
Prediction of Mutations to Control Pathways Enabling Tumour

Cell Invasion with the CoLoMoTo Interactive Notebook

(Tutorial)

Nicolas Levy 1,2, Aurélien Naldi 3, Céline Hernandez 3, Gautier Stoll 4−8,

Denis Thieffry 3, Andrei Zinovyev 9−11, Laurence Calzone 9−11, Löıc Paulevé 1,∗

1LRI UMR 8623, Université Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France;
2École Normale Supérieure de Lyon, France;

3Computational Systems Biology team, Institut de Biologie de l’Ecole Normale Supérieure, CNRS UMR8197, INSERM

U1024, École Normale Supérieure, PSL Université, Paris, France;
4Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France;

5Équipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers; Paris, France;
6Institut National de la Santé et de la Recherche Médicale, U1138; Paris, France;

7Université Pierre et Marie Curie, Paris, France;
8Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus; Villejuif, France;

9Institut Curie, PSL Research University, Paris, France;
10INSERM, U900, Paris, France;

11MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France

∗Corresponding author: loic.pauleve@lri.fr

Abstract

Boolean and multi-valued logical formalisms are increasingly used to model complex cellular

networks. To ease the development and analysis of logical models, a series of software tools have

been proposed, often with specific assets. However, combining these tools typically implies a series

of cumbersome software installation and model conversion steps. In this respect, the CoLoMoTo

Interactive Notebook provides a joint distribution of several logical modelling software tools, along

with an interactive web Python interface easing the chaining of complementary analyses. In this

protocol, we demonstrate the assets of this approach through the analysis of a computational model

of biological network. Our computational workflow combines (1) the importation of a GINsim model

and its display, (2) its format conversion using the Java library BioLQM, (3) the formal prediction of

mutations using the OCaml software Pint, (4) the model checking using the C++ software NuSMV,

(5) quantitative stochastic simulations using the C++ software MaBoSS, and (6) the visualisation of

results using the Python library matplotlib. Starting with a recent Boolean model of the signalling

network controlling tumour cell invasion and migration, our model analysis culminates with the

prediction of sets of mutations presumably involved in a metastatic phenotype.

1 Introduction

Boolean and multi-valued logical formalisms are increasingly used to model complex cellular networks

[5, 6, 14]. A logical model is usually defined in three steps:

1) The delineation of a regulatory graph, where the vertices (nodes) represent signalling or regulatory

components (proteins, genes, miRs, etc.), while the arcs (arrows) represent regulatory interactions

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table 1: List of software tools used in this notebook

Tool Website Role in this notebook

GINsim ginsim.org Model input and display, conversion to bioLQM and NuSMV
bioLQM colomoto.org/biolqm Fixpoint computation, conversion to MaBoSS and Pint
MaBoSS maboss.curie.fr Stochastic simulations, assess impact of mutations on propensity

of reaching phenotypes
Pint loicpauleve.name/pint Formal prediction of mutants
NuSMV nusmv.fbk.eu Formal verification of phenotypes reachability and stability

between pairs of components. These arcs are labelled by a sign: positive in the case of activation,

negative in the case of an inhibition (multiple arcs between two nodes may be considered but are

not used here).

2) A discrete variable is associated with each node. In the simplest cases, as hereafter, these variables

are Boolean, i.e. they can take only two values (0 or 1), denoting the absence/inactivity or the

presence/activity of the corresponding components.

3) Finally, a logical rule is associated with each component to specify the combinations enabling its

activation. More precisely, this rule combines the different variables corresponding to the regulatory

components using the logical negation (noted !), conjunction (noted &) and disjunction (noted |).
For example, the rule associated with the component GF in the model considered below is !CDH1 &

(GF | CDH2), which reads as ”the component GF will be activated in the absence of CDH1 and in

the presence of CDH2 or GF itself”. In other words, CDH2 is required transiently for GF activation,

in the absence of CDH1.

To support the development and analysis of logical models, a series of software tools have been

proposed, often with specific assets [7, 9, 12, 13].

The CoLoMoTo Interactive Notebook1 [11] relies on Docker2 and Jupyter3 technologies to assist on

editing and sharing reproducible analysis workflows for logical models. In addition to the distribution of a

set of software tools to define and analyse Boolean and multi-valued networks, a Python interface for each

of the integrated tools is provided, greatly easing the execution and chaining of complementary analyses.

This protocol describes in details the usage of the CoLoMoTo Interactive Notebook to provide a

reproducible analysis of a recently published model of the signalling network controlling tumour cell

invasion and migration. More specifically, we combine different tools (Table 1) to compute the model

stable states, perform stochastic simulations, compute (sets of) mutations controlling the reachability of

specific stable states, and evaluate their efficiency.

1.1 This is an executable and reproducible paper

This protocol has been actually edited entirely as a Jupyter notebook before being converted to a LaTeX

document for journal-specific editing purposes. The original notebook file is provided as supplemental

material. It can also be visualised and downloaded for execution in the CoLoMoTo Interactive Notebook

1Available at https://github.com/colomoto/colomoto-docker
2https://docker.com
3https://jupyter.org

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

http://ginsim.org
http://colomoto.org/biolqm
https://maboss.curie.fr
http://loicpauleve.name/pint
http://nusmv.fbk.eu
https://github.com/colomoto/colomoto-docker
https://docker.com
https://jupyter.org
https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

at https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/usecases/Usecase -

Mutations enabling tumour invasion.ipynb.

The blocks beginning with In [..] correspond to the content of Jupyter code cells which contain the

Python instructions to execute. When relevant, the blocks beginning with Out [..] display the return

value of the last instruction of the related code cell.

Provided Docker and Python are installed, the CoLoMoTo Interactive notebook can be installed by

typing and executing the following command4 on GNU/Linux, macOS, and Microsoft Windows:

pip install -U colomoto-docker

Once installed, the notebook can be executed by typing

colomoto-docker -V 2018-03-31

The execution of this command will open a web page with the Jupyter notebook interface, enabling

the loading and execution of the code. Note that ”SHIFT+ENTER” must be used to execute each code

cell. More information on colomoto-docker usage can be obtained by typing colomoto-docker --help

and by visiting https://github.com/colomoto/colomoto-docker.

1.2 Notebook preparation

This notebook makes use of the following Python modules:

In [1]: import ginsim

import biolqm

import maboss

import pypint

from colomoto_jupyter import tabulate # for fixpoint table display

from itertools import combinations # for iterating over sets

import matplotlib.pyplot as plt # for modifying plots

2 Model

We analyse a Boolean network model of the switch between apoptosis and cell tumour invasion from

Cohen et al. [4]. This model can be loaded directly from the GINsim model repository at http:

//ginsim.org/models_repository.

We first show how to use GINsim [10] to fetch and parse the GINML file (GINsim graph-based

XML format, encapsulated in a zginml archive) and display the regulatory graph of the network. To

load the model, we copied the URL of the .zginml file from the model repository page at http:

//ginsim.org/node/191.

In [2]: lrg = ginsim.load("http://ginsim.org/sites/default

/files/SuppMat_Model_Master_Model.zginml")

The regulatory graph (using the graphical setting specified in the model file) can be displayed with

the following command:

In [3]: ginsim.show(lrg)

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/usecases/Usecase%20-%20Mutations%20enabling%20tumour%20invasion.ipynb
https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31/usecases/Usecase%20-%20Mutations%20enabling%20tumour%20invasion.ipynb
https://github.com/colomoto/colomoto-docker
http://ginsim.org/models_repository
http://ginsim.org/models_repository
http://ginsim.org/node/191
http://ginsim.org/node/191
https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1: Graphical output resulting from the input code: In [3]: ginsim.show(lrg)

The resulting graphics is reproduced in Figure 1.

In this regulatory graph, the grey boxes denote input and output vertices (nodes). Green arrows and

red T arrows respectively denote activatory and inhibitory interactions. A set of rules combining the

vertices with the Boolean operators NOT, AND, and OR, which must be consistent with the regulatory

graph, then allows the computation of enabled transitions for each network state. These rules have been

defined in Cohen et al. [4] and are specified within the GINsim model.

3 Identification of stable states

First, we compute the complete list of logical stable states (or fixpoints) of the model using the java

library bioLQM [8]. We thus need to convert the GINsim model into bioLQM:

In [4]: lqm = ginsim.to_biolqm(lrg)

At that stage, lrg is a Python object representing the model suitable for GINsim, and lqm is a Python

object representing the equivalent model suitable for bioLQM.

The list of stable states of a bioLQM model is computed as follows:

In [5]: fixpoints = biolqm.fixpoints(lqm)

Here, fixpoints is a Python list of states. A state is encoded as a Python association table (dictionary)

which maps each node of the network to a value.

For a nice display of the list of stable states, one can use the tabulate function provided in the

colomoto jupyter Python library, imported at the beginning of the notebook:

In [6]: tabulate(fixpoints)

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 2: Graphical output resulting from the input code: In [6]: tabulate(fixpoints)

Figure 2 shows the table as displayed in the notebook. The complete table is given in supplemental

data.

It results that the model has nine stable states, each corresponding to a row in the table, four of

which enabling apoptosis (rows with value 1 in fourth column ”Apoptosis”). Note that the input node

DNAdamage is also active in each of these four states.

A state can be visualised on the regulatory graph using GINsim. For example, the third stable state

can be displayed using the following command:

In [7]: ginsim.show(lrg, fixpoints[2])

The resulting graphics is reproduced in Figure 3.

In this graph, the vertices shown in white or orange denote components that are OFF (value 0) or

ON (value 1) respectively.

4 Assessing the probabilities to reach alternative attractors us-

ing MaBoSS

MaBoSS [13] is a C++ software that performs stochastic simulations of a Boolean network by translating

it into a continuous time Markov processes. Each node activation and inactivation is associated with an

up and a down rate, which specify the propensity of the corresponding transition. From a given state,

the simulation integrates all the possible node updates and derives from their rate a probability and a

duration for each transition. By default, all transitions are assigned the same rate. For a given set of

initial conditions, MaBoSS produces time trajectories and estimates probabilities of given model states

over the whole simulation time. Steady state distributions can thus be approximated, provided that a

sufficient number of sufficiently long simulations have been performed.

The aim of this section is to reproduce part of the results obtained by Cohen et al. [4], which show

that a Notch (NICD) gain-of-function together with a p53 loss-of-function prevent reaching a stable

apoptotic phenotype.

First, we convert the bioLQM model to MaBoSS:

In [8]: wt_sim = biolqm.to_maboss(lqm)

The variable wt sim is a Python object that gathers both the Boolean network rules and the settings

for the simulations, including the transition rates.

4You may have to use pip3 instead of pip depending on your configuration

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3: Graphical output resulting from the input code: In [7]: ginsim.show(lrg, fixpoints[2])

Figure 4: Graphical output resulting from the input code: In [9]: maboss.wg set istate(wt sim)

4.1 Simulation setup

The stochastic simulation of Boolean networks using MaBoSS requires the specification of several

parameters.

4.1.1 Initial states

First, a distribution of initial states must be specified: each simulation then starts from a state sampled

from this distribution. The distribution is determined by assigning a probability to start in state 0 or in

state 1 to each node. By default, a node has a probability 1 to start in state 0.

The maboss Python library provides widgets to ease the assignment of this initial distribution. The

following code enables the definition of a distribution of initial states with all nodes at 0, but DNAdamage

and ECMicroenv with equiprobable 0 and 1 values. After pressing ”OK”, the notebook cell will be

replaced by the actual Python call resulting in equal probabilities for these two nodes to start in active or

inactive states.

In [9]: maboss.wg_set_istate(wt_sim)

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

The notebook will then display the widgets reproduced in Figure 4. The selection of nodes and of

initial conditions shown in this figure are then translated in the following code:

In [10]: #maboss.wg_set_istate(wt_sim)

maboss.set_nodes_istate(wt_sim, ["DNAdamage", "ECMicroenv"],

[0.5, 0.5])

4.1.2 Output nodes

Using MaBoSS, we can focus on the output nodes and ignore the other nodes, which enable us to identify

the corresponding phenotypes. This can be done using the following code:

In [11]: #maboss.wg_set_output(wt_sim)

wt_sim.network.set_output(('Metastasis', 'Migration', 'Invasion',

'EMT', 'Apoptosis', 'CellCycleArrest'))

4.1.3 Simulation parameters

The update parameters method can be used to specify several parameters for the stochastic simulation

algorithm. We show below the complete list of parameters with the values obtained by default when

translating a model from GINsim. The method can be called with any subset of these parameters.

Among the parameter list, sample count corresponds to the number of simulations performed to

compute statistics, while max time is the maximum (simulated) duration of a trajectory. Note that

for a proper estimation of probabilities of the stable states, max time needs to be long enough for the

simulation to reach an asymptotic solution.

In [12]: wt_sim.update_parameters(discrete_time=0, use_physrandgen=0,

seed_pseudorandom=100, sample_count=50000,

max_time=50, time_tick=0.1, thread_count=4,

statdist_traj_count=100, statdist_cluster_threshold=0.9)

4.2 Simulation of the wild-type model

The object wt sim represents the input of MaBoSS, encompassing both the network and simulation

parameters. The simulations are triggered with the .run() method and return a Python object for

accessing the results.

In [13]: %time wt_results = wt_sim.run()

CPU times: user 2.47 ms, sys: 5.02 ms, total: 7.49 ms

Wall time: 6.2 s

The resulting object gives access to the output data generated by MaBoSS. It includes notably

the mean probability over time for the activity of the output states integrated over all the performed

simulations.

The function plot piechart displays proportionnaly the mean probability of each output state at

the last time point. Provided the simulation time has been set high enough, this gives an approximation

of the probabilities of the stable states reachable from the specified initial conditions.

In [14]: wt_results.plot_piechart()

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 5: Graphical output resulting from the input code: In [14]: wt results.plot piechart()

Figure 6: Graphical output resulting from the input code: In [15]: wt results.plot node trajectory()

The resulting graphics is reproduced in Figure 5.

In this chart, a state is described by the set of its active output nodes and is associated to a

phenotype. For instance, the ”<nil>” phenotype has all output nodes set to 0, which was referred to

as the ”homeostatic state” in the original article; in the case of the ”Apoptosis -- CellCycleArrest”

phenotype, the two output nodes Apoptosis and CellCycleArrest are simultaneously active, while

the other output nodes are inactive; the ”EMT -- CellCycleArrest” phenotype denotes cells that have

gone through the epithelial to mesenchymal transition, but did not invade the tissue, hence the output

nodes Invasion, Migration and Metastasis are inactive; finally the ”Migration -- Metastasis --

Invasion -- EMT -- CellCycleArrest” phenotype corresponds to a metastatic state, i.e. to cells that

went through EMT, invaded the tissue and migrated to a distant site.

From this plot, we can deduce that, from the specified set of initial conditions, the apoptotic state

(orange section), the EMT (purple section) and the metastatic states (green section) can be reached (the

proportion of simulations that reached none of these phenotypes correspond to the red section).

The mean value of each output node during the simulations can be plotted with the following command:

In [15]: wt_results.plot_node_trajectory()

The resulting graphics is reproduced in Figure 6.

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 7: Graphical output resulting from the input code: In [18]: mut results.plot piechart()

4.3 Simulation of double mutant Notch++/p53--

In the original article [4], the authors analysed the double Notch++/p53-- mutant, i.e., the combination

of a Notch gain-of-function combined with a p53 loss-of-function, showing that all trajectories lead to a

metastatic state.

A mutant can be configured by copying the wild-type model, and use the mutate method to model

the desired gains and losses of function:

In [16]: mut_sim = wt_sim.copy()

mut_sim.mutate("p53", "OFF")

mut_sim.mutate("NICD", "ON")

The modified model can then be simulated exactly as for the wild-type case:

In [17]: %time mut_results = mut_sim.run()

CPU times: user 4.22 ms, sys: 4.98 ms, total: 9.2 ms

Wall time: 5.98 s

In [18]: mut_results.plot_piechart()

The resulting graphics is reproduced in Figure 7.

Hence, using the same parameters as for the wild-type model, all the trajectories obtained for the

double mutant model reach the metastatic invasive state exclusively. This suggests that such a double

mutation can be responsible for a loss of apoptotic capability of cancer cells.

5 Formal analysis with Pint and NuSMV

In the above section, the conclusion regarding the loss of apoptotic stable state relies on stochastic

simulations, which, in general, may not offer a complete coverage of the possible trajectories. Therefore,

one may want to formally verify whether the loss of reachable stable apoptosis state is total or not. First,

we show how to use Pint [12] to predict combinations of mutations which are guaranteed to prevent the

activation of apoptosis. Next, we use the software NuSMV [2] to evaluate formally the Notch++/p53--

double mutant. Finally, we use MaBoSS to assess the efficiency of new combinations of mutations

predicted by Pint.

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

5.1 Formal predictions of mutations from the wild-type model

Pint implements formal methods which allows deducing combinations of mutations which are guaranteed

to block the reachability of a given state.

First, we convert the bioLQM model to Pint:

In [19]: an = biolqm.to_pint(lqm)

Then, we transfer the initial conditions defined in MaBoSS to the an Pint model. Like MaBoSS, Pint

supports multiple initial values for a single node. However, in contrast to MaBoSS, Pint does not consider

probability distributions.

In [20]: an.initial_state.update(wt_sim.get_initial_state())

an.initial_state.changes() # display non-default (0) initial value

Out[20]: {'DNAdamage': (0, 1), 'ECMicroenv': (0, 1)}

Given a (partial) state specification, Pint provides the method oneshot mutations for cut, which

returns different sets of mutations guaranteed to prevent any trajectory from any possible initial state to

reach, even transiently, the specified state.

In [21]: %time an.oneshot_mutations_for_cut(Apoptosis=1, \

exclude={"ECMicroenv", "DNAdamage"})

CPU times: user 8.74 ms, sys: 5.04 ms, total: 13.8 ms

Wall time: 298 ms

Out[21]: [{'ZEB2': 1},
{'AKT1': 1},
{'AKT2': 1},
{'ERK': 1},
{'NICD': 1, 'SNAI2': 1, 'ZEB1': 1},
{'SNAI2': 1, 'ZEB1': 1, 'p63': 0},
{'SNAI2': 1, 'ZEB1': 1, 'miR203': 1},
{'NICD': 1, 'SNAI2': 1, 'p73': 0},
{'SNAI2': 1, 'p63': 0, 'p73': 0},
{'SNAI2': 1, 'miR203': 1, 'p73': 0},
{'NICD': 1, 'ZEB1': 1, 'p53': 0},
{'ZEB1': 1, 'p53': 0, 'p63': 0},
{'ZEB1': 1, 'miR203': 1, 'p53': 0},
{'NICD': 1, 'p53': 0, 'p73': 0},
{'p53': 0, 'p63': 0, 'p73': 0},
{'miR203': 1, 'p53': 0, 'p73': 0}]

Among the returned mutation sets, one can spot the mutation {'NICD': 1, 'p53': 0, 'p73': 0},

which combines a gain-of-function of Notch ('NICD': 1) with a loss-of-function of p53 ('p53': 0), along

with a loss-of-function of p73 ('p73': 0).

Noteworthy, forbidding transient reachability entails a stronger constraint than just preventing any

stable state with the specified property. Indeed, some mutations may remove the stability of the specified

states, while some trajectories may still traverse some of them, but only transiently.

Therefore, the sets of mutations returned by Pint, albeit correct, might be non-minimal for controlling

only the long-term dynamics of the system. Finally, note that the analysis of Pint can give incomplete

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

results. This is due to the technology on which the computation relies (static analysis), which allows

addressing very large scale networks.

5.2 Revisiting the Notch++/p53-- double mutant

We will first formally analyse the Notch++/p53-- double mutant to show that asymptotic apoptosis is

forbidden, although transient activation of apoptosis node might still be possible.

One can apply a mutation on a Pint model using the lock method. A new model is returned with a

constant value for the corresponding nodes.

In [22]: mut_an = an.lock(NICD=1, p53=0)

Then, we use the temporal logic CTL [3] to specify formally the dynamical properties to verify. CTL

expression can be built using the colomoto.temporal logics Python module.

In [23]: from colomoto.temporal_logics import *

First, the existence of a trajectory leading to a transient state where Apoptosis is active can be

specified as follows:

In [24]: transient_apoptosis = EF(S(Apoptosis=1))

EF is a temporal logic operator that is true if there exists at least one trajectory leading to a state

verifying the properties given as argument. Here the property S(Apoptosis=1) specifies that the state

has the node Apoptosis active.

Next, the existence of a trajectory leading to a stable Apoptosis activation can be specified as follows:

In [25]: stable_apoptosis = EF(AG(S(Apoptosis=1)))

Here, AG enforces that all the states reachable via any trajectory have the node Apoptosis active.

Finally, we gather these two properties in a Python dictionary for later use:

In [26]: ctl_specs = {

"reach-apoptosis": transient_apoptosis,

"stable-apoptosis": stable_apoptosis

}

The adequation of a model with a CTL property can be assessed using a model-checker such as

NuSMV [1].

Pint provides a conversion to NuSMV models. By default, the NuSMV model considers any initial

state. With the skip init=False option, we enforce that the properties are verified only from the initial

states defined earlier.

In [27]: smv = mut_an.to_nusmv(skip_init=False)

We then add the properties defined above, and ask NuSMV to verify them.

In [28]: smv.add_ctls(ctl_specs)

%time smv.verify()

CPU times: user 2.82 ms, sys: 6.02 ms, total: 8.84 ms

Wall time: 20 s

Out[28]: {'reach-apoptosis': True, 'stable-apoptosis': False}

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

Interestingly, the Notch++/p53-- double mutant can still reach an apoptotic state, but only transiently:

the property stable-apoptosis being false, it is guaranteed that all trajectories eventually lead to stable

apoptosis inactivation.

To complete our analysis, we now consider the triple mutant obtained by adding a loss-of-function of

p73. As predicted by Pint, transient reachability of apoptosis is impossible in this triple mutant. We can

use NuSMV to further verify that it is the case, using the following code:

In [29]: smv_mut3 = an.lock(NICD=1, p53=0, p73=0).to_nusmv(skip_init=False)

smv_mut3.add_ctls(ctl_specs)

smv_mut3.verify()

Out[29]: {'reach-apoptosis': False, 'stable-apoptosis': False}

5.3 Analysis of formally predicted SNAI2++/ZEB1++/miR203++ triple

mutant

The mutant combinations predicted with Pint should be refined when the aim is to control specifically

stable behaviours. In general, given a set of mutations guaranteed to block any transient activation of a

node, one may verify whether only a subset of them are sufficient to achieve proper control of the sole

stable states.

We show here how we can take advantage of the Python environment to provide a small program,

which, for each subset of mutations of a multiple mutant (here a triple gain-of-function for SNAI2, ZEB1

and miR203), performs stochastic simulations with MaBoSS to assess the probabilities to reach the

different stable behaviours from the specified set of states.

The computation can take a couple of minutes. The results are shown in a graphical form (coloured

pie charts) for each single and double loss-of-function combination.

In [30]: formal_mutant = {'SNAI2': 1, 'ZEB1': 1, 'miR203': 1}

for i in [1, 2]:

for any subset of mutations of size 1 then 2

for mutants in combinations(formal_mutant, i):

copy the wild-type MaBoSS model

masim = wt_sim.copy()

apply the mutations

for m in mutants:

masim.mutate(m, "ON" if formal_mutant[m] else "OFF")

run the simulations

mares = masim.run()

plot the piechart of stable states

mares.plot_piechart(embed_labels=False, autopct=4)

print the mutation in the title

def mutname(m):

return m + ("++" if formal_mutant[m] else "--")

name = "/".join(map(mutname, mutants))

plt.title("%s mutant" % name)

The resulting graphics is reproduced in Figures 8 to 13.

Note that only one of the pie charts shows an absence of apoptotic state: the SNAI2++/miR203++

double mutant (Figure 12).

This can be formally verified with NuSMV, as we did for the Notch++/p53-- mutant:

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 8: Graphical output resulting from the input code: In [30]

Figure 9: Graphical output resulting from the input code: In [30]

Figure 10: Graphical output resulting from the input code: In [30]

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 11: Graphical output resulting from the input code: In [30]

Figure 12: Graphical output resulting from the input code: In [30]

Figure 13: Graphical output resulting from the input code: In [30]

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

In [31]: smv_mut_test = an.lock(SNAI2=1, miR203=1).to_nusmv(skip_init=False)

smv_mut_test.add_ctls(ctl_specs)

smv_mut_test.verify()

Out[31]: {'reach-apoptosis': True, 'stable-apoptosis': False}

6 Conclusion

With this notebook, we showed how the Python interface and Jupyter integration of GINsim, bioLQM,

MaBoSS, and Pint ease the delineation of sophisticate re-executable computational analyses of qualitative

models of biological networks, combining and chaining different software with a unified interface.

In this protocol, we demonstrated the assets of this framework by revisiting the analysis of a Boolean

model of the cell fate decision between apoptotic and metastatic phenotypes, initially defined with GINsim.

We could thereby reproduce results previously obtained with GINsim and MaBoSS, which demonstrate

that the Notch++/p53-- double mutant can suppress the apoptotic outcome. Furthermore, our formal

analysis of trajectories using Pint enabled us to deduce novel ”anti-apoptotic” combinations of mutations,

including a triple mutant that forbids even transient activation of apoptosis, which have been subsequently

quantified using MaBoSS.

The resulting combinations of mutations point to potential synergistic genetic interactions underlying

uncontrolled tumour proliferation. These combinations would deserve further analysis, in particular

regarding potential correlations with specific clinical outcomes. For example, one could check whether

the loss of apoptosis triggering correlates with higher tumour grades.

Similar computational analyses could be performed to predict combinations of perturbations enforcing

the existence of a given stable phenotype, e.g. apoptosis, which could then serve as a basis to design

novel therapeutic strategies.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of interest.

Author Contributions

NL, AN, CH, LP implemented the necessary Python modules, their integration in the Jupyter interface,

and the Docker image. NL, AN, GS, DT, AZ, LC, LP participated to the general design of the tutorial

notebook. All authors participated to the writing of the article.

Funding

DT and CH acknowledge support from the French Plan Cancer (2014--2017), in the context of the

projects CoMET and SYSTAIM. DT and AN acknowledge support from the French Agence Nationale

pour la Recherche (ANR), in the context of the project SCAPIN [ANR-15-CE15-0006-01]. AZ and LC

acknowledge support from ITMO Cancer, in the context of the INVADE grant (Call Systems Biology

2012), and from the EU ERACoSysMed programme, in the context of the COLOSYS project. AZ, LC,

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

and LP acknowledge support from the ANR in context of the ANR-FNR project AlgoReCell [ANR-16-

CE12-0034]. LP acknowledge support from Paris Ile-de-France Region (DIM RFSI) and Labex DigiCosme

[ANR-11-LABEX-0045-DIGICOSME] operated by ANR as part of the program ”Investissement d’Avenir”

Idex Paris-Saclay [ANR-11-IDEX-0003-02].

References

[1] Abou-Jaoudé, W., Monteiro, P. T., Naldi, A., Grandclaudon, M., Soumelis, V., Chaouiya, C.,

et al. (2015). Model checking to assess t-helper cell plasticity. Front. Bioeng. Biotechnol. 2, 86.

doi:10.3389/fbioe.2014.00086

[2] Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., et al. (2002).

NuSMV 2: An opensource tool for symbolic model checking. In Computer Aided Verification, vol.

2404 of Lect. Notes Comput. Sci. 241–268. doi:10.1007/3-540-45657-0 29

[3] Clarke, E. M. and Emerson, E. A. (1981). Design and synthesis of synchronization skeletons using

branching-time temporal logic. In Logic of Programs. 52–71. doi:10.1007/BFb0025774

[4] Cohen, D. P. A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., and Calzone, L. (2015).

Mathematical modelling of molecular pathways enabling tumour cell invasion and migration. PLoS

Comput. Biol. 11, e1004571. doi:10.1371/journal.pcbi.1004571

[5] Collombet, S., van Oevelen, C., Sardina Ortega, J. L., Abou-Jaoudé, W., Di Stefano, B., Thomas-

Chollier, M., et al. (2017). Logical modeling of lymphoid and myeloid cell specification and

transdifferentiation. Proc. Natl. Acad. Sci. 114, 5792–5799. doi:10.1073/pnas.1610622114

[6] Helikar, T., Kowal, B., McClenathan, S., Bruckner, M., Rowley, T., Madrahimov, A., et al. (2012).

The cell collective: toward an open and collaborative approach to systems biology. BMC Syst. Biol.

6, 96. doi:10.1186/1752-0509-6-96

[7] Klarner, H., Streck, A., and Siebert, H. (2017). Pyboolnet: a python package for the gen-

eration, analysis and visualization of boolean networks. Bioinformatics 33, 770–772. doi:

10.1093/bioinformatics/btw682

[8] Naldi, A. (2018). bioLQM: a java library for the manipulation and conversion of Logical Qualitative

Models of biological networks. bioRxiv doi:10.1101/287011

[9] Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., and Chaouiya, C. (2009). Logical

modelling of regulatory networks with GINsim 2.3. BioSystems 97, 134–9. doi:10.1016/j.biosystems.

2009.04.008

[10] Naldi, A., Hernandez, C., Abou-Jaoudé, W., Monteiro, P. T., Chaouiya, C., and Thieffry, D.

(2018). Logical modelling and analysis of cellular regulatory networks with GINsim 3.0. bioRxiv

doi:10.1101/289298

[11] Naldi, A., Hernandez, C., Levy, N., Stoll, G., Monteiro, P. T., Chaouiya, C., et al. (2018). The CoLo-

MoTo Interactive Notebook: Accessible and Reproducible Computational Analyses for Qualitative

Biological Networks. bioRxiv doi:10.1101/290411

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

[12] Paulevé, L. (2017). Pint: a static analyzer for transient dynamics of qualitative networks with

IPython interface. In CMSB 2017 - 15th conference on Computational Methods for Systems Biology.

vol. 10545 of Lect. Notes Comput. Sci., 309–316. doi:10.1007/978-3-319-67471-1 20

[13] Stoll, G., Caron, B., Viara, E., Dugourd, A., Zinovyev, A., Naldi, A., et al. (2017). MaBoSS

2.0: an environment for stochastic Boolean modeling. Bioinformatics 33, 2226–2228. doi:10.1093/

bioinformatics/btx123

[14] Zañudo, J. G. T. and Albert, R. (2015). Cell fate reprogramming by control of intracellular network

dynamics. PLOS Comput. Biol. 11, 1–24. doi:10.1371/journal.pcbi.1004193

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted May 10, 2018. ; https://doi.org/10.1101/319780doi: bioRxiv preprint

https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	This is an executable and reproducible paper
	Notebook preparation

	Model
	Identification of stable states
	Assessing the probabilities to reach alternative attractors using MaBoSS
	Simulation setup
	Initial states
	Output nodes
	Simulation parameters

	Simulation of the wild-type model
	Simulation of double mutant Notch++/p53--

	Formal analysis with Pint and NuSMV
	Formal predictions of mutations from the wild-type model
	Revisiting the Notch++/p53-- double mutant
	Analysis of formally predicted SNAI2++/ZEB1++/miR203++ triple mutant

	Conclusion

