complete structure of genes, as site prediction is a relevant step in most current gene 479
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structure prediction programs. To test that statement, we performed a final 480

experiment on gene prediction for chromosome 21. We constructed a very simple 481

predictor that searched for exons using the sites that were found by the recognition 482

program, which was either the standard approach or our proposed method, and 483

constructed a gene using these exons. This simple program is not intended for gene 484

structure prediction but only to test the ability of our proposed method in improving 485

gene recognition. 486

To evaluate gene predictor performance over a test sequence, the predicted gene 487

structure is compared with the annotated gene structure on the target sequence. The 488

accuracy is evaluated at different levels of resolution. Commonly, these levels are the 489

nucleotide, exon and gene levels. Due to the use of a very simple program, no 490

gene-level accuracy is reported. Regarding nucleotide-level performance, we used as 491

comparison measures Sensitivity (Sn): 492

Sn =
TP

TP + FN
(4)

which is a relevant measure if we are interested only in the performance on the positive 493

class, and Specificity (Sp), in its traditional machine learning form, which is defined as: 494

Sp =
TN

TN + FP
(5)

In bioinformatics, and particularly in gene prediction, specificity is usually defined 495

in a different way. Specificity (Sp(BIO)) is calculated by dividing the number of 496

correct predictions by the total number of predictions: 497

Sp(BIO) =
TP

TP + FP
(6)

However, neither sensitivity nor specificity by itself constitutes a measure of global 498

accuracy. A good measure that summarizes both at the nucleotide level is the 499

Correlation Coefficient (CC): 500

CC =
TP × TN − FP × FN√
PP × PN ×AP ×AN

(7)

where PP is the number of predicted positives, AP the actual positives, PN the 501

predicted negatives and AN the actual negatives. We also calculate the Average 502

Conditional Probability (ACP) measure: 503

ACP =
1

4

[

TP

TP + FN
+

TP

TP + FP
+

TN

TN + FP
+

TN

TN + FN

]

, (8)

and the Approximate Correlation (AC): 504

AC = (ACP − 0.5)× 2. (9)

At the exon level, an exon is considered to have been correctly predicted when 505

both boundaries are correctly predicted. If a predicted exon contains at least one 506

actual base, it will be considered a partially correct exon. At the exon level, we show 507

Sp, Sn and the numbers of missed exons (ME), which are exons that are not found by 508

the program, and wrong exons (WE), which are predicted exons that do not 509

correspond to any actual exon. As a representative of our proposed method, we used 510

the model that was obtained when optimizing G-mean, as the previous section showed 511

that it achieved the best overall behavior. 512

Fig 29 shows the performances of our proposed method and the standard method 513

for the ten measures that are presented above. Fig 30 shows the relative improvement 514
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of our method with respect to the standard approach. Our approach improved the 515

results of the standard method in terms of all measures. At the nucleotide level, CC 516

and AC were improved by over 100%. At the exon level, Sn and Sp were improved 517

significantly, while the numbers of ME and WE were also improved, but only 518

marginally. These results show how our approach can be used to improve gene 519

structure prediction. 520

Figure 29. Chromosome 21 gene structure prediction. Chromosome 21 results
of our method against a state-of-the-art standard method.
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Conclusions 521

In this paper, we presented a floating-search-based strategy for functional site 522

recognition in genomic sequences. The use of floating search enables an efficient search 523

for the best combination of more than a hundred of classification models that are 524

trained on the genomes of many species. The presented approach can also be used for 525

other combination tasks. 526

The proposed method also enabled the optimization of various performance 527

measures. In the reported experiments, we showed results on searching for the best 528

combination that optimizes three measures: auROC, auPRC and G-mean. The 529

method was successfully applied to the recognition of TIS, donor and acceptor sites 530

and stop codons. The reported experiments showed a clear improvement over the 531

current best methods. The reported results also showed that to obtain the best 532

classification rates, many species should be used. Our approach efficiently improved 533

the performance of a very simple program for gene structure prediction. 534
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Figure 30. Chromosome 21 gene structure prediction. Relative improvement
for chromosome 21 results of our method against a state-of-the-art standard method.
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