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Abstract

Cellular differentiation occurs through the regulation of lineage-specific
gene expression networks that are facilitated by the spatial organization of the
genome. Although techniques based on the chromatin conformation capture
(3C) approach have yielded intrachromosomal genome-wide interaction maps,
strategies to identify non-random interchromosomal associations is lacking.
Therefore, we modeled the genomic organization of chromosomes based on the
regulatory networks involved in the differentiation of pluripotent human embryonic
stem cells (hESCs) to committed neuronal precursor cells (CNPCs). Importantly,
transcriptional regulation has been demonstrated to be a driving force in non-
random genome organization. Thus, we constructed coarse-grained in silico
networks using gene expression data to identify potential physical associations
among chromosomes occurring in situ and then analyzed the three-dimensional
(3D) distribution of these chromosomes, assessing how their associations
contribute to nuclear organization. Our analysis suggests that coordinate
regulation of differentially expressed genes is correlated with the 3D organization
of chromosomes in hESC nuclei induced to differentiate to cNPCs.
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Author Summary

The cellular commitment and differentiation of stem cells is a hallmark of
metazoan development. The ultimate fate of a stem cell is defined by the
synergistic modulation of key gene regulatory networks within the nucleus. In our
work, we formulate an in silico model describing how the similarity in the
expression profile of differentially regulated gene networks is correlated with the
higher-order organization of chromosomes during differentiation from human
embryonic stem cells (hESCs) to committed neuronal precursor cells (cNPCs).
Using graph statistics, we observe that the genome networks generated using
the in silico model exhibit properties similar to real-world networks. In addition to
modeling how gene expression relates to dynamic changes in chromosome
organization, we test the model by calculating the relative proximity of multiple
chromosome pairs using 3D fluorescence in situ hybridization (FISH). While
various chromosomal properties, including gene density and overall length, have
been attributed to chromosome organization, our previous work has identified the
emergence of cell-type specific chromosomal topologies related to coordinate
gene regulation during cellular differentiation. Here we extend these findings by
determining whether our in silico model can predict chromosome association
based upon coordinate gene expression. Our work supports the idea that gene
co-regulation, in addition to inherent organizational constraints of the nucleus,
influences three-dimensional chromosome organization.
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Introduction

The vertebrate genome exhibits patterns of non-random organization
during cellular differentiation, with developmentally regulated genes positioned
within the nucleus according to their expression [1,2]. The periphery of the
nucleus and its interior are compartments that have been demonstrated to be
transcriptionally repressive and permissive, respectively [3]. Co-regulated genes
have also been shown to cluster according to their expression status and to
spatially associate with nuclear bodies (NBs), such as nuclear speckles and
promyelocytic leukemia (PML) bodies [4-7]. Moreover, the chromosomes on
which co-regulated genes are encoded also demonstrate non-random
organization within the nucleus [8].

Seminal studies indicate that chromosomes can be organized according to
gene density or size, with gene rich or smaller chromosomes occupying more
centralized positions within the nucleus and gene poor or larger chromosomes at
the periphery [9-11]. Inherent organizational constraints also appear to facilitate
associations of chromosomes through intermediate structures, such as the
nucleolus and the nuclear lamina [12-14]. Additionally, patterns of non-random
chromosomal association are evident among different cell types and cellular
states [15-17]. Importantly, we have previously reported that chromosomes
enriched for genes co-regulated during murine erythropoiesis demonstrate both
homologous and heterologous interactions that correlate with lineage-specific
expression profiles [18, 19]. Aberrations in the coordination of gene expression
and genomic organization also reveal deleterious effects in development and
disease [20-22].

The three-dimensional (3D) structure of eukaryotic chromatin also reveals
non-random organization. Advances in chromatin conformation capture (3C)
derived methodologies (in particular Hi-C), which identify transiently interacting
chromatin through sequencing of in situ cross-linked DNA, have shown that
chromatin is organized into topologically associated domains (TADs) of ~1Mb in
humans [23-25]. TADs are flanked by CTCF-binding sequences that appear to
constrain the interactivity of the chromatin confined within a given region [26, 27].
The size and distribution of TADs appear to be cell-type invariant; however, the
genes contained within each distinct TAD boundary have been found to be
coordinately regulated and may inform the 3D nuclear localization of TADs [28,
29]. Although 3C based techniques have been successful in providing genome
wide resolution of cis-interacting chromatin, they have yet to fully characterize
interchromosomal associations, as these interactions are hard to detect by these
strategies.

Pluripotent human embryonic stem cells (hESCs) give rise to the three
germ layers that generate the organism [30]. Pluripotency is maintained via a
core transcriptional network governed by robust expression of Oct4, Sox2, and
Nanog. This regulatory network influences cellular identity in three
interconnected ways: preservation of chromatin plasticity, repression of key
genes involved in lineage commitment, and modulating genomic architecture.
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Increased chromatin plasticity occurs due to reduced concentrations of
heterochromatin and chromatin stabilizing proteins such as the nuclear lamina
protein lamin A/C [31-34]. As a result chromatin dynamics of the pluripotent
genome are enhanced, permitting increased interaction of distal regulatory
elements with target sequences in a developmentally regulated manner [35].
This unique euchromatic conformation also contains an epigenetic signature that
is permissive to basal-level expression of the hESC genome [36], which is
suggested to minimize expression of developmentally regulated genes while
simultaneously priming them for activation in the event of an extracellular
commitment cue. Upon commitment, the diminution of the master transcriptional
regulators of pluripotency results in extensive changes in the chromatin
landscape, thereby influencing gene expression toward lineage restricted
pathways [37-39]. Thus, hESC differentiation is an ideal model to explore the
interplay between interchromosomal association and gene expression networks.

Here we test whether we can predict, based on the transcriptional profiles
of developmentally regulated genes, 3D interchromosomal proximity within
interphase nuclei in hESCs (H9) during their differentiation into committed
neuronal progenitor cells (cNPCs) [40]. To determine gene loci that may
synergistically influence interchromosomal associations, we identified
differentially expressed genes based on microarray data from a 10-day
differentiation time course. Next, we aligned each gene of the enriched gene set
along its encoding chromosome and performed a pairwise comparison of their
normalized expression scores using a non-Euclidean distance metric. We
constructed in silico networks that rank potential in situ associations between
chromosomes based on the pairwise comparison of their gene expressions at
each point of the differentiation time course. To test if our in silico predictions
faithfully recapitulate in situ genome organization, we assessed metrics of
chromosome association at three time points of differentiation using 3D
fluorescence in situ hybridization (FISH) analysis with whole chromosome paints.
Our results demonstrate that chromosomes are distributed non-randomly within
interphase nuclei of differentiating hESCs and that similarity in expression of co-
regulated genes is wuseful in predicting trends in physical proximity of
heterologous chromosomes. We believe this approach will be an important tool
for identifying cell-type specific genome topologies in differentiation and disease.

Results
hESC differentiation to cNPCs reveals dynamic changes in expression

As a first step in our analysis, we determined the co-regulatory gene set
by conducting Significance Analysis of Microarrays [41], on a quantile normalized
dataset of global changes in gene expression upon commitment of pluripotent H9
ESCs to cNPCs over a 10-day differentiation time course [42]. Using a False
Discovery Rate (FDR) of 13%, we found that 2040 out of 19284 represented
genes demonstrate differential expressions: 1570 genes were up-regulated while
470 genes were down-regulated over the 10-day differentiation time course (S1
Table) and the genes were assigned to their chromosomal positions (please refer
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to reference 40 for elaboration of the genes identified). Linear regression
analysis reveals that on a genome-wide level, the greater number of differentially
expressed genes on a given chromosome has a strong correlation with its
number of significant bins (or domains) (r=.629) (S2 Fig). These results indicate
that the gene set driving differentiation of hESCs to cNPCs is non-randomly
distributed along the linear genome. More importantly for our modeling, these
data support our hypothesis that the similarity of expression profiles among
heterologs may predict their nuclear proximity.

We next examined the dynamic behavior of gene expression changes
occurring during the differentiation of hESCs to cNPCs in order to determine how
the profile was modulated. A clustergram of the expression profile reveals
grouping into two broad classes of up-regulated and down-regulated genes, but
closer inspection of the heatmap reveals nuanced behavior within these clusters
(Fig 1A). In order to visualize predominate classes of behavior within our
system, we naturally partitioned the data into four classes of expression based
on the L-method [42] before using k-means clustering. This particular algorithm
determines ideal cluster number by minimizing the root mean squared error
between two lines iteratively fit to the merge distance of a finite number (~100) of
divisive hierarchical clusters. The k-means analysis reveals four distinct patterns
of gene regulation induced upon the onset of neurogenesis (Fig 1B, S3 Table).

Our approach provides insight into how the absolute behavior of our co-
regulated gene set changes over the differentiation time course, but it does not
indicate relatedness in expression of the genes with respect to one another. To
illustrate the dynamically evolving nature of global gene expression changes
occurring over the differentiation time course, we hierarchically clustered the
Symmetrized Kullback-Leibler (SKL) divergence of the normalized expression
scores between all of our differentially expressed genes in a pair-wise fashion.
The unbounded numerical output of the SKL ratio serves as a non-Euclidean
distance metric between the gene expression scores of our lineage-specific gene
set, with O being the closest possible distance between elements. Gene
distribution among the clusters appears highly polarized, with the largest cluster
comprising between ~91-97% of our differentially expressed set over the time
course (Fig 1C). This clustering feature, known as the giant component [19],
indicates the largest fraction of synergistically expressed genes driving the
process of commitment at each individual time point. Importantly, with respect to
our dataset, this illustrates that co-regulatory networks involved in the
maintenance of pluripotency become destabilized upon initial commitment. As
time proceeds, genes involved in the induction and maintenance of neurogenesis
experience the greatest similarity in expression midway through the
differentiation, before ultimately diverging from the component toward the end of
the time course. Thus, gene expression order is reduced at the cNPC stage
when the progenitors are poised for subsequent differentiation cascades (Fig
1C). These changes in genome order are not restricted to hESCs differentiating
to cNPSs. We performed the same analysis on hESCs undergoing mesodermal
differentiation and observed a similar pattern of sinusoidal oscillation over an 8-
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day time course (S4 Fig). These results imply a general underlying trend that
occurs upon cell specification and differentiation.

In silico networks predict preferential chromosome associations at various time
points during differentiation

The results above suggest that a large fraction of our differentially
expressed gene set are highly similar in expression, but does not indicate how
expression similarity of these genes could potentially contribute to genome wide
chromosome organization. To test our hypothesis of expression mediated
interchromosomal interactions, we modeled the likelihood of specific
chromosome associations by creating sparse networks based on expression
similarity of differentially expressed genes, anchored upon their respective
chromosomes. We used the mean pairwise SKL divergence of all genes
between two chromosomes to serve as an indicator of potential in situ
association, with the lowest values determining an increased likelihood of
interaction (see Materials and Methods, Bioinformatics). The diploid genome
functions as a complete network composed of 46 nodes (all of the chromosomes)
and the 1035 edges that represent the probability of association between all
nodes (Fig 2A). However, due to the inability to map in real time all RNA
transcripts to their chromosome of origin, it is currently impossible to distinguish
homolog contribution of gene expression; therefore, we modeled the haploid
genome with 23 nodes.

We constructed haploid genome networks in a bottom-up fashion, utilizing
a rank-based association schema, whereby directional edges were assigned
between nodes (representing chromosomes) with the lowest mean SKL values
(Fig 2A). Edges were iteratively added between all nodes until a unified graph
was formed, with one edge per node added at each cycle. The number of edge
cycles needed to achieve graph connectivity ranged between 2-4 addition cycles
over the entire time course. Edges added during early iterations should indicate
increased similarity in expression, and higher propensity for in situ association,
than edges added during later iterations. As such, we hypothesized that these
early edges would assist in guiding the genomic organization of chromosomes.
Additionally, we predicted that bi-directionality between nodes occurring early in
edge addition would indicate even higher propensity for in situ association due to
increased transcriptional synergy between those nodes.

To visualize potential associations among the chromosomes within the
network during the differentiation of hESCs to cNPCs, we created network
communities based on the property of modularity at days 0, 5, and 10 that reveal
discreet node neighborhoods highly enriched with connections to one another
(Fig 2B-D). These modularity-based neighborhoods illustrate increased
clustering among community members as opposed to the rest of the network,
which we hypothesize to be indicative of reduced proximity amongst their
representative chromosomes within the nuclear compartment due to the
transcriptional coordination of our lineage-specific gene set. As the number of
edges used in the construction of the cohesive network may influence the
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number of nodes within each neighborhood, due to increased probability of node
association, we quantified the linkage density of the networks at each time point.
As expected, there is a correlation between the network linkage density, a metric
of overall node connectivity, and the number of neighborhoods at each time point
in the network because of an overall increased edge number (S5A Fig).

Comparing topological metrics between networks can be used to assess
their similarity to one another. Common metrics that may be used in such
comparisons are degree distribution, the global clustering coefficient (GCC), and
network assortativity [43]. Degree distribution describes edge number with
respect to all nodes. The GCC describes the degree to which nodes within the
network cluster together. Network assortativity is a quantitative topological
metric spanning from -1 to 1 that reveals trends in network polarity; negative and
positive assortativity indicate relationships between nodes of a dissimilar degree
and a similar degree, respectively. Two meaningful networks that can serve as
controls to our expression-based chromosomal interaction (genome) network are
the Erdds-Rényi based random network and the Barabasi-Albert based scale-
free network, both created with the node-edge parameters we have utilized in our
model. Several well-studied networks, such as the Internet and various protein-
protein interaction matrices [44, 45], have been shown to be scale-free,
possessing a degree distribution following the power law. By contrast, the
random network does not adequately model any biological or real-world networks
[46]. Therefore, we compared several measurements of network topology
between our emergent genome network, the Erdés-Rényi random network, and
the Barabdsi-Albert scale-free network. Additionally, we assessed how stable
the topological metrics were by iteratively rewiring the genome network in a
random fashion (s and |; 5 and 10 rewiring events, respectively).

We first compared degree distribution of the emergent genome network to
the normal Erdés-Rényi random network at all time points (S5B Fig). Whereas
the random graphs have symmetrical degree distributions at each point of the
differentiation time course, the degree distribution of our in silico chromosome
association networks tend to have positively skewed distributions, indicating a
departure from normality (S5B Fig). This skewed distribution illustrates that there
are many chromosomes that have few connections and a few chromosomes that
have many connections; this observation is reminiscent of the power law
distribution observed with scale-free Barabasi-Albert networks. Moreover, this
result suggests that our in silico chromosome association genome network
possesses properties similar to real-world networks.

To assess the degree to which the nodes cluster within the emergent
genome network, we compared its GCC to the rewired genome networks and the
Erdés-Rényi random and Barabasi-Albert scale-free control networks (Materials
and Methods, Bioinformatics) (Fig 3A and S6A Fig). The nodes of many real-
world networks tend to form highly clustered groups possessing dense edge
concentrations relative to random networks. As indicated above, the degree
distribution of the genome network exhibits a significant departure from normality;
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thus, we hypothesized that a heightened GCC would reflect this property when
compared to the control networks. Although the behavior of all three networks
positively correlates to linkage density, we find that the GCC of the genome
network is elevated at all time points when compared to controls (S6A Fig),
thereby supporting our hypothesis. As the genome network is rewired, the
connectivity is progressively compromised in magnitude with the 5-edge and 10-
edge rewirings (Fig 3A).

To determine whether the highly connected nodes preferentially interact
with one another over the time course, we measured the assortativity metric of
the genome metric compared to the rewired and control networks (Fig 3B and
S6B Fig). The analysis demonstrates the genome network transitions between
negative and positive assortativity over the differentiation time course, while the
control networks remain negative over time. We suggest that transition in
assortativity of the genome network is due to the heightened transcriptional
synergy occurring among the highly connected nodes (chromosomes) during the
process of cellular commitment. This entrainment may occur due to an
increased instance of bidirectional edges between nodes during network
construction. The overall behavior of the genome network and the 5-edge
rewiring is similar, although the rewired graph transitions between negative and
positive assortativity more frequently and is altered in magnitude. In addition to
transitioning between negative and positive values more frequently, the 10-edge
rewiring also traverses the x-axis at earlier time points relative to its counterparts
(Fig 3B).

As a means to ascertain which nodes may function as hub-like domains
over cellular differentiation, we visualized the edge contribution of each node
(chromosome) as a ratio of its degree to the total number of edges within the
network over all time points (Fig 3C). On average, each chromosome
contributes between 5-12% of edges present in the emergent genome network
over the differentiation time course. The node profile for each chromosome
varies over the time course and illustrates that potential hub formation is transient
and relies upon temporal co-regulation as a function of the mean SKL between
all differentially expressed genes on interacting nodes. Finally, we were
interested if certain chromosomes preferentially interacted over the entire
differentiation time course. We compressed the adjacency matrix of the genome
networks, representing chromosome associations at each time point of the
differentiation, to a single heat map and compared it to a compressed adjacency
matrix created using an Erdés-Rényi random network distribution (Fig 3D). We
observed that certain chromosome/nodes preferentially interact at moderate to
high frequency in the genome network (Fig 3D, left), compared to promiscuous
associations of the control heat map (Fig 3D, right), illustrating non-random,
expression-mediated organization.

In sum, these measurements highlight three interesting features of the in
silico chromosome association genome networks. First, all of the topological
descriptors indicate properties substantially different from random networks; the
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genome networks possess a profile that is more “real-world” in nature (S5B Fig).
Second, the specific connections of the nodes in the in silico chromosome
association genome networks are highly sensitive to perturbation. Rewiring of
the nodes of the genome network in a limited fashion leads to marked differences
in the clustering potential and assortative capacity (Fig 3A, B), indicating that
organization plays a pivotal role in maintaining its unique topology. Finally,
transition in assortativity seems to be a unique feature of chromosome
organization occurring during differentiation (Fig 3B and S6B Fig). This result
suggests that similarity in gene co-regulation facilitates association of nodes of
similar degree distribution, creating hub-like expression domains that drive
lineage commitment.

In situ analysis supports the validity of in silico predictive networks

In order to test our in silico modeling, we performed the hESC to cNPC
differentiation strategy that yielded the gene expression data (S7A Fig) [39]. We
confirmed expression of genes that are hallmarks of the differentiation at both the
transcript and protein levels, using gRT-PCR and immunofluorescence,
respectively (S7B Fig). Our results indicate the elevation of transcripts for SOX1
and COL3A1, both associated with brain development, over the differentiation
time course. We also detected a decrease in OCT4 at both the transcript and
protein levels, indicating a loss of pluripotency upon commitment. The nuclear
intermediate filament protein LMNA/C, which has been reported to be
upregulated upon commitment of hESCs, was also elevated at the protein level
while LMNB, a universally expressed nuclear intermediate protein, was present
during both time points (S7C Fig). Additionally, small neurite-like protrusions
emanating from the cell body became apparent at the end of the time course.
These results indicate that we were successful in inducing formation of cNPCs.

To experimentally validate our in silico model of expression based
genome organization, we visualized the pairwise association of eight
chromosomes (HSASs) utilizing 3D-FISH at three points along the differentiation
time course. The chromosome pairs were chosen based upon potential
interactions at specific times within the context of our chromosome interaction
genome networks (Fig 3B-D). Three chromosome pairs served as experimental
conditions, exhibiting bi-directionality early upon edge addition during network
construction at the indicated time points (S8A-C Fig): Day 0 HSA 7/HSA 20, 5
HSA 1/HSA 2, and Day 10 HSA 11/ HSA X. Two pairs, HSA 5/HSA 20 and HSA
1/HSA 3, lacked bi-directionality early during the edge addition process at any
time point and served as controls (Fig 3B-D and S8A-C Fig). We predicted node
bi-directionality of the experimental chromosome pairs would serve as a predictor
for increased heterolog proximity at points of interest due to their transcriptional
synergy. The single directionality and lack of graph neighborhood association
exhibited by the control node/chromosome pairs were predicted to have reduced
heterolog proximity at any time point due to asymmetry in transcriptional synergy.

3D FISH was performed with the pairs of chromosomes indicated above
simultaneously visualized with fluorescently labeled whole chromosome paints
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(WCPs) at Days 0, 5, and 10 of the differentiation (Materials and Methods, 3D
FISH). Confocal stacked images of the hybridized cells were captured and then
converted into binary masks before being reconstructed into 3D renderings using
the MATLAB Image Processing Toolbox (Fig 4A). To test our ability to predict
chromosome organization as a function of co-regulated gene expression during
differentiation we measured the clustering coefficient and percentage overlap of
the heterolog pairs (Fig 4B). These methods of analysis were chosen as they
address the salient features of chromosome organization in their ability to
capture proximity (clustering coefficient) and physical association (overlap), both
of which are important due to the amorphous nature of chromosome territories
(CTs) (Fig 4A) and evidence suggesting that the territory periphery may harbor
actively co-regulated genes [47, 48].

The 3D clustering coefficient was calculated by taking the average pair-
wise distance between the closest points of all chromosome pairs divided by the
Feret's diameter of the nuclear mask. This measurement theoretically gives an
output ranging from O (closest) to 1 (farthest) as an indicator of the global
proximity of chromosomes with respect to one another in the nuclear
compartment. Comparison of the clustering coefficient of a given heterolog pair
to that of all others allows us to determine the specificity of a decrease in
minimum distance among all heterologs at a given time point in the
differentiation. As stated above we hypothesize that minimization of distance
between heterologs is predicted by the similarity of their composition of co-
regulated genes during hESC to cNPC differentiation and thus their
neighborhood association in our genome network modeling (Fig 2B-D).

We observed that the clustering coefficient of the HSA 1/HSA 2 and HSA
11/HSA X experimental pairs are significantly reduced at the predicted time
points, Day 5 (HSA 1/HSA 2) and Day 10 (HSA 11/HSA X), respectively (Fig 5A).
In the case of HSA 1/HSA 2, the minimization of distance between the heterologs
was maintained on Day 10. While there was a trend of the HSA 7/HSA 20 pair to
lose proximity on Day 5, it was not sustained and proved not to be significant (Fig
5A). The lack of significance in the association between HSA 7/HSA 20 does not
align with our hypothesis; however, the global level of chromatin decondensation
observed within hESC nuclei may render it difficult to model an expression-
mediated chromosome organization paradigm during the state of pluripotency in
contrast to the active reordering of gene expression during cellular differentiation
[35]. As predicted by our model, there was no significant clustering of the HSA
1/HSA 3 control pair during any time point. Yet, there was a gradual reduction in
the clustering coefficient of the HSA 5/HSA 20 heterolog pair, with a significant
difference observed between Day 0 and Day 10. This unexpected result may be
due to both HSA 5 and HSA 20 being present in node neighborhoods (Fig 2C, D)
shared by at least one nucleolar organizing region (NOR) containing
chromosome (HSAs 13, 14, 15, 21, and 22) at Days 5 and 10. NOR enriched
chromosomes have been shown to influence genome organization, which may
be accentuated due to size/structural changes occurring at nucleoli upon
neuronal development [49-51].
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While the clustering coefficient provides a metric for global heterolog
proximity, to directly test whether the physical association of heterolog pairs is
predicted by gene co-regulation during cellular differentiation, we measured the
percentage of the overlapping regions of their CTs (Fig 5B). As indicated above
this metric addresses that the periphery of chromosome territories may harbor
actively co-regulated genes [47, 48], which would be facilitated by the association
of heterologs with similar expression profiles. In support of the clustering
coefficient analysis, we determined that the HSA 1/HSA 2 and HSA 11/HSA X
experimental pairs demonstrate significant percentage CT overlap at the
predicted time points, with the degree of overlap consistent with previous studies
of functional chromosome associations (Fig 5B) [52]. Intriguingly, despite a trend
of the HSA 7/HSA 20 pair to have heightened association at Day O (i.e. hESCs),
the lack of a significant relationship supports the idea that the general state of
decondensation accompanying pluripotency may impact the ability to predict
expression-based chromosomal interaction networks. Unlike the clustering
coefficient, the control two control heterolog pairs, HSA 1/HSA 3 and HSA 5/HSA
20, largely demonstrated no significant patterns of overlap. Therefore, while
NOR containing chromosomes being present in node neighborhoods may
influence global association of other nodes, they do not appear to impact the
physical overlap of adjacent chromosome territories.

We also calculated the changes in homolog coalescence of the
chromosomes analyzed above during hESC to cNPC differentiation. Decreased
distance, particularly in the instance of coalescence, between homologous
chromosomes may facilitate expression of gene subsets important at a specific
differentiation time point. While our modeling approach was based on heterolog
associations, our previous work showed an increased association of homologous
chromosomes during murine hematopoiesis as a function of their coregulated
gene sets [18]. We therefore sought to determine if there was also a correlation
in homolog coalescence and cellular commitment of hESCs by quantifying the
percentage of nuclei containing one discernable chromosome of interest at three
time points during differentiation (S9A Fig). Similar to our previous findings, we
observed an increase in homolog coalescence from Day 0 to Day 10 with all
chromosomes except HSA 20 and HSA 2 (S9B Fig). While the degree (and
therefore significance) of coalescence varied among the chromosomes, the
trends are clear. Interestingly, both HSAs 20 and 2 demonstrate a pronounced
level of coalescence at Day 0 (hESCs), such that an increase would be
exceptional, and indeed reveal a reduction over the time course (S9B Fig).
Regardless, these results indicate that homolog coalescence is also associated
with hESC differentiation and may facilitate coordinate gene regulation.

Given the above caveats, we examined additional chromosome pairs to
more robustly test our in silico model. Our analysis of HSA 7/HSA 20 suggests
that the genomic state of pluritpotency may affect the role of heterolog
association in coordinating gene expression during stem cell commitment. Thus,
we analyzed the association of HSA 9/HSA 2, which also demonstrates bi-
directionality early upon edge addition during network construction at Day 0 (Fig
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2B-D and S8A-C Fig). In support of the influence pluripotency has on the ability
to predict expression dependent heterolog associations, the pair reveals no
significant difference among time points with either the GCC or CT overlap
metrics (Fig 6A, B).

We next tested our model using an alternative approach in selecting
chromosome pairs to be analyzed. Instead of choosing heterologs based upon
potential interactions at specific differentiation time points within the context of
the chromosome interaction genome networks, we analyzed the HSA 1/HSA X
pair which demonstrates bi-directional node association across all three time
points (Fig 2B-D and S8A-C Fig). Thus, the model would predict a degree of
proximity that should be shared at Days 0, 5, and 10. Indeed, using our analysis
approach described above we find that the pair does not significantly change in
regards to the GCC during differentiation (Fig 7B). CT overlap similarly shows
little change between Days 0 and 5, and Days 5 and 10 (Fig 6B). However, there
is a significant change in regards to Days 0 and 10. A closer look at the network
neighborhood at Day O reveals that HSA 1 and HSA X are its exclusive
members, whereas at Days 5 and 10 there are several more chromosomes
participating in the neighborhood (Fig 2B-D and S8A-C Fig). Therefore, it may
be relevant to consider the ‘size’ of the network neighborhood when considering
the predictive capability of our model, as the number of available nodes
(chromosomes) may influence the association of a given pair.

Finally, in our initial analysis we observed that the control pairs HSA
5/HSA 20 demonstrated unpredicted proximity in our clustering coefficient
analysis at Days 5 and 10 (Fig 5A). Upon closer examination of their node
networks, we recognized that NOR-containing chromosomes make up numerous
connections at those time points, leading us to speculate that NOR
chromosomes may affect at least the clustering coefficient metric (Fig 2C, D).
Therefore, to test this possibility we chose two pairs, HSA 5/HSA 17 and HSA
1/HSA 7, which have multiple NORs in their node at Day 5 and none,
respectively (Fig 2C and S8C Fig). We performed 3D immuno-FISH with an
antibody to nucleolin and relevant chromosome paints to identify the nucleolus
and measure the association of the CTs with it. In support of the importance of
NORs in predicting chromosomal associations as a function of their association
at nodes, we found a significant enrichment for nucleolar association with the
HSA 5/HSA 17 pair compared to HSA 1/HSA 7 (Fig 6C, D). Therefore, as with
pluripotency, it is important to consider NORs when predicting chromosomal
associations based on network interconnectivity.

Discussion

In our study we have formulated an in silico model describing how
similarity in the expression profile of differentially regulated gene networks is
correlated with the higher-order organization of chromosomes during
differentiation from hESCs to cNPCs. The refinement of gene expression
patterns over the duration of cellular commitment is well documented [52-54].
Our results highlight that entrainment of co-regulated gene expression during
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differentiation is a dynamic process (Fig 1). Using graph statistics we observe
that the genome networks generated using our in silico model exhibit properties
similar to real-world networks (Figs 2, 3 and S5 Fig). We tested our modeling by
assaying relative nuclear organization using 3D FISH of several chromosome
pairs predicted to be proximal (Figs 4-6). While previous reports have related the
positioning of chromosomes within the nucleus to size and gene density, our
results support our earlier findings that relative proximity of the chromosome
complement is correlated with the transcriptional synergy of differentially
expressed genes on adjacent chromosomes during interphase [18, 19]. Our in
silico modeling approach provides the ability to assess for potential genome-wide
interchromosomal associations that will facilitate directed 3C-derived strategies.

Although we were unable to construct complete diploid genome networks
due to the inherent inability to assign genome-wide transcript levels to homologs,
we validated our hypothesis of an expression-mediated organizational paradigm
by constructing haploid in silico networks based upon ranked mean SKL
distance. Analysis of degree distribution across nodes of the in silico model
indicates a deviation from normality, a common feature of biological networks
(S5B Fig) [44, 45]. We further characterized the genome networks using the
metrics of GCC and assortativity, identifying their uniqueness relative to both
control networks (Erdés-Rényi random and Barabasi-Albert scale-free) (S6A, B
Fig) and during their own rewiring (Fig 3A, B). In essence, these analyses
suggest that a small number of chromosomes (nodes) in a given modeled
network neighborhood may serve as functional hubs in which genes expressed
at similar levels from different chromosomes may localize to facilitate the
regulation of transcription, for example by associating with transcription factories.
Regardless, visualizing edge contributions of the various nodes suggests that
hub potential varies dynamically throughout neurogenesis.

To validate our model we analyzed the pair-wise 3D nuclear organization
of eight chromosomes chosen for their predictive or control value. The results
with two experimental pairs, HSA 1/HSA 2 and HSA 11/HSA X, confirmed our
hypothesis of increased proximity at the expected differentiation time points (Fig
5). However, the third experimental pair, HSA 7/HSA 20, while demonstrating a
trend for proximity at Day 0 (hESCs) as anticipated, did not reveal a significant
relationship. This result suggests that pluripotency is an important consideration
when attempting to model gene networks and their role in the higher-order
organization of chromosomes during differentiation. As discussed above,
pluripotency is related to a unique decondensed chromatin state that may make it
difficult to predict expression-based patterns of genome organization. To further
test this possibility, we chose an additional homolog pair (HSA 2/HSA 9) with
expected proximity in hESCs (Day 0). In support of our inference, this pair also
did not demonstrate a significant trend at the predicted time point (Fig 6A, B).
Thus, additional information may be necessary in training our in silico generated
genome network to accommodate pluripotency, such as the change in overall
volume of chromosome territories as a function of differentiation.
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While our control chromosome pairs, which were chosen due to their
presence in disparate node neighborhoods (Fig 2B-D and S8 Fig), largely
conformed to our hypothesis, there was an exception with the GCC metric of
HSA 5/HSA 20. This pair demonstrated significant proximity during the
differentiation time course at Days 0 and 10. Close examination of the
interaction networks of HSAs 5 and 20 revealed that at these time points, both
share node neighborhoods with at least one NOR-containing chromosome
(HSAs 13, 14, 15, 21, and 22). These chromosomes have been shown to
influence genome organization, which may be accentuated during neuronal
development [49-51]. To directly test this possibility, we identified two
chromosome pairs at Day 5 that are involved in node neighborhoods with or
without NOR-containing chromosomes, HSA 5/HSA 17 and HSA 1/HSA 7,
respectively, and performed immunoFISH (Fig 2C and Fig 6C, D). Our analysis
corroborates the influence NOR-containing chromosomes have on chromosome
proximity as HSAs 5 and 17 both demonstrate significant association with the
nucleolus as compared to the controls. Therefore, as with pluripotency, modeling
expression-based genome organization must also take into account structural
features of the nucleus, in particular the nucleolus, that while not directly related
to the expression network of a given state of differentiation may nonetheless
influence chromosome adjacency patterns by the attendant needs of cell
proliferation and function.

In situ analysis of genomic organization using whole chromosome paints
documents the myriad changes occurring during differentiation of hESCs. In
addition to our analysis of in silico predicted heterolog proximity, we found that
homologs generally demonstrate the tendency to coalesce at increased
frequencies through the differentiation time course (S9 Fig). We have previously
observed this trend in murine hematopoietic differentiation, suggesting that this
form of organization may be a common developmental feature [18, 19]. Although
why this may occur has yet to be fully explained, we have evidence suggesting
that homologous gene loci that are spatially proximal in the nuclear compartment
tend to have similar expression levels, i.e. reduced transcriptional noise [29]. It
is possible that loci residing in large chromatin domains on chromosome
homologs could potentially behave similarly. As co-regulated gene sets are
proximally distributed along their chromosomes, association of homologs could
lead to increased transcription of genes involved in cellular differentiation to a
particular lineage [18].

As gene expression is inextricably linked with cellular state, investigating
organizational paradigms that facilitate efficient execution of regulatory networks
may prove to be critical in assessing the identity of individual cells within
heterogeneous populations.  Specifically, identification of defined genome
arrangements in terminally differentiated cells through modeling may accelerate
development of novel ex vivo differentiation strategies when used in conjunction
with traditional cell characterization methods such as RNA-Seq and flow sorting.
There is real therapeutic potential in such studies, as correcting damaged tissues
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with functionally reprogrammed progenitor cells continues to show promise in
treating intractable disease states.

Methods
Cell culture

The NIH-approved human ESC cell line WA-09 (H9) was used to generate
committed neural precursor cells. The cell line was cultured feeder-free
according to WiCell Research Institute recommended procedures using Matrigel
and TeSR1 media. Differentiated colonies were removed via aspiration after
dispase treatment. Colonies were then scraped gently and grown in suspension
media (1:1 DMEM/F12+l-glutamine and Neurobasal media, 1x N2 and B27
supplements, 20ng/ml insulin, 20ng/ml bFGF, 20ng/ml EGF) in non-tissue treated
culture dishes for a period of 6 days, with intermittent 10ml changes of media
every other day. Spheres were collected, gently triturated, and grown on
polyornithine-coated (5ng/ml for 1hr at RT) tissue culture treated plates for an
additional 4 days in expansion media (DMEM/F12+l-glutamine, 10% BIT 9500,
20ng/ml bFGF, 20ng/ml EGF, 2ug/ml heparin), with 10ml changes of media
every other day.

Immunocytochemistry

Human ESCs differentiated for O, 5, and 10 days were fixed in fresh 4%
formaldehyde/PBS++ for 10 minutes at room temperature. Cells were then
washed in 1x PBS, permeabilized in .5% Triton X-100/PBS++ for 10 minutes,
and blocked for 30 minutes in 4% BSA/PBS++. Primary antibodies against
OCT4 (Santa Cruz, C-10), LMNA (Jol3, Abcam), LMNB (Santa Cruz, C-20), and
MAP2 (L.I. Binder, AP14) were applied to cells (diluted according to
manufacturers specifications in 4%BSA) for 1 hour at 37C before washing in .5%
Triton X-100/PBS++ for 10 min and application of detection antibodies (diluted
according to manufacturers specifications in 4%BSA) for an additional 45
minutes. Stained cells were then washed in .5% Triton X-100/PBS++ for 10 min
and mounted with Prolong Diamond with DAPI before imaging on the Nikon A1R
confocal microscope.

Quantitative Real-time PCR

Human ESCs differentiated for 0, 5, and 10 days were harvested via
centrifugation, washed with 1x PBS, and lysed in TriZol. Total RNA was
reversed transcribed using the Superscript Il First-Strand Synthesis System.
10ng of cDNA product was used in conjunction with LightCycler 480 SYBR
Green | Master Mix to ascertain relative fold change difference with respect to
OCT4 (F:TCAGGAGATATGCAAAGCAG, R:CACTGCAGGAACAAATTCTOQ),
SOX1 (F: GACGTTCCCACATTCTTGTC, R:CACCGAAGTTCAGTCTAAAAQ),
COL3Al (F:AAGAGTGGAGAATACTGGGT, R:AACTGAAAACCACCATCCAT),
and GATA4(F:ACCCCAATCTCGATATGTTT, R:CCGTTCATCTTGTGGTAGAG)
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using the LightCycler 480. All genes were referenced to B2M
(F:ACTTTGTCACAGCCCAGAT, R:GCATCTTCAAACCTCCATGA).

Bioinformatics

Microarray data detailing the 10-day differentiation of H9 hESCs to
committed neural precursor cells was provided by Alexey Terskikh [39]. The raw
data was quantile normalized before redundant and obsolete entries were
removed. Significance Analysis of Microarrays [40] was applied to the resulting
dataset to identify differentially expressed genes over the entire 10-day time
course.

Genomic order was assessed by calculating the relationship between all
differentially expressed genes across the genomic complement by using the
Symmetrized Kullback-Leibler (SKL) divergence equation,

1 nfp 1 vif . .
REH:.;'J-I{EII('E lu:nnhzlz ﬁjlngmj, where x(i) and y(i) represent the

normalized expression score of any two differentially expressed genes at a given
time point. At each time point the resultant 2040x2040 distance matrices were
hierarchically clustered with n=4 clusters. Genomic order is defined as the
number of constituents in the largest cluster divided by the total number of
differentially expressed genes.

Genome networks were constructed by creating matrix, M, detailing the
mean SKL of the differentially expressed genes of each chromosome to all other
chromosomes. The distance matrix, N, was normalized such that

[¥] =abml- : 1. Each column of N was sorted in ascending order, with the

highest association rank being 0, occurring between homologous chromosomes
along the diagonal. Edges were added between nodes based upon the sorted
rankings until a unified graph was formed, with one edge per node added at a
time.

Given a graph 3 = {¥.E}, the assortativity is calculated by partitioning the
vertex set V into k subsets such that each subset belongs to one community.
The community modularity Q of this partition is defined as ﬂ'-z__r £,

where g is the percentage of edges that have both ends in community Vi, and &
is the percentage of edges that start from community Vi. In other words,

0. - [lwweveck{wiceli and g -{uvcvisicsbe.  The
graph metrics, i.e. the global clustering coefficient and the assortativity, were
calculated with native Mathematica functions using the unified graphs.

The ER random networks and scale-free networks were constructed using
the native Mathematica functions RandomGraph[n,K] and
RandomGraph[BarabasiAlbertGraphDistribution[n,K]], respectively, where n is
equal to the number of nodes (23) and k is equal to the number of edges present
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in the cohesive genome network at each time point. In order to mimic the
behavior of the genome networks, self-loops were allowed to form during the
construction of the control networks.

Chromosome association was analyzed using the MATLAB 2014a image
processing toolbox. To determine distance measurements and overlap
percentage among chromosome pairs within the nucleus, we used the actual
voxel information of the binary masks (representing the chromosomes) that were
created. In the case of non-normal distributions, Mann-Whitney tests were used
to compare distance measurements between populations. Otherwise, in the
case of normality, the T-test was used.

All scripts used within this section were executed in MATLAB 2014a
and/or Mathematica 10.

3D FISH

Human ESCs differentiated for 0, 5, and 10 days were treated with
Accutase for 10min at 37C and harvested via centrifugation at 1100rpm. Cells
were resuspended in PBS and plated on poly-I-lysine coated coverslips before
fixation in 4% formaldehyde for 10min. Cells were permeabilized with .5% Triton
X-100 for 10 min, washed with PBS++ for 10 min, and incubated in .1M HCI for
5min. The slides were then washed in 2x SSC for 5 min before incubating
overnight in 1:1 4x SSC/Formamide. Chromosome paints (MetaSystems) were
applied to the cells and hybridized at 75C for 5min before storage at 37C for 2
days. Paints were removed by a 3x-wash in 2x SSC at 37C at 10min each wash
followed by a 3x-wash in .1x SSC at 60C at 10min each wash. Slides were
mounted using Prolong Diamond with DAPI and imaged on a Nikon A1R
confocal microscope.

3D ImmunoFISH

The protocol above was performed with additional steps to incorporate the
detection of nucleoli with an antibody to nucleolin, a canonical nucleolar protein.
In short, after FISH preparation, rubber cement was removed, and cells were
washed in 2X SSC three times for 5 min each at 37°C with gentle shaking and
then 0.1X SSC at 60°C three times for 5 min each with gentle shaking. Cells
were then rinsed in 4X SSC/0.2% Tween-20 in PBS, and then blocked in 4X
SSC/0.2% Tween-20/4% BSA for 45 min at 37°C. Cells were then incubated
with antibodies diluted in 4X SSC/0.2% Tween-20/1% BSA for 45 min at 37°C.
Preparations were then mounted and imaged as above.
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Figure Legends

Fig 1- Gene expression is dynamically modulated during neuronal
commitment

A: Clustergram generated using the Bioinformatics toolbox in MATLAB
visualizing changes in expression of genes induced upon neurogenesis. The
2040 differentially expressed genes identified using Significance Analysis of
Microarrays were hierarchically clustered based upon their normalized
expression values over the 10-day differentiation time course. The expression
profile is clustered into two broad classes of up-regulation (green to red) and
down-regulation (red to green). Each time point is indicated below the
clustergram. The legend detailing expression levels is shown to the left.

B: k-means clustering profile detailing four main patterns of expression during
neuronal commitment. Utilization of the L-method recommended partitioning
each gene into one of four discreet classes (a-d) based upon its normalized
expression score at each time point of the differentiation. Although each class
has a distinct kinetic signature, there are some shared features in (b-d) that
highlight behavioral synergy within the differentially expressed gene set.

C: Genomic order is a quantitative metric that identifies the largest fraction of
differentially expressed genes that are synergistically expressed. It is measured
by calculating the number of genes within the giant component at each individual
time point as a ratio to the total number of differentially expressed genes
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identified using Significance Analysis of Microarrays. A value of 1 indicates the
highest degree of transcriptional synergy between genes of the differentially
expressed set, with the opposite being true for values closest to 0. The genomic
order of our identified gene set roughly behaves in a sinusoidal fashion, which
follows important transitions during cNPC differentiation. The genomic order of
our dataset reaches its apex at Day 5 suggesting that most genes are
synergistically expressed towards the midpoint of the differentiation cycle during
the neurosphere phase (See S7 Fig).

Fig 2- Developing in silico genome networks to predict expression based
interchromosomal associations

A: Schematic detailing network formation from individual nodes. Node
connectivity is contingent upon transcriptional similarity, as determined by the
normalized mean SKL of the differentially expressed genes anchored upon their
respective chromosomes. Early edge addition cycles result in the formation of
disjointed sparse networks (top). Eventually, subsequent addition of edges
results in the formation of the cohesive sparse network (center) and finally the
complete network (bottom). The cohesive sparse network provides an emergent
snapshot of the nodes that should be most likely to physically associate in situ.

B-D: Network modularity illustrates potential in situ chromosome association.
Cohesive graphs from Day 0 (B), Day 5 (C), and Day 10 (D) depict the formation
of distinct graph neighborhoods based on the property of modularity. Member
nodes of each color-coded, encircled neighborhood interact at a higher frequency
with each other than with the nodes in any other neighborhood. Chromosomes
chosen for in situ validation of our model are indicated in bold and italic
(experimental) and underline (control).

Fig 3- Cohesive genome networks exhibit unique topological organization
that collapses upon perturbation

A: The global clustering coefficient (GCC), a metric of detailing the extent of
network connectivity, is assessed for the genome network (blue), a 5-edge
rewiring (yellow), and a 10-edge rewiring (green). The graph illustrates that the
unperturbed genome network exhibits the highest degree of connectivity at all
time points.

B: The network assortativity, a metric detailing the connectivity of nodes with
similar degree, is assessed for the genome network (blue), a 5-edge rewiring
(yellow), and a 10-edge rewiring (green). The graph shows that the assortativity
of the genome network intersects the x-axis at two points- the first point occurring
as the cells are transitioning into the neurosphere stage, while the second point
occurs as the cells are transitioning beyond the neurosphere stage.

C: 3D graph illustrating edge contribution of each node (chromosome) throughout
the differentiation time course. Edge contribution (z-axis) of each node (x-axis)
dynamically oscillates over time (y-axis), indicating the potential for hub formation
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of select chromosomes at specific time points during cellular commitment.
Interestingly, there are a myriad of behaviors for each plot ranging from a fairly
uniform line (chromosome 20) to one that oscillates frequently (chromosome 10).

D: Heatmaps illustrate preferential associations between nodes throughout the
differentiation time course. Several node pairs (orange/white) appear to interact
repeatedly in the heatmap of the compressed genome network. The specificity
between node pairs is absent in the heatmap of the compressed random
network; i.e. preferential node association is lost.

Fig 4- Analytic metrics for testing in silico modeling

A: The left column depicts representative 3D FISH analysis maximum intensity
projections of DAPI stained nuclei (blue) hybridized with HSA 11 (green) and
HSA X (red) at Day O (top), Day 5 (middle), and Day 10 (bottom). The right
column depicts 3D renderings of the nuclei and chromosome territories of the left
column. The software renderings were made by subjecting the thresholded
masks of confocal Z-stacks at each time point using the smoothened isosurface
algorithm in MATLAB.

B: Cartoon schematic illustrating measurements between homologous and
heterologous chromosomes. Signal overlap is measured as the percentage of
chromosome overlap contributed by each territory on a per nucleus basis. The
clustering coefficient is taken by calculating the mean minimum distance between
all chromosome pairs as a ratio to the maximum nuclear (Feret’'s) diameter.

Fig 5- In situ validation of interchromosomal associations predicted in
silico

A: Graphs detailing the clustering coefficient, calculated as the mean pairwise
distance between all chromosomes as a function of maximum nuclear diameter,
of experimental (HSA 7/ HSA 20, HSA 1/HSA 2, and HSA 11/HSA X) and control
chromosome pairs (HSA 1/HSA 3, HSA 5/HSA 20) at Days 0, 5, and 10 of
differentiation (26<n<102). *:p<=.05, **:p<=.01, ***:p<=.005; T-test.

B: Graphs illustrating the signal overlap between experimental heterologous
pairs (HSA 7/ HSA 20, HSA 1/HSA 2, and HSA 11/HSA X) and control
heterologous pairs (HSA 1/HSA 3, HSA 5/HSA 20) at Days 0, 5, and 10 of the
differentiation (26<n<102). Colors of text indicate the fluorophore that was used
in the 3D FISH analysis (green=FITC, red=TxRed). *p<=.05, **:p<=.01,
***p<=.005; Mann Whitney Test.

Fig 6- In situ validation of interchromosomal associations predicted in
silico

A: Graphs detailing the GCC, calculated as in Fig 6, of a heterologous pair (HSA
9/HSA 2) that displays bi-directionality at Day 0 and a heterologous pair (HSA
1/HSA X) that demonstrates network neighborhood association at all time points
of the differentiation (n=50). *:p<=.05, **:p<=.01, ***:p<=.005; T-test.
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B: Graphs illustrating the signal overlap between heterologous pairs HSA 9/HSA
2 and HSA 1/HSA X, assayed as in Fig 6, at Days 0, 5, and 10 of the
differentiation (n=50). Colors of text indicate the fluorophore that was used in the
3D FISH analysis (green=FITC, red=TxRed). *:p<=.05, **:p<=.01, ***:p<=.005;
Mann Whitney Test.

C: Images representative 3D immunoFISH analysis maximum intensity
projections of nucleolin (nucleoli) (blue) hybridized with HSA 5 (green) and HSA
17 (red) top column, and HSA 1 (green) and HSA X (red) bottom column. This
analysis was performed at Day 5 of the differentiation, when HSAs 5 and 17
associate in a network neighborhood with NOR-containing chromosomes, while
HSAs 1 and X do not. at Day O (top), Day 5 (middle), and Day 10 (bottom).

D: Quantification of the nucleolar association of heterolog pairs in (C).
Projections were scored for whether either HSA in a given nuclei revealed
overlap with the nucleolin stain (n£50). *:p<=.05, **:p<=.01, ***:p<=.005; One-
Way ANOVA. T-test evaluations between heteolog pairs 5/17 and 1/X were not
significant, but all other pairing permutations were significantly different
(p<=.0001) as anticipated.

Supporting Information
S1 Table. Chromosome characteristics and co-regulated gene distribution.

S2 Fig. Linear regression analysis of genome-wide co-regulated gene
distribution

On a genome-wide level, the greater number of differentially expressed genes on
a given chromosome has a strong correlation with its number of significant bins
(or domains) (r=.629) from the Exact Binomial Test of the sliding window
analysis of Fig 1.

S3 Table. Mean k-means cluster trends and standard deviation

S4 Fig. Analysis of genomic order in hESCs undergoing mesodermal
differentiation

The analysis was performed as described for hESC to cNPC differentiation.
Data was acquired from: Piccini, I., Aratzo-Bravo, M., Seebohm, G., and Greber,
B. (2016). "Functional high-resolution time-course expression analysis of human
embryonic stem cells undergoing cardiac induction." Genomics Data 10: 71-74.

S5 Fig. Correlation of inherent properties of chromosomes and network
edge distributions

A: The community number, based on graph modularity, is correlated to the
linkage density, the average number of edges per node, of the genome network
at each individual time point during differentiation. Significance is assessed
using the Pearson’s correlation coefficient.
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B: The degree distribution of the genome network at each time-point is compared
to an Erdos-Renyi random network possessing the same number of edges over
each time-point of neurogenesis. In nearly all cases the degree distribution of
the genome network exhibits a departure from normality.

S6 Fig. Global clustering coefficient and network assortativity of genome
network relative to Erdés-Rényi and Barabasi-Albert networks

A: The GCC of the genome network is increased with respect to both the
Barabasi-Albert network and the Erdés-Rényi random network. The high GCC of
the genome networks imply that it possesses a graph topology similar to real-
world networks.

B: When compared to the Barabasi-Albert network and the Erdés-Rényi random
network, the genome network exhibits a transition from a parabolic transition
from negative to positive assortativity over time that may reflect dynamic changes
in in situ interchromosomal association during cellular differentiation.

S7 Fig. Validation of neurogenesis system through qRT-PCR and
immunofluorescence.

A: Schema illustrating cell morphology and molecular markers present at the
indicated time points of the differentiation.

B: Quantitative RT-PCR demonstrating the relative fold-change of transcripts
involved in the maintenance of pluripotency (OCT-4), neurogenesis (SOX1 and
COL3A1), and myogenesis (GATA4).

C: Immuno-staining of human embryonic stem cells (hESCs) and and committed
neuronal precursor cells (cNPCs) using antibodies specific for nuclear markers
(LMNA/C, LMNB), proteins involved in the maintenance of pluripotency (Oct4),
and terminally differentiated neurons (MAP2).

S8 Fig. Directional network used to choose whole chromosome probes for
in situ validation of genome networks.

A-C: Whole chromosome paints were chosen based upon node bi-directionality
of the cohesive graph, indicated by red arrows, of edges during network
construction at Day 0 (A), Day 5 (B), and Day 10 (C).

S9 Fig: Homolog coalescence increased during cellular differentiation

A: Cartoon diagram illustrating separate homologs compared to
indistinguishable, coalesced homologs.

B: Coalescence frequency of each homolog pair used in the in situ validation
experiments. In all cases, aside from HSA2 and HSA20, a gradual increase in
homolog coalescence is observed over the 10-day differentiation time course.
Bar graph colors indicate the fluorescence channels in which FISH was
performed. Significance was determined by conducting a Fisher’'s Exact Test in
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a pairwise fashion between time points: * p<=.05, **:p<=.01, ***:p<=.005;
Fisher's Exact-test.
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