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Abstract

Boolean and multi-valued logical formalisms are increasingly used to model complex cellular
networks. To ease the development and analysis of logical models, a series of software tools have
been proposed, often with specific assets. However, combining these tools typically implies a series
of cumbersome software installation and model conversion steps. In this respect, the CoLoMoTo
Interactive Notebook provides a joint distribution of several logical modelling software tools, along
with an interactive web Python interface easing the chaining of complementary analyses. In this
protocol, we demonstrate the assets of this approach through the analysis of a computational model
of biological network. Our computational workflow combines (1) the importation of a GINsim model
and its display, (2) its format conversion using the Java library BioLQM, (3) the formal prediction of
mutations using the OCaml software Pint, (4) the model checking using the C++ software NuSMV,
(5) quantitative stochastic simulations using the C++ software MaBoSS, and (6) the visualisation of
results using the Python library matplotlib. Starting with a recent Boolean model of the signalling
network controlling tumour cell invasion and migration, our model analysis culminates with the

prediction of sets of mutations presumably involved in a metastatic phenotype.

1 Introduction

Boolean and multi-valued logical formalisms are increasingly used to model complex cellular networks

[5, 6, 14]. A logical model is usually defined in three steps:

1) The delineation of a regulatory graph, where the vertices (nodes) represent signalling or regulatory

components (proteins, genes, miRs, etc.), while the arcs (arrows) represent regulatory interactions
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Table 1: List of software tools used in this notebook

Tool Website Role in this notebook

GINsim  ginsim.org Model input and display, conversion to bioLQM and NuSMV

bioLQM  colomoto.org/biolgm Fixpoint computation, conversion to MaBoSS and Pint

MaBoSS maboss.curie.fr Stochastic simulations, assess impact of mutations on propensity
of reaching phenotypes

Pint loicpauleve.name/pint ~ Formal prediction of mutants

NuSMV  nusmv.fbk.eu Formal verification of phenotypes reachability and stability

between pairs of components. These arcs are labelled by a sign: positive in the case of activation,
negative in the case of an inhibition (multiple arcs between two nodes may be considered but are

not used here).

2) A discrete variable is associated with each node. In the simplest cases, as hereafter, these variables
are Boolean, i.e. they can take only two values (0 or 1), denoting the absence/inactivity or the

presence/activity of the corresponding components.

3) Finally, a logical rule is associated with each component to specify the combinations enabling its
activation. More precisely, this rule combines the different variables corresponding to the regulatory
components using the logical negation (noted !), conjunction (noted &) and disjunction (noted |).
For example, the rule associated with the component GF in the model considered below is !CDH1 &
(GF | CDH2), which reads as ”the component GF will be activated in the absence of CDH1 and in
the presence of CDH2 or GF itself”. In other words, CDH2 is required transiently for GF activation,
in the absence of CDHI1.

To support the development and analysis of logical models, a series of software tools have been
proposed, often with specific assets [7, 9, 12, 13].

The CoLoMoTo Interactive Notebook' [11] relies on Docker? and Jupyter® technologies to assist on
editing and sharing reproducible analysis workflows for logical models. In addition to the distribution of a
set of software tools to define and analyse Boolean and multi-valued networks, a Python interface for each
of the integrated tools is provided, greatly easing the execution and chaining of complementary analyses.

This protocol describes in details the usage of the CoLoMoTo Interactive Notebook to provide a
reproducible analysis of a recently published model of the signalling network controlling tumour cell
invasion and migration. More specifically, we combine different tools (Table 1) to compute the model
stable states, perform stochastic simulations, compute (sets of) mutations controlling the reachability of

specific stable states, and evaluate their efficiency.

1.1 This is an executable and reproducible paper

This protocol has been actually edited entirely as a Jupyter notebook before being converted to a LaTeX
document for journal-specific editing purposes. The original notebook file is provided as supplemental

material. It can also be visualised and downloaded for execution in the CoLoMoTo Interactive Notebook

I Available at https://github.com/colomoto/colomoto-docker
?https://docker.com
Shttps://jupyter.org
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at https://nbviewer.jupyter.org/github/colomoto/colomoto-docker/blob/2018-03-31 /usecases/Usecase -
Mutations enabling tumour invasion.ipynb.

The blocks beginning with In [..] correspond to the content of Jupyter code cells which contain the
Python instructions to execute. When relevant, the blocks beginning with Out [..] display the return
value of the last instruction of the related code cell.

Provided Docker and Python are installed, the CoLoMoTo Interactive notebook can be installed by
typing and executing the following command® on GNU/Linux, macOS, and Microsoft Windows:

pip install -U colomoto-docker
Once installed, the notebook can be executed by typing
colomoto-docker -V 2018-03-31

The execution of this command will open a web page with the Jupyter notebook interface, enabling
the loading and execution of the code. Note that ”SHIFT+ENTER” must be used to execute each code
cell. More information on colomoto-docker usage can be obtained by typing colomoto-docker --help

and by visiting https://github.com/colomoto/colomoto-docker.

1.2 Notebook preparation
This notebook makes use of the following Python modules:
In [1]: import ginsim
import biolgm
import maboss
import pypint
from colomoto_jupyter import tabulate # for fizpoint table display

from itertools import combinations # for tterating over sets

import matplotlib.pyplot as plt # for mod:fying plots

2 Model

We analyse a Boolean network model of the switch between apoptosis and cell tumour invasion from
Cohen et al. [4]. This model can be loaded directly from the GINsim model repository at http:
//ginsim.org/models_repository.

We first show how to use GINsim [10] to fetch and parse the GINML file (GINsim graph-based
XML format, encapsulated in a zginml archive) and display the regulatory graph of the network. To
load the model, we copied the URL of the .zginml file from the model repository page at http:
//ginsim.org/node/191.

In [2]: 1lrg = ginsim.load("http://ginsim.org/sites/default
/files/SuppMat_Model_Master_Model.zginml")

The regulatory graph (using the graphical setting specified in the model file) can be displayed with

the following command:

In [3]: ginsim.show(lrg)
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Figure 1: Graphical output resulting from the input code: In [3]: ginsim.show(lrg)

The resulting graphics is reproduced in Figure 1.

In this regulatory graph, the grey boxes denote input and output vertices (nodes). Green arrows and
red T arrows respectively denote activatory and inhibitory interactions. A set of rules combining the
vertices with the Boolean operators NOT, AND, and OR, which must be consistent with the regulatory
graph, then allows the computation of enabled transitions for each network state. These rules have been
defined in Cohen et al. [4] and are specified within the GINsim model.

3 Identification of stable states

First, we compute the complete list of logical stable states (or fixpoints) of the model using the java
library bioLQM [8]. We thus need to convert the GINsim model into bioLQM:

In [4]: 1lgm = ginsim.to_biolgm(lrg)

At that stage, 1rg is a Python object representing the model suitable for GINsim, and 1qm is a Python
object representing the equivalent model suitable for bioLQM.
The list of stable states of a bioLQM model is computed as follows:

In [5]: fixpoints = biolgm.fixpoints(lqm)

Here, fixpoints is a Python list of states. A state is encoded as a Python association table (dictionary)
which maps each node of the network to a value.
For a nice display of the list of stable states, one can use the tabulate function provided in the

colomoto_jupyter Python library, imported at the beginning of the notebook:

In [6]: tabulate(fixpoints)
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In [6]: tabulate(fixpoints)
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Figure 2: Graphical output resulting from the input code: In [6]: tabulate(fixpoints)

Figure 2 shows the table as displayed in the notebook. The complete table is given in supplemental
data.

It results that the model has nine stable states, each corresponding to a row in the table, four of
which enabling apoptosis (rows with value 1 in fourth column ” Apoptosis”). Note that the input node
DNAdamage is also active in each of these four states.

A state can be visualised on the regulatory graph using GINsim. For example, the third stable state

can be displayed using the following command:
In [7]: ginsim.show(lrg, fixpoints[2])

The resulting graphics is reproduced in Figure 3.
In this graph, the vertices shown in white or orange denote components that are OFF (value 0) or

ON (value 1) respectively.

4 Assessing the probabilities to reach alternative attractors us-
ing MaBoSS

MaBoSS [13] is a C++ software that performs stochastic simulations of a Boolean network by translating
it into a continuous time Markov processes. Each node activation and inactivation is associated with an
up and a down rate, which specify the propensity of the corresponding transition. From a given state,
the simulation integrates all the possible node updates and derives from their rate a probability and a
duration for each transition. By default, all transitions are assigned the same rate. For a given set of
initial conditions, MaBoSS produces time trajectories and estimates probabilities of given model states
over the whole simulation time. Steady state distributions can thus be approximated, provided that a
sufficient number of sufficiently long simulations have been performed.

The aim of this section is to reproduce part of the results obtained by Cohen et al. [4], which show
that a Notch (NICD) gain-of-function together with a p53 loss-of-function prevent reaching a stable
apoptotic phenotype.

First, we convert the bioLQM model to MaBoSS:

In [8]: wt_sim = biolgm.to_maboss(lgm)

The variable wt_sim is a Python object that gathers both the Boolean network rules and the settings

for the simulations, including the transition rates.

4You may have to use pip3 instead of pip depending on your configuration
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Figure 3: Graphical output resulting from the input code: In [7]: ginsim.show(lrg, fixpoints[2])
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Figure 4: Graphical output resulting from the input code: In [9]: maboss.wg_set_istate(wt_sim)

4.1 Simulation setup

The stochastic simulation of Boolean networks using MaBoSS requires the specification of several

parameters.

4.1.1 Initial states

First, a distribution of initial states must be specified: each simulation then starts from a state sampled
from this distribution. The distribution is determined by assigning a probability to start in state 0 or in
state 1 to each node. By default, a node has a probability 1 to start in state 0.

The maboss Python library provides widgets to ease the assignment of this initial distribution. The
following code enables the definition of a distribution of initial states with all nodes at 0, but DNAdamage
and ECMicroenv with equiprobable 0 and 1 values. After pressing "OK”, the notebook cell will be
replaced by the actual Python call resulting in equal probabilities for these two nodes to start in active or

inactive states.

In [9]: maboss.wg_set_istate(wt_sim)
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The notebook will then display the widgets reproduced in Figure 4. The selection of nodes and of
initial conditions shown in this figure are then translated in the following code:
In [10]: #maboss.wg_set_istate(wt_sim)
maboss.set_nodes_istate(wt_sim, ["DNAdamage", "ECMicroenv"],
[0.5, 0.5])

4.1.2 OQOutput nodes

Using MaBoSS, we can focus on the output nodes and ignore the other nodes, which enable us to identify

the corresponding phenotypes. This can be done using the following code:

In [11]: #maboss.wg_set_output (wt_sim)
wt_sim.network.set_output (('Metastasis', 'Migration', 'Invasion',

'"EMT', 'Apoptosis', 'CellCycleArrest'))

4.1.3 Simulation parameters

The update_parameters method can be used to specify several parameters for the stochastic simulation
algorithm. We show below the complete list of parameters with the values obtained by default when
translating a model from GINsim. The method can be called with any subset of these parameters.
Among the parameter list, sample_count corresponds to the number of simulations performed to
compute statistics, while max_time is the maximum (simulated) duration of a trajectory. Note that
for a proper estimation of probabilities of the stable states, max_time needs to be long enough for the

simulation to reach an asymptotic solution.

In [12]: wt_sim.update_parameters(discrete_time=0, use_physrandgen=0,
seed_pseudorandom=100, sample_count=50000,
max_time=50, time_tick=0.1, thread_count=4,

statdist_traj_count=100, statdist_cluster_threshold=0.9)

4.2 Simulation of the wild-type model

The object wt_sim represents the input of MaBoSS, encompassing both the network and simulation
parameters. The simulations are triggered with the .run() method and return a Python object for

accessing the results.

In [13]: %time wt_results = wt_sim.run()

CPU times: user 2.47 ms, sys: 5.02 ms, total: 7.49 ms
Wall time: 6.2 s

The resulting object gives access to the output data generated by MaBoSS. It includes notably
the mean probability over time for the activity of the output states integrated over all the performed
simulations.

The function plot_piechart displays proportionnaly the mean probability of each output state at
the last time point. Provided the simulation time has been set high enough, this gives an approximation

of the probabilities of the stable states reachable from the specified initial conditions.

In [14]: wt_results.plot_piechart()
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Figure 5: Graphical output resulting from the input code: In [14]: wt_results.plot_piechart()
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Figure 6: Graphical output resulting from the input code: In [15]: wt_results.plot node_trajectory()

The resulting graphics is reproduced in Figure 5.

In this chart, a state is described by the set of its active output nodes and is associated to a
phenotype. For instance, the ”<nil>" phenotype has all output nodes set to 0, which was referred to
as the "homeostatic state” in the original article; in the case of the ”Apoptosis -- CellCycleArrest”
phenotype, the two output nodes Apoptosis and CellCycleArrest are simultaneously active, while
the other output nodes are inactive; the "EMT -- CellCycleArrest” phenotype denotes cells that have
gone through the epithelial to mesenchymal transition, but did not invade the tissue, hence the output
nodes Invasion, Migration and Metastasis are inactive; finally the "Migration -- Metastasis --
Invasion -- EMT -- CellCycleArrest” phenotype corresponds to a metastatic state, i.e. to cells that
went through EMT, invaded the tissue and migrated to a distant site.

From this plot, we can deduce that, from the specified set of initial conditions, the apoptotic state
(orange section), the EMT (purple section) and the metastatic states (green section) can be reached (the
proportion of simulations that reached none of these phenotypes correspond to the red section).

The mean value of each output node during the simulations can be plotted with the following command:

In [15]: wt_results.plot_node_trajectory()

The resulting graphics is reproduced in Figure 6.
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Figure 7: Graphical output resulting from the input code: In [18]: mut_results.plot_piechart()

4.3 Simulation of double mutant Notch++/p53--

In the original article [4], the authors analysed the double Notch++/p53-- mutant, i.e., the combination
of a Notch gain-of-function combined with a p53 loss-of-function, showing that all trajectories lead to a
metastatic state.

A mutant can be configured by copying the wild-type model, and use the mutate method to model

the desired gains and losses of function:

In [16]: mut_sim = wt_sim.copy()
mut_sim.mutate("p53", "OFF")
mut_sim.mutate("NICD", "ON")

The modified model can then be simulated exactly as for the wild-type case:

In [17]: %time mut_results = mut_sim.run()

CPU times: user 4.22 ms, sys: 4.98 ms, total: 9.2 ms
Wall time: 5.98 s

In [18]: mut_results.plot_piechart()

The resulting graphics is reproduced in Figure 7.
Hence, using the same parameters as for the wild-type model, all the trajectories obtained for the
double mutant model reach the metastatic invasive state exclusively. This suggests that such a double

mutation can be responsible for a loss of apoptotic capability of cancer cells.

5 Formal analysis with Pint and NuSMV

In the above section, the conclusion regarding the loss of apoptotic stable state relies on stochastic
simulations, which, in general, may not offer a complete coverage of the possible trajectories. Therefore,
one may want to formally verify whether the loss of reachable stable apoptosis state is total or not. First,
we show how to use Pint [12] to predict combinations of mutations which are guaranteed to prevent the
activation of apoptosis. Next, we use the software NuSMYV [2] to evaluate formally the Notch++/p53--
double mutant. Finally, we use MaBoSS to assess the efficiency of new combinations of mutations
predicted by Pint.
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5.1 Formal predictions of mutations from the wild-type model

Pint implements formal methods which allows deducing combinations of mutations which are guaranteed
to block the reachability of a given state.
First, we convert the bioLQM model to Pint:

In [19]: an = biolgm.to_pint(1qm)
Then, we transfer the initial conditions defined in MaBoSS to the an Pint model. Like MaBoSS, Pint

supports multiple initial values for a single node. However, in contrast to MaBoSS, Pint does not consider

probability distributions.

In [20]: an.initial_state.update(wt_sim.get_initial_state())

an.initial_state.changes() # display non-default (0) initial value
Out[20]: {'DNAdamage': (0, 1), 'ECMicroenv': (0, 1)}

Given a (partial) state specification, Pint provides the method oneshot mutations_for_cut, which
returns different sets of mutations guaranteed to prevent any trajectory from any possible initial state to

reach, even transiently, the specified state.

In [21]: /time an.oneshot_mutations_for_cut(Apoptosis=1, \
exclude={"ECMicroenv", "DNAdamage"})

CPU times: user 8.74 ms, sys: 5.04 ms, total: 13.8 ms
Wall time: 298 ms

Out[21]: [{'ZEB2': 1},

{'AKT1': 1},
{'AKT2': 1},
{"ERK': 1},

{'NICD': 1, 'SNAI2': 1, 'ZEB1': 1},
{'SNAI2': 1, 'ZEB1': 1, 'p63': 0},
{'SNAI2': 1, 'ZEB1': 1, 'miR203': 1},
{'NICD': 1, 'SNAI2': 1, 'p73': 0},
{'SNAI2': 1, 'p63': 0, 'p73': 0},

1

{'SNAI2': 1, 'miR203': 1, 'p73': O},
{'NICD': 1, 'ZEB1': 1, 'p53': 0},
{'ZEB1': 1, 'p53': 0, 'p63': 0},
{'ZEB1': 1, 'miR203': 1, 'p53': 0},
{'NICD': 1, 'p53': 0, 'p73': O},

{'p53': 0, 'p63': 0, 'p73': 0},
{'miR203': 1, 'p53': 0, 'p73': 0}]

Among the returned mutation sets, one can spot the mutation {'NICD': 1, 'p53': 0, 'p73': 0},
which combines a gain-of-function of Notch ('NICD': 1) with a loss-of-function of p53 ('p53': 0), along
with a loss-of-function of p73 ('p73': 0).

Noteworthy, forbidding transient reachability entails a stronger constraint than just preventing any
stable state with the specified property. Indeed, some mutations may remove the stability of the specified
states, while some trajectories may still traverse some of them, but only transiently.

Therefore, the sets of mutations returned by Pint, albeit correct, might be non-minimal for controlling

only the long-term dynamics of the system. Finally, note that the analysis of Pint can give incomplete

10
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results. This is due to the technology on which the computation relies (static analysis), which allows

addressing very large scale networks.

5.2 Revisiting the Notch++4/p53-- double mutant

We will first formally analyse the Notch++/p53-- double mutant to show that asymptotic apoptosis is
forbidden, although transient activation of apoptosis node might still be possible.
One can apply a mutation on a Pint model using the 1ock method. A new model is returned with a

constant value for the corresponding nodes.
In [22]: mut_an = an.lock(NICD=1, p53=0)

Then, we use the temporal logic CTL [3] to specify formally the dynamical properties to verify. CTL

expression can be built using the colomoto.temporal_logics Python module.
In [23]: from colomoto.temporal_logics import *

First, the existence of a trajectory leading to a transient state where Apoptosis is active can be

specified as follows:
In [24]: transient_apoptosis = EF(S(Apoptosis=1))

EF is a temporal logic operator that is true if there exists at least one trajectory leading to a state
verifying the properties given as argument. Here the property S(Apoptosis=1) specifies that the state
has the node Apoptosis active.

Next, the existence of a trajectory leading to a stable Apoptosis activation can be specified as follows:
In [25]: stable_apoptosis = EF(AG(S(Apoptosis=1)))

Here, AG enforces that all the states reachable via any trajectory have the node Apoptosis active.
Finally, we gather these two properties in a Python dictionary for later use:
In [26]: ctl_specs = {
"reach-apoptosis": transient_apoptosis,

"stable-apoptosis": stable_apoptosis

}

The adequation of a model with a CTL property can be assessed using a model-checker such as
NuSMV [1].

Pint provides a conversion to NuSMV models. By default, the NuSMV model considers any initial
state. With the skip_init=False option, we enforce that the properties are verified only from the initial

states defined earlier.
In [27]: smv = mut_an.to_nusmv(skip_init=False)
We then add the properties defined above, and ask NuSMYV to verify them.

In [28]: smv.add_ctls(ctl_specs)

%time smv.verify()

CPU times: user 2.82 ms, sys: 6.02 ms, total: 8.84 ms
Wall time: 20 s

Out[28]: {'reach-apoptosis': True, 'stable-apoptosis': False}
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Interestingly, the Notch-++/p53-- double mutant can still reach an apoptotic state, but only transiently:
the property stable-apoptosis being false, it is guaranteed that all trajectories eventually lead to stable
apoptosis inactivation.

To complete our analysis, we now consider the triple mutant obtained by adding a loss-of-function of
p73. As predicted by Pint, transient reachability of apoptosis is impossible in this triple mutant. We can
use NuSMYV to further verify that it is the case, using the following code:

In [29]: smv_mut3 = an.lock(NICD=1, p53=0, p73=0).to_nusmv(skip_init=False)
smv_mut3.add_ctls(ctl_specs)

smv_mut3.verify()

Out[29]: {'reach-apoptosis': False, 'stable-apoptosis': False}

5.3 Analysis of formally predicted SNAI2+4+/ZEB1++/miR203++ triple

mutant

The mutant combinations predicted with Pint should be refined when the aim is to control specifically
stable behaviours. In general, given a set of mutations guaranteed to block any transient activation of a
node, one may verify whether only a subset of them are sufficient to achieve proper control of the sole
stable states.

We show here how we can take advantage of the Python environment to provide a small program,
which, for each subset of mutations of a multiple mutant (here a triple gain-of-function for SNAI2, ZEB1
and miR203), performs stochastic simulations with MaBoSS to assess the probabilities to reach the
different stable behaviours from the specified set of states.

The computation can take a couple of minutes. The results are shown in a graphical form (coloured

pie charts) for each single and double loss-of-function combination.

In [30]: formal_mutant = {'SNAI2': 1, 'ZEB1': 1, 'miR203': 1}
for i in [1, 2]:
# for any subset of mutations of size 1 then 2
for mutants in combinations(formal_mutant, i):
# copy the wild-type MaBoSS model
masim = wt_sim.copy()
# apply the mutations
for m in mutants:
masim.mutate(m, "ON" if formal_mutant[m] else "OFF")
# run the stmulations
mares = masim.run()
# plot the ptechart of stable states
mares.plot_piechart (embed_labels=False, autopct=4)
# print the mutation in the title
def mutname(m):
return m + ("++" if formal_mutant[m] else "--")
name = "/".join(map(mutname, mutants))

plt.title("’s mutant" 7, name)

The resulting graphics is reproduced in Figures 8 to 13.

Note that only one of the pie charts shows an absence of apoptotic state: the SNAI2++/miR203++
double mutant (Figure 12).

This can be formally verified with NuSMV, as we did for the Notch++/p53-- mutant:
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SNAIZ++ mutant

mmm Migration — Metastasis - Invasion - EMT -- CellCycleArrest
mm EMT -- CellCyclefrrest

mm Apoptosis -- CellCyclefrrest

 =nil>

Figure 8: Graphical output resulting from the input code: In [30]

ZEB1++ mutant

mmm Migration — Metastasis -- Invasion -- EMT -- CellCycleArrest
B EMT -- CellCycleArrest

m <nil=

mm Apoptosis -- CellCycleArrest

Figure 9: Graphical output resulting from the input code: In [30]

miR203++ mutant

s Apoptosis - CellCyclefrrest
mm CellCycleArrest
mm EMT -- CellCycleArrest

Figure 10: Graphical output resulting from the input code: In [30]
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SNAIZ++/ZEB1++ mutant

mmm Migration — Metastasis - Invasion - EMT -- CellCycleArrest
mm EMT -- CellCyclefrrest

mm Apoptosis -- CellCyclefrrest

 =nil>

Figure 11: Graphical output resulting from the input code: In [30]

SMAIZ++/mIR203++ mutant

Invasion -- EMT
Invasion -- EMT -- CellCycleArrast

B EMT -- CellCycleArrest
mm CellCycleArrest

s Inwvasion -- CellCycleArrest
m <nil>

[ Inwvasion

s EMT

|

||

Figure 12: Graphical output resulting from the input code: In [30]

ZEB1++/miR203++ mutant

mm Apoptosis - CellCycleArrest

mm CellCycleArrest

mmm EMT -- CellCycleArrest

m  Invasion -- CellCyclefrrest
<l

EE |nvasion -- EMT -- CeliCycleArrest
e Invasion

. EMT

|

Invasion -- EMT

Figure 13: Graphical output resulting from the input code: In [30]
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In [31]: smv_mut_test = an.lock(SNAI2=1, miR203=1).to_nusmv(skip_init=False)
smv_mut_test.add_ctls(ctl_specs)

smv_mut_test.verify()

Out[31]: {'reach-apoptosis': True, 'stable-apoptosis': False}

6 Conclusion

With this notebook, we showed how the Python interface and Jupyter integration of GINsim, bioLQM,
MaBoSS, and Pint ease the delineation of sophisticate re-executable computational analyses of qualitative
models of biological networks, combining and chaining different software with a unified interface.

In this protocol, we demonstrated the assets of this framework by revisiting the analysis of a Boolean
model of the cell fate decision between apoptotic and metastatic phenotypes, initially defined with GINsim.
We could thereby reproduce results previously obtained with GINsim and MaBoSS, which demonstrate
that the Notch++/p53-- double mutant can suppress the apoptotic outcome. Furthermore, our formal
analysis of trajectories using Pint enabled us to deduce novel ”anti-apoptotic” combinations of mutations,
including a triple mutant that forbids even transient activation of apoptosis, which have been subsequently
quantified using MaBoSS.

The resulting combinations of mutations point to potential synergistic genetic interactions underlying
uncontrolled tumour proliferation. These combinations would deserve further analysis, in particular
regarding potential correlations with specific clinical outcomes. For example, one could check whether
the loss of apoptosis triggering correlates with higher tumour grades.

Similar computational analyses could be performed to predict combinations of perturbations enforcing
the existence of a given stable phenotype, e.g. apoptosis, which could then serve as a basis to design

novel therapeutic strategies.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict of interest.

Author Contributions

NL, AN, CH, LP implemented the necessary Python modules, their integration in the Jupyter interface,
and the Docker image. NL, AN, GS, DT, AZ, LC, LP participated to the general design of the tutorial
notebook. All authors participated to the writing of the article.

Funding

DT and CH acknowledge support from the French Plan Cancer (2014--2017), in the context of the
projects COMET and SYSTAIM. DT and AN acknowledge support from the French Agence Nationale
pour la Recherche (ANR), in the context of the project SCAPIN [ANR-15-CE15-0006-01]. AZ and LC
acknowledge support from ITMO Cancer, in the context of the INVADE grant (Call Systems Biology
2012), and from the EU ERACoSysMed programme, in the context of the COLOSYS project. AZ, LC,

15


https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/319780; this version posted May 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

and LP acknowledge support from the ANR in context of the ANR-FNR project AlgoReCell [ANR-16-
CE12-0034]. LP acknowledge support from Paris Ile-de-France Region (DIM RFSI) and Labex DigiCosme
[ANR-11-LABEX-0045-DIGICOSME] operated by ANR as part of the program ”Investissement d’Avenir”
Idex Paris-Saclay [ANR-11-IDEX-0003-02].

References

[1] Abou-Jaoudé, W., Monteiro, P. T., Naldi, A., Grandclaudon, M., Soumelis, V., Chaouiya, C.,
et al. (2015). Model checking to assess t-helper cell plasticity. Front. Bioeng. Biotechnol. 2, 86.
doi:10.3389 /fbioe.2014.00086

[2] Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., et al. (2002).
NuSMV 2: An opensource tool for symbolic model checking. In Computer Aided Verification, vol.
2404 of Lect. Notes Comput. Sci. 241-268. doi:10.1007/3-540-45657-0-29

[3] Clarke, E. M. and Emerson, E. A. (1981). Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Logic of Programs. 52-71. doi:10.1007/BFb0025774

[4] Cohen, D. P. A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., and Calzone, L. (2015).
Mathematical modelling of molecular pathways enabling tumour cell invasion and migration. PLoS
Comput. Biol. 11, €1004571. doi:10.1371/journal.pcbi.1004571

[5] Collombet, S., van Oevelen, C., Sardina Ortega, J. L., Abou-Jaoudé, W., Di Stefano, B., Thomas-
Chollier, M., et al. (2017). Logical modeling of lymphoid and myeloid cell specification and
transdifferentiation. Proc. Natl. Acad. Sci. 114, 5792-5799. doi:10.1073/pnas.1610622114

[6] Helikar, T., Kowal, B., McClenathan, S., Bruckner, M., Rowley, T., Madrahimov, A., et al. (2012).
The cell collective: toward an open and collaborative approach to systems biology. BMC Syst. Biol.
6, 96. doi:10.1186/1752-0509-6-96

[7] Klarner, H., Streck, A., and Siebert, H. (2017). Pyboolnet: a python package for the gen-
eration, analysis and visualization of boolean networks. Bioinformatics 33, 770-772. doi:
10.1093 /bioinformatics/btw682

[8] Naldi, A. (2018). bioLQM: a java library for the manipulation and conversion of Logical Qualitative
Models of biological networks. bioRziv doi:10.1101/287011

[9] Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., and Chaouiya, C. (2009). Logical
modelling of regulatory networks with GINsim 2.3. BioSystems 97, 134-9. doi:10.1016/j.biosystems.
2009.04.008

[10] Naldi, A., Hernandez, C., Abou-Jaoudé, W., Monteiro, P. T., Chaouiya, C., and Thieffry, D.
(2018). Logical modelling and analysis of cellular regulatory networks with GINsim 3.0. bioRziv
doi:10.1101/289298

[11] Naldi, A., Hernandez, C., Levy, N., Stoll, G., Monteiro, P. T., Chaouiya, C., et al. (2018). The CoLo-
MoTo Interactive Notebook: Accessible and Reproducible Computational Analyses for Qualitative
Biological Networks. bioRziv doi:10.1101/290411

16


https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/319780; this version posted May 10, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

[12] Paulevé, L. (2017). Pint: a static analyzer for transient dynamics of qualitative networks with
[Python interface. In CMSB 2017 - 15th conference on Computational Methods for Systems Biology.
vol. 10545 of Lect. Notes Comput. Sci., 309-316. doi:10.1007/978-3-319-67471-1_20

[13] Stoll, G., Caron, B., Viara, E., Dugourd, A., Zinovyev, A., Naldi, A., et al. (2017). MaBoSS
2.0: an environment for stochastic Boolean modeling. Bioinformatics 33, 2226-2228. doi:10.1093/
bioinformatics/btx123

[14] Zanudo, J. G. T. and Albert, R. (2015). Cell fate reprogramming by control of intracellular network
dynamics. PLOS Comput. Biol. 11, 1-24. d0i:10.1371 /journal.pcbi.1004193

17


https://doi.org/10.1101/319780
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	This is an executable and reproducible paper
	Notebook preparation

	Model
	Identification of stable states
	Assessing the probabilities to reach alternative attractors using MaBoSS
	Simulation setup
	Initial states
	Output nodes
	Simulation parameters

	Simulation of the wild-type model
	Simulation of double mutant Notch++/p53--

	Formal analysis with Pint and NuSMV
	Formal predictions of mutations from the wild-type model
	Revisiting the Notch++/p53-- double mutant
	Analysis of formally predicted SNAI2++/ZEB1++/miR203++ triple mutant

	Conclusion

