

1 **Identification of a divergent cytochrome *c* oxidase complex in the mitochondrial proteome**
2 **of *Toxoplasma gondii*.**

3

4 Azadeh Seidi^{1,4,5}, Linden S. Muellner-Wong^{1,4,6}, Esther Rajendran¹, Edwin T. Tjhin¹, Laura F.
5 Dagley^{2,3}, Y.T. Vincent Aw¹, Andrew I. Webb^{2,3}, Christopher J. Tonkin^{2,3}, Giel G. van Dooren¹

6

7 ¹ Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia

8 ² The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria,
9 3052, Australia

10 ³ Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia

11 ⁴ Contributed equally

12

13 ⁵ current address: Australian Genome Research Facility, The Walter and Eliza Hall Institute of
14 Medical Research, 1G Royal Parade, Parkville, Victoria, 3050, Australia

15 ⁶ current address: Department of Biochemistry and Molecular Biology, Monash Biomedicine
16 Discovery Institute, Monash University, Melbourne, 3800, Australia

17

18 Address correspondence to Giel G. van Dooren, giel.vandooren@anu.edu.au

19

20 Keywords: *Toxoplasma*, mitochondria, apicomplexans, proteomics

21

22 **ABSTRACT**

23 The mitochondrion of apicomplexan parasites is critical for parasite survival, although the full
24 complement of proteins that localize to this organelle has not been defined. Here we undertake
25 two independent approaches to elucidate the mitochondrial proteome of the apicomplexan
26 *Toxoplasma gondii*. We identify 421 mitochondrial proteins, many of which lack homologs in
27 the animals that these parasites infect, and most of which are important for parasite growth. We
28 demonstrate that one such protein, termed *TgApiCox25*, is an important component of the
29 parasite cytochrome *c* oxidase (COX) complex. We identify numerous other apicomplexan-
30 specific components of COX, and conclude that apicomplexan COX, and apicomplexan
31 mitochondria more generally, differ substantially in their protein composition from the hosts they
32 infect. Our study highlights the diversity that exists in mitochondrial proteomes across the
33 eukaryotic domain of life, and provides a foundation for defining unique aspects of
34 mitochondrial biology in an important phylum of parasites.

35

36 INTRODUCTION

37 Mitochondria were derived from α -proteobacteria in an endosymbiotic event, and were present
38 in the last common ancestor of all eukaryotes (Gray, 2012; Sagan, 1967). Mitochondria and
39 related organelles are present in almost all extant eukaryotes. They function in the biosynthesis
40 of molecules such as iron-sulfur clusters, lipids, coenzyme Q, heme and amino acids, the
41 catabolism of molecules such as fatty acids, amino acids and monocarboxylates, the storage of
42 ions and signalling molecules such as Ca^{2+} , the regulation of apoptosis, and the production of
43 energy-carrying molecules such as ATP and NADH (McBride et al., 2006; van Dooren et al.,
44 2006; Zikova et al., 2016). Notably, the function of mitochondria and related organelles vary
45 substantially between different eukaryotic lineages, reflective of the $>1,500$ M years that separate
46 these lineages (Chernikova et al., 2011; Zikova et al., 2016).

47 Apicomplexans are a phylum of intracellular parasites that impose a significant medical and
48 economic burden on human populations around the world. Apicomplexans include the causative
49 agents of malaria (*Plasmodium* spp.), cryptosporidiosis (*Cryptosporidium* spp.) and
50 toxoplasmosis (*Toxoplasma gondii*). *T. gondii* is an opportunistic parasite that chronically infects
51 approximately one-third of the world's adult population. Symptoms of *T. gondii* infection in
52 healthy individuals are typically mild. In immunocompromised individuals and unborn fetuses,
53 however, *T. gondii* infection can cause severe neurological and developmental impairment, and,
54 without treatment, can lead to death of the infected individual (Montoya and Liesenfeld, 2004).
55 The tractable genetics of *T. gondii* make it a versatile model for studying conserved aspects of
56 apicomplexan biology.

57 Mitochondria are critical for the survival of apicomplexans, and several important drugs target
58 proteins that function in this organelle, including atovaquone and endochin-like quinolones, both

59 of which target cytochrome *c* reductase (complex III) of the electron transport chain, and DSM1,
60 which targets dihydroorotate dehydrogenase, a central enzyme in pyrimidine biosynthesis
61 (Doggett et al., 2012; Phillips et al., 2008; Srivastava et al., 1999). The functions of
62 apicomplexan mitochondria are largely implied through comparative genomic approaches that
63 have identified homologs of genes encoding known mitochondrial proteins from other
64 eukaryotes (Seeber et al., 2008; van Dooren et al., 2006). The genome of apicomplexans such as
65 *T. gondii* and *Plasmodium* spp. encode homologs of proteins involved in core mitochondrial
66 processes such as the electron transport chain, the tricarboxylic acid (TCA) cycle, and the
67 synthesis of molecules such as iron-sulfur clusters, heme and coenzyme Q (Seeber et al., 2008;
68 van Dooren et al., 2006). The mitosome of *Cryptosporidium parvum* is highly reduced compared
69 to that of other apicomplexans, lacking a TCA cycle, and harboring a minimal electron transport
70 chain, but retaining the capacity for iron-sulfur cluster synthesis (Mogi and Kita, 2009).

71 Apicomplexans belong to a group of eukaryotes known as the myzozoans, that also include
72 dinoflagellates and chromerids (Cavalier-Smith and Chao, 2004). Chromerids are a phylum of
73 free-living, photosynthetic eukaryotes, and are thought to be the closest extant relatives of
74 apicomplexans (Moore et al., 2008). All known myzozoans retain a mitochondrion or
75 mitochondrion-derived organelle, the functions of which have numerous differences from well-
76 studied eukaryotes such as yeast and animals (Danne et al., 2013; Jacot et al., 2015). In addition
77 to a limited gene content, the mitochondrial genomes of these organisms contain unusually
78 fragmented ribosomal RNAs (Feagin et al., 2012). Myzozoan mitochondria lack pyruvate
79 dehydrogenase, the enzyme complex that decarboxylates pyruvate to form acetyl-CoA (Danne et
80 al., 2013; Foth et al., 2005). Instead, these organisms have repurposed a branched-chain α -
81 ketoacid dehydrogenase (BCKDH) to catalyse this reaction (Oppenheim et al., 2014).

82 Myzozoans have a functional TCA cycle, but some enzymes of this pathway are
83 phylogenetically distinct from equivalent enzymes in yeast and humans (Danne et al., 2013; Ke
84 et al., 2015; MacRae et al., 2013; MacRae et al., 2012; van Dooren et al., 2006). These
85 organisms also contain a mitochondrial ATP synthase that lacks clear homologs to many of the
86 proteins that comprise the membrane-bound F₀ component of the complex (Balabaskaran Nina et
87 al., 2011; Sturm et al., 2015).

88

89 Elucidating the proteomes of mitochondria is key to understanding their functions. Organellar
90 proteomics in intracellular parasites such as *T. gondii* is limited by available material and a lack
91 of established organellar purification techniques. To overcome these obstacles, we adopted two
92 complementary spatially-restricted biotin tagging approaches to define the proteome of the
93 mitochondrial matrix of *T. gondii*. We identified over 400 putative mitochondrial matrix
94 proteins, many of which have no ascribed function and no clear homology to proteins found in
95 well-characterised eukaryotes such as yeast, and most of which are important for parasite growth
96 and survival. We functionally characterise one protein that had no previously ascribed function,
97 and demonstrate that this is a critical component of the cytochrome *c* oxidase (COX) complex of
98 the mitochondrial electron transport chain in the parasite. We subsequently identify numerous
99 apicomplexan-specific components of COX. These data reveal considerable divergence in the
100 COX complex, and in mitochondria more generally, of *T. gondii* and related apicomplexans,
101 compared to the animals they infect.

102

103 RESULTS

104 ***Spatially-restricted biotinylation of mitochondrial matrix proteins.*** A genetically modified plant
105 ascorbate peroxidase (APEX) was recently developed as a tool for biotinyling proximal
106 proteins in mammalian cells (Hung et al., 2014; Rhee et al., 2013). This technique was used to
107 define the proteome of the matrix and inter-membrane space of mammalian mitochondria. An
108 alternative spatial biotinylation approach involves the use of a genetically modified, promiscuous
109 biotin protein ligase (BirA*), an approach that is typically utilised to elucidate protein-protein
110 interactions (Roux et al., 2012). We sought to utilize APEX and BirA* to map the mitochondrial
111 matrix proteome of *T. gondii*.

112

113 We generated parasite strains expressing APEX or BirA* fused at their N-termini to the
114 mitochondrial matrix-targeting sequence of *TgHsp60* (van Dooren et al., 2009).
115 Immunofluorescence assays demonstrated that both mitochondrially-targeted APEX (mtAPEX)
116 and mitochondrially-targeted BirA* (mtBirA*) co-localised with *TgTom40*, a marker for the *T.*
117 *gondii* mitochondrion (Figure 1A-B; (van Dooren et al., 2016)). Western blots confirmed the
118 presence of mtAPEX and mtBirA* proteins of the expected mass (Figure 1C-D).

119

120 To determine whether mtAPEX could label mitochondrial proteins, we treated parasites with
121 biotin-phenol for 1 hr, initiated biotinylation by adding H₂O₂ for 1 min, then fixed and labelled
122 parasites with Oregon green-conjugated avidin, a specific stain for biotinylated proteins. We
123 observed mitochondrial labelling in treated parasites, and not in untreated parasites (Figure 1E),
124 consistent with mtAPEX mediating the biotinylation of mitochondrial proteins. In untreated
125 parasites, we observed labelling of endogenously biotinylated proteins in the apicoplast,
126 consistent with previous observations (Figure 1E; (Chen et al., 2015; Jelenska et al., 2001)).

127

128 To determine whether mtBirA* could label mitochondrial proteins, we incubated mtBirA*-
129 expressing parasites in medium supplemented with 1 mM biotin for 1 day. We labelled parasites
130 with Oregon green-conjugated avidin and observed labelling in the mitochondrion of biotin-
131 supplemented parasites, but not in untreated parasites (Figure 1F).

132

133 To observe the extent of protein biotinylation in the treated mtAPEX and mtBirA* parasites, we
134 extracted proteins from RH strain wild type (WT), mtAPEX or mtBirA* parasites treated with
135 either biotin-phenol and H₂O₂ or with biotin. We separated these by SDS-PAGE and probed with
136 horse radish peroxidase (HRP)-conjugated neutravidin to label biotinylated proteins. In WT
137 cells, we observed two major bands of the expected sizes of natively biotinylated proteins in
138 these parasites (Figure 1G; (van Dooren et al., 2008)). In the biotin-phenol treated mtAPEX
139 parasites, we observed labelling of several additional proteins, whereas in biotin-supplemented
140 mtBirA* parasites, numerous proteins were labelled (Figure 1G). These data indicate that
141 mtAPEX- and mtBirA*-mediated biotinylation is occurring in these parasites.

142

143 To determine the specificity of labelling, we extracted proteins from treated WT, mtAPEX and
144 mtBirA* parasites and subjected these to affinity purification using streptavidin-conjugated
145 magnetic beads. We separated purified proteins by SDS-PAGE and probed with antibodies
146 against *TgHsp60* (mtHsp60), a mitochondrial matrix marker (Toursel et al., 2000; van Dooren et
147 al., 2016), and against *T. gondii* cytochrome *c* (cyt *c*), a mitochondrial intermembrane space
148 marker (E.T. and G.v.D., unpublished). We did not detect mtHsp60 or cyt *c* in the streptavidin
149 bound fraction in WT parasites treated with biotin-phenol and H₂O₂, or with biotin (Figure 1H).

150 We detected bound mtHsp60, but not bound cyt *c*, in proteins extracted from both biotin-phenol-
151 treated mtAPEX and biotin-treated mtBirA* parasites. This is consistent with the mitochondrial
152 labelling that we observe being specific for the mitochondrial matrix.

153

154 ***Quantitative proteomics to elucidate the mitochondrial matrix proteome.*** Having established
155 two independent approaches for specifically labelling mitochondrial matrix proteins, we next
156 undertook a label-free quantitative proteomic analysis of biotinylated proteins in treated
157 mtAPEX and mtBirA* parasites. First, we generated 3 independent cell lysate pools of WT and
158 mtAPEX cells treated with biotin-phenol and H₂O₂, and WT and mtBirA* cells treated with
159 biotin. Biotinylated proteins were purified from these lysates using streptavidin beads, reduced,
160 alkylated, and trypsin-digested before being identified using mass spectrometry (MS). Triplicate
161 samples were then processed through our in-house quantitation pipeline to determine the relative
162 abundance of each protein identified in the mtAPEX or mtBirA* samples as compared to WT
163 controls. These data are represented on a volcano plot as a fold-change (log₂ value) vs
164 significance of the change (−log₁₀ *p* value) (Figure 2A-B). This revealed an enrichment of
165 numerous proteins in the mtAPEX and mtBirA* samples. Using cut-offs of *p* < 0.001 and a
166 WT:mtAPEX/mtBirA* log₂ fold change of <-2.5, 421 proteins were identified in total: 213
167 proteins in the APEX samples and 369 proteins in the mtBirA* samples, with 161 proteins
168 common to both proteomes (Figure 2C; Supplementary File 1). Hereafter, we refer to the list of
169 421 proteins as the mitochondrial proteome of *T. gondii*.

170

171 ***Bioinformatic characterisation of the mitochondrial proteome.*** To test the validity of the *T.*
172 *gondii* mitochondrial proteome, we undertook a series of *in silico* and experimental analyses.

173 Proteins targeted to the mitochondrial matrix typically harbor an N-terminal amphipathic α -helix
174 that facilitates import into the organelle (van Dooren et al., 2016). We examined the *T. gondii*
175 mitochondrial proteome for proteins predicted to contain such an N-terminal targeting domain
176 using the rules-based computational prediction tool MitoProt II (Claros and Vincens, 1996).
177 Approximately 40% of proteins in the proteome had a strongly predicted N-terminal targeting
178 sequences (probability of mitochondrial import >0.9), and a further $\sim 20\%$ had a moderately
179 predicted targeting sequence (probability of import 0.5 - 0.9; Figure 2 – figure supplement 1;
180 Supplementary File 1). A further $\sim 40\%$ had a low probability of mitochondrial import
181 (probability of import <0.5 ; Figure 2 – figure supplement 1). This suggests that either the
182 mitochondrial proteome has many false positives, or that many *T. gondii* mitochondrial proteins
183 lack N-terminal targeting sequences, or that mitochondrial prediction tools such as MitoProt II
184 are not suitable for analysis of mitochondrial proteins from *T. gondii*. Notably in this regard, the
185 dataset used to develop MitoProt II did not include *T. gondii* proteins (Claros and Vincens,
186 1996).

187
188 Next, we examined metabolic pathway enrichment of the mitochondrial proteome
189 (<http://toxodb.org>; (Gajria et al., 2008); *p* value cutoff <0.05 ; Supplementary File 2). We
190 observed the greatest enrichment in proteins involved in the TCA cycle, oxidative
191 phosphorylation, and pyruvate metabolism, all processes predicted to occur in the
192 mitochondrion. We observed enrichment of other processes predicted to occur in the
193 mitochondrion, including ubiquinone biosynthesis, one carbon metabolism, and branched chain
194 amino acid degradation. We also observed enrichment of some processes not expected to occur

195 in the mitochondrion, such as glycolysis/gluconeogenesis, suggesting the presence of some false
196 positives in our proteome.

197

198 To analyse the mitochondrial proteome in greater detail, we mapped proteins to previously
199 constructed metabolic maps of apicomplexan mitochondria (Supplementary File 3; (Seeber et al.,
200 2008; van Dooren et al., 2006)). This analysis identified all subunits of the BCKDH, all enzymes
201 of the TCA cycle, all proteins predicted to function in mitochondrial Fe-S cluster synthesis, four
202 of the seven enzymes predicted to function in coenzyme Q synthesis, and two of the three
203 mitochondrial proteins involved in heme synthesis (Figure 2D). Additionally, we identified all
204 five ubiquinone-reducing dehydrogenases of the mitochondrial inner membrane, and all
205 currently predicted subunits of cytochrome *c* reductase (Complex III) and cytochrome *c* oxidase
206 (Complex IV) that are encoded on the nuclear genome (Figure 2D). We were unable to identify
207 cytochrome *b*, CoxI and CoxIII, proteins encoded on the mitochondrial genome apicomplexan
208 parasites. As expected, we did not identify the two isoforms of cytochrome *c*, both predicted to
209 localize to the intermembrane space. We identified the α , β , γ and δ subunits of the F₁
210 component of ATP synthase, but not the ϵ subunit.

211

212 We identified numerous other proteins shown previously to localise to the mitochondrion
213 (Supplementary File 3), including components of the presequence translocase associated motor
214 (van Dooren et al., 2016), the aforementioned *TgHsp60* (Toursel et al., 2000), components of the
215 mitochondrial processing peptidase (van Dooren et al., 2016), a mitochondrial pyruvate kinase
216 (Saito et al., 2008), a component of the γ -aminobutyric acid shunt (MacRae et al., 2012), an
217 enzyme involved in phospholipid synthesis (Hartmann et al., 2014), and proteins associated with

218 DNA repair (Garrison and Arrizabalaga, 2009) and antioxidant defences (Brydges and
219 Carruthers, 2003; Ding et al., 2004). Notably, we were unable to identify mitochondrially-
220 localised enzymes involved in the 2-methylcitrate cycle (Limenitakis et al., 2013). We identified
221 several conserved solute transporter proteins, and numerous proteins with housekeeping roles in
222 the mitochondrion, including mitochondrial RNA polymerase, 18 ribosomal proteins (Gupta et
223 al., 2014), ribosome maturation factors, and various translation elongation factors
224 (Supplementary File 3). A recent genome-wide CRISPR-based screen to identify genes
225 important for *in vitro* growth of tachyzoite-stage *T. gondii* identified 15 so-called Indispensable
226 Conserved Apicomplexan Proteins (ICAPs; (Sidik et al., 2016)). Of these, 8 localised to the
227 mitochondrion. We identified 6 of these mitochondrial ICAPs in the mitochondrial proteome. In
228 total, our proteomics identified 96 out of 110 proteins that previously studies had experimentally
229 localized, or predicted to localize, to the mitochondrion, suggesting a high level of coverage
230 (87%).

231
232 We examined the mitochondrial proteome for likely false positives. We identified 17 proteins
233 that other studies have demonstrated do not localise to the mitochondrion (Supplementary File
234 3). Notably, 15 of these were identified only in the mtBirA* proteome, while 2 were present in
235 both the mtBirA* and mtAPEX proteomes. In total, of the 421 proteins in the mitochondrial
236 proteome, we identified 96 (23%) that are known or expected to localise to the mitochondrion,
237 and 17 (4%) that are known to localise elsewhere.

238
239 ***Localisation of uncharacterized proteins from the mitochondrial proteome.*** Of the 421 putative
240 mitochondrial proteins identified in the mitochondrial proteome, 150 (36%) were annotated as

241 ‘hypothetical’ proteins, and a further 140 (33%) had no previously defined role or experimentally
242 determined localization in *T. gondii* (Supplementary File 1). We attempted to localize 37
243 proteins selected at random from this ‘uncharacterized’ protein data set by introducing a
244 hemagglutinin (HA) epitope tag at the 3’ end of the native locus of genes encoding these
245 proteins. We then undertook immunofluorescence assays to determine the localization of the
246 proteins, co-labelling with anti-*TgTom40* as a marker for the mitochondrion (van Dooren et al.,
247 2016). We were successful in localizing 27 of the 37 selected proteins. Of these, 22 (81%)
248 localized to the mitochondrion, three to the cytosol, one to the endoplasmic reticulum and one to
249 the nucleus (Figure 3). All 13 that were identified in both the mtAPEX and mtBirA* proteomes
250 localized to the mitochondrion, suggesting a high degree of confidence in the mitochondrial
251 localization of proteins identified from both datasets. Five of the six proteins found solely in the
252 mtAPEX proteome localized to the mitochondrion, while four of the eight proteins found only in
253 the mtBirA* proteome localized to the mitochondrion.

254

255 ***Phylogenetic analyses of the mitochondrial proteome.*** We next examined the evolutionary
256 history of proteins from the mitochondrial proteome. First, we undertook reciprocal Basic Local
257 Alignment Search Tool (BLAST) searches to identify homologs of proteins from the
258 mitochondrial proteome in the apicomplexan parasites *Plasmodium falciparum*, *Babesia bovis*
259 and *Cryptosporidium parvum*, and the chromerid *Vitrella brassicaformis*. Using this approach,
260 we identified homologs for 71% of *T. gondii* mitochondrial proteins in *P. falciparum*, 61% in *B.*
261 *bovis*, 28% in *C. parvum*, and 83% in *V. brassicaformis* (Figure 4A).

262

263 We were next interested in the extent of novelty in the *T. gondii* mitochondrial proteome when
264 compared to non-apicomplexan eukaryotes. We examined conserved orthology groupings of the
265 421 proteins in the mitochondrial proteome and identified 418 proteins that clustered into 412
266 separate orthology groups (<http://orthomcl.org>; (Chen et al., 2006)). We identified 86 proteins
267 that were unique to *T. gondii* and closely related coccidians such as *Neospora caninum*, 243
268 proteins with orthologs in non-apicomplexan eukaryotes, and a set of 89 proteins that were found
269 only in apicomplexans and/or chromerids (Figure 4B; Supplementary File 1).

270

271 Novel drug targets against apicomplexans are likely to emerge from proteins which lack
272 homologs in animals. We therefore conducted an orthology analysis comparing the *T. gondii*
273 mitochondrial proteome to other apicomplexans, chromerids and animals. We found that 51% of
274 the mitochondrial proteome lacked orthologs in animals, of which 56% had orthologs in other
275 apicomplexans and/or chromerids (Figure 4C). The remainder were restricted to *T. gondii* and
276 other coccidian parasites such as *N. caninum*.

277

278 **Phenotype analyses of the mitochondrial proteome.** Our data indicate substantial novelty in
279 mitochondrial biology of *T. gondii* and related organisms. Often, such derived features are less
280 important for an organism's survival than proteins that have been conserved across evolution. A
281 recent genome-wide, CRISPR-based loss-of-function screen in *T. gondii* found that genes
282 conserved in eukaryotes were, in general, more important for parasite fitness than genes with a
283 more restricted phylogenetic distribution (Sidik et al., 2016). To determine whether the same was
284 true for mitochondrial proteins, we analysed the *T. gondii* mitochondrial proteome using the
285 Sidik et al data set (Sidik et al., 2016). The Sidik et al study ascribed phenotype scores to each

286 gene in the *T. gondii* nuclear genome, with more negative scores indicative of a greater
287 importance for a gene's contribution to parasite fitness. The Sidik et al study found that most
288 genes that were important for parasite growth had phenotype scores of below -2, and most
289 dispensable genes had phenotype scores of greater than -2 (Sidik et al., 2016). Based on this, we
290 categorised proteins in the mitochondrial proteome as dispensable (phenotype score >-2),
291 important (-2 to -4), or critical (<-4) for parasite growth. Notably, 35% of proteins from the
292 mitochondrial proteome were critical, and 39% were important, for parasite growth (Figure 4A;
293 Supplementary File 1). Of the *T. gondii* mitochondrial proteins with orthologs in *P. falciparum*,
294 ~75% were important or critical, and similar values apply for those with orthologs in *B. bovis*, *C.*
295 *parvum*, and *V. brassicaformis* (Figure 4A). Of the proteins conserved between *T. gondii* and
296 apicomplexans/chromerids, over 80% were important or critical for parasite growth, while over
297 70% of proteins collectively found in apicomplexans, chromerids and animals were important or
298 critical (Figure 4D; Supplementary File 1).

299

300 ***TgApiCox25 is important for mitochondrial oxygen consumption in *T. gondii*.*** Having
301 identified ~175 proteins in the *T. gondii* mitochondrial proteome that have no clear orthologs
302 outside the apicomplexan/chromerid lineage, and no predicted function, we embarked on a broad
303 project to characterise the importance and role of these proteins. In the remainder of this
304 manuscript, we focus on one such protein, annotated as TGGT1_264040, which (for reasons that
305 will become apparent) we termed *TgApiCox25*. *TgApiCox25* belongs to an OrthoMCL ortholog
306 grouping that is restricted to apicomplexans, contains no recognisable functional domains, and is
307 important for parasite fitness. It has a predicted molecular mass of 25 kDa, and we confirmed its
308 localisation to the mitochondrion (Figure 3R). To establish the importance of *TgApiCox25* for

309 parasite growth, and to facilitate subsequent characterisation of its function, we replaced the
310 native promoter of *TgApiCox25* with an anhydrotetracycline (ATc)-regulated promoter using a
311 CRISPR-based genome editing approach (Figure 5 – figure supplement 1A). We performed PCR
312 screening analysis to identify clonal parasites that had integrated the ATc-regulated promoter
313 into the *TgApiCox25* locus (Figure 5 – figure supplement 1B-C). We termed the resultant ATc-
314 regulated *TgApiCox25* strain ‘r*TgApiCox25*’. We then introduced a HA tag at the 3’ end of the
315 open reading frame of the r*TgApiCox25* locus. We termed the resultant HA-tagged, ATc-
316 regulated *TgApiCox25* strain ‘r*TgApiCox25-HA*’. To measure the extent of target protein
317 knockdown upon the addition of ATc in the r*TgApiCox25* strain, we cultured parasites in the
318 absence of ATc, or in the presence of ATc for 1-3 days, then undertook western blotting. This
319 revealed substantial depletion of *TgApiCox25-HA* 2 days after ATc addition, with the
320 *TgApiCox25-HA* protein barely detectable after 3 days in ATc (Figure 5A). To determine the
321 importance of *TgApiCox25* on parasite growth we compared plaque sizes of parental wild type
322 (WT) and r*TgApiCox25* parasites grown in the absence or presence of ATc for 9 days. This
323 revealed that growth of r*TgApiCox25*, but not WT, parasites was severely impaired in the
324 presence of ATc (Figure 5B-C). Interestingly, r*TgApiCox25* parasites grew better in the absence
325 of ATc than WT parasites (Figure 5B-C). To determine whether the growth phenotype observed
326 upon *TgApiCox25* knockdown was specifically due to loss of *TgApiCox25*, we complemented
327 the r*TgApiCox25* strain with a constitutive copy of *TgApiCox25* (generating a strain we termed
328 c*TgApiCox25-HA/rTgApiCox25*). The presence of the constitutive copy of *TgApiCox25*
329 restored growth of r*TgApiCox25* parasites in the presence of ATc (Figure 5B-C).
330

331 A major function of the mitochondrion is in oxidative phosphorylation, where the catabolism of
332 organic molecules by the TCA cycle and other metabolic pathways contribute electrons to an
333 electron transport chain on the inner membrane of the organelle (van Dooren et al., 2006).
334 Electrons are ultimately used to reduce O₂, with the electron transport chain simultaneously
335 generating a proton gradient across the inner membrane. This proton gradient is then used to
336 drive the F-type ATP synthase, a rotary motor that phosphorylates ADP to form ATP, the energy
337 currency of cells. Defects in any of the processes involved in oxidative phosphorylation will lead
338 to defects in mitochondrial O₂ consumption. To test whether *TgApiCox25* has a role in oxidative
339 phosphorylation, we established an assay to measure O₂ consumption by the parasite using a
340 Seahorse XFe96 extracellular flux analyzer. We grew r*TgApiCox25* parasites in the absence of
341 ATc, or presence of ATc for 1-3 days then used the XFe96 analyzer to measure basal
342 mitochondrial O₂ consumption rates (mOCR) in extracellular parasites. This revealed a
343 significant, ~80% depletion in basal mOCR upon *TgApiCox25* knockdown (Figure 5D),
344 concomitant with knockdown of protein levels (Figure 5A).
345
346 Treatment with the protonophore FCCP uncouples OCR from ATP synthesis and enables the
347 determination of maximal mOCR in parasites. We found that maximal mOCR was also depleted
348 upon *TgApiCox25* knockdown (Figure 5 – figure supplement 2). In a concomitant study, we
349 demonstrated that depletion of a component of *T. gondii* ATP synthase led to an increase in the
350 spare capacity of mOCR (i.e. the difference between the basal and maximal mOCR; see
351 accompanying manuscript by Huet et al). We did not observe an increase in spare capacity upon
352 *TgApiCox25* knockdown (Figure 5 – figure supplement 2), indicating that *TgApiCox25* is not a
353 component of ATP synthase. Basal and maximal mOCR in WT parasites were unaffected by the

354 addition of ATc, although, curiously, the spare capacity in WT parasites was greater than in
355 rTgApiCox25 parasites grown in the absence of ATc (Figure 5 – figure supplement 2). This is
356 perhaps reflective of changes in TgApiCox25 protein abundance or timing of expression upon
357 replacing the native promoter with the ATc-regulated promoter.

358

359 We wondered whether the defect in mOCR upon TgApiCox25 knockdown was the result of
360 general defects in mitochondrial function or parasite viability. To address this, we first measured
361 the extracellular acidification rate (ECAR) in WT and rTgApiCox25 parasites grown in the
362 absence or presence of ATc. ECAR is measured simultaneously with OCR by the XFe96
363 analyzer. In mammalian cells, ECAR is thought to depend on the extrusion of lactate, and is
364 therefore a measure of glycolysis (Ferrick et al., 2008). The contribution of glycolysis and other
365 processes that acidify the extracellular medium (e.g. activity of the plasma membrane proton
366 pump of these parasites; (Moreno et al., 1998)) to ECAR in *T. gondii* are not yet understood.
367 Nevertheless, we can use ECAR measurements as a general indication of parasite metabolic
368 activity. ECAR levels in WT parasites was approximately 40 mpH/min/1.5 x 10⁶ parasites, and
369 slightly less in rTgApiCox25 parasite grown the absence of ATc. Growth of TgApiCox25
370 parasites for 2 or 3 days in ATc resulted in a slight increase in ECAR (Figure 5E), indicating that
371 parasites remained metabolically active upon TgApiCox25 knockdown. As a control for non-
372 metabolically active parasites, we treated WT parasites with the translation inhibitor
373 cycloheximide for 24 hr, which would be expected to deplete key metabolic enzymes in the
374 parasite. XFe96 measurements revealed that both mOCR and ECAR were depleted upon
375 cycloheximide treatment (Figure 5E), consistent with a general loss of parasite metabolism

376 leading to simultaneous defects in mOCR and ECAR. We conclude that parasites remain
377 metabolically active in the absence of *TgApiCox25*.

378

379 Next, we asked whether knockdown of *TgApiCox25* led to general defects in mitochondrial
380 morphology. We performed immunofluorescence assays labelling the mitochondrion in
381 r*TgApiCox25* parasites grown in the absence or presence of ATc. This revealed no gross
382 morphological defects in mitochondrial morphology upon the loss of *TgApiCox25* (Figure 5 –
383 figure supplement 3A). Finally, we asked whether *T. gondii* parasites remained viable upon
384 knockdown of *TgApiCox25*. We pre-incubated r*TgApiCox25* parasites in the presence of ATc
385 for 3 days. We then set up plaque assays in the absence or presence of ATc, comparing parasite
386 growth with parasites that had not been pre-incubated in ATc. As expected, parasites that were
387 maintained in ATc for the duration of the plaque assay underwent minimal growth, regardless of
388 whether they were pre-incubated in ATc (Figure 5 – figure supplement 3B). Notably, plaque
389 number and size were equivalent between pre-incubated and non-pre-incubated parasites when
390 grown in the absence of ATc. This reveals that *TgApiCox25* knockdown is reversible and,
391 importantly, that r*TgApiCox25* parasites treated for 3 days on ATc have equivalent viability to
392 r*TgApiCox25* not grown on ATc.

393

394 The data presented here indicate that the defects we observed in mitochondrial O₂ consumption
395 upon *TgApiCox25* knockdown are not due to general defects in parasite viability, metabolism or
396 mitochondrial morphology. We conclude that *TgApiCox25* has an important, specific role in
397 oxidative phosphorylation in *T. gondii* parasites.

398

399 **TgApiCox25 is a component of cytochrome *c* oxidase.** Our findings that *TgApiCox25* is
400 critical for mitochondrial O₂ consumption prompted us to investigate whether this protein is a
401 component of the mitochondrial electron transport chain that mediates O₂ consumption. The
402 mitochondrial electron transport chain consists of several large protein complexes. To determine
403 whether *TgApiCox25* exists in a protein complex, we extracted proteins from *TgApiCox25-HA*
404 parasites using 1% (v/v) Triton X-100 detergent, and separated these proteins by blue native-
405 PAGE, a technique that preserves the native conformation of proteins and protein complexes.
406 Western blotting of *TgApiCox25-HA* extracts separated by blue native-PAGE and detected with
407 anti-HA antibodies revealed that *TgApiCox25-HA* exists at a molecular mass of ~600 kDa
408 (Figure 6A). By contrast, the monomeric form of *TgApiCox25-HA*, extracted from parasites and
409 separated by SDS-PAGE, had a mass of approximately 25 kDa (Figure 6B). We conclude that
410 *TgApiCox25* is a component of a ~600 kDa protein complex in the parasite mitochondrion.

411
412 To elucidate the proteins that comprise the *TgApiCox25*-containing complex, we
413 immunoprecipitated *TgApiCox25-HA* and associated proteins with anti-HA-coupled agarose
414 beads (Figure 6 – figure supplement 1A), then performed mass spectrometry to identify the
415 proteins that were part of this complex. As a negative control, we immunopurified *TgTom40-HA*
416 (Figure 6 – figure supplement 1B), the central protein of the ~400 kDa translocon of the outer
417 mitochondrial membrane (TOM) complex (van Dooren et al., 2016), and subjected these extracts
418 to mass spectrometry-based protein identification. Using this approach, we identify 12 proteins,
419 including *TgApiCox25*, that were enriched in the *TgApiCox25-HA* immunoprecipitation
420 compared to the *TgTom40-HA* immunoprecipitation (Figure 6C; Table 1; Supplementary File 5).
421 Of these 12 proteins, three are annotated as being canonical components of cytochrome *c* oxidase

422 (COX, also known as Complex IV of the mitochondrial electron transport chain; Figure 6C;
423 Table 1). These proteins included *TgCox2A* (TGGT_226590) and *TgCox2b* (TGGT1_310470),
424 split Cox2 homologs that are found in apicomplexans and which have previously been localised
425 to the mitochondrion of *T. gondii* (Funes et al., 2002; Morales-Sainz et al., 2008), as well as
426 *TgCox5b* (TGGT1_209260). Profile hidden Markov model similarity searches revealed that 7 of
427 the remaining 8 *TgApiCox25*-associated proteins have homologs in other apicomplexans as well
428 as in chromerids, whereas one (TGGT1_265370; *TgApiCox16*) is restricted to *T. gondii* (Table
429 1). All of the proteins detected were identified in the mitochondrial proteome (Table 1;
430 Supplementary File 1), including TGGT1_297810 (*TgApiCox30*), an HA-tagged version of
431 which we previously confirmed localizes to the mitochondrion in immunofluorescence assays
432 (Figure 3X). All these proteins except *TgApiCox16* are predicted to be important for growth of
433 the tachyzoite stage of *T. gondii* (Table 1; (Sidik et al., 2016)).

434
435 As a direct test for whether *TgApiCox25* interacts with *TgCox2a*, we introduced a FLAG epitope
436 tag into the native locus of *TgCox2a* in the *TgApiCox25-HA* background strain, generating a
437 strain we termed *TgCox2a-FLAG/TgApiCox25-HA* (Figure 7 – figure supplement 1A-B). We
438 separated proteins from the *TgCox2a-FLAG/TgApiCox25-HA* strain using blue native-PAGE
439 and performed western blotting with anti-FLAG antibodies. This revealed that *TgCox2a-FLAG*
440 exists in a protein complex of ~600 kDa (Figure 7A). Immunoprecipitation of *TgCox25-HA* with
441 anti-HA antibodies co-purified *TgCox2a-FLAG*, but not *TgAtpB*, the β -subunit of the F₁ domain
442 of ATP synthase, or the mitochondrial outer membrane protein *TgTom40* (Figure 7B)).
443 Similarly, immunoprecipitation of *TgCox2a-FLAG* with anti-FLAG antibodies co-purified

444 *TgApiCox25*, but not *TgAtpB* or *TgTom40* (Figure 7B). Together, these data indicate that
445 *TgCox2a*-FLAG exists in the same complex as *TgApiCox25*-HA.

446

447 To test whether *TgApiCox25* interacts with *TgApiCox30*, we introduced a FLAG epitope tag
448 into the native locus of *TgApiCox25* in the *TgApiCox30*-HA background, generating a strain we
449 termed *TgApiCox25*-FLAG/*TgApiCox30*-HA (Figure 7 – figure supplement 1C-D). Western
450 blots of proteins separated by blue native-PAGE indicated that both *TgApiCox25*-FLAG and
451 *TgApiCox30*-HA exist in a ~600 kDa protein complex (Figure 7C). Immunoprecipitation of
452 *TgApiCox30* with anti-HA antibodies purified *TgApiCox25* but not *TgAtpB* or *TgTom40*, and
453 immunoprecipitation of *TgApiCox25* with anti-FLAG antibodies co-purified *TgApiCox30* but
454 not *TgAtpB* or *TgTom40* (Figure 7D). We conclude that *TgApiCox25*-FLAG and *TgApiCox30*-
455 HA exist in the same protein complex.

456

457 Combined with the observation that *TgApiCox25* is important for mitochondrial O₂ consumption
458 (Figure 5D), these data are consistent with the hypothesis that *TgApiCox25* and *TgApiCox30* are
459 components of the parasite COX complex, the terminal oxidase of the mitochondrial electron
460 transport chain that facilitates the reduction of O₂. To reflect their apparent phylogenetic
461 restriction to apicomplexans and related organisms, we have termed the apicomplexan-specific
462 components of the *T. gondii* COX complex as “ApiCox” proteins, with the numerical suffix
463 indicating the predicted molecular mass of the protein (Table 1).

464

465 To investigate whether proteins from the *TgApiCox25* complex might have structural similarity
466 to known proteins, we queried each protein enriched in the *TgApiCox25* immunoprecipitation

467 against the Protein Data Bank (PDB) using HHPRED, a profile hidden Markov model search
468 tool that also incorporates secondary structure information (Zimmermann et al., 2017). As
469 expected, *TgCox2a*, *TgCox2b* and *TgCox5b* had homology to equivalent cytochrome *c* oxidase
470 proteins from other eukaryotes (probability > 99%, e value < 5.1 e⁻¹⁶ for each). Interestingly,
471 *TgApiCox25* had predicted homology to cytochrome *c* oxidase complex subunit 6A from *Bos*
472 *taurus* (PDB annotation 5B1A_T; probability 90.9%, e value 0.58) and *TgApiCox23* had
473 predicted homology to cytochrome *c* oxidase complex subunit 4 from *Bos taurus* (PDB
474 annotation 5B1A_D; probability 95.57%, e value 0.0057). None of the remaining ApiCox
475 proteins were matched to proteins from PDB with any great confidence (probability of homology
476 to the top “hit” < 70%, e value > 5 for all).

477

478 To obtain insights into the role of *TgApiCox25* in the parasite COX complex, we tested the
479 effects of *TgApiCox25* knockdown on complex integrity. We introduced a FLAG epitope tag
480 into the *TgCox2a* locus of the r*TgApiCox25*-HA parasite strain, generating a strain we term
481 *TgCox2a*-FLAG/r*TgApiCox25*-HA (Figure 7 – figure supplement 1A-B). We grew parasites in
482 the absence of ATc or the presence of ATc for 1-3 days, then separated protein extracts by SDS-
483 PAGE. As demonstrated previously, ATc treatment led to depletion of *TgApiCox25* but not of a
484 *TgTom40* loading control (Figure 7E). Interestingly, knockdown of *TgApiCox25* also led to
485 depletion of *TgCox2a*-FLAG, although not to the same extent as *TgApiCox25* (Figure 7E). We
486 solubilised proteins from the *TgApiCox25*-HA/*TgCox2a*-FLAG strain in 1% (v/v) Triton X-100
487 and separated proteins by blue native PAGE. Knockdown of *TgApiCox25* led to depletion of the
488 ~600 kDa COX complex (Figure 7F). Interestingly, *TgApiCox25* knockdown resulted in the
489 appearance of a ~400 kDa complex that contains *TgCox2a* (Figure 7D). Together, these

490 observations are consistent with *TgApiCox25* having an important role COX complex integrity,
491 stability and/or assembly.

492

493 **DISCUSSION**

494 In this study, we utilised two spatially-restricted biotin tagging approaches to elucidate the
495 proteome of the mitochondrial matrix of *T. gondii*. These complementary approaches identified
496 421 putative mitochondrial proteins. This number is slightly lower than the 495 proteins
497 identified in the mtAPEX-derived proteome of mammalian cells (Rhee et al., 2013), and is less
498 than the 750 proteins identified in a yeast study using highly purified mitochondria (Sickmann et
499 al., 2003). Our proteome identified most of the proteins ‘expected’ to localize to the *T. gondii*
500 mitochondrion (Figure 2D; Supplementary File 3), suggesting a high level of coverage. The
501 lowered numbers of proteins in the *T. gondii* mitochondrial proteome compared to the yeast
502 mitochondrial proteome may represent reduced functions in the parasite organelle compared to
503 that in a metabolically flexible organism such as yeast, although our subsequent analyses
504 (discussed below) are consistent with the presence of a high degree divergent biology in
505 apicomplexan mitochondria.

506

507 We experimentally localized 27 previously uncharacterised proteins from the *T. gondii*
508 mitochondrial proteome, finding that 22 of these localised to the mitochondrion (Figure 3). From
509 this, we estimate that ~80% of the ‘uncharacterized’ proteins from the proteome localize to the
510 mitochondrion. Our findings suggest a low false positive rate in the proteins identified from the
511 APEX proteome alone (~5%), but a higher false positive rate in the mtBirA* proteome (~20%).
512 Based on these analyses, we consider the 213 proteins from the mtAPEX and shared

513 mtAPEX/mtBirA* proteomes to be ‘likely’ mitochondrial proteins, and the 208 proteins found in
514 the mtBirA* proteome alone to be ‘possible’ mitochondrial proteins.

515

516 To our knowledge, our study is the first time the APEX and BirA* restricted biotinylation
517 approaches have been directly compared in organellar proteomic approaches. Bioinformatic and
518 localization analyses indicate a high level of overlap between the two approaches, but also
519 indicate the presence of unique proteins in both data sets. This suggests that the two approaches
520 provide complementary information that expands the organellar proteome, while at the same
521 time providing confidence in the shared set of proteins that were identified. The mtBirA*-
522 derived proteome identified greater numbers of proteins, while also featuring greater numbers of
523 false positives. Several recent studies have used BirA* to identify novel proteins in
524 apicomplexan organelles (Boucher et al., 2018; Chen et al., 2015; Kehrer et al., 2016; Nadipuram
525 et al., 2016). Our study is the first time APEX has been used for proteomic applications in
526 apicomplexan parasites, and we suggest that this approach will prove useful in elucidating the
527 proteomes of other apicomplexan organelles (e.g. the apicoplast) or organellar sub-compartments
528 (e.g. the mitochondrial intermembrane space), either by itself or in combination with BirA*
529 approaches. Our study suggests that APEX and BirA* are powerful tools in determining
530 organellar proteomes in apicomplexans.

531

532 Our phylogenetic comparisons suggest that a large number of proteins in the *T. gondii*
533 mitochondrion have homologs in *P. falciparum* (Figure 4A; Supplementary File 1). This is
534 consistent with the presence of similar mitochondrial processes and biochemical pathways in
535 these organisms (Seeber et al., 2008). The lower value in *C. parvum* is consistent with the

536 reduced function of the mitosome of this organism (Mogi and Kita, 2010). The shared
537 mitochondrial/mitosomal proteome of *T. gondii* and *C. parvum* likely consists of proteins
538 involved in pathways shared between these organisms, such as Fe-S cluster synthesis. Notably,
539 we identified homologs to 83% of *T. gondii* mitochondrial proteins in the chromerid *V.*
540 *brassicaformis* (Figure 4A; Supplementary File 1). This mirrors recent findings that several
541 ‘derived’ features of apicomplexan mitochondria, including the repurposing of the BCKDH, the
542 loss of Complex I and the acquisition of novel TCA cycle enzymes, were already present in the
543 free-living, autotrophic common ancestor of myzozoans (dinoflagellates, chromerids and
544 apicomplexans; (Danne et al., 2013; Jacot et al., 2015)). Notably, most of the ApiCox proteins
545 we identified in the *T. gondii* COX complex had homologs in chromerids (Table 1), indicating
546 that even conserved mitochondrial processes in this group of organisms have a considerable
547 degree of novelty. Together, these data indicate that much of the mitochondrial biology in *T.*
548 *gondii* was present in the free-living ancestor that they share with chromerids.

549
550 Many (~40-50%) mitochondrial proteins in *T. gondii* lack apparent orthologs in animals and
551 other eukaryotes (Figure 4B-C). Surprisingly, proteins found only in coccidians, or restricted to
552 apicomplexans and chromerids, were just as likely to be important for parasite growth as proteins
553 conserved across eukaryotic evolution (Figure 4D). This suggests that many derived or unique
554 features of the *T. gondii* mitochondrion (and apicomplexan mitochondria more generally) are
555 critical for parasite survival. This is in contrast to the general proteome of *T. gondii*, where
556 proteins with a restricted phylogenetic distribution are typically less important for parasite
557 survival (Sidik et al., 2016).

558

559 To understand the functions of apicomplexan-specific mitochondrial proteins that are important
560 for parasite growth, we have commenced a project to characterize these proteins. In this study,
561 we describe the characterisation of *TgApiCox25*, demonstrating that this is a component of the *T.*
562 *gondii* COX complex. *TgApiCox25* is important for parasite growth and mitochondrial oxygen
563 consumption (Figure 5). Knockdown of *TgApiCox25* also leads to defects in the integrity of the
564 COX complex. In particular, *TgApiCox25* knockdown leads to a depletion of *TgCox2a*
565 abundance, and also results in the appearance of a smaller, ~400 kDa *TgCox2a*-containing
566 complex (Figure 7E-F). These data imply an important role for *TgApiCox25* in the assembly
567 and/or stability of the COX complex. It remains unclear whether loss of *TgApiCox25* leads to
568 loss of a ~200 kDa module from the complex, or whether *TgApiCox25* knockdown leads to
569 defects in COX assembly, with the ~400 kDa complex representing an assembly intermediate.
570 Regardless, loss of *TgApiCox25* results in defects in the abundance and integrity of the parasite
571 COX complex, which likely explains the defects in mOCR observed upon *TgApiCox25*
572 knockdown. Future studies will examine the functional role of *TgApiCox25* in the COX complex
573 of the parasite.

574

575 Our analysis of the parasite COX complex revealed that it is approximately 600 kDa in mass
576 (Figures 6A), which is larger than the equivalent complex in yeast (200 kDa), mammals (200
577 kDa) and plants (220/300 kDa) (Eubel et al., 2003; Lenaz and Genova, 2010; Marechal et al.,
578 2012; Schagger and Pfeiffer, 2000; Tsukihara et al., 1996). It is conceivable that the *T. gondii*
579 COX complex exists in a multimeric form (e.g. a homodimer or homotrimer), and/or that it
580 contains subunits not present in the complex of these other organisms that inflate its mass.
581 Another possibility is that *T. gondii* COX exists in a ‘super-complex’ with other respiratory

582 complexes, as has been observed in other systems (Eubel et al., 2003; Schagger and Pfeiffer,
583 2000). Although we cannot rule out that respiratory chain supercomplexes exist in *T. gondii*, the
584 600 kDa complex is probably not a supercomplex, since we do not observe enrichment of
585 canonical components of other respiratory chain proteins in our proteomic analysis of the
586 complex, and the molecular masses of other respiratory chain complexes in *T. gondii* do not
587 correspond in size to COX (GvD, unpublished observations).

588

589 We identified 12 proteins in the *T. gondii* COX complex. In addition to these, it is likely that the
590 complex contains *TgCoxI* and *TgCoxIII*, proteins encoded on the mitochondrial genome of the
591 parasite. Although excluded from our statistical analysis due to its absence from the control
592 dataset, a CoxIII homolog was enriched in the *TgApiCox25* immunoprecipitation
593 (Supplementary File 5). 14 COX proteins in *T. gondii* is comparable in number to those found in
594 the mammalian (13 proteins) and plant (10 or 12 proteins) complexes (Eubel et al., 2003;
595 Tsukihara et al., 1996). Surprisingly, only a few *T. gondii* COX proteins have obvious homologs
596 in eukaryotes outside the myzozoan lineage. Of note, 8 of the 9 ApiCox proteins we identified
597 have homologs in chromerids (Table 1), while none of these have clear homologs in ciliates
598 (<http://orthomcl.org>), the eukaryotic lineage that is the sister taxon to myzozoans. This
599 suggests either a high degree of novelty in the proteins that comprise the *T. gondii*/myzozoan
600 COX complex, or that the sequences of ApiCox proteins have diverged to the extent that they are
601 no longer easily recognisable by sequence comparisons. Notably, similarity searches that
602 incorporate secondary structure information suggest that ApiCox25 and ApiCox23 may have
603 homology to Cox6a and Cox4, respectively, from animals. A priority in the field is to establish
604 the structure of the COX complex in myzozoans, which will reveal whether ApiCox proteins

605 have structural equivalents in other eukaryotes. Regardless of their degree of novelty, our
606 observations are consistent with other observations that suggest a considerable divergence in the
607 mitochondrial biology of organisms in the myzozoan lineage compared to other eukaryotes
608 (Danne et al., 2013; Jacot et al., 2015).

609

610 Our study highlights the divergence of mitochondrial proteomes across the eukaryotic domain of
611 life. Future studies will be aimed at elucidating the function of other *T. gondii*- and myzozoan-
612 specific mitochondrial proteins, since these proteins will provide insights into unique functions
613 of the organelle. Given their importance to parasite growth, and their absence (or divergence)
614 from the host organisms that they infect, these *T. gondii* and apicomplexan-specific proteins are
615 prime drug targets.

616

617 MATERIALS AND METHODS

618

619 **Parasite culture.** *T. gondii* parasites were passaged in human foreskin fibroblasts (HFF), and
620 cultured in Dulbecco's Modified Eagle's Medium, supplemented with 1% (v/v) fetal bovine
621 serum and antibiotics. Where appropriate, ATc was added to a final concentration of 0.5 µg/ml.
622 Plaque assays were performed as described previously (van Dooren et al., 2008), with plaque
623 sizes measured using ImageJ.

624

625 **Plasmid construction and parasite transfection.** To generate a *T. gondii* strain expressing
626 mitochondrial matrix-targeted APEX, we amplified the coding sequence of monomeric APEX
627 using the primers 5'-GACTCCTAGGGAAAGTCTTACCCAAC and 5'-

628 GACTCATATGGGCATCAGCAAACCCAAG, and the vector pcDNA3-mito-APEX as
629 template (a gift from Alice Ting; Addgene plasmid # 42607; (Martell et al., 2012)). The resultant
630 PCR product was digested with *Avr*II and *Nde*I and ligated into equivalent sites of the vector
631 Hsp60_L-mDHFR in pBTM₃ (van Dooren et al., 2016). This fuses the mitochondrial targeting
632 sequence of *TgHsp60* to 3x c-myc-tagged APEX. The resultant vector was transfected into
633 RHΔ*hxgprt* strain *T. gondii* parasites, and selected on phleomycin as described (Messina et al.,
634 1995). To generate a *T. gondii* strain expressing a mitochondrial matrix-targeted BirA*, we
635 amplified the coding sequence of BirA* using the primers 5'-
636 GATCAGATCTAAAATGCCTAGGGTTCTGGCGGTGACAAGGACAACACCG and 5'-
637 GATCTCTAGACTTCTGCGCTCTCAGGGAGA and the vector pBirA*-3XHA-LIC-
638 DHFR as template ((Chen et al., 2015); a gift from Peter Bradley, University of California Los
639 Angeles). The resultant product was digested with *Bgl*II and *Xba*I and ligated into the *Bgl*II and
640 *Avr*II sites of pgCM3 (GvD, unpublished). The BirA*-3x c-myc cassette of the resultant vector
641 was digested with *Avr*II and *Not*I and ligated into the equivalent sites of the Hsp60_L-mDHFR in
642 pBTM₃ vector. This fuses the mitochondrial targeting sequence of *TgHsp60* to 3x c-myc-tagged
643 BirA*. The resultant vector was transfected into RHΔ*hxgprt* strain *T. gondii* parasites, and
644 selected on phleomycin.

645
646 For localising candidate mitochondrial proteins from the proteome (including *TgApiCox25* and
647 *TgApiCox30*), we amplified the 3' region of 27 target genes using the primers listed in
648 Supplementary File 4. We digested resultant PCR products with enzymes suitable for subsequent
649 ligation into the *Spe*I, *Bgl*II and/or *Avr*II sites of the vector pgCH (Rajendran et al., 2017), as
650 outlined in Supplementary File 4. The resulting vector was linearized with an enzyme that cut

651 once in the flanking sequence, transfected into TATi/Δ $ku80$ strain parasites (Sheiner et al.,
652 2011), and selected on chloramphenicol as described (Striepen and Soldati, 2007). The resultant
653 parasite strains have a 1xHA tag fused to the 3' end of the open reading frame of the target gene,
654 enabling subsequent localisation of the target protein by immunofluorescence assays.

655

656 To introduce an ATc-regulated promoter into the *TgApiCox25* locus, we generated a vector
657 expressing a sgRNA targeting the region around the start codon of *TgApiCox25*. To do this, we
658 modified the vector pSAG1::Cas9-U6::sgUPRT (Addgene plasmid # 54467; (Shen et al., 2014))
659 using Q5 site-directed mutagenesis (New England Biolabs) as described previously (Shen et al.,
660 2014). For site-directed mutagenesis, we used the primers 5'-
661 TCACGTGTAAACAGGGGAGTGTTTAGAGCTAGAAATAGCAAG (sgRNA region
662 specific to the *TgApiCox25* is underlined) and the universal reverse primer 5'-
663 AACTTGACATCCCCATTAC. We also PCR amplified the ATc-regulated promoter plus a
664 'spacer' region consisting of part of the *T. gondii* DHFR open reading frame and 3' UTR using
665 the pPR2-HA3 vector (Katis et al., 2014) as template and the primers 5'-
666 GCCTGGCATAAAATTGGGGACTGATTCTCCACGTGTAAACAGGGTTGCA
667 GGCTCCTTCTTCGG and 5'-
668 ACGATCGGCGCTCCGGCGAAGCGGAGTAGTAAAGATGTCCGCAACATCTGGTTGA
669 AGACAGACGAAAGCAGTTG, which each contain 50 bp of sequence specific for the
670 *TgApiCox25* locus. The sgRNA expressing vector, which also expressed GFP-tagged Cas9, was
671 co-transfected into TATi/Δ $ku80$ strain parasites along with the ATc-regulatable promoter as
672 described (Striepen and Soldati, 2007). GFP-positive parasites were selected and cloned 3 days
673 following transfection. Clones were screened for successful integration of the ATc-regulatable

674 promoter using the primers *TgApiCox25* fwd (5'-CGTAGGAAACTGTTCCCAGAGC) and
675 *TgApiCox25* rvs (5'-GCACTTCTTCTGAAAGTTGATACG), or t7s4 fwd (5'-
676 ACGCAGTTCTCGGAAGACG) and *TgApiCox25* rvs.

677

678 To generate a vector that constitutively expressed *TgApiCox25* for complementing the
679 r*TgApiCox25* mutant, we PCR amplified the *TgApiCox25* open reading frame with the primers
680 5'-CATGGGATCCAAAATGTTGCGGACATCTTACTACTCC and 5'-
681 CATGCCTAGGGTGAAAGTGAGGTGGCTCCAGTT. We digested the resulting PCR product
682 with *Bam*HI and *Avr*II and ligated this into the *Bgl*II and *Avr*II sites of the vector pUgCTH₃
683 (Rajendran et al., 2017). The resulting vector was linearized with *Mfe*I, transfected into
684 r*TgApiCox25* parasites, and selected on chloramphenicol as described (Striepen and Soldati,
685 2007).

686

687 To FLAG tag the native locus of *TgCox2a*, we generated a vector expressing a sgRNA targeting
688 the region around the stop codon of *TgCox2a*. To do this, we modified the pSAG1::Cas9-
689 U6::sgUPRT vector using Q5 mutagenesis with the primer 5'-
690 CGAGTCGCCTGTTGACGACGGTTTAGAGCTAGAAATAGCAAG (gene-specific region
691 of the sgRNA underlined) and the universal reverse primer (as described above). We also
692 amplified a FLAG tag containing 50 bp of flanking sequence either side of the *TgCox2a* stop
693 codon, using the primers 5'-
694 GACAGTGGTACTGGATCTACGAAGTCGAGTCGCCTGTTGACGACGAAGAGGGTGGA
695 GGTAGCGGTGGTGGAAAG and 5'-
696 CTGCCCATTCACGCTCGGACAGCCGTCTTAGGAAACGCATAGGAAGCGCTTCTG

697 TGGGCGGTTATCAGG, with FLAG template synthesized as a gBlock (IDT). The FLAG tag
698 gBlock sequence was as follows: 5'-
699 GTGGAGGTAGCGGTGGTGGAAAGTGACTACAAAGACCATGACGGTGATTATAAAGAT
700 CATGACATCGATTACAAGGATGACGATGACAAGTAGTCCTGATAACCGCCCCACAGA
701 AGC. We co-transfected the plasmid and PCR product into *TgApiCox25-HA* or *rTgApiCox25-*
702 HA strain parasites, selected GFP positive parasites by flow cytometry 3 days post-transfection,
703 then screened for successful integrants using the primers 5'-CTCTTGTACATGCTCGACGAAG
704 and 5'-AACGACTGTGATTCCAAAACCT.
705
706 To FLAG tag the native locus of *TgApiCox25*, we generated a vector expressing a sgRNA
707 targeting the region around the stop codon of *TgApiCox25*, modifying the pSAG1::Cas9-
708 U6::sgUPRT vector using Q5 mutagenesis with the primer 5'-
709 TGTCTTCAGTGAAAGTGAGGGTTTAGAGCTAGAAATAGCAAG (gene-specific region
710 of the sgRNA underlined) and the universal reverse primer (described above). We also amplified
711 a FLAG tag containing 50 bp of flanking sequence either side of the *TgApiCox25* stop codon,
712 using the primers 5'-
713 GAAATCCCCTCTCTGTTCTAGAGGCCAACTGGAGCCACCTCACTTCACGGTGGAG
714 GTAGCGGTGGTGGAAAG and 5'-
715 ACACAAGGATCGCATACCATAGCACGCAACACAAACAGTCATTGTTGAGGCTTCTG
716 TGGGCGGTTATCAGG, and the FLAG gBlock (described above) as template. We co-
717 transfected the plasmid and PCR product into *TgApiCox30-HA* strain parasites, selected GFP
718 positive parasites by flow cytometry 3 days post-transfection, then screened for successful

719 integrants using the primers 5'-GATGAGTCGTCTGTGGTTCATTG and *TgApiCox25* rvs
720 (described above).

721

722 **Synthesis of biotin-phenol.** Biotin phenol was synthesised as described previously (Rhee et al.,
723 2013). 50 mg/ml biotin (Sigma) was slowly mixed with 1.1 equivalents of 2-(7-aza-1H-
724 benzotriazole-1-yl)-1,1,3,3-tetramethyluronium (Sigma) and 3.0 equivalents of N,N-
725 diisopropylethylamine (Sigma). The mixture was stirred for 10 min at room temperature, then
726 1.0 equivalent of tyramine (Sigma) was added slowly. The resulting solution was stirred
727 overnight at room temperature. The synthesised biotin-phenol was purified from the unreacted
728 material with a Reveleris flash chromatography system (Grace, MD, USA) and a C18-WP 4g
729 column, using an acetonitrile/water gradient. Eluting compounds were monitored with a UV
730 detector (220 nm, 278 nm, and 350 nm) and an evaporative light scattering detector (ELSD)
731 coupled to the flash chromatography system. The eluted biotin-phenol in acetonitrile/water
732 mixture was freeze-dried and reconstituted in dimethyl sulfoxide at a final concentration of 200
733 mM. The purity of biotin-phenol was confirmed by ultra-high performance liquid
734 chromatography (UHPLC, Dionex).

735

736 **Biotinylation approaches.** For biotin-phenol labelling, freshly egressed wild type or mtAPEX-
737 expressing parasites were resuspended in parasite growth medium. Biotin-phenol was added to
738 the parasites at final concentration of 1 mM, and parasites were incubated at 37°C for 1 hr.
739 Biotinylation was initiated by the addition of 1 mM H₂O₂ for 45 sec, and halted by centrifuging
740 cells at 12,000g for 30 sec. The medium was removed, and parasite cells were washed three
741 times in quenching solution (10mM sodium azide, 10mM sodium ascorbate, and 5mM Trolox in

742 phosphate-buffered saline (PBS)), and once in PBS. Cell pellets were stored at -80°C until
743 further processing.

744

745 For biotin-labelling, host cells were infected with wild type or mtBirA*-expressing parasites.
746 Biotin was added to infected host cells ~48 hours after infection, to a final concentration of 1
747 mM. Infected host cells were cultured for a further 24 hours, during which time they naturally
748 egressed from host cells. Parasites were harvested by centrifugation at 1500 g and washed 3
749 times in PBS. Cell pellets were stored at -80°C until further processing.

750

751 Biotin treated parasite pellets were lysed in radioimmunoprecipitation assay (RIPA) buffer
752 (50mM Tris, 150 mM NaCl, 0.1% (w/v) SDS, 0.5% (w/v) sodium deoxycholate, 1% (v/v) Triton
753 X-100, Complete protease cocktail (Roche)) for 30 min on ice. Biotin-phenol treated parasite
754 pellets were lysed in RIPA buffer containing quenching agents (10 mM sodium azide, 10mM
755 sodium ascorbate, and 5 mM Trolox). 3 independent lysate pools of WT parasites treated with
756 biotin-phenol and H₂O₂, mtAPEX-expressing parasites treated with biotin-phenol and H₂O₂, WT
757 parasites treated with biotin, and mtBirA*-expressing parasites treated with biotin were
758 generated, and protein concentration was quantified using Bradford reagent (Sigma).

759

760 For enrichment of biotinylated proteins with streptavidin beads, 8 mg of protein from each pool
761 was diluted with RIPA buffer to reach 1.8 ml total volume. 223 µl of streptavidin-conjugated
762 magnetic beads (Thermo Scientific) per pool was dispensed in 2 ml microcentrifuge tubes. A
763 magnabind magnet (Thermo Scientific) was used to separate beads from the buffer solution.
764 Beads were washed three times in RIPA buffer, and incubated with the corresponding lysate

765 pools for 1 hr at room temperature with gentle rotation. The beads were then washed three times
766 in RIPA buffer, once with 2M urea in 10 mM Tris-HCl pH 8.0, and a further three times in RIPA
767 buffer. The resin-bound proteins were treated with reducing solution (10mM DTT in 100mM
768 ammonium bicarbonate) for 30 min at 56°C. The reducing solution was removed, and replaced
769 with alkylation solution (55 mM iodoacetamide in 100 mM ammonium bicarbonate) and
770 incubated at room temperature in the dark for 45 min. The alkylation solution was then removed,
771 and the beads were washed in 50mM ammonium bicarbonate for 15 min with gentle agitation.
772 The ammonium bicarbonate solution was removed, and samples treated with 20 ng/μl
773 sequencing grade trypsin (Promega) overnight (18 hrs) at 37°C. The next day, the supernatant
774 was collected and beads were further treated with 10 % (v/v) formic acid, and incubated for 15
775 min at 37°C.

776
777 The volume of peptide filtrates was reduced to ~12 μl in a centrifugal evaporator. Zip tips
778 containing 0.6 μl C18 resin (Millipore) were washed with 10 μl methanol, and 10 μl 0.1% (v/v)
779 formic acid. The digested peptides were loaded onto the tips by pipetting the peptide solutions 10
780 times. The tips were then washed with 10 μl 0.1% (v/v) formic acid twice, and the peptides were
781 eluted into Chromacol 03-FISV vials with conical 300 μl inserts using 50% acetonitrile/0.1%
782 formic acid (v/v), and dried in a vacuum concentrator.

783
784 MS analysis was performed on a Q-Exactive Classic mass spectrometer as previously described
785 (Delconte et al., 2016). Raw files consisting of high-resolution MS/MS spectra were processed
786 with MaxQuant (version 1.5.2.8) for feature detection and protein identification using the
787 Andromeda search engine (Cox et al., 2011). Extracted peak lists were searched against the

788 UniProtKB/Swiss-Prot *Homo sapiens* and *Toxoplasma gondii* ME49 (ToxoDB-12.0) databases
789 and a separate reverse decoy database to empirically assess the false discovery rate (FDR) using
790 strict trypsin specificity allowing up to 3 missed cleavages. The minimum required peptide
791 length was set to 7 amino acids. *Modifications*: Carbamidomethylation of Cys was set as a fixed
792 modification, while N-acetylation of proteins and oxidation of Met were set as variable
793 modifications. The mass tolerance for precursor ions and fragment ions were 20 ppm and 0.5 Da,
794 respectively. The “match between runs” option in MaxQuant was used to transfer identifications
795 made between runs on the basis of matching precursors with high mass accuracy (Cox and
796 Mann, 2008). PSM and protein identifications were filtered using a target-decoy approach at a
797 false discovery rate (FDR) of 1%.

798

799 **Quantitative proteomics pipeline.** Statistically-relevant protein expression changes were
800 identified using a custom pipeline as previously described (Delconte et al., 2016). Probability
801 values were corrected for multiple testing using Benjamini–Hochberg method. Cut-off lines with
802 the function $y = -\log_{10}(0.05) + c/(x - x_0)$ (Keilhauer et al., 2015) were introduced to identify
803 significantly enriched proteins. c was set to 0.2 while x_0 was set to 1 representing proteins that
804 are differentially expressed within 1 or 2 standard deviations.

805

806 **Bioinformatic analyses of data.** Homologs of *T. gondii* mitochondrial proteome proteins were
807 identified in the apicomplexan parasites *P. falciparum* (strain 3D7), *C. parvum* and *B. bovis*, and
808 the chromerid *V. brassicaformis*, through reciprocal Basic Local Alignment Search Tool
809 (BLAST) searches. *T. gondii* mitochondrial proteome proteins were used as query sequences in
810 initial searches using target protein databases from relevant EupathDB websites

811 (<http://PlasmoDB.org>– *P. falciparum*; <http://PiroplasmaDB.org> – *Babesia bovis*;
812 <http://CryptoDB.org> – *Cryptosporidium parvum* and *Vitrella brassicaformis*; (Aurrecoechea et
813 al., 2013)). Hits from the initial BLAST search were queried in reciprocal BLAST searches
814 against the *T. gondii* genome database (<http://toxodb.org>), regardless of the score or E-value
815 obtained. Hits that returned the corresponding *T. gondii* protein that was originally searched
816 against were considered as a homolog. Expect (E) values obtained from the initial BLAST search
817 and the reciprocal BLAST search were recorded (Supplementary File 1). Homologs of proteins
818 identified in the purified ApiCox25 complex were identified using the profile hidden Markov
819 model search tool HMMER (<https://www.ebi.ac.uk/Tools/hmmer>).

820

821 Ortholog grouping for each protein was obtained from ToxoDB. Each ortholog group was
822 assessed for the presence of ortholog proteins in other eukaryotic organisms based on the
823 phyletic information available on <http://OrthoMCL.org> (Chen et al., 2006). Information of
824 ortholog grouping for the entire genome of the chromerid *V. brassicaformis* were sourced from
825 CryptoDB, and were subsequently compared to the ortholog groups identified for the *T. gondii*
826 mitochondrial proteome. HHPRED predictions were performed using the MPI Bioinformatics
827 Toolkit website (<https://toolkit.tuebingen.mpg.de/#/tools/hhpred>; (Zimmermann et al., 2017)).

828

829 The presence of predicted mitochondrial targeting peptides was assessed using MitoProt (Claros
830 and Vincens, 1996), with the probability of export into the mitochondria recorded
831 (Supplementary File 1). Metabolic pathway enrichment was assessed using the Metabolic
832 Pathway search tool on ToxoDB, using a *p* value cut-off of <0.05.

833

834 **Immunofluorescence assays and microscopy.** IFAs were performed as described previously
835 (van Dooren et al., 2008). Primary antibodies used were mouse anti-c-myc (1:200 dilution; Santa
836 Cruz clone 9E10), rat anti-HA (1:200 dilution; Sigma clone 3F10), and rabbit anti-Tom40
837 (1:2000 dilution; (van Dooren et al., 2016)). Secondary antibodies used were goat anti-mouse
838 Alexa Fluor 488 (1:500 dilution; Life Technologies), goat anti-rat Alexa Fluor 488 (1:100 to
839 1:500 dilution; Life Technologies), goat anti-rat CF 488A (1:100 to 1:500 dilution; Sigma), and
840 goat anti-rabbit Alexa Fluor 546 (1:500 dilution; Life Technologies). Biotinylation was
841 performed as outlined for the proteomics, except that mtAPEX samples were incubated in H₂O₂
842 for 1 min. For visualising biotinylated proteins, we used Oregon Green-conjugated avidin
843 (1:1,000 dilution; Life Technologies). Images were acquired on a DeltaVision Elite
844 deconvolution microscope (GE Healthcare) fitted with a 100X UPlanSApo oil immersion
845 objective lens (NA 1.40). Images were deconvolved and adjusted for contrast and brightness
846 using SoftWoRx Suite 2.0 software, and subsequently processed using Adobe Illustrator.

847

848 **Immunoprecipitations.** Immunoprecipitations were performed as described previously (van
849 Dooren et al., 2016), except that parasite samples were solubilized in 1% (v/v) Triton X-100.
850 HA-tagged proteins were purified using anti-HA affinity matrix (Sigma; rat anti-HA clone 3F10
851 antibodies) and FLAG-tagged proteins were purified using anti-FLAG M2 affinity gel (Sigma;
852 mouse anti-FLAG clone M2 antibodies). For mass spectrometry sample preparation, anti-HA
853 beads bound with HA-tagged protein complexes were frozen at -80°C for 1 hr, then eluted at
854 37°C in 0.2 M glycine containing 1% (v/v) Triton X-100 (pH 2.3). Samples were neutralized in
855 ammonium bicarbonate, then extracted in chloroform:methanol as described (Pankow et al.,
856 2016). After extraction, the pellets were dried and stored at -80°C before mass spectrometry

857 analysis at the Mass Spectrometry Facility, La Trobe University Institute for Molecular Science.
858 Peptides were searched against the UniProt TOXGV (*T. gondii*) database using strict trypsin
859 specificity allowing up to 2 missed cleavages. *Modifications*: Carbamidomethylation of Cys was
860 set as a fixed modification, and N-acetylation of proteins and oxidation of Met were set as
861 variable modifications. The mass tolerance for fragment ions was 0.5 Da. Statistical validation of
862 peptide spectra matches was performed using PeptideProphet.

863

864 **SDS-PAGE, Blue Native-PAGE and immuno/affinity-blotting.** SDS-PAGE and protein
865 blotting were performed as described previously (van Dooren et al., 2008), except that
866 membranes used for neutravidin blotting were blocked with 3 % (w/v) bovine serum albumin
867 (BSA). Blue native PAGE was performed using the NativePAGE system (Thermo Scientific) as
868 described previously (van Dooren et al., 2016). Blots were probed with antibodies against mouse
869 anti-c-myc (1:500 dilution; Santa Cruz clone 9E10), rabbit anti-Hsp60 (1:1000 dilution; (Tonkin
870 et al., 2004)), rabbit anti-*T. gondii* cyt c (1:500 dilution; E.T. and G.v.D., unpublished), rat anti-
871 HA (1:500 to 1:1000 dilution; Sigma clone 3F10), mouse anti-FLAG (1:500 to 1:2000 dilution;
872 Sigma clone M2), and rabbit anti-AtpB (1:500; Agrisera, catalog number AS05 085).
873 Horseradish peroxidase (HRP)-conjugated anti-mouse, anti-rat and anti-rabbit antibodies (Santa
874 Cruz) were used at 1:5,000 dilution. For probing for mouse antibodies on immunoprecipitation
875 western blots, HRP-conjugated anti-mouse TrueBlot ULTRA antibodies (eBioscience) were used
876 at 1:5,000 dilution. Neutravidin-HRP (Life Technologies) was used to detect biotinylated
877 proteins on membranes at 1:10,000 dilution.

878

879 **Seahorse XFe96 Extracellular flux analysis.** Wild type (TATi/ Δ ku80) and rTgApiCox25
880 parasites were grown in the absence of ATc, in the presence of ATc for 1-3 days, or with 100
881 μ M cycloheximide for 1 day. Parasites were filtered through a 3 μ m polycarbonate filter and
882 washed twice in Seahorse XF base medium (Agilent Technologies), supplemented with 1 mM L-
883 glutamine and 5 mM D-glucose (supplemented base medium), before resuspension to 1.5×10^7
884 cells/ml in the supplemented base medium. 96-well Seahorse culture plates were coated with 3.5
885 μ g/cm² of CellTak cell adhesive (Corning) according to the manufacturer's instructions. Briefly,
886 1mg/ml CellTak was diluted 1:50 in 0.1 M sodium bicarbonate. 15 μ l of CellTak solution was
887 added to each well of a Seahorse cell culture plate and incubated at RT for 20 mins. The solution
888 was removed and the plate washed twice in sterile water, before drying. 100 μ l of the parasite
889 suspensions (1.5×10^6 parasites) were seeded into wells of the coated plate, and the plate was
890 centrifuged at 50 g for 3 min. An additional 75 μ L of supplemented base medium was added to
891 each well following centrifugation. Parasites were kept at 37°C in a non-CO₂ incubator until the
892 start of experiment. Parasite oxygen consumption rates (OCR) and extracellular acidification
893 rates (ECAR) were measured using an Agilent Seahorse XFe96 Analyzer at 3 minute intervals.
894 To determine the maximal OCR, parasites were treated with 20 μ M oligomycin A, B and C mix
895 (Sigma) to inhibit ATP synthase, then subsequently treated with 1 μ M carbonyl cyanide-4-
896 (trifluoromethoxy)phenylhydrazone (FCCP; Sigma). To determine the non-mitochondrial OCR,
897 parasites were treated with 10 μ M antimycin A (Sigma) and 1 μ M atovaquone (the minimal
898 concentration that preliminary experiments indicated is sufficient to maximally inhibit
899 mitochondrial OCR). The mitochondrial OCR (mOCR) was calculated by subtracting the non-
900 mitochondrial OCR from the basal and maximal OCR values. A minimum of 4 wells were used

901 for background correction in each assay plate, and 4-5 technical replicates were used for each
902 condition. Wells that yielded negative OCR values were excluded from the final analysis.

903

904 **Miscellaneous data analysis.** XFe96 data were compiled using the Wave Desktop program.
905 Analysis of parasite OCR and ECAR were performed using the R software environment (Source
906 Code File 1). Linear mixed-effects models were fitted to the data, with error between plates and
907 wells (i.e. between and within experiments) defined as the random effect, and the OCR and
908 ECAR measurements in the different parasite strains (WT and rTgApiCox25) and the time since
909 ATc-addition defined as the fixed effect. Data from the *TgApiCox25*-HA and *TgTom40*-HA co-
910 immunoprecipitation proteomics were analysed in the R software environment using the EdgeR
911 package (Source Code File 2; (Robinson and Smyth, 2008)). Only proteins identified in both
912 experimental conditions and each biological replicate were included in the final analysis.
913 Graphing of the XFe96 and *TgApiCox25* proteomic data were performed in GraphPad Prism v.
914 7.0.

915

916 **Data Availability.** The mitochondrial proteome data are available on individual gene pages on
917 the ToxoDB website (<http://toxodb.org>), and a “Mitochondrial Matrix Quantitative Proteome”
918 search tool is available in the proteomics section of ToxoDB (<https://bit.ly/2FySSmU>). To use
919 the search tool, first select the **experiment** that you want to query. “Control APEX vs mito
920 APEX” queries the APEX data, and “Control BirA vs mito BirA” queries the BirA* data. Next
921 select the **direction** of the query. To examine genes that are enriched in the mitochondrial matrix
922 proteomes, select “down-regulated” (i.e. proteins that are less abundant in control samples than
923 in the mito APEX/BirA* samples). Next select the desired **P value**. For our analyses, we utilised

924 a P value of ≤ 0.001 . Finally, select the desired **fold difference**. For our analyses, we utilised a
925 \log_2 fold change value of ≥ 2.5 , which corresponds to a fold change of ≥ 5.657 .

926

927 **ACKNOWLEDGEMENTS**

928 We thank Peter Bradley (UCLA) and Alice Ting (Stanford) for sharing reagents, Pierre Faou (La
929 Trobe) for proteomic analysis of the *TgApiCox25* complex, Michael Devoy and Harpreet Vohra
930 (ANU) for assistance with flow cytometry, Michael Devoy (ANU) for assistance in establishing
931 the Seahorse XFe96 assays, Teresa Neeman from the ANU Statistical Consulting Unit for
932 assistance with data analysis, and Sebastian Lourido (Whitehead Institute) for comments on the
933 manuscript. We are grateful to EuPathDB for providing numerous datasets and search tools, and
934 in particular to Susanne Warrenfeltz for co-ordinating the integration of the mitochondrial matrix
935 proteomic data into ToxoDB. This work was supported by a Discovery Grant and QEII
936 fellowship from the Australian Research Council (ARC DP110103144) to G.v.D.

937

938 **REFERENCES**

939 Aurrecoechea, C., Barreto, A., Brestelli, J., Brunk, B.P., Cade, S., Doherty, R., Fischer, S., Gajria,
940 B., Gao, X., Gingle, A., *et al.* (2013). EuPathDB: the eukaryotic pathogen database.
941 Nucleic Acids Res 41, D684-691. doi:10.1093/nar/gks1113

942 Balabaskaran Nina, P., Morrisey, J.M., Ganesan, S.M., Ke, H., Pershing, A.M., Mather, M.W.,
943 and Vaidya, A.B. (2011). ATP synthase complex of *Plasmodium falciparum*: dimeric
944 assembly in mitochondrial membranes and resistance to genetic disruption. J Biol
945 Chem 286, 41312-41322. doi:10.1074/jbc.M111.290973

946 Boucher, M.J., Ghosh, S., Zhang, L., Lal, A., Jang, S.W., Ju, A., Zhang, S., Wang, X., Ralph, S.A.,
947 Zou, J., *et al.* (2018). The proteome of the malaria plastid organelle, a key anti-
948 parasitic target. bioRxiv. doi:10.1101/265967

949 Brydges, S.D., and Carruthers, V.B. (2003). Mutation of an unusual mitochondrial targeting
950 sequence of SODB2 produces multiple targeting fates in *Toxoplasma gondii*. J Cell Sci
951 116, 4675-4685.

952 Cavalier-Smith, T., and Chao, E.E. (2004). Protalveolate phylogeny and systematics and the
953 origins of Sporozoa and dinoflagellates (phylum Myzozoa nom. nov.). Eur J Protistol
954 40, 185-212.

955 Chen, A.L., Kim, E.W., Toh, J.Y., Vashisht, A.A., Rashoff, A.Q., Van, C., Huang, A.S., Moon, A.S.,
956 Bell, H.N., Bentolila, L.A., *et al.* (2015). Novel components of the *Toxoplasma* inner
957 membrane complex revealed by BioID. MBio 6, e02357-02314.
958 doi:10.1128/mBio.02357-14

959 Chen, F., Mackey, A.J., Stoeckert, C.J., Jr., and Roos, D.S. (2006). OrthoMCL-DB: querying a
960 comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34,
961 D363-368. doi:10.1093/nar/gkj123

962 Chernikova, D., Motamedi, S., Csuros, M., Koonin, E.V., and Rogozin, I.B. (2011). A late origin
963 of the extant eukaryotic diversity: divergence time estimates using rare genomic
964 changes. Biol Direct 6, 26. doi:10.1186/1745-6150-6-26

965 Claros, M.G., and Vincens, P. (1996). Computational method to predict mitochondrial
966 imported proteins and their targeting sequences. Eur J Biochem 241, 779-786.

967 Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates,
968 individualized p.p.b.-range mass accuracies and proteome-wide protein
969 quantification. Nat Biotechnol 26, 1367-1372. doi:10.1038/nbt.1511

970 Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., and Mann, M. (2011).
971 Andromeda: a peptide search engine integrated into the MaxQuant environment. J
972 Proteome Res 10, 1794-1805. doi:10.1021/pr101065j

973 Danne, J.C., Gornik, S.G., Macrae, J.I., McConville, M.J., and Waller, R.F. (2013). Alveolate
974 mitochondrial metabolic evolution: dinoflagellates force reassessment of the role of
975 parasitism as a driver of change in apicomplexans. Mol Biol Evol 30, 123-139.
976 doi:10.1093/molbev/mss205

977 Delconte, R.B., Kolesnik, T.B., Dagley, L.F., Rautela, J., Shi, W., Putz, E.M., Stannard, K., Zhang,
978 J.G., Teh, C., Firth, M., *et al.* (2016). CIS is a potent checkpoint in NK cell-mediated
979 tumor immunity. Nat Immunol 17, 816-824. doi:10.1038/ni.3470

980 Ding, M., Kwok, L.Y., Schluter, D., Clayton, C., and Soldati, D. (2004). The antioxidant systems
981 in *Toxoplasma gondii* and the role of cytosolic catalase in defence against oxidative
982 injury. Mol Microbiol 51, 47-61. doi:3823 [pii]

983 Doggett, J.S., Nilsen, A., Forquer, I., Wegmann, K.W., Jones-Brando, L., Yolken, R.H., Bordon,
984 C., Charman, S.A., Katneni, K., Schultz, T., *et al.* (2012). Endochin-like quinolones are
985 highly efficacious against acute and latent experimental toxoplasmosis. Proc Natl
986 Acad Sci U S A 109, 15936-15941. doi:10.1073/pnas.1208069109

987 Eubel, H., Jansch, L., and Braun, H.P. (2003). New insights into the respiratory chain of plant
988 mitochondria. Supercomplexes and a unique composition of complex II. Plant Physiol
989 133, 274-286.

990 Feagin, J.E., Harrell, M.I., Lee, J.C., Coe, K.J., Sands, B.H., Cannone, J.J., Tami, G., Schnare, M.N.,
991 and Gutell, R.R. (2012). The fragmented mitochondrial ribosomal RNAs of
992 *Plasmodium falciparum*. PLoS One 7, e38320. doi:10.1371/journal.pone.0038320

993 Ferrick, D.A., Neilson, A., and Beeson, C. (2008). Advances in measuring cellular
994 bioenergetics using extracellular flux. Drug Discov Today 13, 268-274.
995 doi:10.1016/j.drudis.2007.12.008

996 Foth, B.J., Stummel, L.M., Handman, E., Hodder, A.N., Crabb, B.S., and McFadden, G.I. (2005).
997 The malaria parasite *Plasmodium falciparum* has only one pyruvate dehydrogenase
998 complex, which is located in the apicoplast. Mol Microbiol 55, 39-53.

999 Funes, S., Davidson, E., Reyes-Prieto, A., Magallon, S., Herion, P., King, M.P., and Gonzalez-
1000 Halphen, D. (2002). A green algal apicoplast ancestor. Science 298, 2155.

1001 Gajria, B., Bahl, A., Brestelli, J., Dommer, J., Fischer, S., Gao, X., Heiges, M., Iodice, J., Kissinger,
1002 J.C., Mackey, A.J., *et al.* (2008). ToxoDB: an integrated *Toxoplasma gondii* database
1003 resource. Nucleic Acids Res 36, D553-556. doi:10.1093/nar/gkm981

1004 Garrison, E.M., and Arrizabalaga, G. (2009). Disruption of a mitochondrial MutS DNA repair
1005 enzyme homologue confers drug resistance in the parasite *Toxoplasma gondii*. Mol
1006 Microbiol 72, 425-441. doi:10.1111/j.1365-2958.2009.06655.x

1007 Gray, M.W. (2012). Mitochondrial evolution. Cold Spring Harb Perspect Biol 4, a011403.
1008 doi:10.1101/cshperspect.a011403

1009 Gupta, A., Shah, P., Haider, A., Gupta, K., Siddiqi, M.I., Ralph, S.A., and Habib, S. (2014).
1010 Reduced ribosomes of the apicoplast and mitochondrion of *Plasmodium* spp. and
1011 predicted interactions with antibiotics. Open Biol 4, 140045.
1012 doi:10.1098/rsob.140045

1013 Hartmann, A., Hellmund, M., Lucius, R., Voelker, D.R., and Gupta, N. (2014).
1014 Phosphatidylethanolamine synthesis in the parasite mitochondrion is required for
1015 efficient growth but dispensable for survival of *Toxoplasma gondii*. J Biol Chem 289,
1016 6809-6824. doi:10.1074/jbc.M113.509406

1017 Hung, V., Zou, P., Rhee, H.W., Udeshi, N.D., Cracan, V., Svinkina, T., Carr, S.A., Mootha, V.K.,
1018 and Ting, A.Y. (2014). Proteomic mapping of the human mitochondrial
1019 intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55, 332-341.
1020 doi:10.1016/j.molcel.2014.06.003

1021 Jacot, D., Waller, R.F., Soldati-Favre, D., MacPherson, D.A., and MacRae, J.I. (2015).
1022 Apicomplexan Energy Metabolism: Carbon Source Promiscuity and the Quiescence
1023 Hyperbole. Trends Parasitol 32, 56-70. doi:10.1016/j.pt.2015.09.001

1024 Jelenska, J., Crawford, M.J., Harb, O.S., Zuther, E., Haselkorn, R., Roos, D.S., and Gornicki, P.
1025 (2001). Subcellular localization of acetyl-CoA carboxylase in the apicomplexan
1026 parasite *Toxoplasma gondii*. Proc Natl Acad Sci U S A 98, 2723-2728.

1027 Katris, N.J., van Dooren, G.G., McMillan, P.J., Hanssen, E., Tilley, L., and Waller, R.F. (2014).
1028 The apical complex provides a regulated gateway for secretion of invasion factors in
1029 *Toxoplasma*. PLoS Pathog 10, e1004074. doi:10.1371/journal.ppat.1004074

1030 Ke, H., Lewis, I.A., Morrisey, J.M., McLean, K.J., Ganesan, S.M., Painter, H.J., Mather, M.W.,
1031 Jacobs-Lorena, M., Llinas, M., and Vaidya, A.B. (2015). Genetic investigation of
1032 tricarboxylic acid metabolism during the *Plasmodium falciparum* life cycle. Cell Rep
1033 11, 164-174. doi:10.1016/j.celrep.2015.03.011

1034 Kehrer, J., Frischknecht, F., and Mair, G.R. (2016). Proteomic Analysis of the *Plasmodium*
1035 *berghei* Gametocyte Egressome and Vesicular bioID of Osmophilic Body Proteins
1036 Identifies Merozoite TRAP-like Protein (MTRAP) as an Essential Factor for Parasite
1037 Transmission. Mol Cell Proteomics 15, 2852-2862. doi:10.1074/mcp.M116.058263

1038 Keilhauer, E.C., Hein, M.Y., and Mann, M. (2015). Accurate protein complex retrieval by
1039 affinity enrichment mass spectrometry (AE-MS) rather than affinity purification mass
1040 spectrometry (AP-MS). Mol Cell Proteomics 14, 120-135.
1041 doi:10.1074/mcp.M114.041012

1042 Lenaz, G., and Genova, M.L. (2010). Structure and organization of mitochondrial respiratory
1043 complexes: a new understanding of an old subject. Antioxid Redox Signal 12, 961-
1044 1008. doi:10.1089/ars.2009.2704

1045 Limenitakis, J., Oppenheim, R.D., Creek, D.J., Foth, B.J., Barrett, M.P., and Soldati-Favre, D.
1046 (2013). The 2-methylcitrate cycle is implicated in the detoxification of propionate in
1047 *Toxoplasma gondii*. Mol Microbiol 87, 894-908. doi:10.1111/mmi.12139

1048 MacRae, J.I., Dixon, M.W., Dearnley, M.K., Chua, H.H., Chambers, J.M., Kenny, S., Bottova, I.,
1049 Tilley, L., and McConville, M.J. (2013). Mitochondrial metabolism of sexual and
1050 asexual blood stages of the malaria parasite *Plasmodium falciparum*. BMC Biol 11, 67.
1051 doi:10.1186/1741-7007-11-67

1052 MacRae, J.I., Sheiner, L., Nahid, A., Tonkin, C., Striepen, B., and McConville, M.J. (2012).
1053 Mitochondrial metabolism of glucose and glutamine is required for intracellular
1054 growth of *Toxoplasma gondii*. Cell Host Microbe 12, 682-692.
1055 doi:10.1016/j.chom.2012.09.013

1056 Marechal, A., Meunier, B., Lee, D., Orengo, C., and Rich, P.R. (2012). Yeast cytochrome c
1057 oxidase: a model system to study mitochondrial forms of the haem-copper oxidase
1058 superfamily. Biochim Biophys Acta 1817, 620-628. doi:10.1016/j.bbabi.2011.08.011

1059 Martell, J.D., Deerinck, T.J., Sancak, Y., Poulos, T.L., Mootha, V.K., Sosinsky, G.E., Ellisman,
1060 M.H., and Ting, A.Y. (2012). Engineered ascorbate peroxidase as a genetically encoded
1061 reporter for electron microscopy. Nat Biotechnol 30, 1143-1148.
1062 doi:10.1038/nbt.2375

1063 McBride, H.M., Neuspiel, M., and Wasiak, S. (2006). Mitochondria: more than just a
1064 powerhouse. Curr Biol 16, R551-560. doi:10.1016/j.cub.2006.06.054

1065 Messina, M., Niesman, I., Mercier, C., and Sibley, L.D. (1995). Stable DNA transformation of
1066 *Toxoplasma gondii* using phleomycin selection. Gene 165, 213-217.

1067 Mogi, T., and Kita, K. (2009). Identification of mitochondrial Complex II subunits SDH3 and
1068 SDH4 and ATP synthase subunits a and b in *Plasmodium* spp. Mitochondrion 9, 443-
1069 453. doi: 10.1016/j.mito.2009.08.004

1070 Mogi, T., and Kita, K. (2010). Diversity in mitochondrial metabolic pathways in parasitic
1071 protists *Plasmodium* and *Cryptosporidium*. Parasitol Int 59, 305-312.
1072 doi:10.1016/j.parint.2010.04.005

1073 Montoya, J.G., and Liesenfeld, O. (2004). Toxoplasmosis. Lancet 363, 1965-1976.
1074 doi:10.1016/S0140-6736(04)16412-X

1075 Moore, R.B., Obornik, M., Janouskovec, J., Chrudimsky, T., Vancova, M., Green, D.H., Wright,
1076 S.W., Davies, N.W., Bolch, C.J., Heimann, K., *et al.* (2008). A photosynthetic alveolate
1077 closely related to apicomplexan parasites. Nature 451, 959-963.

1078 Morales-Sainz, L., Escobar-Ramirez, A., Cruz-Torres, V., Reyes-Prieto, A., Vazquez-Acevedo,
1079 M., Lara-Martinez, R., Jimenez-Garcia, L.F., and Gonzalez-Halphen, D. (2008). The
1080 polypeptides COX2A and COX2B are essential components of the mitochondrial
1081 cytochrome c oxidase of *Toxoplasma gondii*. Biochim Biophys Acta 1777, 202-210.
1082 doi:10.1016/j.bbabi.2007.10.013

1083 Moreno, S.N., Zhong, L., Lu, H.G., Souza, W.D., and Benchimol, M. (1998). Vacuolar-type H+-
1084 ATPase regulates cytoplasmic pH in *Toxoplasma gondii* tachyzoites. Biochem J 330 (Pt
1085 2), 853-860.

1086 Nadipuram, S.M., Kim, E.W., Vashisht, A.A., Lin, A.H., Bell, H.N., Coppens, I., Wohlschlegel,
1087 J.A., and Bradley, P.J. (2016). In Vivo Biotinylation of the *Toxoplasma* Parasitophorous
1088 Vacuole Reveals Novel Dense Granule Proteins Important for Parasite Growth and
1089 Pathogenesis. MBio 7. doi:10.1128/mBio.00808-16

1090 Oppenheim, R.D., Creek, D.J., Macrae, J.I., Modrzynska, K.K., Pino, P., Limenitakis, J., Polonais,
1091 V., Seeber, F., Barrett, M.P., Billker, O., *et al.* (2014). BCKDH: the missing link in
1092 apicomplexan mitochondrial metabolism is required for full virulence of *Toxoplasma*
1093 *gondii* and *Plasmodium berghei*. PLoS Pathog 10, e1004263.
1094 doi:10.1371/journal.ppat.1004263

1095 Pankow, S., Bamberger, C., Calzolari, D., Bamberger, A., and Yates, J.R., 3rd (2016). Deep
1096 interactome profiling of membrane proteins by co-interacting protein identification
1097 technology. Nat Protoc 11, 2515-2528. doi:10.1038/nprot.2016.140

1098 Phillips, M.A., Gujjar, R., Malmquist, N.A., White, J., El Mazouni, F., Baldwin, J., and Rathod,
1099 P.K. (2008). Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with
1100 potent and selective activity against the malaria parasite *Plasmodium falciparum*. J
1101 Med Chem 51, 3649-3653. doi:10.1021/jm8001026

1102 Rajendran, E., Hapuarachchi, S.V., Miller, C.M., Fairweather, S.J., Cai, Y., Smith, N.C.,
1103 Cockburn, I.A., Broer, S., Kirk, K., and van Dooren, G.G. (2017). Cationic amino acid
1104 transporters play key roles in the survival and transmission of apicomplexan
1105 parasites. Nat Commun 8, 14455. doi:10.1038/ncomms14455

1106 Rhee, H.W., Zou, P., Udeshi, N.D., Martell, J.D., Mootha, V.K., Carr, S.A., and Ting, A.Y. (2013).
1107 Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic
1108 tagging. Science 339, 1328-1331. doi:10.1126/science.1230593

1109 Robinson, M.D., and Smyth, G.K. (2008). Small-sample estimation of negative binomial
1110 dispersion, with applications to SAGE data. Biostatistics 9, 321-332.
1111 doi:10.1093/biostatistics/kxm030

1112 Roux, K.J., Kim, D.I., Raida, M., and Burke, B. (2012). A promiscuous biotin ligase fusion
1113 protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol
1114 196, 801-810. doi:10.1083/jcb.201112098

1115 Sagan, L. (1967). On the origin of mitosing cells. J Theor Biol 14, 255-274.

1116 Saito, T., Nishi, M., Lim, M.I., Wu, B., Maeda, T., Hashimoto, H., Takeuchi, T., Roos, D.S., and
1117 Asai, T. (2008). A novel GDP-dependent pyruvate kinase isozyme from *Toxoplasma*

1118 *gondii* localizes to both the apicoplast and the mitochondrion. *J Biol Chem* 283,
1119 14041-14052. doi:10.1074/jbc.M709015200

1120 Schagger, H., and Pfeiffer, K. (2000). Supercomplexes in the respiratory chains of yeast and
1121 mammalian mitochondria. *EMBO J* 19, 1777-1783. doi:10.1093/emboj/19.8.1777

1122 Seeber, F., Limenitakis, J., and Soldati-Favre, D. (2008). Apicomplexan mitochondrial
1123 metabolism: a story of gains, losses and retentions. *Trends Parasitol* 24, 468-478.
1124 doi:10.1016/j.pt.2008.07.004

1125 Sheiner, L., Demerly, J.L., Poulsen, N., Beatty, W.L., Lucas, O., Behnke, M.S., White, M.W., and
1126 Striepen, B. (2011). A systematic screen to discover and analyze apicoplast proteins
1127 identifies a conserved and essential protein import factor. *PLoS Pathog* 7, e1002392.
1128 doi:10.1371/journal.ppat.1002392

1129 Shen, B., Brown, K.M., Lee, T.D., and Sibley, L.D. (2014). Efficient gene disruption in diverse
1130 strains of *Toxoplasma gondii* using CRISPR/CAS9. *MBio* 5, e01114-01114.
1131 doi:10.1128/mBio.01114-14

1132 Sickmann, A., Reinders, J., Wagner, Y., Joppich, C., Zahedi, R., Meyer, H.E., Schonfisch, B.,
1133 Perschil, I., Chacinska, A., Guiard, B., et al. (2003). The proteome of *Saccharomyces*
1134 *cerevisiae* mitochondria. *Proc Natl Acad Sci U S A* 100, 13207-13212.
1135 doi:10.1073/pnas.2135385100

1136 Sidik, S.M., Huet, D., Ganesan, S.M., Huynh, M.H., Wang, T., Nasamu, A.S., Thiru, P., Saeij, J.P.,
1137 Carruthers, V.B., Niles, J.C., et al. (2016). A Genome-wide CRISPR Screen in
1138 *Toxoplasma* Identifies Essential Apicomplexan Genes. *Cell* 166, 1423-1435.
1139 doi:10.1016/j.cell.2016.08.019

1140 Srivastava, I.K., Morrissey, J.M., Darrouzet, E., Daldal, F., and Vaidya, A.B. (1999). Resistance
1141 mutations reveal the atovaquone-binding domain of cytochrome *b* in malaria
1142 parasites. *Mol Microbiol* 33, 704-711.

1143 Striepen, B., and Soldati, D. (2007). Genetic manipulation of *Toxoplasma gondii*. In
1144 *Toxoplasma gondii* The Model Apicomplexan - Perspectives and Methods, L.D. Weiss,
1145 and K. Kim, eds. (London: Elsevier), pp. 391-415.

1146 Sturm, A., Mollard, V., Coizjnsen, A., Goodman, C.D., and McFadden, G.I. (2015).
1147 Mitochondrial ATP synthase is dispensable in blood-stage *Plasmodium berghei* rodent
1148 malaria but essential in the mosquito phase. *Proc Natl Acad Sci U S A* 112, 10216-
1149 10223. doi:10.1073/pnas.1423959112

1150 Tonkin, C.J., van Dooren, G.G., Spurck, T.P., Struck, N.S., Good, R., Handman, E., Cowman, A.F.,
1151 and McFadden, G.I. (2004). Localization of organellar proteins in *Plasmodium*
1152 *falciparum* using a novel set of transfection vectors and a new immunofluorescence
1153 fixation method. *Mol Biochem Parasitol* 137, 13-21.

1154 Tournel, C., Dzierszinski, F., Bernigaud, A., Mortuaire, M., and Tomavo, S. (2000). Molecular
1155 cloning, organellar targeting and developmental expression of mitochondrial
1156 chaperone HSP60 in *Toxoplasma gondii*. *Mol Biochem Parasitol* 111, 319-332.

1157 Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K.,
1158 Nakashima, R., Yaono, R., and Yoshikawa, S. (1996). The whole structure of the 13-
1159 subunit oxidized cytochrome *c* oxidase at 2.8 Å. *Science* 272, 1136-1144.

1160 van Dooren, G.G., Reiff, S.B., Tomova, C., Meissner, M., Humbel, B.M., and Striepen, B. (2009).
1161 A novel dynamin-related protein has been recruited for apicoplast fission in
1162 *Toxoplasma gondii*. *Curr Biol* 19, 267-276. doi:10.1016/j.cub.2008.12.048

1163 van Dooren, G.G., Stimmller, L.M., and McFadden, G.I. (2006). Metabolic maps and functions
1164 of the *Plasmodium* mitochondrion. *FEMS Microbiol Rev* 30, 596-630.
1165 doi:10.1111/j.1574-6976.2006.00027.x

1166 van Dooren, G.G., Tomova, C., Agrawal, S., Humbel, B.M., and Striepen, B. (2008).
1167 *Toxoplasma gondii* Tic20 is essential for apicoplast protein import. *Proc Natl Acad Sci
1168 U S A* 105, 13574-13579.

1169 van Dooren, G.G., Yeoh, L.M., Striepen, B., and McFadden, G.I. (2016). The Import of Proteins
1170 into the Mitochondrion of *Toxoplasma gondii*. *J Biol Chem* 291, 19335-19350.
1171 doi:10.1074/jbc.M116.725069

1172 Zikova, A., Hampl, V., Paris, Z., Tyc, J., and Lukes, J. (2016). Aerobic mitochondria of parasitic
1173 protists: Diverse genomes and complex functions. *Mol Biochem Parasitol* 209, 46-57.
1174 doi:10.1016/j.molbiopara.2016.02.007

1175 Zimmermann, L., Stephens, A., Nam, S.Z., Rau, D., Kubler, J., Lozajic, M., Gabler, F., Soding, J.,
1176 Lupas, A.N., and Alva, V. (2017). A Completely Reimplemented MPI Bioinformatics
1177 Toolkit with a New HHpred Server at its Core. *J Mol Biol.*
1178 doi:10.1016/j.jmb.2017.12.007

1179

1180

1181 **FIGURE LEGENDS**

1182

1183 **Figure 1.** Biotinylation of mitochondrial matrix proteins in *T. gondii* parasites expressing
1184 mtAPEX and mtBirA*. (A-B) Immunofluorescence assays of parasites expressing c-myc-tagged,
1185 mitochondrially-targeted APEX (A) and BirA* (B), labelled with anti-c-myc (green) and the
1186 mitochondrial marker *TgTom40* (red). Scale bars are 2 μ m. (C-D) Western blots of parasites
1187 expressing c-myc-tagged, mitochondrially-targeted APEX (C) and BirA* (D), labelled with anti-
1188 c-myc. (E) Oregon Green-conjugated avidin (Avidin-OG) labelling of *T. gondii* parasites
1189 expressing mtAPEX, and cultured in the absence (top) or presence (bottom) of biotin-phenol and
1190 H_2O_2 . Biotinylated proteins are labelled in green. (F) Avidin-OG labelling of *T. gondii* parasites
1191 expressing mtBirA*, and cultured in the absence (top) or presence (bottom) of biotin.
1192 Biotinylated proteins are labelled in green. Scale bars are 2 μ m. (G) Neutravidin-HRP protein
1193 blot of WT, mtBirA* or mtAPEX parasites cultured in the presence of biotin or biotin-phenol.
1194 (H) Western blots of the mitochondrial matrix marker mtHsp60 and the mitochondrial
1195 intermembrane space marker cyt c in WT, mtBirA* or mtAPEX parasites cultured in the
1196 presence of biotin (lanes 1-4) or biotin-phenol (lanes 5-8). Parasites were either harvested
1197 following treatment to yield the total (T) protein fraction, or biotinylated proteins were purified
1198 on a streptavidin-agarose column to yield the bound (B) fraction.

1199

1200 **Figure 2.** The mitochondrial proteome of *T. gondii*. (A-B) Volcano plots showing the \log_2
1201 protein ratios vs $-\log_{10} p$ values of biotinylated proteins in WT compared to mtAPEX
1202 (WT/APEX) samples (A) and in WT compared to mtBirA* samples (WT/BirA*) (B) following
1203 the quantitative pipeline analysis. Proteins were deemed to be enriched in the mitochondrion if

1204 the \log_2 fold change in protein expression was ≥ -2.5 and the p value ≤ 0.001 (red). (C) Venn
1205 diagram of the mtAPEX and mtBirA* proteomes. 161 proteins were identified in both
1206 proteomes, while 52 were unique to the mtAPEX proteome and 208 unique to the mtBirA*
1207 proteome. (D) Metabolic map of expected mitochondrial proteins (circles), showing proteins
1208 present (blue) and absent (yellow) from the *T. gondii* mitochondrial proteome. Black arrows
1209 represent the flow of metabolites through metabolic pathways in the mitochondrion, and blue
1210 arrows depict the flow of ions, minerals or metabolic pathway products.

1211

1212 **Figure 2 – figure supplement 1.** Analysis of putative mitochondrial targeting peptides in the *T.*
1213 *gondii* mitochondrial proteome. Pie chart depicting mitochondrial targeting peptide predictions
1214 of the *T. gondii* mitochondrial proteome using MitoProt II. Proteins with high (>0.9 ; blue),
1215 medium (0.5-0.9; aqua) and low (<0.5 ; pink) prediction scores are shown.

1216

1217 **Figure 3.** The localization of novel proteins from the *T. gondii* mitochondrial proteome. (A-AA)
1218 Proteins with no previously determined localization in *T. gondii* were selected from the
1219 mitochondrial proteome, and the corresponding gene was tagged at the 3'-terminus of the open
1220 reading frame with a HA tag. Immunofluorescence assays depict HA-tagged proteins (green) co-
1221 labelled with the mitochondrial marker *TgTom40* (red). The <http://toxodb.org> gene identification
1222 number is depicted for every gene that was tagged.

1223

1224 **Figure 4.** Orthology analyses of proteins from the *T. gondii* mitochondrial proteome reveal that
1225 many mitochondrial proteins are restricted to *T. gondii* and related organisms, and that most are
1226 important for parasite survival. (A) Bar graph depicting the percentage of orthologs from the

1227 mitochondrial proteome of *T. gondii* (*Tg*) found in *P. falciparum* (*Pf*), *B. bovis* (*Bb*), *C. parvum*
1228 (*Cp*) and *V. brassicaformis* (*Vb*). Phenotype scores are indicated with shading, and reveal that
1229 most ortholog groups in each category are important or critical for tachyzoite growth. (B-C)
1230 Venn diagram depicting ortholog groupings from the mitochondrial proteome of *T. gondii*
1231 compared to (B) non-coccidian apicomplexans, chromerids and eukaryotes, or (C) non-coccidian
1232 apicomplexans, chromerids and animals. (D) Bar graph depicting distribution of phenotype
1233 scores in genes belonging to ortholog groups found only in *T. gondii* and other coccidians (*Tg*
1234 only), in *T. gondii*, non-coccidian apicomplexans and chromerids (*Tg*+*Api*+*Chr*), and in *T.*
1235 *gondii*, non-coccidian apicomplexans, chromerids and animals (*Tg*+*Api*+*Chr*+*Api*). In (A) and
1236 (D), genes with phenotype scores of ≥ -2 were considered dispensable, -2 to -4 were considered
1237 important, and ≤ -4 were considered critical.

1238

1239 **Figure 5.** *Tg**Api**Cox25* is important for parasite growth and mitochondrial O₂ consumption. (A)
1240 Western blot of proteins extracted from r*Tg**Api**Cox25*-HA parasites grown in the absence of
1241 ATc, or in ATc for 1-3 days, and detected using anti-HA antibodies (top) and anti-*Tg**Tom40* (as
1242 a loading control; bottom). (B) Plaque assays measuring growth of WT, r*Tg**Api**Cox25* and
1243 complemented c*Tg**Api**Cox25*-HA/r*Tg**Api**Cox25* parasites cultured in the absence (top) or
1244 presence (bottom) of ATc. Assays are from a single experiment and are representative of 3
1245 independent experiments. (C) Quantification of plaque size from WT, r*Tg**Api**Cox25* and
1246 complemented c*Tg**Api**Cox25*-HA/r*Tg**Api**Cox25* parasites grown in the absence or presence of
1247 ATc for 9 days. Box and whisker plots depict the median plaque size (centre line), the 25th and
1248 75th percentiles (box) and the 5th and 95th percentiles (lines). Data are from 30 plaques per flask
1249 from a single experiment, except in the case of the r*Tg**Api**Cox25* strain, where only 18 plaques

1250 were discernible. (D) Basal mitochondrial oxygen consumption rates (mOCR) in WT parasites
1251 grown in the absence of ATc or in the presence of ATc for 3 days (orange), and rTgApiCox25
1252 parasites grown in the absence of ATc, or in the presence of ATc for 1-3 days (blue). A linear
1253 mixed-effects model was fitted to the data, and the values depict the mean \pm s.e.m. from three
1254 independent experiments (a one-way ANOVA followed by Tukey's multiple pairwise
1255 comparison test was performed. Relevant p values are shown). (E) Basal mOCR plotted against
1256 basal extracellular acidification rate (ECAR) of WT cells grown in the absence of ATc, the
1257 presence of cycloheximide (CHX) for 1 day, or the presence of ATc for 3 days, and
1258 rTgApiCox25 parasites grown in the absence of ATc or presence of ATc for 1-3 days (mean \pm
1259 s.e.m. of the linear mixed-effects model described above; $n = 3$).

1260

1261 **Figure 5 – figure supplement 1.** Generating an ATc-regulated promoter replacement strain of
1262 *TgApiCox25*. (A) Diagram depicting the promoter replacement strategy to generate ATc-
1263 regulated *TgApiCox25*. A single guide RNA (sgRNA) was designed to target the *T. gondii*
1264 genome near the start codon of *TgApiCox25*, and mediate a double stranded break at the target
1265 site. A plasmid containing the sgRNA and GFP-tagged Cas9 endonuclease was co-transfected
1266 into *T. gondii* parasites with a PCR product encoding the ATc regulated 't7s4' promoter, which
1267 contains 7 copies of the Tet operon and a Sag4 minimal promoter, flanked by 50 bp of sequence
1268 homologous to the regions immediately up- and down-stream of the *TgApiCox25* start codon.
1269 The PCR product also contain a 'spacer' region that separates the regulatable promoter from the
1270 native promoter of *TgApiCox25* gene to enable sufficient regulation. The parasite's homologous
1271 repair pathway will mediate integration of the PCR product into the *TgApiCox25* locus. The
1272 'TgApiCox25 fwd', 'TgApiCox25 rvs' and 't7s4 fwd' primers were used in screening parasite

1273 clones for successful integration of the regulatable promoter at the target site. (B-C) PCR
1274 screening analysis using genomic DNA extracted from parasite clones to identify clones that had
1275 successfully integrated the promoter. (B) Screening using the *TgApiCox25* fwd and rvs primers.
1276 This will amplify a product of 1,064 bp if the locus is unmodified, and a product of 2,991 bp if
1277 the ATc-regulatable promoter has integrated successfully. (C) Screening using the *TgApiCox25*
1278 rvs and t7s4 fwd primers. This will amplify a product of 928 bp if the ATc-regulatable promoter
1279 has integrated successfully. The analyses in B and C revealed that clone 3 had successfully
1280 integrated the ATc-regulatable promoter.

1281

1282 **Figure 5 – figure supplement 2.** Knockdown of *TgApiCox25* leads to defects in maximal
1283 mOCR. Maximal mOCR, comprising of the sum of the basal mOCR (colored) and the spare
1284 capacity (white), of TATi/Δku80 (WT) parasites grown in the absence of ATc or in the presence
1285 of ATc for 3 days (orange), and r*TgApiCox25* cells grown in the absence of ATc, or in the
1286 presence of ATc for 1-3 days (blue). A linear mixed-effects model was fitted to the data, which
1287 are depicted as the mean ± s.e.m. from three independent experiments (a one-way ANOVA
1288 followed by Tukey's multiple pairwise comparison test was performed. Relevant *p* values are
1289 shown).

1290

1291 **Figure 5 – figure supplement 3.** Defects in OCR upon *TgApiCox25* knockdown are not the
1292 result of general defects in mitochondrial morphology or parasite viability. (A)
1293 Immunofluorescence assays assessing mitochondrial morphology in r*TgApiCox25* parasites
1294 grown in the absence of ATc (top) or in the presence of ATc for 3 days (bottom). Mitochondria
1295 were labelled using antibodies against *TgTom40* (red). Images are representative of 100 four-cell

1296 vacuoles examined in two independent experiments. The scale bar is 2 μ m. (B) Plaque assays of
1297 r*TgApiCox25* parasites grown for 9 days in the absence (left) or presence (right) of ATc.
1298 r*TgApiCox25* parasites were not preincubated in ATc (no ATc preinc; top) or pre-incubated in
1299 ATc for 3 days (3d + ATc preinc; bottom) before commencing the experiment. Plaque assays are
1300 from a single experiment, representative of 3 independent experiments.

1301

1302 **Figure 6.** *TgApiCox25* is a component of the cytochrome *c* oxidase complex, and important for
1303 complex integrity. (A) Western blot of proteins extracted from *TgApiCox25*-HA parasites,
1304 separated by blue native-PAGE, and detected with anti-HA antibodies. (B) Western blot of
1305 proteins extracted from *TgApiCox25*-HA parasites, separated by SDS-PAGE, and detected with
1306 anti-HA antibodies. (C) Volcano plot showing the \log_2 fold change vs $-\log_{10} p$ values of proteins
1307 purified from *TgApiCox25*-HA vs *TgTom40*-HA parasites using anti-HA immunoprecipitations
1308 and detected by mass spectrometry. Only proteins detected in each of the three independent
1309 experiments for both parasite lines are depicted. Proteins enriched in the *TgApiCox25*-HA
1310 samples ($p < 0.05$; \log_2 fold change >5) have been coded according to whether they are
1311 orthologous to canonical cytochrome *c* oxidase subunits (green triangles), or restricted to the
1312 apicomplexan lineage (blue circle; ApiCox subunits). *TgApiCox25* is also depicted (red
1313 diamond).

1314

1315 **Figure 6 – figure supplement 1.** Immunopurification of the *TgApiCox25* and *TgTom40* protein
1316 complexes. (A-B) Western blots of proteins extracted from parasites expressing *TgApiCox25*-
1317 HA (A) or *TgTom40*-HA (B). Extracts include samples before immunoprecipitation (Total),
1318 samples that did not bind to the anti-HA beads (Unbound), and samples that bound to the anti-

1319 HA beads (Bound). Samples were probed with anti-HA (top) and anti-*Tg*Tom40 (bottom)
1320 antibodies. Immunoprecipitations are representative of three independent experiments. Bound
1321 fractions from each experiment were subjected to mass spectrometry-based protein
1322 identification.

1323

1324 **Figure 7.** *Tg*ApiCox25 is a component of *T. gondii* cytochrome *c* oxidase and important for
1325 complex integrity. (A) Anti-FLAG western blot of proteins from the *Tg*Cox2a-
1326 FLAG/*Tg*ApiCox25-HA strain separated by blue native-PAGE. (B) Western blots of proteins
1327 extracted from the *Tg*Cox2a-FLAG/ *Tg*ApiCox25-HA strain and subjected to
1328 immunoprecipitation using anti-HA (anti-HA IP) or anti-FLAG (anti-FLAG IP) antibody-
1329 coupled beads. Extracts include samples before immunoprecipitation (Total), samples that did
1330 not bind to the anti-HA or anti-FLAG beads (Unbound), and samples that bound to the anti-HA
1331 or anti-FLAG beads (Bound). Samples were probed with anti-HA to detect *Tg*ApiCox25-HA,
1332 anti-FLAG to detect *Tg*Cox2a-FLAG, anti-AtpB to detect the β -subunit of *T. gondii* ATP
1333 synthase, and anti-*Tg*Tom40. (C) Anti-HA (left) and anti-FLAG (right) western blots of proteins
1334 from the *Tg*ApiCox25-FLAG/*Tg*ApiCox30-HA strain separated by blue native-PAGE. (D)
1335 Western blots of proteins extracted from the *Tg*ApiCox25-FLAG/*Tg*ApiCox30-HA strain and
1336 subjected to immunoprecipitation using anti-HA (anti-HA IP) or anti-FLAG (anti-FLAG IP)
1337 antibody-coupled beads. Extracts include samples before immunoprecipitation (Total), samples
1338 that did not bind to the anti-HA or anti-FLAG beads (Unbound), and samples that bound to the
1339 anti-HA or anti-FLAG beads (Bound). Samples were probed with anti-HA to detect
1340 *Tg*ApiCox30-HA, anti-FLAG to detect *Tg*ApiCox25-FLAG, anti-AtpB, and anti-*Tg*Tom40. (E)
1341 Western blot of proteins extracted from r*Tg*ApiCox25-HA/*Tg*Cox2a-FLAG parasites grown in

1342 the absence of ATc, or in ATc for 1-3 days, separated by SDS-PAGE and detected using anti-HA
1343 (top), anti-FLAG (middle) and anti-*TgTom40* (as a loading control; bottom). (F) Western blot of
1344 proteins extracted from *TgCox2a*-FLAG/r*TgApiCox25*-HA parasites grown in the absence of
1345 ATc, or in ATc for 1-3 days, separated by blue native-PAGE, and detected using anti-FLAG
1346 antibodies.

1347

1348 **Figure 7 – figure supplement 1.** Generating FLAG tagged *TgCox2a* and *TgApiCox25* strains.

1349 (A) Diagram depicting the 3' replacement strategy to generate FLAG-tagged *TgCox2a*. A single
1350 guide RNA (sgRNA) was designed to target the *T. gondii* genome near the stop codon of
1351 *TgCox2a*, and mediate a double stranded break at the target site. A plasmid containing the
1352 sgRNA and GFP-tagged Cas9 endonuclease was co-transfected into *T. gondii* parasites with a
1353 PCR product encoding a FLAG epitope tag flanked by 50 bp of sequence homologous to the
1354 regions immediately up- and down-stream of the *TgCox2a* stop codon. The parasite's
1355 homologous repair pathway will mediate integration of the PCR product into the *TgCox2a* locus.
1356 Forward and reverse primers were used to screen parasite clones for successful integration of the
1357 FLAG tag at the target site, yielding a 260 bp product in the native locus and a 361 bp product in
1358 the modified locus. (B) PCR screening analysis using genomic DNA extracted from putative
1359 *TgCox2a*-FLAG/*TgApiCox25*-HA parasites (clones 1-10) and *TgCox2a*-FLAG/r*TgApiCox25*-
1360 HA parasites (clones 11-12). Clones 1-5 and 7-12 yielded PCR products that indicated that these
1361 clones had been successfully modified. (C) Diagram depicting the 3' replacement strategy to
1362 generate FLAG-tagged *TgApiCox25*. A single guide RNA (sgRNA) was designed to target the
1363 *T. gondii* genome near the stop codon of *TgApiCox25*, and mediate a double stranded break at
1364 the target site. A plasmid containing the sgRNA and GFP-tagged Cas9 endonuclease was co-

1365 transfected into *T. gondii* parasites with a PCR product encoding a FLAG epitope tag flanked by
1366 50 bp of sequence homologous to the regions immediately up- and down-stream of the
1367 *TgApiCox25* stop codon. The parasite's homologous repair pathway will mediate integration of
1368 the PCR product into the *TgApiCox25* locus. Forward and reverse primers were used to screen
1369 parasite clones for successful integration of the FLAG tag at the target site, yielding a 385 bp
1370 product in the native locus and a 492 bp product in the modified locus. (B) PCR screening
1371 analysis using genomic DNA extracted from putative *TgApiCox25*-FLAG/*TgApiCox30*-HA
1372 parasites. Clones 1, 5-7 yielded PCR products that indicated that these clones had been
1373 successfully modified.

1374

1375

1376 **SUPPLEMENTARY FILES**

1377

1378 **Supplementary File 1.** List of genes encoding putative *T. gondii* mitochondrial proteins. **Tab 1.**
1379 List of peptides identified in the APEX and BirA* proteomic analyses. Included are the ToxoDB
1380 accession numbers, the identified peptide, the experiment in which the peptide was identified,
1381 and the charge, m/z ratio, mass error, posterior error probability, score, delta score and intensity
1382 of each peptide from each experiment. **Tab 2.** List of proteins identified in the RH control and
1383 mtAPEX proteomes, including the ToxoDB accession numbers, the log₂ protein ratios, *p* value,
1384 and unique sequence counts. **Tab 3.** List of proteins identified in the RH control and mtBirA*
1385 proteomes, including the ToxoDB accession numbers, the log₂ protein ratios, *p* value, and unique
1386 sequence counts. **Tab 4.** Summary of putative mitochondrial proteins identified in this study.
1387 The summary includes the ToxoDB accession numbers and annotation of proteins identified

1388 from the combined list (columns A and B), proteins identified in both lists (columns D and E), and
1389 proteins identified in the mtAPEX proteome (columns G and H) or mtBirA* (columns J and K)
1390 proteomes only. Proteins highlighted in green were demonstrated by this study to localise to the
1391 mitochondrion, while those highlighted in red did not localise to the mitochondrion. **Tab 5.**
1392 Annotated protein list of the *T. gondii* mitochondrial proteome, noting the [ToxoDB](#) accession
1393 number of the corresponding gene, the protein annotation, mean phenotype score, molecular
1394 mass, number of transmembrane domains, amino acid sequence, MitoProt II prediction score, the
1395 ortholog grouping, and the accession number of orthologous genes in *P. falciparum*, *C. parvum*,
1396 *B. bovis*, and *V. brassicaformis* based on reciprocal BLAST searches. **Tab 6.** Summary of the
1397 OrthoMCL analysis of the *T. gondii* mitochondrial proteome, depicting the gene annotation,
1398 mean phenotype score, and the relevant orthology grouping.

1399

1400 **Supplementary File 2.** Summary of metabolic pathway enrichment in the *T. gondii*
1401 mitochondrial proteome. Metabolic pathway enrichment analysis was performed using the
1402 Metabolic Pathway search tool on ToxoDB (<http://toxodb.org>), using a *p* value cut-off of <0.05.

1403

1404 **Supplementary File 3.** True positives and false negatives identified from the *T. gondii*
1405 mitochondrial proteome. List of proteins identified in the *T. gondii* mitochondrial proteome that
1406 previous studies have demonstrated or predicted to localize to the mitochondrion, and proteins
1407 that previous studies have demonstrated do not localize to the mitochondrion. Color coding: dark
1408 green, predicted mitochondrial protein present in proteome; pink, predicted mitochondrial
1409 protein absent from proteome; light green, predicted non-mitochondrial protein absent from
1410 proteome.

1411

1412 **Supplementary File 4.** List of primers used in localization studies. 3' fragments of target genes
1413 (ToxoDB gene ID) were amplified using the listed forward and reverse primers. The resulting
1414 PCR product was digested and ligated into the vector pgCH as outlined in the cloning strategy.
1415 The final vector was linearized with the indicated restriction enzyme before transfection.

1416

1417 **Supplementary File 5. Tab 1.** List of proteins identified in the *TgApiCox25* and *TgTom40*
1418 immunoprecipitations. Included is a description of each identified protein, the UniProt accession
1419 number, the predicted molecular mass, the fold change, the normalized total precursor intensity
1420 for each biological replicate, and the Cox or ApiCox designation of the identified protein. **Tab 2.**
1421 A list of the log fold change (logFC) and *p* values calculated for each protein identified in all
1422 replicates of the *TgApiCox25* and *TgTom40* immunoprecipitations following EdgeR analysis.

1423

1424 **Source Code File 1.** R script used in the analysis of the Seahorse XFe96 data.

1425

1426 **Source Code File 2.** R script used in the analysis of proteomic data from the *TgApiCox25* and
1427 *TgTom40* immunoprecipitations.

Table 1. Summary of the features of proteins identified in proteomic analysis of the *TgApiCox25* complex. Similarity searches were performed using HMMER (<https://www.ebi.ac.uk/Tools/hmmer/>). The accession numbers listed were derived from <http://EuPathDB.org> (apicomplexan and chromerid species) or www.ncbi.nlm.nih.gov (all others). Abbreviations: *Plasmodium falciparum* (*Pf*), *Cryptosporidium parvum* (*Cp*), *Vitrella brassicaformis* (*Vb*), *Saccharomyces cerevisiae* (*Sc*), *Homo sapiens* (*Hs*), *Arabidopsis thaliana* (*At*).

ToxoDB gene ID (http://toxodb.org)	Protein Annotation	Mitochondrial proteome (this study)	Phenotype Score (Sidik <i>et al.</i> , 2016)	Similarity Search (E-value)					
				<i>Pf</i> (Apicomplexan)	<i>Cp</i> (Apicomplexan)	<i>Vb</i> (Chromerid)	<i>Sc</i> (Fungi)	<i>Hs</i> (Animal)	<i>At</i> (Plant)
TGGT1_264040	Hypothetical protein (<i>TgApiCox25</i>)	✓	-2.54	Conserved unknown protein PF3D7_1464000.1 (2.4e ⁻⁵³)	x	Hypothetical Protein Vbra_12326.t1 (5.2e ⁻²⁹)	x	x	x
TGGT1_265370	Hypothetical protein (<i>TgApiCox16</i>)	✓	1.56	x	x	x	x	x	x
TGGT1_209260	Putative cytochrome <i>c</i> oxidase subunit (<i>TgCox5b</i>)	✓	-3.07	Putative COX5B PF3D7_0927800.1 (4.3e ⁻¹⁰¹)	x	COX5B-2 Vbra_9355.t1 (1.6e ⁻⁹²)	Cox4p P04037 (0.32)	Cox5B NP_001853.2 (0.05)	COX5b At1g80230 (2.1e ⁻⁹⁸)
TGGT1_221510	Hypothetical protein (<i>TgApiCox18</i>)	✓	-3.28	Conserved unknown protein PF3D7_0523300.1 (1.5e ⁻⁴⁸)	x	Hypothetical Protein Vbra_21271.t1 (5.2e ⁻⁴⁵)	x	x	x
TGGT1_262640	Hypothetical protein (<i>TgApiCox23</i>)	✓	2.09	bioRxiv preprint doi: https://doi.org/10.1101/320184 ; this version posted May 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. PF3D7_0708700.1 (3.1e ⁻⁶⁴)	x	Hypothetical Protein Vbra_3012.t1 (2.4e ⁻⁵³)	x	x	x
TGGT1_297810	Hypothetical protein (<i>TgApiCox30</i>)	✓	-3.64	Conserved unknown protein PF3D7_0915700.1 (1.2e ⁻⁴⁶)	x	Hypothetical Protein Vbra_17445.t1 (6.7e ⁻³³)	x	x	x
TGGT1_247770	Hypothetical protein (<i>TgApiCox19</i>)	✓	-2.61	Conserved unknown protein PF3D7_1402200.1 (1.2e ⁻³⁴)	x	Hypothetical Protein Vbra_2065.t1 (1.7e ⁻²⁷)	x	x	x
TGGT1_229920	Hypothetical protein (<i>TgApiCox35</i>)	✓	-3.84	Conserved unknown protein PF3D7_0306500.1 (1.5e ⁻⁹⁰)	x	Hypothetical Protein Vbra_6819.t1 (1.6e ⁻⁷³)	x	x	x
TGGT1_306670	Hypothetical protein (<i>TgApiCox26</i>)	✓	-3.68	Conserved unknown protein PF3D7_1439600.1 (2.6e ⁻⁴³)	x	Hypothetical Protein Vbra_888.t1 (1.2e ⁻³⁶)	x	x	x
TGGT1_226590	Putative cytochrome <i>c</i> oxidase subunit (<i>TgCox2a</i>)	✓	-3.80	Cytochrome <i>c</i> oxidase subunit 2 PF3D7_1361700.1 (4.9e ⁻⁵⁸)	x	Cytochrome <i>c</i> oxidase subunit 2 Vbra_8641.t1 (3.6e ⁻³³)	Cox2 P00410 (2.6e ⁻⁰⁶)	Cox2 P00403 (0.0004)	Cox2 P93285 (3.3e ⁻⁰⁶)
TGGT1_310470	Putative cytochrome <i>c</i> oxidase subunit (<i>TgCox2b</i>)	✓	-4.18	Cytochrome <i>c</i> oxidase subunit 2 PF3D7_1430900.1 (7.6e ⁻⁷⁵)	x	Cytochrome <i>c</i> oxidase subunit 2 Vbra_14923.t1 (4.2e ⁻⁷)	Cox2 P00410 (4.3e ⁻³¹)	Cox2 P00403 (9.2e ⁻²⁹)	Cox2 P93285 (3.8e ⁻³⁷)
TGGT1_286530	Hypothetical protein (<i>TgApiCox24</i>)	✓	-2.82	Conserved unknown protein PF3D7_1362000.1 (6.0e ⁻⁴⁵)	x	Hypothetical Protein Vbra_10089.t1 (1.2e ⁻¹¹)	x	x	x

Figure 1

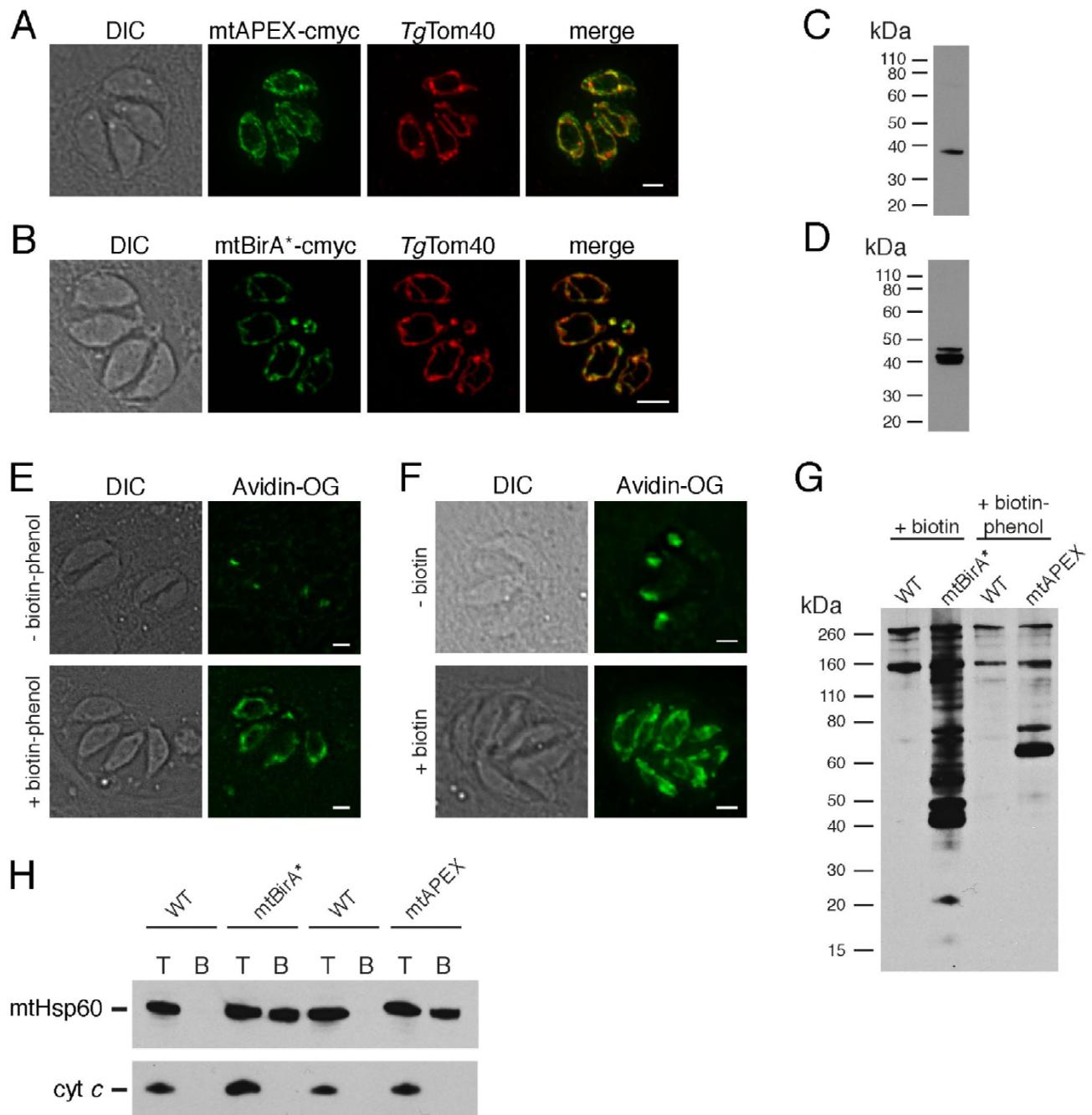
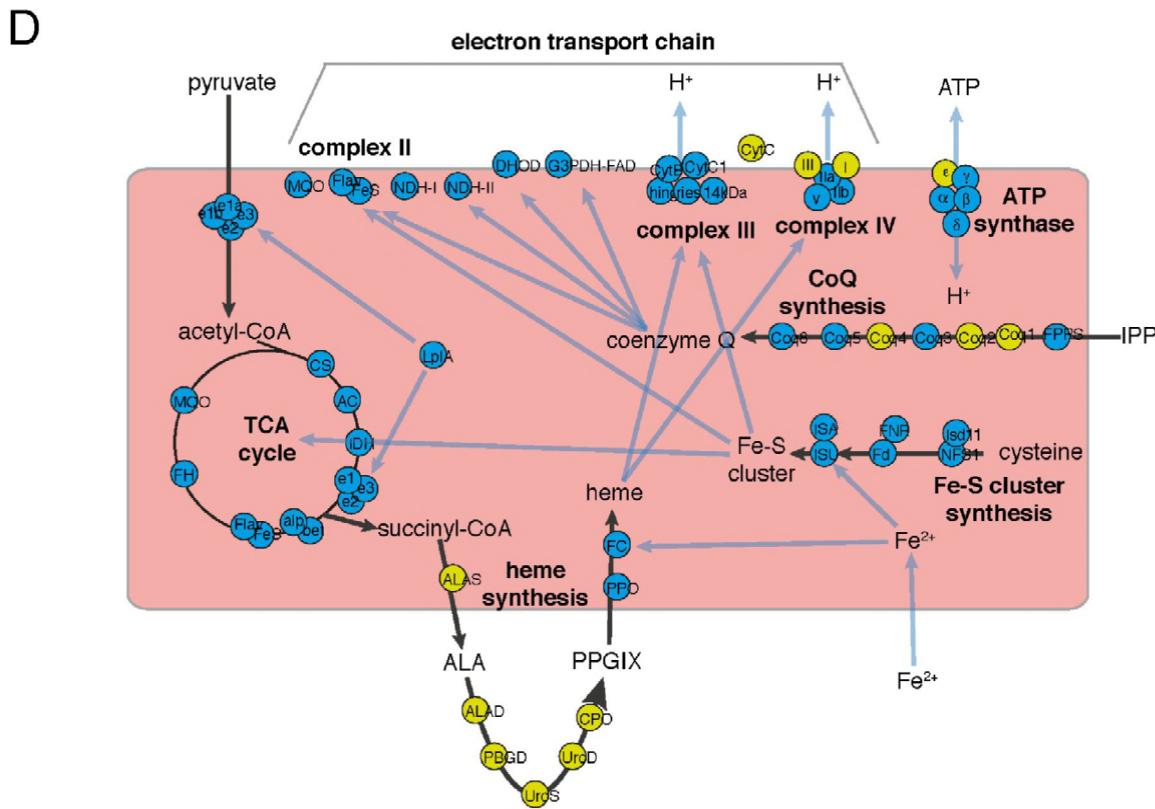
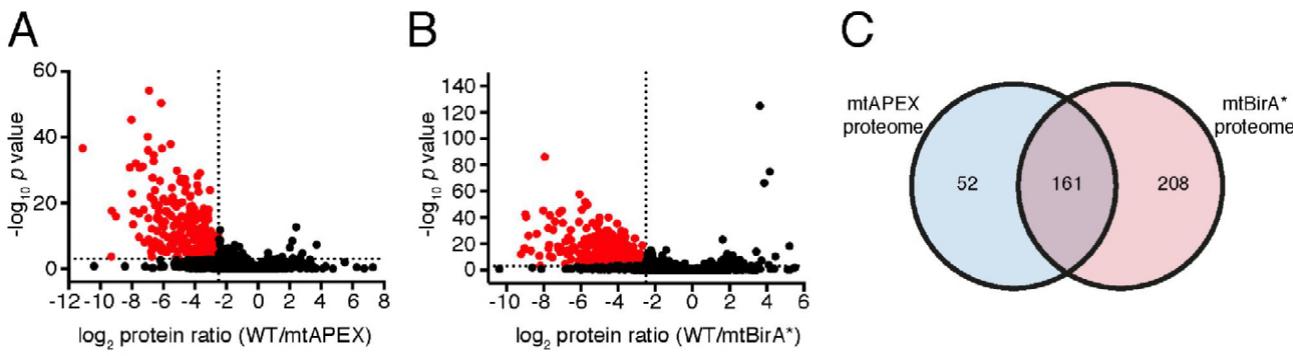




Figure 2

Figure 2 - figure supplement 1

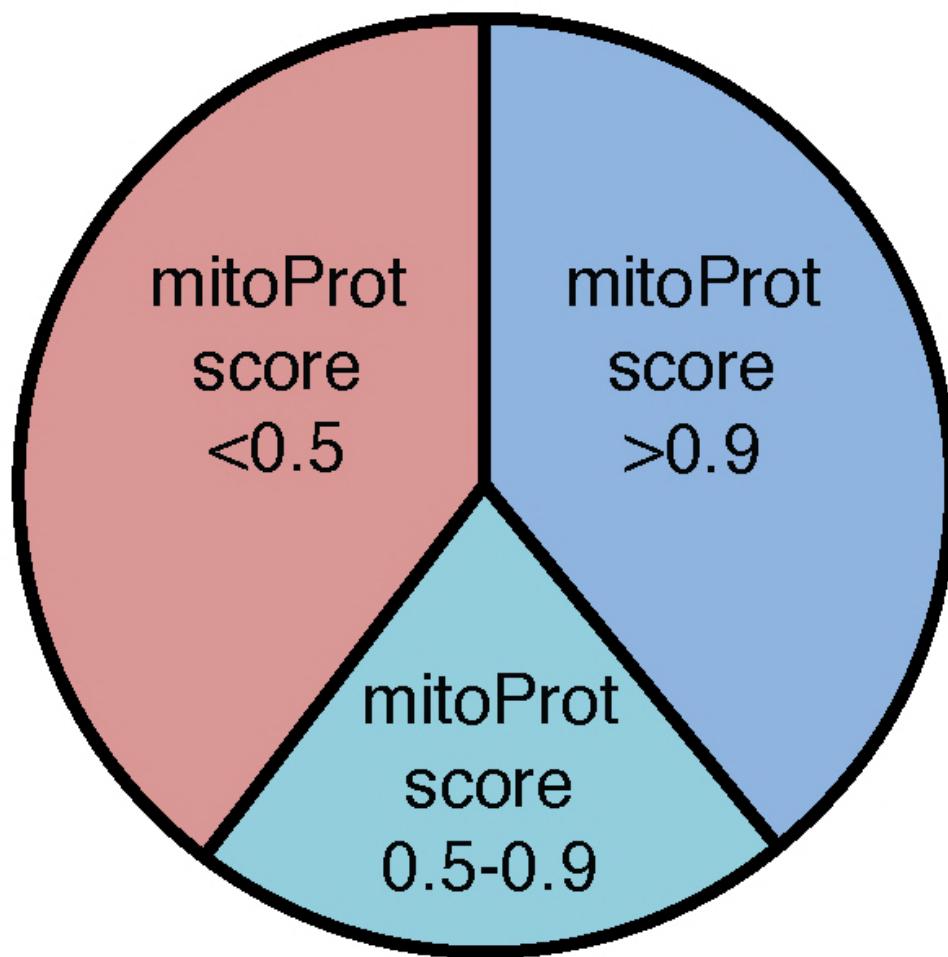
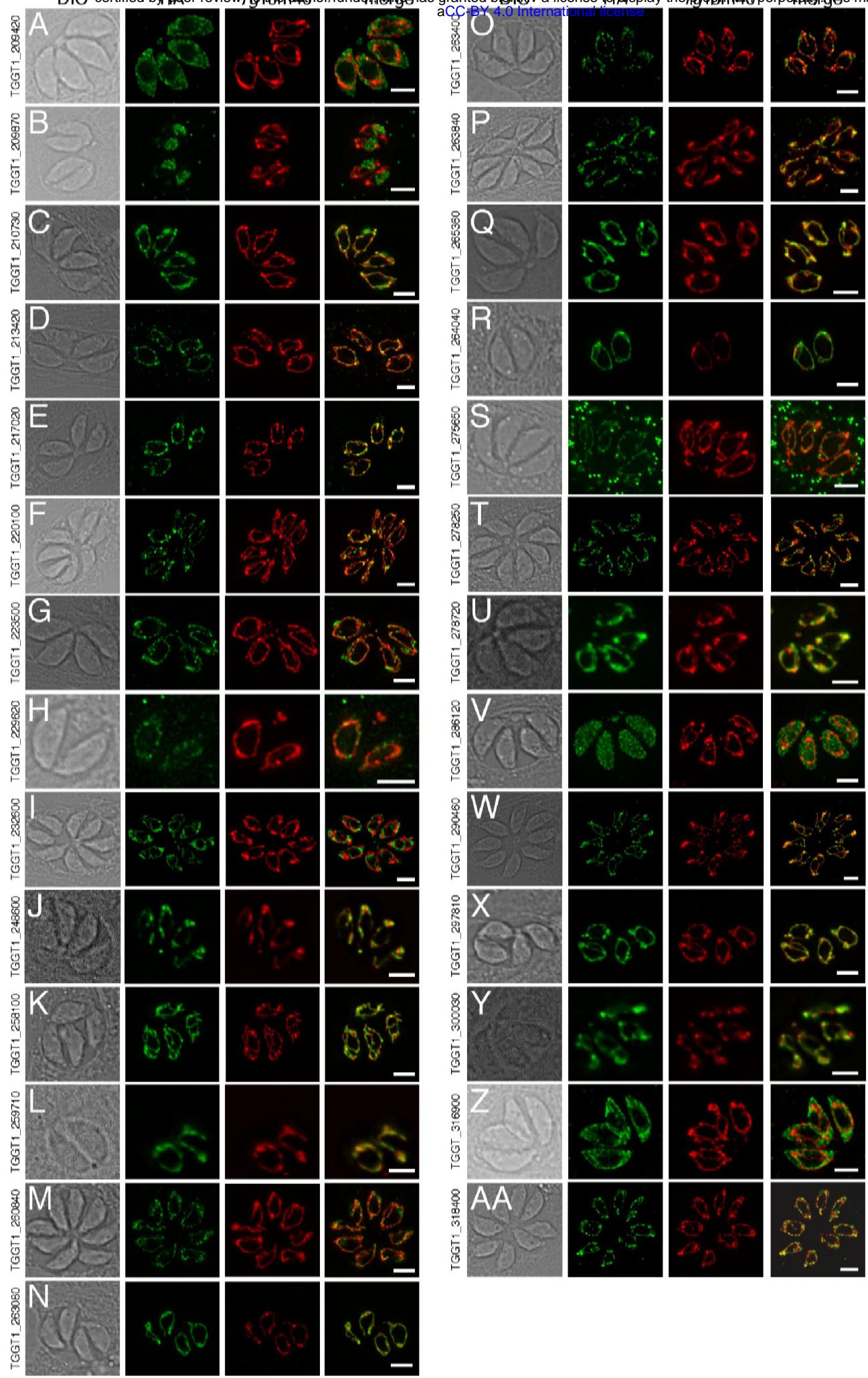
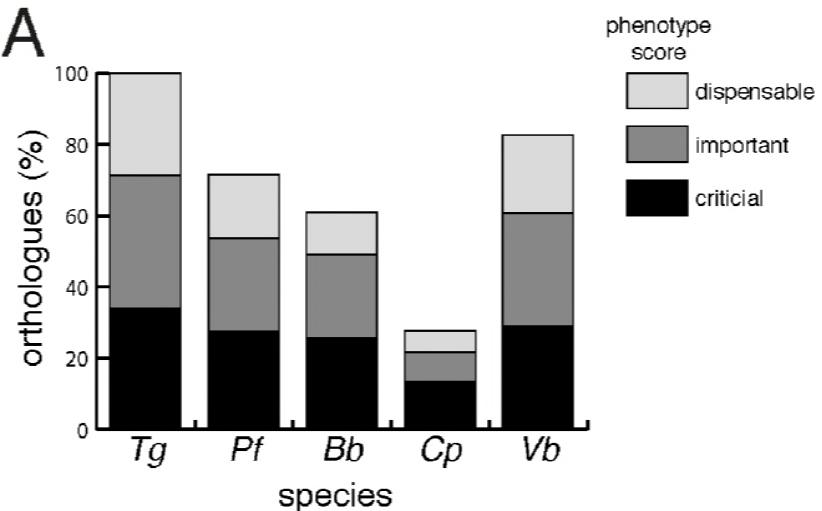



Figure 3


bioRxiv preprint doi: <https://doi.org/10.1101/320184>; this version posted May 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

certified by peer review. <https://doi.org/10.1136/biorxiv-2018-010400>; this version posted May 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).

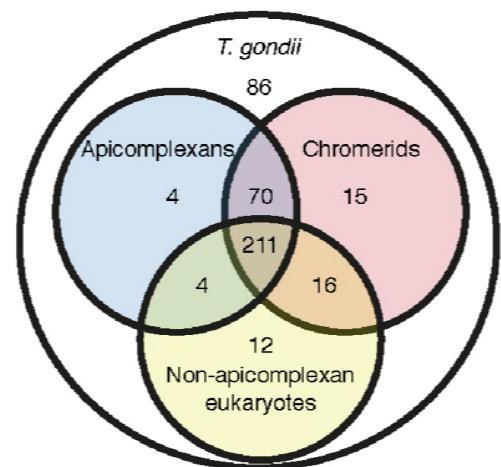
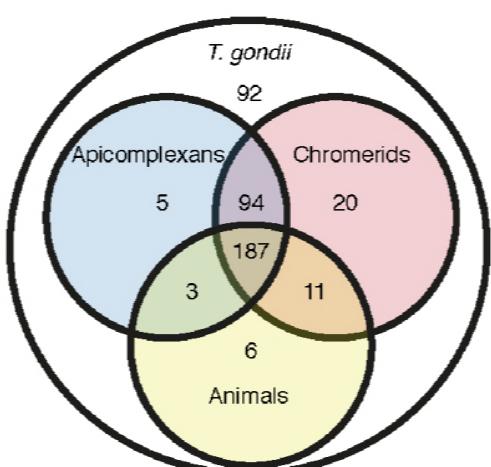
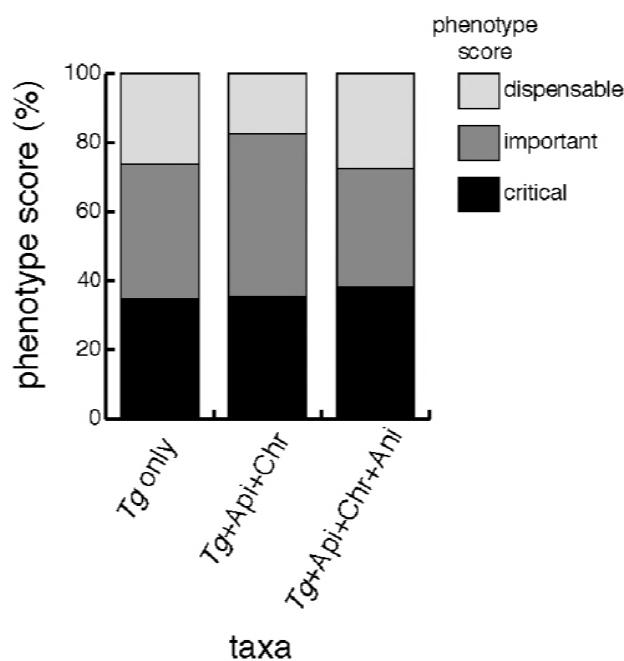
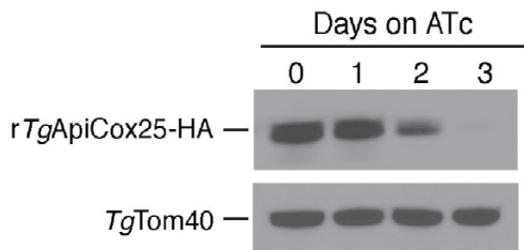
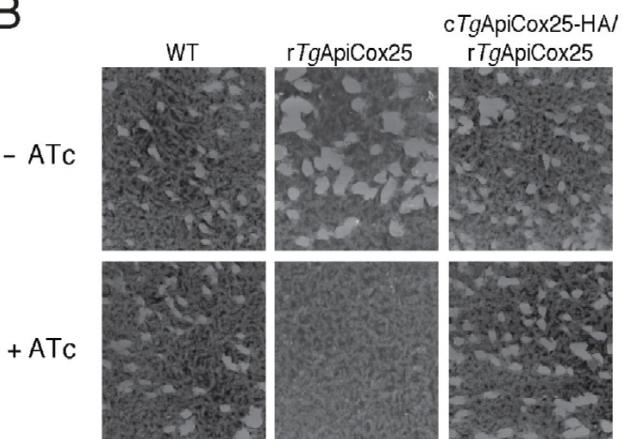
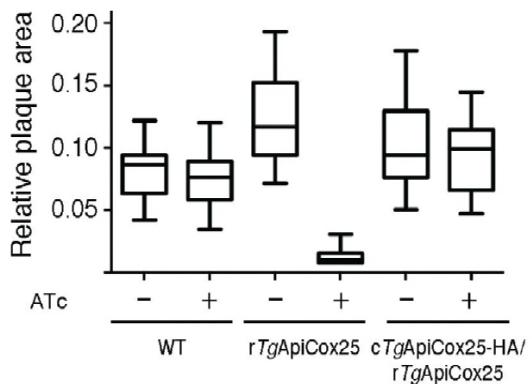
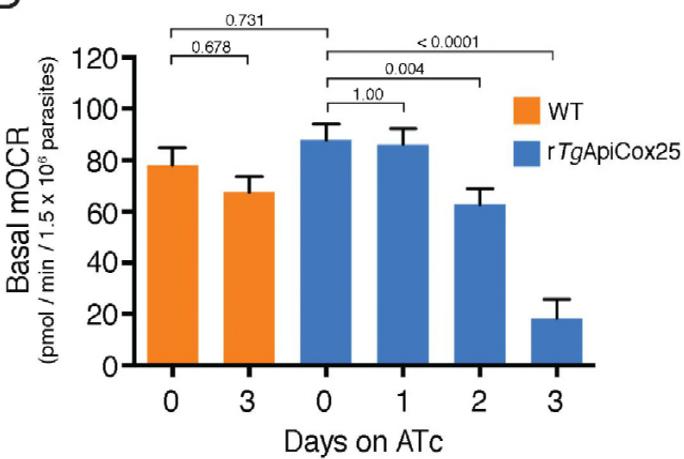
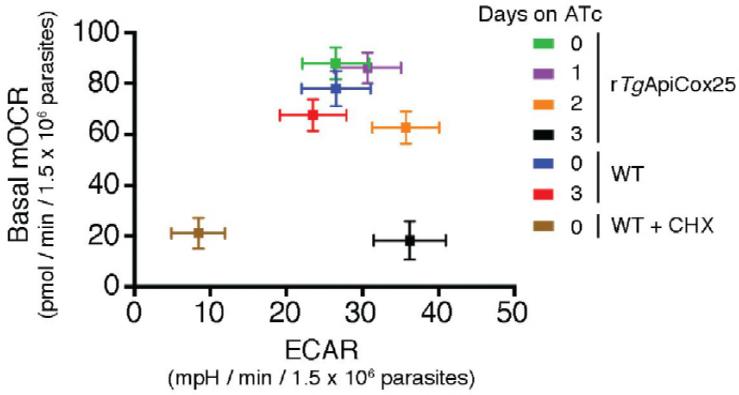
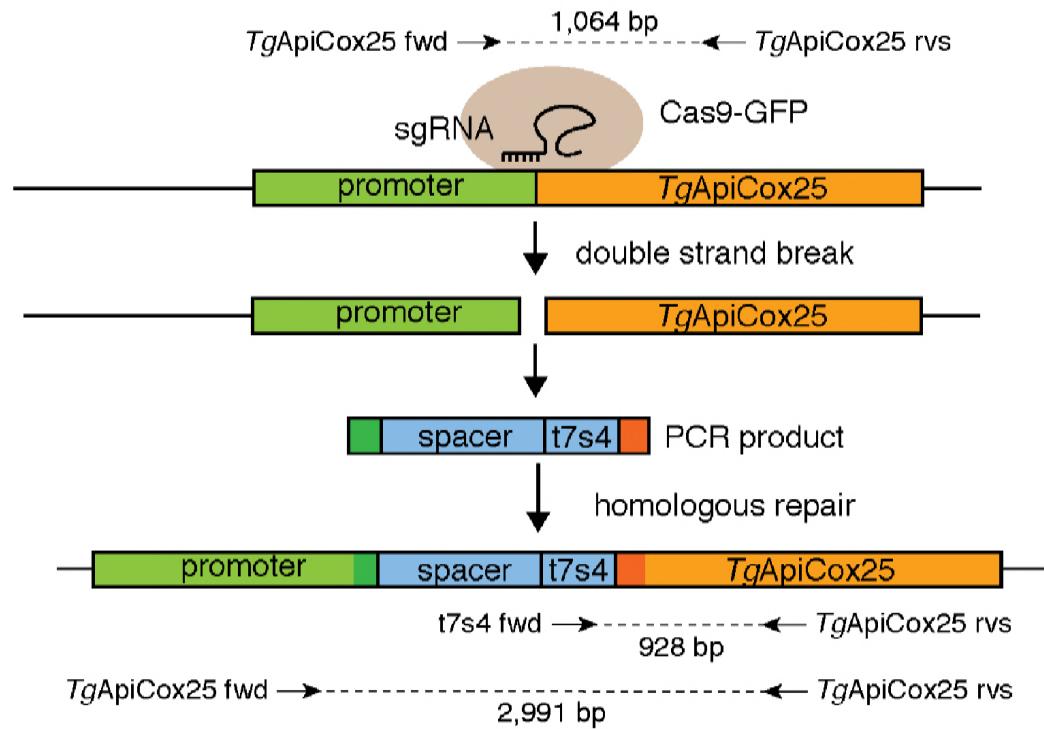


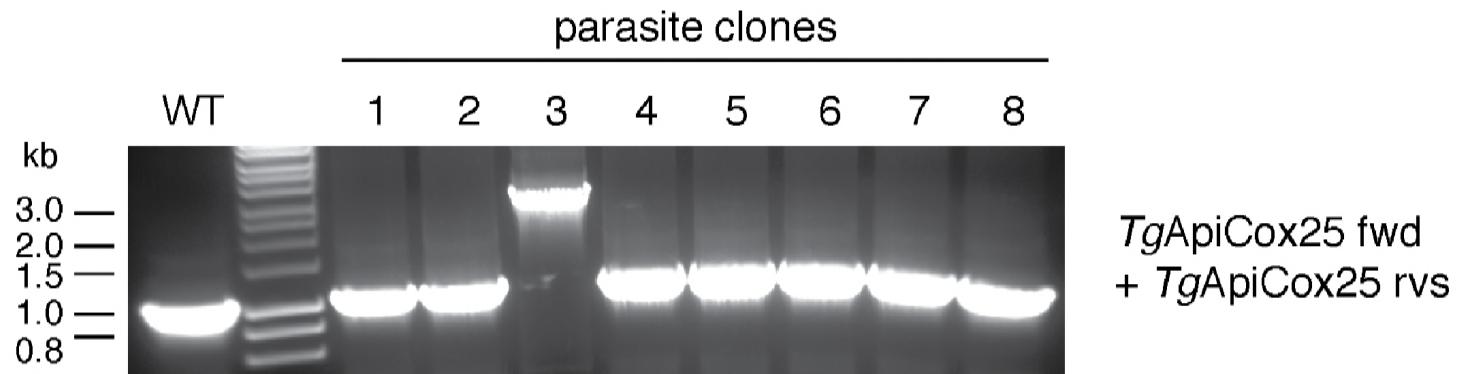
Figure 4


A

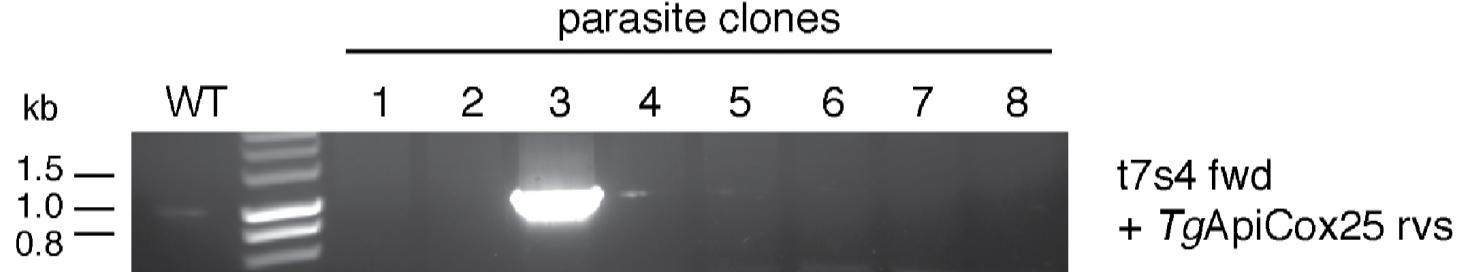

B






C


D


Figure 5

A**B****C****D****E**


A

B

C

Figure 5 - figure supplement 2

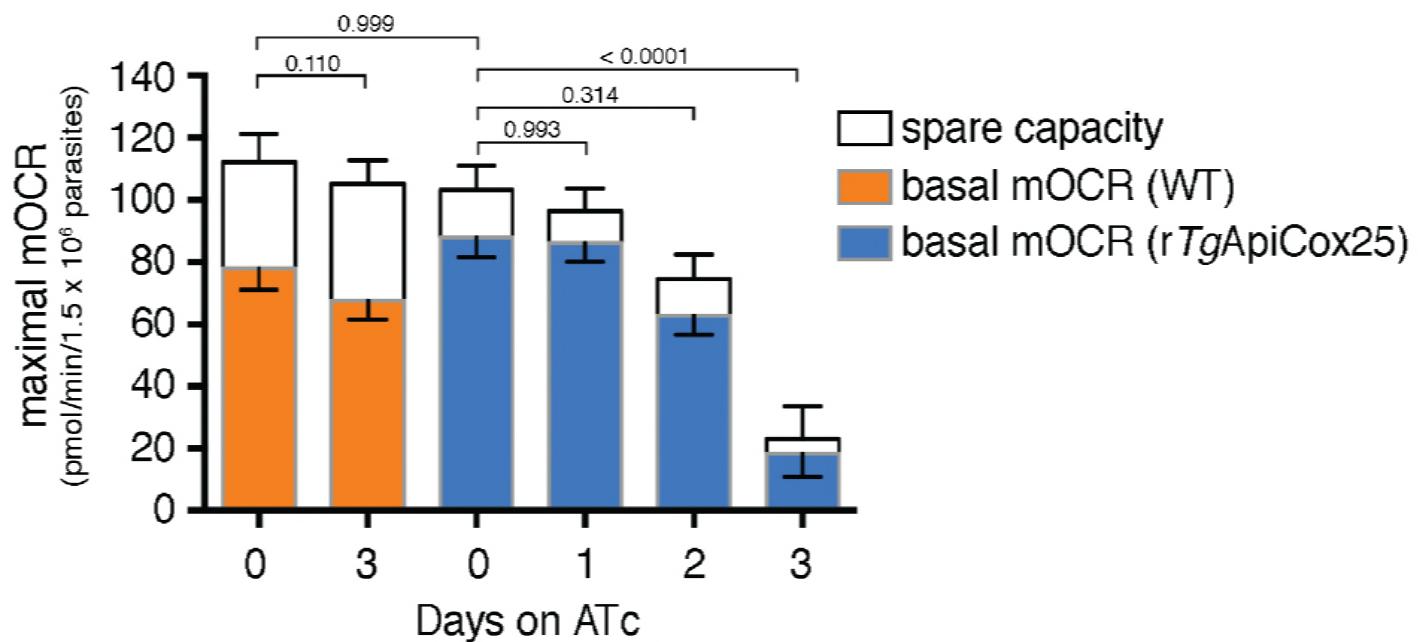
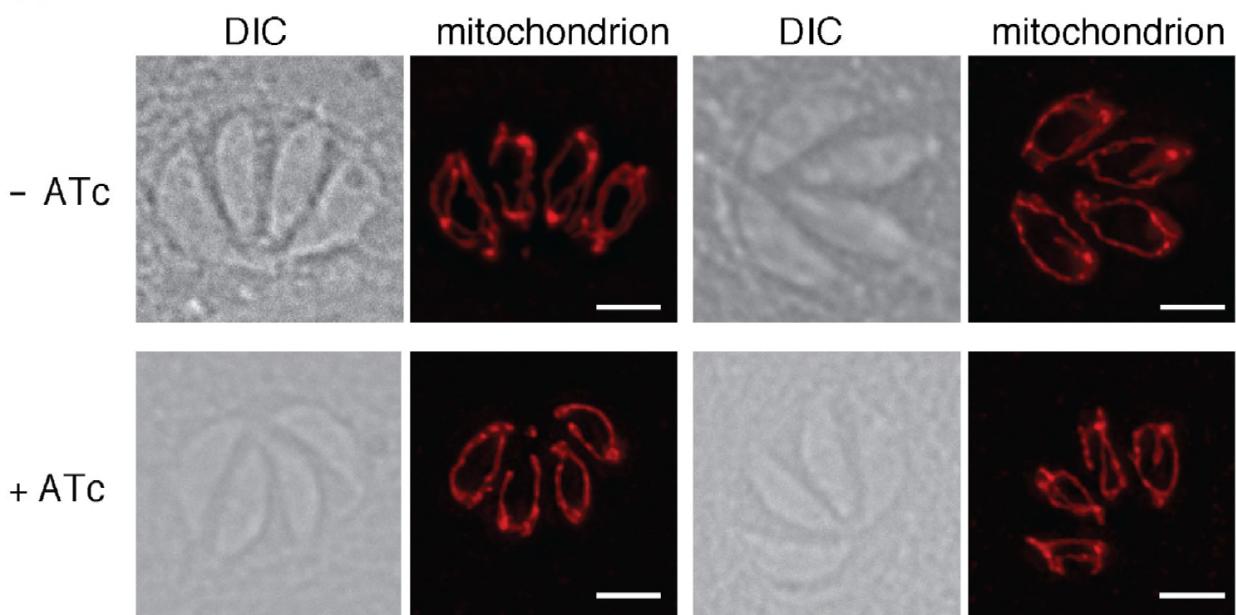
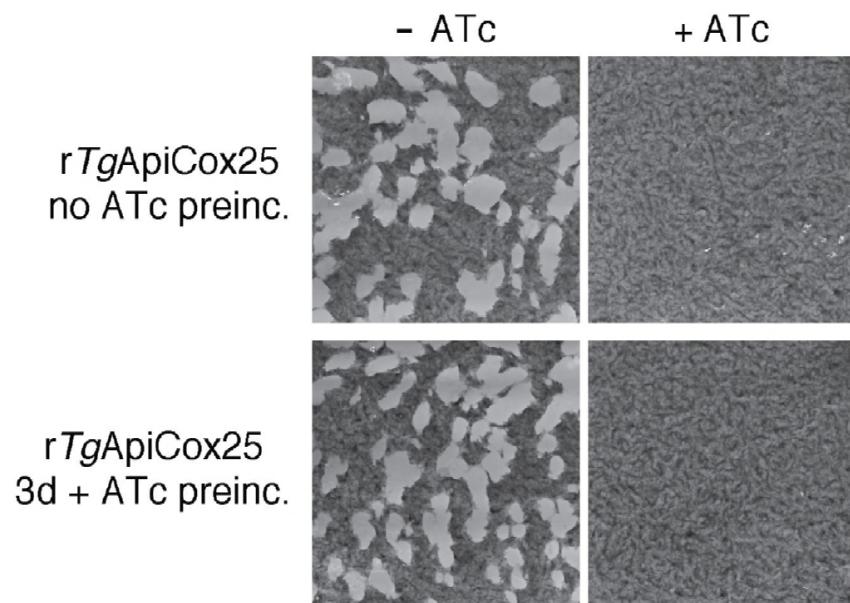
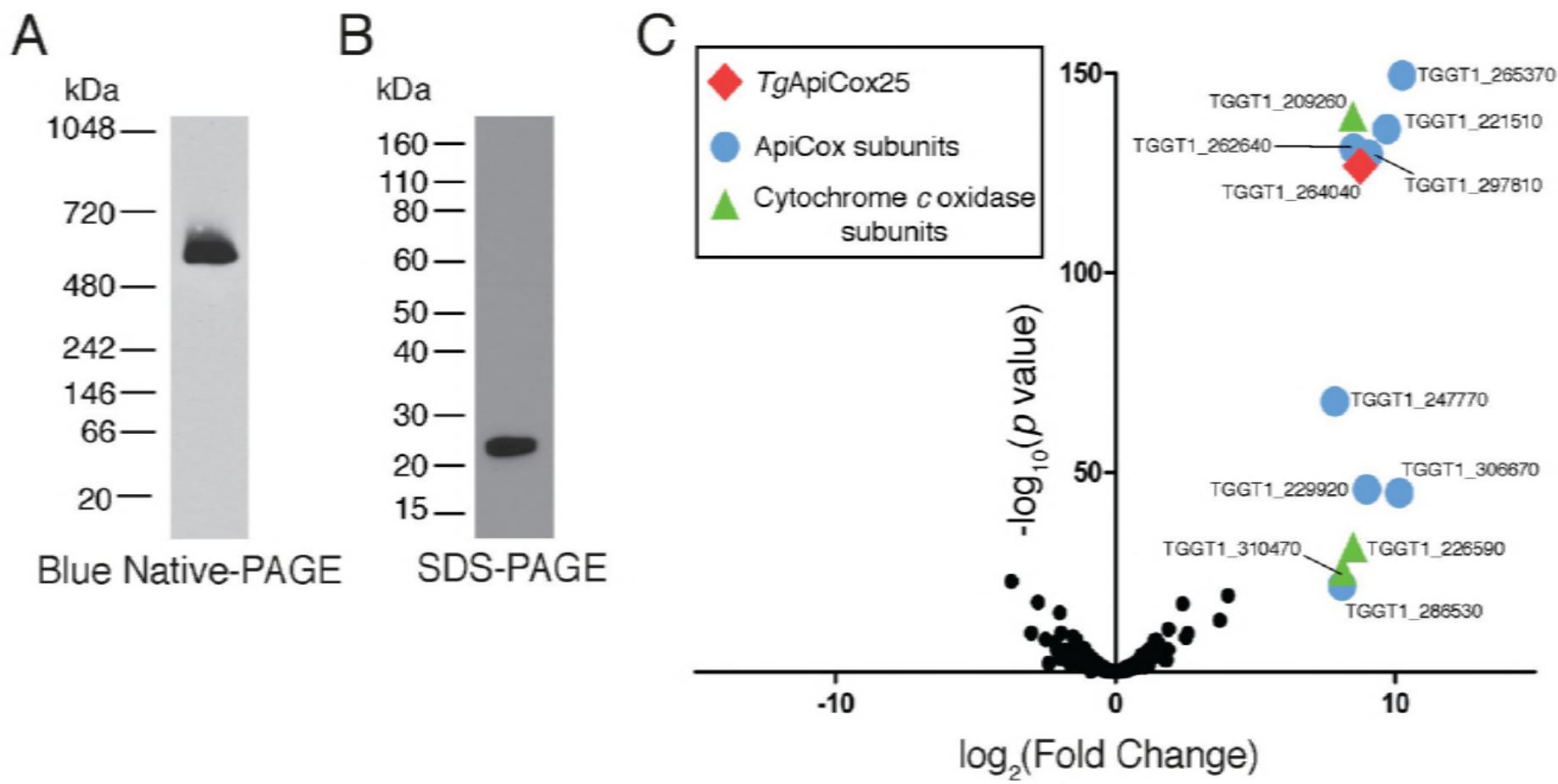




Figure 5 - figure supplement 3


A

B

Figure 6

Figure 6 - figure supplement 1

A

TgApiCox25-HA
anti-HA IP

Total
Unbound
Bound

kDa
— 30
— 20
— 60
— 50
— 40

TgApiCox25-HA —

B

TgTom40-HA
anti-HA IP

Total
Unbound
Bound

kDa
— 60
— 50
— 40
— 60
— 50
— 40

TgTom40-HA
(anti-HA WB)

TgTom40-HA
(anti-*TgTom40* WB)

TgTom40 —

Figure 7

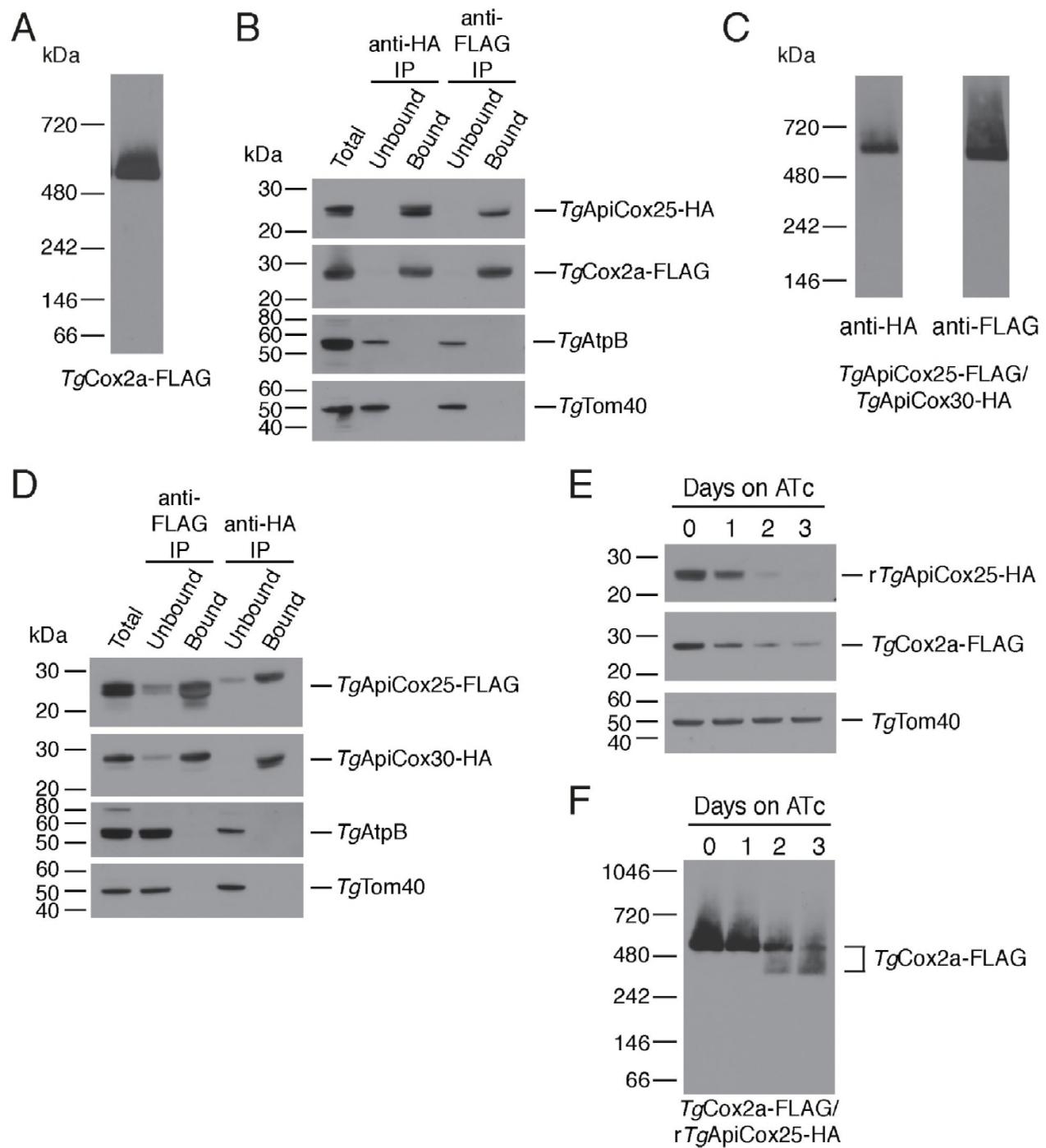
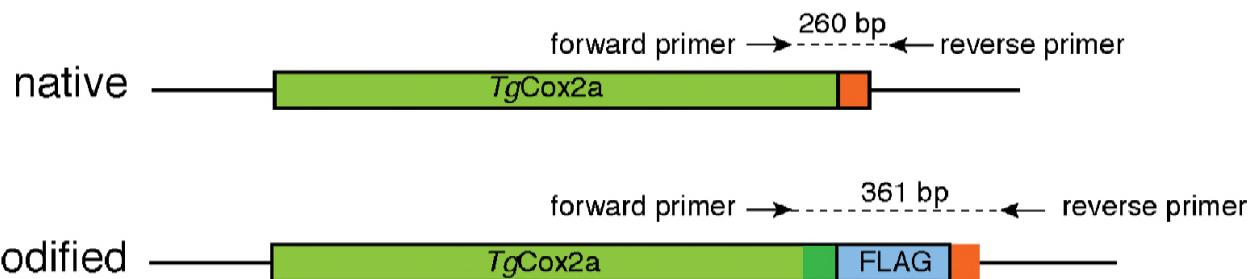
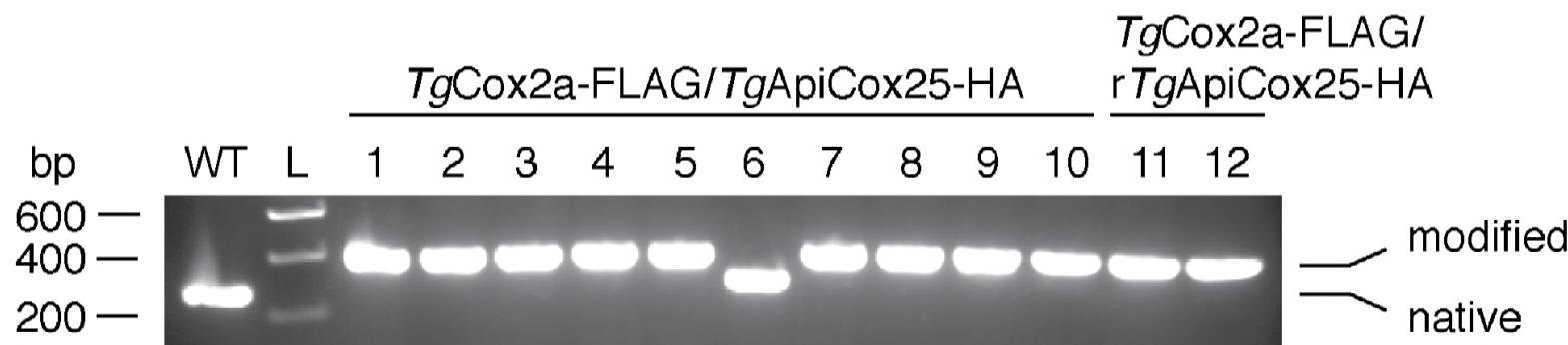
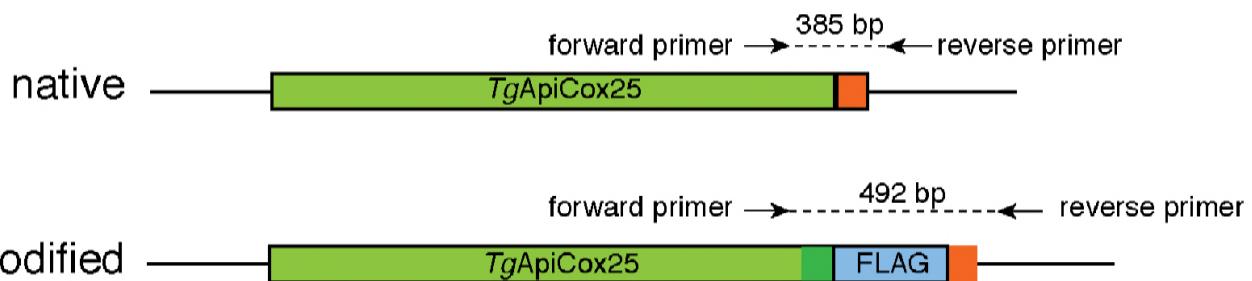
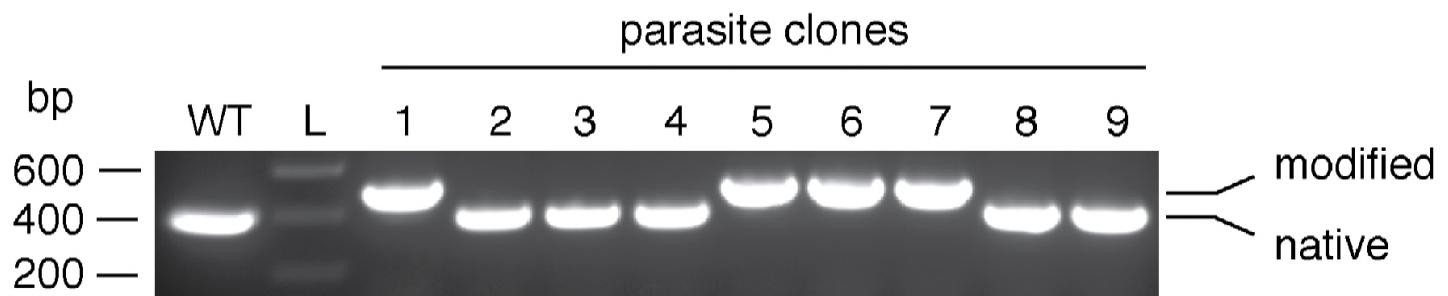




Figure 7 - figure supplement 1


A


B

6

D

