

25

26 **Abstract**

27 The Chinese hamster ovary (CHO) cell line is a major expression system for the
28 production of therapeutic proteins, the majority of which are glycoproteins, such as
29 antibodies and erythropoietin (EPO). The characterization of the glycosylation profiles
30 is critical to understand the important role of glycosylation on therapeutic glycoproteins
31 from CHO cells. In this study, a large scale glycoproteomic workflow was established
32 and applied to CHO-K1 cells expressing EPO. The workflow includes enrichment of
33 intact glycopeptides from CHO-K1 cell lysate and medium using hydrophilic
34 enrichment, fractionation of the obtained intact glycopeptides (IGPs) by basic reversed
35 phase liquid chromatography (bRPLC), analyzing the glycopeptides using LC-MS/MS,
36 and annotating the results by GPQuest 2.0. A total of 10,338 N-linked glycosite-
37 containing IGPs were identified, representing 1,162 unique glycosites in 530
38 glycoproteins, including 71 unique atypical N-linked IGPs on 18 atypical N-
39 glycosylation sequons with an overrepresentation of the N-X-C motifs. Moreover, we
40 compared the glycoproteins from CHO cell lysate with those from medium using the
41 in-depth N-linked glycoproteome data. The obtained large scale glycoproteomic data
42 from intact N-linked glycopeptides in this study is complementary to the genomic,
43 proteomic, and N-linked glycomic data previously reported for CHO cells. Our method
44 has the potential to accelerate the production of recombinant therapeutic glycoproteins.

45

46

47 **Introduction**

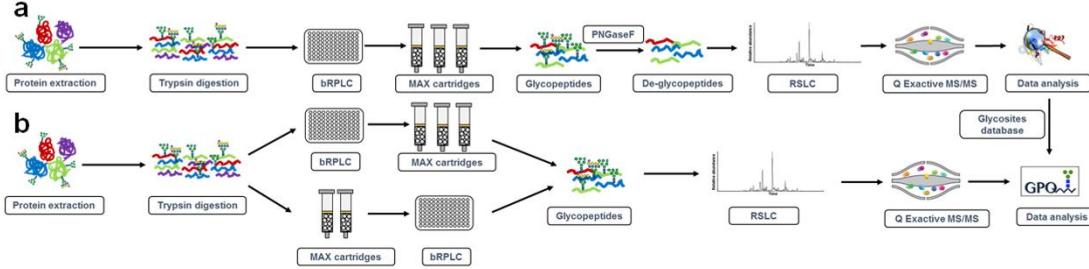
48 The Chinese hamster ovary (CHO) cell line is the major expression system used for
49 the efficient production of recombinant proteins, the majority of which are therapeutic
50 glycoproteins, including erythropoietin (EPO), coagulation factors, and antibodies
51 (Walsh 2014). A major focus of current glycosylation engineering efforts is to produce
52 therapeutic glycoproteins with optimal yield and human-like post-translational
53 modifications (PTMs). Glyco-engineered CHO cells have been comprehensively
54 investigated by different biological, analytical, and molecular engineering approaches,
55 including genomics (Birzele et al. 2010; Jones et al. 2010; Xu et al. 2011; Lewis et al.
56 2013; Chung et al. 2015), proteomics (Baycin-Hizal et al. 2012), glycoproteomics
57 (Yang et al. 2014), and glycomics (North et al. 2010; Yang et al. 2015c), to understand
58 the final characteristics of the recombinant therapeutic glycoproteins. These studies aim
59 to optimize therapeutic glycoprotein drug production, thereby improving therapeutic
60 efficacy and ultimately reducing side effects, toxicity, and cost in the pharmaceutical
61 industry.

62 As one of the most prevalent protein modifications, N-linked glycosylation plays a
63 vital role in many biological process, especially in protein folding, cell adhesion, cell-
64 matrix interactions, cellular signaling, intracellular/extracellular targeting to organelles
65 and pathogenesis of different diseases (Cummings and Pierce 2014; Xu and Ng 2015).
66 The complexity of protein glycosylation, including multiple glycosites within a
67 glycoprotein (macro-heterogeneity), site occupancy and different glycan structures at
68 each glycosite (micro-heterogeneity), poses great challenges for a comprehensive
69 analysis of glycoproteins expressed in a cell or organism to investigate the structural
70 and functional role of glycans within glycoproteins. A number of methods have been
71 used to characterize glycoproteins, including (i) glycosite identification using
72 approaches such as Solid-Phase Extraction of Glycosite-containing peptides (SPEG)
73 (Zhang et al. 2003), lectin enrichment (Kaji et al. 2003; Zielinska et al. 2010) and
74 hydrophilic enrichment (Wada et al. 2004); (ii) glycome profiling, such as total native
75 glycans (Fujitani et al. 2013), sialic acid derivatization (Shah et al. 2013; de Haan et al.
76 2015; Kammeijer et al. 2017; Yang et al. 2017a), reducing end labeling through stable

77 isotopic labeling (Bigge et al. 1995; Ruhaak et al. 2010; Yang et al. 2015a; Yang et al.
78 2015b), and permethylation (Ciucanu and Costello 2003; Kang et al. 2005; Shubhakar
79 et al. 2016); (iii) site-specific intact glycopeptides (IGPs) analysis (Scott et al. 2011;
80 Parker et al. 2013; Khatri et al. 2016) using methods such as N-linked Glycan And
81 Glycosite (NGAG) (Sun et al. 2016) analysis, Tool for Rapid Analysis of glycopeptide
82 by Permethylatation (TRAP) (Shajahan et al. 2017), Electron-Transfer/Higher-Energy
83 Collision Dissociation (EThcD) mass spectrometry (Yu et al. 2017), and Hydrophilic
84 Interaction Liquid Chromatography (HILIC) enrichment (Takegawa et al. 2006; Zhang
85 et al. 2013). Site-specific IGP analysis is widely considered to be the most promising
86 strategy to comprehensively characterize glycoproteins, but the IGP analysis workflow
87 including enrichment method, mass spectrometric analysis and annotated software still
88 needs to be developed to increase the glycoproteome coverage and precision. Recently,
89 highly-comprehensive methods for IGP enrichment using HILIC-based methods were
90 compared in our lab, and mixed anion exchange (MAX) extraction cartridges were
91 selected as the optimal enrichment method for intact N-linked glycopeptides (Yang et
92 al. 2017b). In addition, 2D fractionation methods, including bRPLC, gel electrophoresis
93 (SDS-PAGE), or strong cation exchange (SCX-HPLC) are very helpful to further
94 improve the coverage of peptides or glycopeptides (Dowell et al. 2008; Wang et al.
95 2011; Jia et al. 2016).

96 Glycosylation of therapeutic glycoproteins cannot be directly predicted by the
97 genomic data. The expression of glycoproteins, glycoprotein biosynthesis and
98 constituents are dictated by the availability of nucleotide sugar synthesis, nucleotide
99 sugar transporters, enzyme activities, and other cellular status, which lead to broad
100 structural diversity. Structural and functional analyses showed that protein
101 glycosylation, especially for bisecting N-acetylglucosamine, fucosylation and
102 sialylation, substantially impacts the functional activities and circulatory half-life of
103 therapeutic glycoproteins (Walsh and Jefferis 2006; Hossler et al. 2009). Precise and
104 comprehensive analysis of site-specific IGPs is critical to understand and control the
105 glycosylation of glycoproteins produced in CHO cell expression systems.

106 In this study, we established a workflow for the large-scale characterization of


107 intact N-linked glycopeptides using (1) MAX enrichment, (2) bRPLC fractionation, (3)
108 mass spectrometry analysis using Q-Exactive instrumentation, and (4) data analysis and
109 annotation in GPQuest 2.0 (Toghi Eshghi et al. 2015; Hu et al. 2018). Using this method,
110 we identified a total of 10,338 unique N-linked glycosite-containing IGPs, representing
111 1,162 unique glycosites from 530 glycoproteins in human erythropoietin (EPO)-
112 expressing CHO-K1 cell lysate and medium. From this study, 71 unique N-linked
113 atypical IGPs were also identified, representing 18 unique glycosites with
114 overrepresentation of the atypical sequon, N-X-C.

115

116 **Results and Discussion**

117 **Identification of N-linked glycosite-containing peptides**

118 The majority of therapeutic glycoproteins secreted from CHO cells were found to
119 be heavily modified by N-linked glycosylation (Xu et al. 2011). Assessment of protein
120 glycosylation in CHO cells is very important for understanding the quality of CHO-
121 derived glycoproteins. Using multiple separation and analytical methodologies is
122 helpful to expand the number of enriched glycopeptides and identified glycoproteins.
123 In this study, we first identified the N-linked glycosylation sites and glycoproteins by
124 PNGase F digestion. The tryptic peptides were fractionated by basic RPLC, then
125 glycopeptides in each fraction were enriched by hydrophilic MAX extraction. After de-
126 glycosylation by PNGase F, the glycosite-containing peptides were analyzed by LC-
127 MS/MS and identified by MS-GF+ (Granholm et al. 2014; Kim and Pevzner 2014)
128 (Figure 1a). The assigned N-glycosite-containing peptides were filtered with 0.1% FDR
129 at the glyco-Peptide Spectrum Match (PSM) level, 0.3% FDR at the peptide level, and
130 1.1% at the protein level with a 2 PSM requirement for each peptide. A total of 68,148
131 PSMs were identified from CHO-K1 cells, representing 4,549 unique N-linked
132 glycosite-containing peptides from 2,276 proteins (Supplemental_Table S1).

133

134 **Figure 1.** Workflows of intact glycopeptide analysis strategies for lysate and medium
135 from human EPO-expressing CHO-K1 cells. (a) The workflow of large scale de-
136 glycosylation peptide analysis enriched by MAX extraction cartridges. The proteins
137 were digested, fractionated and MAX enriched. The glycopeptides were then de-
138 glycosylated and analyzed by LC-MS/MS. (b) Different glycopeptide analysis
139 strategies using MAX cartridge enrichment followed by fractionation or fractionation
140 of global peptides followed by enrichment of intact glycopeptides using MAX
141 cartridges for large-scale intact glycopeptides analysis.

142

143 **Intact N-linked glycopeptide analysis using different analytical workflows**

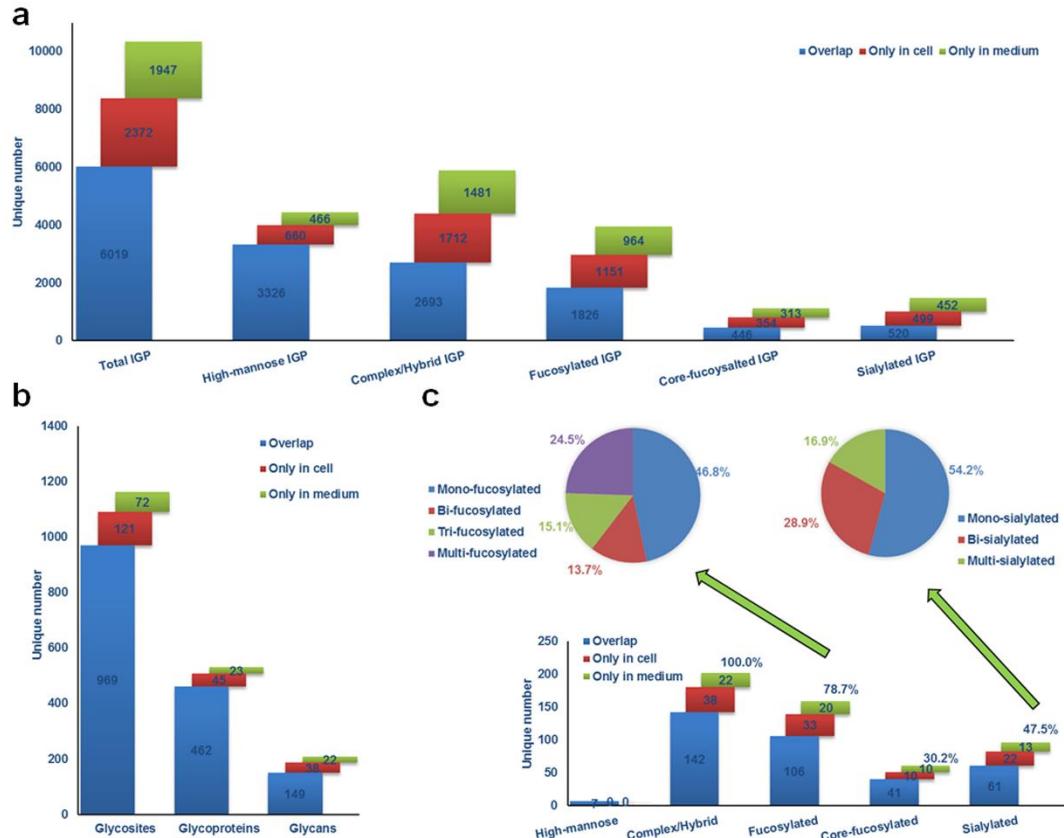
144 To characterize the IGPs of the human EPO-expressing CHO-K1 cell line, different
145 workflows were used in this study: (i) single LC-MS/MS analysis of enriched intact
146 glycopeptides; (ii) direct analysis of global peptides using single LC-MS/MS or
147 fractionation of global peptides by bRPLC followed by LC-MS/MS analysis; (iii)
148 fractionation of global peptides using bRPLC followed by hydrophilic enrichment of
149 intact glycopeptides from each fraction for LC-MS/MS analysis; and (iv) hydrophilic
150 enrichment of intact glycopeptides followed by fractionation of enriched glycopeptides
151 using bRPLC for LC-MS/MS analysis (Figure 1b). The prepared peptides were
152 analyzed by a Q-Exactive mass spectrometer and annotated by GPQuest 2.0 using the
153 glycosite-containing peptides described in the preceding section (Supplemental_Table
154 S1) as the database. The intact N-linked glycopeptides were filtered using a 1% false
155 discovery rate (FDR).

156 For single LC-MS/MS analysis of non-enriched and enriched intact glycopeptides,
157 intact glycopeptides enriched from 1 μ g or 100 μ g of CHO cell global peptides by

158 hydrophilic MAX columns were analyzed by LC-MS/MS and glycopeptides were
159 identified by GPQuest 2.0. Five and 950 PSMs of intact glycopeptides were identified
160 from 1 μ g and 100 μ g of CHO cell global peptides, respectively (Supplemental_Figure
161 S1). More than a 190-fold increase of PSM identification was achieved when the initial
162 peptide amount was increased from 1 μ g to 100 μ g for intact glycopeptide enrichment.
163 We then compared the direct analysis of global peptides with or without fractionation
164 using bRPLC followed by LC-MS/MS analysis. One microgram of global peptides
165 were analyzed by single LC-MS/MS analysis or 100 μ g global peptides were
166 fractionated to 25 fractions and each fraction was analyzed by LC-MS/MS analysis. A
167 total of 120 (from 1 μ g) and 1,442 (from 100 μ g) PSMs of intact glycopeptides were
168 identified, respectively (Supplemental_Figure S1). The inclusion of the bRPLC
169 separation resulted in a greatly (> 12-fold) increased number of identified PSMs. For
170 large-scale identification of intact glycopeptides, (i) fractionation of peptides using
171 bRPLC followed by MAX enrichment of intact glycopeptides from each fraction and
172 (ii) MAX enrichment of intact glycopeptides followed by fractionation of enriched
173 glycopeptides using bRPLC were established. Using a method entailing MAX
174 enrichment followed by bRPLC (25 fractions), we were able to identify a total of 43,193
175 PSMs from 3.5 mg of global peptides, while 27,998 PSMs from an equal starting
176 peptide amount were identified when the workflow started from the bRPLC
177 fractionation step followed by MAX enrichment. There was a > 1.5-fold increase in
178 PSM in the analysis of MAX-enriched intact glycopeptides followed by bRPLC
179 strategy compared to the reverse method (Supplemental_Figure S1).

180

181 **Analysis of the N-linked IGP_s in the human erythropoietin (EPO)-expressing
182 CHO-K1 cell lysate and medium.**


183 Using CHO-K1 cell lysate, 8,391 unique N-linked glycosite-containing IGP_s were
184 identified, which matched with 1,090 glycosites, 507 glycoproteins, and 187 glycan
185 compositions. In addition, the established large-scale IGP_s analysis workflow was
186 applied to the characterization of intact glycopeptides from secreted proteins in CHO-
187 K1 cell culture. A total of 7,966 unique N-linked IGP_s were identified in the medium

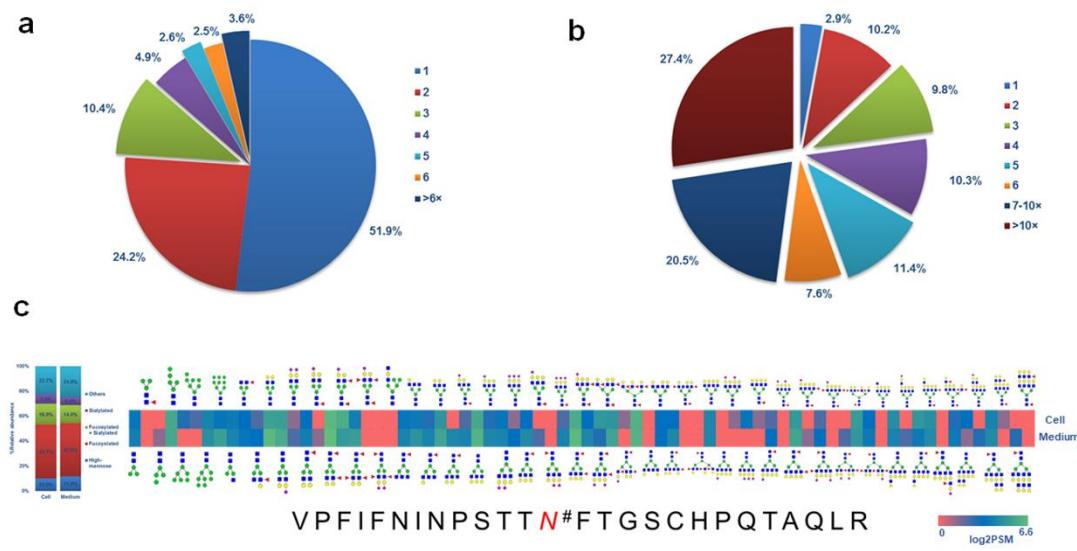
188 of the CHO-K1 cells, which matched with 1,041 glycosites, 485 glycoproteins, and 171
189 glycan structures. In total, 10,338 unique N-linked glycosite-containing IGPs were
190 identified from EPO-expressing CHO-K1 cell lysate and culture medium, matching to
191 1,162 glycosites, 530 glycoproteins, and 209 glycan compositions
192 (Supplemental_Table S2 and Supplemental_Figure S2).

193 It is well known that most glycoproteins are extracellular proteins (transmembrane
194 or secreted proteins) (Tian et al. 2010). Therefore, we predicted the subcellular location
195 of identified glycoproteins using SignalP 4.1 (Nielsen 2017) and TMHMM 2.0 (Krogh
196 et al. 2001) programs. Cell surface, secreted and transmembrane proteins were deemed
197 as glycoproteins. The annotated signal peptides, protein glycosylation and Gene
198 Ontology (GO) were evaluated in Uniprot. From the results, we found that 511 out of
199 530 (96.4%) identified proteins were highly likely to be glycoproteins, each of which
200 contained either signal peptides, transmembrane helices, or reported glycosites
201 (Supplemental_Table S3). These findings indicated the high specificity of our intact
202 glycopeptide analysis workflow and the data analysis strategy towards comprehensive
203 glycoproteomics characterization. The GO analysis also indicated that most of the
204 glycoproteins were located at the cell surface or secreted to the extracellular space
205 (Supplemental_Table S3). In addition, the molecular function of the identified
206 glycoproteins was either binding or catalytic activity (Supplemental_Table S3).

207 To investigate the N-linked glycans from CHO cell lysate and medium, we
208 characterized the IGPs by N-linked glycan classification. The identified 10,338 IGPs
209 from both cell lysate and medium consisted of 4,452 high-mannose type glycan-
210 containing glycopeptides and 5,886 complex and/or hybrid type glycan-containing
211 glycopeptides. In these complex/hybrid glycan-containing glycopeptides, 3,941 and
212 1,471 were fucosylated and sialylated, respectively. High-mannose IGPs were the
213 dominant type of glycopeptides (43.1%) and fucosylated IGPs were also very prevalent
214 (38.1%), while sialylated glycopeptides were under represented (14.2%) among
215 complex/hybrid IGPs in CHO cells (Figure 2a). The distribution of identified intact
216 glycopeptides, glycoproteins and glycosites indicated that approximately 58.2% of the
217 intact glycopeptides, 87.2% of the glycoproteins, and 83.5% of the glycosites were

218 identified in both the cell lysate and the medium (Figure 2a and 2b). These findings
219 suggest that most of the glycoproteins are common in cells and medium. However, the
220 detailed structure of N-linked glycans on the glycoprotein differs between CHO cell
221 lysate and medium. As an important component of glycoproteins, N-glycans and their
222 site-specificity have not been thoroughly investigated in previously reported studies
223 (Hart and Copeland 2010). In this study, glycans were assigned at their specific
224 glycosylation sites through IGP identification. Overall, 209 glycan structures were
225 identified from human EPO-expressing CHO-K1 cell lysate and medium. Seven N-
226 linked high-mannose glycans were identified in both cell and medium. For complex or
227 hybrid glycans, different glycans were identified in the cell and the medium. The results
228 showed that 78.7% complex/hybrid N-glycans were modified with fucose.
229 Approximately 38.4% of the fucosylated N-linked glycans contained a core Fuc
230 fragment ion (peptide+HexNAcFuc) that was present in the MS/MS spectra, indicating
231 the core-fucosylated glycans (Figure 2c). In these N-linked fucosylated glycans, mono-
232 fucosylated structures (46.8%) were the main type, while bi-fucosylated (13.7%), tri-
233 fucosylated (15.1%) and multi-fucosylated (24.5%) were also widely identified (Figure
234 2c). In comparison, the majority of the N-linked sialylated glycans were mono-
235 sialylated (54.2%) or bi-sialylated (28.9%) glycans. Only 16.9% of them were
236 identified as multi-sialylated glycans (Figure 2c).

237


238 **Figure 2.** Depth of the identified intact glycopeptides in cell lysate and medium from
239 human EPO-expressing CHO-K1 cells. (a) Identification and distribution of total and
240 sub-type intact glycopeptides identified from cells and medium. (b) Distribution of
241 identified glycosites and glycoproteins in cell lysate and medium, showing that most
242 glycoproteins are present in CHO-K1 cell lysate and medium. (c) Identification and
243 distribution of glycans and the composition and distribution of fucosylated and
244 sialylated N-linked glycans in cell lysate and medium.

245

246 Glycoprotein heterogeneity in CHO cells.

247 Glycosylation heterogeneity is a common feature of glycoproteins. Each protein
248 can potentially be glycosylated at multiple glycosylation sites and each glycosylation
249 site can be modified by different glycans. Using our large-scale N-linked
250 glycoproteomic data, we are able to reveal the macro-heterogeneity and micro-
251 heterogeneity of glycoproteins in CHO cell lysate and medium. In the 530 N-linked
252 glycoproteins identified from the intact glycoproteomic analysis, approximately 51.9%

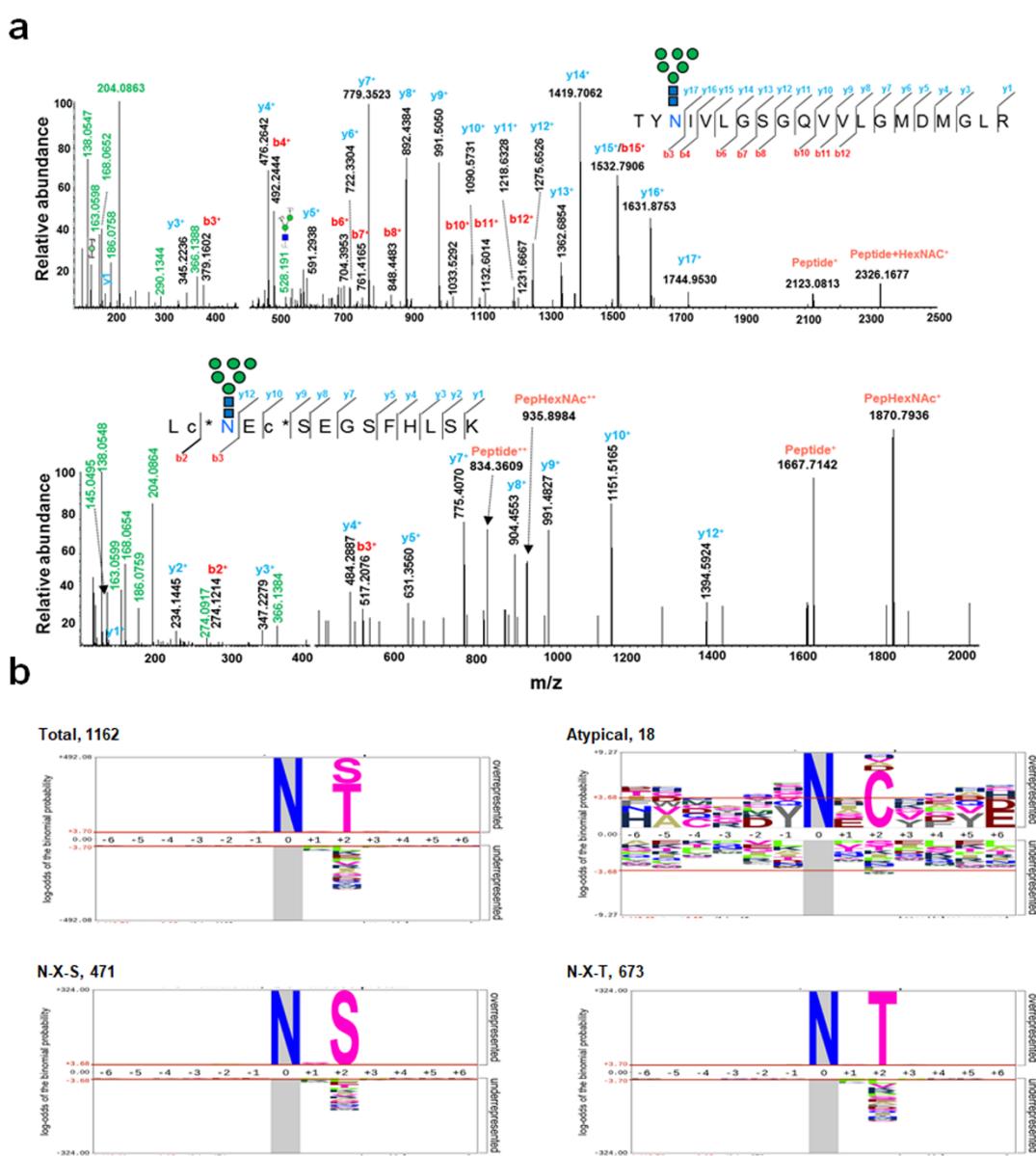
253 of the glycoproteins were identified with one N-linked glycosite, 24.2% of them were
254 detected with two N-linked glycosites, and 10.4% with three N-linked glycosites. We
255 identified a total of 55 (8.7%) glycoproteins that contained at least five glycosites
256 (Figure 3a). The average number of N-linked glycosites was 2.2 per glycoprotein. To
257 evaluate the relationship between the abundance of the glycoproteins and the index of
258 protein glycosylation, we analyzed average protein abundance with the glycosite
259 number on the same protein. We found that there is a positive relationship between the
260 glycoprotein abundance and the index of its glycosylation with a P-value of 1.28E⁻³,
261 indicating that the number of glycosites per protein is directly correlated with protein
262 abundance, and additional glycosylation sites could be present in the low abundance
263 glycoproteins and identified if an increased amount of protein was used for
264 glycopeptide analysis (Supplemental_Figure S3a). The 5 most heavily glycosylated
265 glycoproteins were prolow-density lipoprotein receptor-related protein 1 (30 unique N-
266 linked glycosites), laminin subunit alpha-5 (19 unique N-linked glycosites), cation-
267 independent mannose-6-phosphate receptor (18 unique N-linked glycosites), nicastrin
268 (12 unique N-linked glycosites) and integrin alpha-3 (8 unique N-linked glycosites).

269
270 **Figure 3.** Heterogeneity of detected glycoproteins in CHO cell lysate and medium. (a)
271 Distribution of glycosites per protein. (b) Distribution of glycans per glycosite. (c)
272 Heat map of the differences in abundance of the sub-types of N-linked glycans

273 between CHO cell lysate and medium on glycopeptide

274 VPFIFNINPSTTN#FTGSCHPQTAQLR. [#] indicates an N-linked glycosite.

275


276 From the total of 1,162 N-linked glycosites, only 2.9% peptides carried a single
277 glycan structure; approximately 10.2% and 9.8% glycosite-containing peptides were
278 detected with two and three N-linked glycan structures at one glycosite, respectively.
279 Notably, a group of 769 (66.9%) glycopeptides carried at least 5 N-linked glycan
280 structures and 315 (27.4%) had at least 10 N-linked glycan structures at one glycosite
281 (Figure 3b). The average number of N-linked glycan structures at one glycosite was 9.0.
282 We also analyzed the variance of glycan structures on differentially abundant
283 glycopeptides, finding a P-value of 2.06E⁻²⁰ (Supplemental_Figure S3b), suggesting
284 that the number of glycans identified from each glycosite is directly related to the
285 abundance of the glycosylated peptides, indicating additional glycans could be present
286 in the low abundance glycosites and could be identified if an increased amount of
287 protein was used for glycopeptide analysis. In glycopeptide
288 VPFIFNINPSTTN#FTGSCHPQTAQLR from Lysosome-associated membrane
289 glycoprotein, we identified 74 N-linked glycan compositions. The most common
290 glycan modification at this glycosite was found to be fucosylation (Figure 3c).

291

292 **Consensus motif preferences of N-linked glycosylation at canonical and atypical**
293 **N-linked glycosites.**

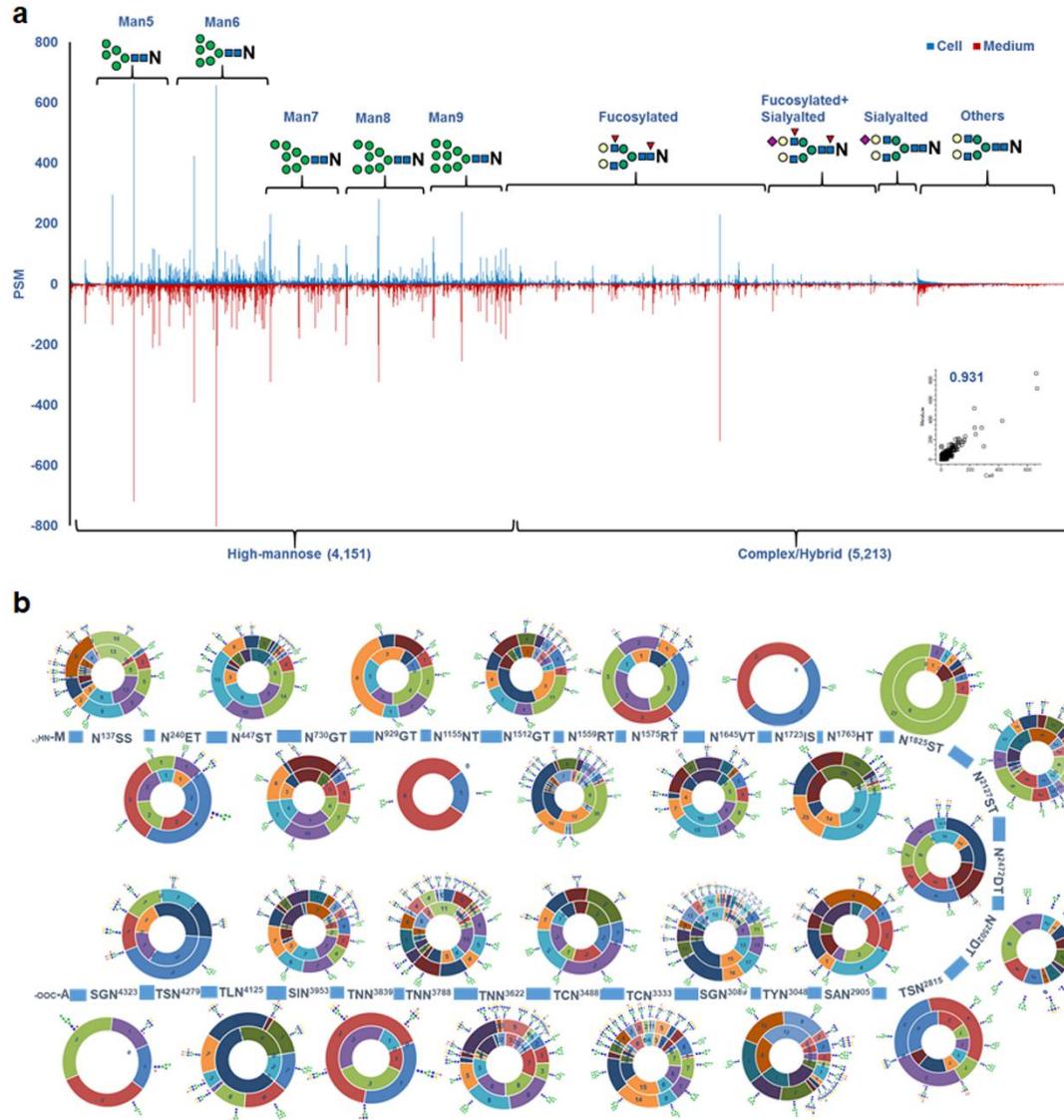
294 The canonical N-linked glycopeptide sequon is known to be N-X-T/S (which X can
295 be any amino acid except proline). In addition, some atypical N-glycosylation sequons
296 have been discovered in recent years, such as N-X-C, N-X-V, and N-G-X (Zielinska et
297 al. 2010; Sun and Zhang 2015). In the GPQuest 2.0 search engine, IGP identifications
298 are determined based on the requirement of MS/MS spectra to contain oxonium ions
299 and match to peptide or peptide+glycan fragment ions. Among the 10,338 identified
300 MS/MS spectra, a total of 705 PSMs and 71 unique atypical N-linked IGP were
301 identified, which matched to 18 unique glycosites from 14 glycoproteins. Based on the
302 spectra of atypical N-linked IGP, two glycopeptides,

303 TYN[#]IVLGSGQVVLGMDMGLR+N2H6F0S0G0 from glycoprotein peptidyl-prolyl
304 cis-trans isomerase FKBP9 and LCN[#]ECSEGSFHL SK+N2H6F0S0G0 from basement
305 membrane-specific heparin sulfate proteoglycan core protein (Figure 4a), were
306 identified. The observed oxonium ions, peptides and peptide+glycan-related fragment
307 ions from both peptides matched well.

309 **Figure 4.** Identification of atypical N-linked glycopeptides and preference of N-
310 glycosylation peptide consensus sequence. (a) Representative MS/MS spectra of the
311 atypical N-glycopeptides of TYN[#]IVLGSGQVVLGMDMGLR+N2H6F0S0G0 from
312 peptidyl-prolyl cis-trans isomerase FKBP9 and
313 LCN[#]ECSEGSFHL SK+N2H6F0S0G0 from basement membrane-specific heparin

314 sulfate proteoglycan core protein. [#] indicates an N-linked glycosite. (b) Distribution
315 and preference of typical and atypical glycosite consensus sequence derived using
316 pLogo.

317


318 To determine the preference of amino acids surrounding the canonical N-linked
319 glycosylation sequons and discover other novel consensus sequons with our
320 comprehensive data from this study, we compared the position-specific amino acid
321 frequencies of the sequences (six amino acids from N-linked glycosylation sites at both
322 termini) surrounding aspartic acid in both the canonical and the atypical N-linked
323 glycopeptides using pLogo (O'Shea et al. 2013). A total of 1,162 unique glycosites were
324 identified, of which 673 contained an N-X-T motif, 471 contained an N-X-S motif and
325 18 atypical glycosite motifs, and the consensus sequons of the identified glycosites were
326 analyzed. As we examined the canonical sequons in the dataset, threonine was found to
327 be more commonly present within the motif than serine at the +2 position (57.9% vs
328 40.5%). As expected, we found that proline was significantly underrepresented in all
329 the scenarios at position +1 and +3. Of the three atypical N-glycosylation sequons
330 identified (N-X-C, N-G-X, and N-X-V), only N-X-C was significantly overrepresented
331 at 38.9% with a log-odds of binomial probabilities of +7.1 (Figure 4b).

332

333 **Relative abundance of N-linked IGPs between human EPO-expressing CHO-K1
334 cell lysate and medium.**

335 To investigate the abundance of N-linked IGPs differentially expressed between the
336 CHO cell lysate and the medium, we performed a comparative analysis of IGPs using
337 label-free quantification methods based on spectral counting. Overall, 43,742 and
338 62,665 PSMs were identified from the cell lysate and medium, respectively. A total of
339 6,763 and 7,966 unique IGPs were identified from cell lysate and medium, respectively.
340 The relative abundance profiling and linear correlation analysis indicated that the N-
341 glycosylation of proteins in cell lysate and medium was strongly correlated, as indicated
342 by a Pearson correlation of 0.931, indicating that the overall glycosylation profiles of

343 glycans in the glycosites between cell lysate and medium showed a statistical
344 association (Figure 5a). However, we also found that the relative abundance of some
345 IGP s were significantly altered between the cell lysate and the medium, such as
346 EASQN[#]ITYVCR-N2H6F0S0G0 with a log₂PSM ratio of cell lysate/medium of 3.8,
347 LQQEFHCCGSN[#]NSQDWR-N4H5F0S1G0 with a log₂PSM ratio of cell/medium of
348 3.6; N[#]ETHSFCTACDESCK-N2H5F0S0G0 with a log₂PSM ratio of cell/medium of
349 0.2, and LSPIHIALN[#]FSLDPK-N2H6F0S0G0 with a log₂PSM ratio of cell/medium of
350 0.2. Interestingly, these variabilities in N-glycosylation indicated that, while there was
351 no significant difference in the global protein glycosylation, the stoichiometry could
352 change dramatically at some of the N-glycosites, suggesting unique functions of these
353 glycosylation events at different cellular locations.

354

355 **Figure 5.** Relative abundance analysis of N-linked intact glycopeptides (IGPs). (a)
356 Relative abundance profiling of IGPs between CHO cell lysate and medium, showing
357 a strong correlation between the IGP abundance in cell lysate and medium. (b) The N-
358 glycosylation of prolow-density lipoprotein receptor-related protein 1 in cell lysate
359 and medium, including the structure and relative abundance (PSM) of glycans on each
360 glycosite. The inner circle shows the relative abundance in CHO cell lysate and the
361 outer circle shows the relative abundance in medium.

362

363 Most importantly, through the use of in-depth glycoproteomic profiling we are able
364 to present a map of the protein N-glycosylation patterns in CHO cell lysate and medium.

365 As mentioned, prolow-density lipoprotein receptor-related protein 1 was the most
366 heavily glycosylated protein with 29 N-glycosites. The N-glycan map of prolow-
367 density lipoprotein receptor-related protein 1 with different glycosylation sites based
368 on our findings is shown in Figure 5b indicating the high degree of N-glycan micro-
369 heterogeneity. This map not only presents the structure of the glycans but also the
370 relative abundance of glycans on the glycosites. It is readily observed from the map that
371 N-linked high-mannose glycans were identified on nearly every glycosite, especially
372 for Man5 and Man6. Some of the N-linked glycosylation sites were present only either
373 the CHO-K1 cell lysate or medium. Glycosylation at N¹¹⁵⁵NT and N²⁵⁰²DT were
374 identified only in the cell lysate, while N¹⁷²³IS and N⁴²⁷⁹ST were only identified in the
375 cell medium. We also noticed two trends for the glycosylation of neighbor glycosites:
376 (i) the glycosylation is similar between neighboring glycosites compared to distal
377 glycosites. For example, N¹⁵¹²GT and N¹⁵⁵⁹RT were both abundant with high mannose
378 and biantennary complex glycans. This could occur because the glycotransferases or
379 glycosidases recognize and are able to access part of the protein regions and modify
380 these glycosites. (ii) The micro-heterogeneity was decreased when the glycosites were
381 close to each other (i.e. glycosites N¹⁷²³IS, N¹⁷⁶³HT and N¹⁸²⁵IS) (Supplemental_Figure
382 S4). This phenomenon could occur because the glycan structure and site hindrance
383 render the glycotransferase or glycosidase less accessible to the neighboring glycosites.
384 Our results reveal that high-mannose glycan structures were typical in low degree
385 micro-heterogeneity glycosites, while fucosylated glycan structures were common in
386 high degree micro-heterogeneity glycosites.

387

388 **N-linked glycosylation of EPO**

389 EPO is a model pharmaceutical protein in the development of CHO-based
390 bioprocesses and the metabolic engineering of CHO cells for improved protein
391 production (Ley et al. 2015). EPO glycosylation is important for its pharmacological
392 properties. There have been many efforts to characterize the glycosylation of EPO in
393 CHO cells, but most of the work focused on glycomics profiling or glycosite
394 identification (Stübiger et al. 2005). With our large-scale IGP identification method,

395 the N-linked glycans of EPO at specific glycosylation sites were extensively
396 characterized. Owing to the limitation that the first and second glycosites cannot be
397 cleavage by trypsin, only two glycosite-containing peptides from EPO were identified
398 with one peptide containing 2 glycosites (EAEN[#]ITTGCAEHCSLNEN[#]ITVPDTK and
399 GQALLVN[#]SSQPWEPLQLHVVDK (Table 1). For the glycosite-containing peptide
400 with two glycosites, glycans conjugated to each glycosite could not be assigned due to
401 the limited number of fragment ions presented for each glycosite. For the third glycosite,
402 we found that 62 glycans were assigned, and complex or hybrid glycans were more
403 common than other forms in the third glycosite from EPO. Almost all the glycans
404 presented on EPO were also detected on other glycoproteins in the CHO cells. Glycan
405 structure, relative abundance, and distribution of the identified glycopeptide,
406 GQALLVN[#]SSQPWEPLQLHVVDK, are summarized in Supplemental_Figure S5, of
407 which 12 glycans (inside the red frame) have been previously identified in EPO
408 glycomics studies (Jensen et al. 2012; Yin et al. 2015).

409

410 **Table 1.** The N-linked glycosylation of Erythropoietin (EPO) in CHO cell lysate and
411 medium

	EAEN#ITTGCAEHCSLNEN#ITVPDTK			GQALLVN#SSQPWEPLQLHVVDK		
	CHO cell lysate	CHO medium	Overlap	CHO cell lysate	CHO medium	Overlap
	(Unique IGPs/PSMs)	(Unique IGPs/PSMs)	(Unique IGPs/PSMs)	(Unique IGPs/PSMs)	(Unique IGPs/PSMs)	(Unique IGPs/PSMs)
High-mannose intact glycopeptides	5/25	4/11	4/NA	8/116	9/183	8/NA
Complex/Hybrid intact glycopeptides	11/35	4/13	4/NA	41/149	47/226	33/NA
Fucosylated intact glycopeptides	9/16	2/3	2/NA	26/99	34/142	23/NA
Sialylated intact glycopeptides	3/4	0/0	0/NA	14/40	21/63	12/NA
Intact glycopeptides	16/60	8/24	8/NA	49/265	54/409	41/NA

412

413 Conclusions

414 In this study, we presented a large-scale analysis of intact N-linked glycopeptides

415 identified from CHO cells using established glycoproteomic workflows involving the
416 enrichment of intact glycopeptides by MAX extraction cartridges followed bRPLC with
417 high-resolution mass spectrometry. These results demonstrate the feasibility of the
418 comprehensive exploration of the N-linked glycosylation of CHO cell lysate and
419 medium. We also note that the coverage of CHO cell glycosylation characterization
420 could be extensively improved in the near future by employing methodologies such as
421 multiple proteases or top-down mass spectrometry.

422

423 **Methods**

424 **Human EPO-expressing CHO-K1 cell culture**

425 Human EPO-expressing CHO-K1 cells and medium were prepared by the National
426 Institutes of Health (NIH). Briefly, the codon-optimized human EPO gene was
427 overexpressed in CHO-K1 cells. After clone selection, a stable EPO-expressing CHO-
428 K1 cell line was generated and adapted to suspension cells in CD-CHO media with
429 5mM Glutamine. Cells were seeded at 0.4 million/ml and incubated for 3 days with
430 shaking. After shaking the culture, both supernatants and cell pellets were collected.
431 Cell pellets were washed twice with phosphate buffered saline (PBS, pH 7.4) buffer.
432 Cells were then lysed directly with 8 M urea/1 M NH₄HCO₃ solution and briefly
433 sonicated until the solutions were clear. Protein concentrations were determined by
434 BCA protein assay reagent (Thermo Scientific, Fair Lawn, NJ).

435 **Protein digestion**

436 Proteins from Human EPO-expressing CHO-K1 cells and medium denatured in 8
437 M urea/1 M NH₄HCO₃ buffer were reduced by 10 mM TCEP at 37 °C for 1 h and
438 alkylated by 15 mM iodoacetamide at room temperature for 30 min in the dark. The
439 solutions were diluted eight-fold with ddH₂O. Then sequencing grade trypsin (protein:
440 enzyme, 40:1, w/w; Promega, Madison, WI) was added to the samples and incubated
441 at 37 °C overnight. The solutions were acidified by acetic acid with pH<3. Samples
442 were centrifuged at 13, 000g for 10 min and the supernatant was cleaned by C18 solid-
443 phase extraction. Peptides were eluted from the C18 column in 60% ACN/0.1% TFA,
444 and the peptide concentrations were measured by BCA reagent.

445 **Enrichment of N-linked glycopeptides using MAX Extraction Cartridges**

446 For enrichment of N-linked glycopeptides, peptides after C18 desalting were
447 adjusted to 95% ACN (v/v) 1% TFA (v/v) prior to loading onto Oasis MAX extraction
448 cartridges (Waters). Cartridges were sequentially conditioned in ACN three times, 100
449 mM triethylammonium acetate three times, water five times and finally 95% ACN (v/v)
450 1% TFA (v/v) five times. Samples were loaded twice. The non-glycopeptides were
451 washed by 95% ACN (v/v) 1% TFA (v/v) three times. Finally, glycopeptides were
452 eluted in 50% ACN (v/v) 0.1% TFA (v/v), dried in a speed-vac and desalted by C18
453 solid-phase extraction.

454 **Peptide fractionation by basic reversed-phase liquid chromatography (bRPLC)**

455 Basic reversed phase liquid chromatography was used with extensive fractionation
456 to reduce sample complexity and thus reduce the likelihood of glycopeptides being co-
457 isolated and co-fragmented(Bekker-Jensen et al. 2017). IGPs (~100 µg) extracted by
458 MAX extraction cartridges and global peptides (~4 mg) from Human EPO-expressing
459 CHO-K1 cells and medium were injected by a 1220 Series HPLC (Agilent
460 Technologies, Inc., CA) into a Zorbax Extend-C18 analytical column containing 1.8
461 µm particles at a flow rate of 0.2 ml/min for IGPs or 3.5 µm particles at a flow rate of
462 1 ml/min for global peptides. The mobile-phase A consisted of 10 mM ammonium
463 formate (pH 10) and B consisted of 10 mM ammonium formate and 90% ACN (pH 10).
464 Sample separation was accomplished using the following linear gradient: 0–2% B, 10
465 min; 2–8% B, 5 min; 8–35% B, 85 min; 35–95% B, 5 min; 95–95% B, 15 min. Peptides
466 were detected at 215 nm and 96 fractions were collected along with the LC separation
467 in a time-based mode from 16 to 112 min. The 96 fractions of tryptic peptide samples
468 were concatenated into 24 fractions by combining fractions 1, 25, 49, 73; 2, 26, 50, 74;
469 etc. The samples were then dried in a speed-vac and stored at –80 °C until LC-MS/MS
470 analysis.

471 **Glycopeptide enrichment and deglycosylation**

472 For analysis of deglycosylated peptides, the tryptic digested peptides were
473 fractionated by offline bRPLC. The glycopeptides of 24 fractions were enriched by

474 MAX Extraction Cartridges. The captured glycopeptides were then deglycosylated by
475 PNGase F (New England BioLabs). The de-glycosylated peptides were de-salted using
476 Nuctip C18 tips (Waters). The peptides were dried and stored at -80 °C until LC-
477 MS/MS analysis.

478 **NanoLC–MS/MS Analysis**

479 The IGPs and de-glycosylated peptides were subjected two LC-MS/MS run per
480 sample (or fraction) on a Q-Exactive mass spectrometer (Thermo Fisher Scientific,
481 Bremen, Germany). The sample were re-suspended with 3% ACN and 0.1% FA. The
482 samples were first separated on a Dionex Ultimate 3000 RSLC nano system (Thermo
483 Scientific) with a PepMap RSLC C18 column (75 μ m \times 50 cm, 2 μ m, Thermo Scientific)
484 protected by an Acclaim PepMap C18 column (100 μ m \times 2 cm, 5 μ m, Thermo
485 Scientific). For the IGPs, the mobile phase consisted of 0.1% FA and 3% ACN in water
486 (A) and 0.1% FA, 90% ACN (B) using a gradient elution of 0-2% B, 1 min; 2-8% B, 9
487 min; 8-31% B, 80 min, 31-38% B, 20 min; 38-95% B, 5 min; 95% B, 10 min; 95-2%
488 B, 4 min. The flow rate was kept at 0.300 μ L/min. Data-dependent higher-energy
489 collisional dissociation (HCD) fragmentation was performed on the 12 most abundant
490 ions. The spray voltage was set to 1.5 kV. Spectra (AGC target 3×10^6 and maximum
491 injection time 60 ms) were collected from 400-2000 m/z at a resolution of 70,000
492 followed by data-dependent HCD MS/MS (at a resolution of 35, 000, NCE 32%,
493 intensity threshold of 4.2×10^4 , AGC target 2×10^5 and maximum injection time
494 120 ms) of the ions using an isolation window of 1.4 m/z. Charge state screening was
495 enabled to reject singly charged ions and ions with more than eight charges. A dynamic
496 exclusion time of 30 sec was used to discriminate against previously selected ions. The
497 de-glycosylated peptides were separated with gradient elution of 0-2% B, 1 min; 2-7%
498 B, 9 min; 7-27% B, 80 min, 27-35% B, 22 min; 35-95% B, 3 min; 95% B, 10 min;
499 95-2% B, 6 min. Orbitrap MS1 spectra (AGC 3×10^6) were collected from 400-1,800
500 m/z at a resolution of 70,000 followed by data-dependent HCD MS/MS (resolution 3,
501 NCE 29%, intensity threshold of 3.3×10^4 , AGC target 2×10^5 and maximum
502 injection time 120 ms) of the 12 most abundant ions using an isolation width of 1.4 Da.

503 Charge state screening was enabled to reject singly charged ions and ions with more
504 than eight charges. A dynamic exclusion time of 30 s was used to discriminate against
505 previously selected ions. For tryptic peptides, 110 m/z was set as the fixed first mass in
506 MS/MS fragmentation to include all oxonium ions of glycopeptides.

507 **Data Analysis**

508 For de-glycosylated peptides, acquired MS/MS spectra were searched using MS-
509 GF+ against the RefSeq Cricetulus griseus protein database downloaded from the NCBI
510 website with last update June 01, 2016, which contained 46,402 proteins. Database
511 search parameters were set as follows: a maximum of two missed cleavage sites
512 permitted for trypsin digestion, 10 ppm precursor mass tolerance, 0.06 Da fragment
513 mass tolerance, carbamidomethylation (C, +57.0215 Da) as a fixed modification, and
514 oxidization (M, +15.9949 Da) and deamidation (N, +0.98 Da) as dynamic
515 modifications. The results were filtered with 1% FDR for PSM and 2 PSMs were
516 required for a peptide. Spectral counting was used to quantify the peptides identified
517 from LC-MS/MS data.

518 For IGPs identification, the data were searched using an in-house developed
519 glycopeptide analysis software GPQuest 2.0, based on GPQuest(Toghi Eshghi et al.
520 2015). The database of glycosites were the glycosite-containing peptide data from de-
521 glycopeptide methods. The human erythropoietin fasta protein sequence was also added
522 to the protein database. The Cricetulus griseus glycan database was from the previous
523 CHO cell glycomics profiling studys(North et al. 2010). The databases contains 57,653
524 predicted glycosites and 343 glycan structure entries. The parameters for mass tolerance
525 of MS1 and MS2 were 10 ppm and 20 ppm, respectively. The spectra containing an
526 oxonium ion *m/z* 204.09 were chosen for further searching. Results were filtered based
527 on the following criteria: (1) false discovery rate (FDR) less than 1%, (2) ≥ 3 PSMs for
528 each peptide were required, (3) all the PSMs should be annotated by at least one N-
529 linked glycans, and (4) for the atypical glycoprotein, at least one typical N-linked
530 glycosite-containing peptide was required.

531

532 **Data access**

533 The raw data of mass spectrometry from this study will be submitted. All the annotated
534 intact glycopeptides and deglycopeptides are listed in Supplemental tables S1-S3.

535

536 **Acknowledgements**

537 This work was supported by the National Heart, Lung and Blood Institute, Programs of
538 Excellence in Glycosciences (PEG, Grant P01HL107153), National Cancer Institute,
539 the Clinical Proteomic Tumor Analysis Consortium (CPTAC, Grant U24CA210985)
540 and the Early Detection Research Network (EDRN, U01CA152813), and National
541 Science Foundation (Grant 124230). The authors declare no competing conflicts of
542 interest.

543

544 **Author contributions**

545 HZ and GY designed the experiments and wrote and reviewed the manuscript. GY, SS
546 and CO performed the cell culture and preparation, intact glycopeptide enrichment and
547 mass spectrometry analysis. YH and WY contributed to prepare the software and
548 analyze the data.

549

550 **Disclosure declaration**

551 The authors declare no competing financial interest.

552

553 **References**

554 Baycin-Hizal D, Tabb DL, Chaerkady R, Chen L, Lewis NE, Nagarajan H, Sarkaria V,
555 Kumar A, Wolozny D, Colao J, et al. 2012. Proteomic analysis of Chinese
556 hamster ovary cells. *J Proteome Res* **11**: 5265-5276.

557 Bekker-Jensen DB, Kelstrup CD, Batt TS, Larsen SC, Haldrup C, Bramsen JB,
558 Sorensen KD, Hoyer S, Orntoft TF, Andersen CL, et al. 2017. An optimized
559 shotgun strategy for the rapid generation of comprehensive human proteomes.
560 *Cell Syst* **4**: 587-599.

561 Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. 1995.
562 Nonselective and efficient fluorescent labeling of glycans using 2-amino
563 benzamide and anthranilic acid. *Anal Biochem* **230**: 229-238.

564 Birzele F, Schaub J, Rust W, Clemens C, Baum P, Kaufmann H, Weith A, Schulz TW,
565 Hildebrandt T. 2010. Into the unknown: expression profiling without genome
566 sequence information in CHO by next generation sequencing. *Nucleic Acids Res*
567 **38**: 3999-4010.

568 Chung CY, Yin B, Wang Q, Chuang KY, Chu JH, Betenbaugh MJ. 2015. Assessment
569 of the coordinated role of ST3GAL3, ST3GAL4 and ST3GAL6 on the alpha2,3
570 sialylation linkage of mammalian glycoproteins. *Biochem Biophys Res
571 Commun* **463**: 211-215.

572 Ciucanu I, Costello CE. 2003. Elimination of oxidative degradation during the per-O-
573 Methylation of carbohydrates. *J AM CHEM SOC* **125**: 16213–16219.

574 Cummings RD, Pierce JM. 2014. The challenge and promise of glycomics. *Chem Biol*
575 **21**: 1-15.

576 de Haan N, Reiding KR, Haberger M, Reusch D, Falck D, Wuhrer M. 2015. Linkage-
577 specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG
578 glycopeptides. *Anal Chem* **87**: 8284-8291.

579 Dowell JA, Frost DC, Zhang J, Li L. 2008. Comparison of two-dimensional
580 fractionation techniques for shotgun proteomics. *Anal Chem* **80**: 6715-6723.

581 Fujitani N, Furukawa J, Araki K, Fujioka T, Takegawa Y, Piao J, Nishioka T, Tamura T,
582 Nikaido T, Ito M, et al. 2013. Total cellular glycomics allows characterizing

583 cells and streamlining the discovery process for cellular biomarkers. *Proc Natl
584 Acad Sci U S A* **110**: 2105-2110.

585 Granholm V, Kim S, Navarro JC, Sjolund E, Smith RD, Kall L. 2014. Fast and accurate
586 database searches with MS-GF+Percolator. *J Proteome Res* **13**: 890-897.

587 Hart GW, Copeland RJ. 2010. Glycomics hits the big time. *Cell* **143**: 672-676.

588 Hossler P, Khattak SF, Li ZJ. 2009. Optimal and consistent protein glycosylation in
589 mammalian cell culture. *Glycobiology* **19**: 936-949.

590 Hu Y, Shah P, Clark DJ, Ao M, Zhang H. 2018. Reanalysis of global proteomic and
591 phosphoproteomic data identified a large number of glycopeptides. *Anal Chem.*
592 Revision.

593 Jensen PH, Karlsson NG, Kolarich D, Packer NH. 2012. Structural analysis of N- and
594 O-glycans released from glycoproteins. *Nat Protoc* **7**: 1299-1310.

595 Jia X, Chen J, Sun S, Yang W, Yang S, Shah P, Hoti N, Veltri B, Zhang H. 2016.
596 Detection of aggressive prostate cancer associated glycoproteins in urine using
597 glycoproteomics and mass spectrometry. *Proteomics* **16**: 2989-2996.

598 Jones MB, Tomiya N, Betenbaugh MJ, Krag SS. 2010. Analysis and metabolic
599 engineering of lipid-linked oligosaccharides in glycosylation-deficient CHO
600 cells. *Biochem Biophys Res Commun* **395**: 36-41.

601 Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, Hirabayashi J, Kasai K-i,
602 Takahashi N, Isobe T. 2003. Lectin affinity capture, isotope-coded tagging and
603 mass spectrometry to identify N-linked glycoproteins. *Nat Biotechnol* **21**: 667-
604 672.

605 Kammeijer GSM, Jansen BC, Kohler I, Heemskerk AAM, Mayboroda OA, Hensbergen
606 PJ, Schappler J, Wuhrer M. 2017. Sialic acid linkage differentiation of
607 glycopeptides using capillary electrophoresis – electrospray ionization – mass
608 spectrometry. *Sci Rep* **7**, 10.1101/318865-017-03838-y.

609 Kang P, Mechref Y, Klouckova I, Novotny MV. 2005. Solid-phase permethylation of
610 glycans for mass spectrometric analysis. *Rapid Commun Mass Spectrom* **19**:
611 3421-3428.

612 Khatri K, Klein JA, White MR, Grant OC, Leymarie N, Woods RJ, Hartshorn KL, Zaia

613 J. 2016. Integrated Omics and computational glycobiology reveal structural
614 basis for influenza A virus glycan microheterogeneity and host interactions. *Mol
615 Cell Proteomics* **15**: 1895–1912.

616 Kim S, Pevzner PA. 2014. MS-GF+ makes progress towards a universal database search
617 tool for proteomics. *Nat Commun* **5**: 5277, DOI: 10.1038/ncomms6277.

618 Krogh A, BjörnLarsson, Heijne G, LLSonnhammer E. 2001. Predicting
619 transmembrane protein topology with a hidden markov model application to
620 complete genomes. *J Mol Biol* **305**: 567-580.

621 Lewis NE, Liu X, Li Y, Nagarajan H, Yerganian G, O'Brien E, Bordbar A, Roth AM,
622 Rosenbloom J, Bian C, et al. 2013. Genomic landscapes of Chinese hamster
623 ovary cell lines as revealed by the *Cricetulus griseus* draft genome. *Nat
624 Biotechnol* **31**: 759-765.

625 Ley D, Seresht AK, Engmark M, Magdenoska O, Nielsen KF, Kildegaard HF, Andersen
626 MR. 2015. Multi-omic profiling of EPO-producing Chinese hamster ovary cell
627 panel reveals metabolic adaptation to heterologous protein production.
628 *Biotechnol Bioeng* **112**: 2373-2387.

629 Nielsen H. 2017. Predicting Secretory Proteins with SignalP. In *Protein Function
630 Prediction: Methods and Protocols*, doi:10.1007/978-1-4939-7015-5_6 (ed. D
631 Kihara), pp. 59-73. Springer New York, New York, NY.

632 North SJ, Huang HH, Sundaram S, Jang-Lee J, Etienne AT, Trollope A, Chalabi S, Dell
633 A, Stanley P, Haslam SM. 2010. Glycomics profiling of Chinese hamster ovary
634 cell glycosylation mutants reveals N-glycans of a novel size and complexity. *J
635 Biol Chem* **285**: 5759-5775.

636 O'Shea JP, Chou MF, Quader SA, Ryan JK, Church GM, Schwartz D. 2013. pLogo: a
637 probabilistic approach to visualizing sequence motifs. *Nat Methods* **10**: 1211-
638 1212.

639 Parker BL, Thaysen-Andersen M, Solis N, Scott NE, Larsen MR, Graham ME, Packer
640 NH, Cordwell SJ. 2013. Site-specific glycan-peptide analysis for determination
641 of N-glycoproteome heterogeneity. *J Proteome Res* **12**: 5791-5800.

642 Ruhaak LR, Steenvoorden E, Koeleman CA, Deelder AM, Wuhrer M. 2010. 2-picoline-

643 borane: a non-toxic reducing agent for oligosaccharide labeling by reductive
644 amination. *Proteomics* **10**: 2330-2336.

645 Scott NE, Parker BL, Connolly AM, Paulech J, Edwards AV, Crossett B, Falconer L,
646 Kolarich D, Djordjevic SP, Hojrup P, et al. 2011. Simultaneous glycan-peptide
647 characterization using hydrophilic interaction chromatography and parallel
648 fragmentation by CID, higher energy collisional dissociation, and electron
649 transfer dissociation MS applied to the N-linked glycoproteome of
650 *Campylobacter jejuni*. *Mol Cell Proteomics* **10**: 10.1074/mcp.M000031-
651 MCP000201.

652 Shah P, Yang S, Sun S, Aiyetan P, Yarema KJ, Zhang H. 2013. Mass spectrometric
653 analysis of sialylated glycans with use of solid-phase labeling of sialic acids.
654 *Anal Chem* **85**: 3606-3613.

655 Shajahan A, Supekar NT, Heiss C, Ishihara M, Azadi P. 2017. Tool for Rapid Analysis
656 of glycopeptide by Permetylation (TRAP) via one-pot site mapping and glycan
657 analysis. *Anal Chem* **89**: 10734-10743.

658 Shubhakar A, Kozak RP, Reiding KR, Royle L, Spencer DI, Fernandes DL, Wuhrer M.
659 2016. Automated high-throughput permetylation for glycosylation analysis of
660 biologics using MALDI-TOF-MS. *Anal Chem* **88**: 8562-8569.

661 Stübiger G, Marchetti M, Nagano M, Grimm R, Gmeiner G, Reichel C, Allmaier G.
662 2005. Characterization of N- and O-glycopeptides of recombinant human
663 erythropoietins as potential biomarkers for doping analysis by means of
664 microscale sample purification combined with MALDI-TOF and quadrupole
665 IT/RTOF mass spectrometry. *J Sep Sci* **28**: 1764-1778.

666 Sun S, Shah P, Eshghi ST, Yang W, Trikannad N, Yang S, Chen L, Aiyetan P, Hoti N,
667 Zhang Z et al. 2016. Comprehensive analysis of protein glycosylation by solid-
668 phase extraction of N-linked glycans and glycosite-containing peptides. *Nat
669 Biotechnol* **34**: 84-88.

670 Sun S, Zhang H. 2015. Identification and validation of atypical N-glycosylation sites.
671 *Anal Chem* **87**: 11948-11951.

672 Takegawa Y, Deguchi K, Keira T, Ito H, Nakagawa H, Nishimura S. 2006. Separation

673 of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of
674 human serum immunoglobulin G by using a zwitterionic type of hydrophilic-
675 interaction chromatography. *J Chromatogr A* **1113**: 177-181.

676 Tian Y, Kelly-Spratt KS, Kemp CJ, Zhang H. 2010. Mapping tissue-specific expression
677 of extracellular proteins using systematic glycoproteomic analysis of different
678 mouse tissues. *J Proteome Res* **9**: 5837-5847.

679 Toghi Eshghi S, Shah P, Yang W, Li X, Zhang H. 2015. GPQuest: A spectral library
680 matching algorithm for site-specific assignment of tandem mass spectra to intact
681 N-glycopeptides. *Anal Chem* **87**: 5181-5188.

682 Wada Y, Tajiri M, Yoshida S. 2004. Hydrophilic affinity isolation and MALDI multiple-
683 stage tandem mass spectrometry of glycopeptides for glycoproteomics. *Anal
684 Chem* **76**: 6560-6565.

685 Walsh G. 2014. Biopharmaceutical benchmarks. 2014. *Nat Biotechnol* **32**: 992-1002.

686 Walsh G, Jefferis R. 2006. Post-translational modifications in the context of therapeutic
687 proteins. *Nat Biotechnol* **24**: 1241-1252.

688 Wang Y, Yang F, Gritsenko MA, Wang Y, Clauss T, Liu T, Shen Y, Monroe ME, Lopez-
689 Ferrer D, Reno T et al. 2011. Reversed-phase chromatography with multiple
690 fraction concatenation strategy for proteome profiling of human MCF10A cells.
691 *Proteomics* **11**: 2019-2026.

692 Xu C, Ng DT. 2015. Glycosylation-directed quality control of protein folding. *Nat Rev
693 Mol Cell Biol* **16**: 742-752.

694 Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, Chen W, Xie M, Wang W,
695 Hammond S, et al. 2011. The genomic sequence of the Chinese hamster ovary
696 (CHO)-K1 cell line. *Nat Biotechnol* **29**: 735-741.

697 Yang G, Tan Z, Lu W, Guo J, Yu H, Yu J, Sun C, Qi X, Li Z, Guan F. 2015a. Quantitative
698 glycome analysis of N-glycan patterns in bladder cancer vs normal bladder cells
699 using an integrated strategy. *J Proteome Res* **14**: 639-653.

700 Yang S, Wang M, Chen L, Yin B, Song G, Turko IV, Phinney KW, Betenbaugh MJ,
701 Zhang H, Li S. 2015b. QUANTITY: An isobaric tag for quantitative glycomics.
702 *Sci Rep* **5**: 17585, DOI: 10.1038/srep17585.

703 Yang S, Zhang L, Thomas S, Hu Y, Li S, Cipollo J, Zhang H. 2017a. Modification of
704 sialic acids on solid phase: accurate characterization of protein sialylation. *Anal
705 Chem* **89**: 6330-6335.

706 Yang W, Shah P, Hu Y, Toghi Eshghi S, Sun S, Liu Y, Zhang H. 2017b. Comparison of
707 enrichment methods for intact N- and O-Linked glycopeptides using strong
708 anion exchange and hydrophilic interaction liquid chromatography. *Anal Chem*
709 **89**: 11193-11197.

710 Yang Z, Halim A, Narimatsu Y, Josh HJ, Steentoft C, Schjoldager KT-BG, Schulz MA,
711 Sealover NR, Kayser KJ, Bennett EP, et al. 2014. The GalNAc-type O-
712 Glycoproteome of CHO cells characterized by the simplecell strategy. *Mol Cell
713 Proteomics* **13**: 12.

714 Yang Z, Wang S, Halim A, Schulz MA, Frodin M, Rahman SH, Vester-Christensen MB,
715 Behrens C, Kristensen C, Vakhrushev SY, et al. 2015. Engineered CHO cells
716 for production of diverse, homogeneous glycoproteins. *Nat Biotechnol* **33**: 842-
717 844.

718 Yin B, Gao Y, Chung CY, Yang S, Blake E, Stuczynski MC, Tang J, Kildegaard HF,
719 Andersen MR, Zhang H, et al. 2015. Glycoengineering of Chinese hamster
720 ovary cells for enhanced erythropoietin N-glycan branching and sialylation.
721 *Biotechnol Bioeng* **112**: 2343-2351.

722 Yu Q, Wang B, Chen Z, Urabe G, Matthew S. Glover, Shi X, Guo L-W, Kent C, Li L.
723 2017. Electron-transfer/higher-energy collision dissociation (EThcD)-enabled
724 intact glycopeptide/glycoproteome characterization. *J Am Soc Mass Spectrom*
725 **28**: 1751–1764.

726 Zhang H, Li X-j, Martin DB, Aebersold R. 2003. Identification and quantification of
727 N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and
728 mass spectrometry. *Nat Biotechnol* **21**: 660-666.

729 Zhang Z, Wu Z, Wirth MJ. 2013. Polyacrylamide brush layer for hydrophilic interaction
730 liquid chromatography of intact glycoproteins. *J Chromatogr A* **1301**: 156-161.

731 Zielinska DF, Gnad F, Wisniewski JR, Mann M. 2010. Precision mapping of an in vivo
732 N-glycoproteome reveals rigid topological and sequence constraints. *Cell* **141**:

733 897-907.

734

735

736 **Figure legends**

737 **Figure 1.** Workflows of intact glycopeptide analysis strategies for lysate and medium
738 from human EPO-expressing CHO-K1 cells. (a) The workflow of large scale de-
739 glycosylated peptide analysis enriched by MAX extraction cartridges. The proteins
740 were digested, fractionated and MAX enriched. The glycopeptides were then de-
741 glycosylated and analyzed by LC-MS/MS. (b) Different glycopeptide analysis
742 strategies using MAX cartridge enrichment followed by fractionation or fractionation
743 of global peptides followed by enrichment of intact glycopeptides using MAX
744 cartridges for large-scale intact glycopeptides analysis.

745

746 **Figure 2.** Depth of the identified intact glycopeptides in cell lysate and medium from
747 human EPO-expressing CHO-K1 cells. (a) Identification and distribution of total and
748 sub-type intact glycopeptides identified from cells and medium. (b) Distribution of
749 identified glycosites and glycoproteins in cell lysate and medium, showing that most
750 glycoproteins are present in CHO-K1 cell lysate and medium. (c) Identification and
751 distribution of glycans and the composition and distribution of fucosylated and
752 sialylated N-linked glycans in cell lysate and medium.

753

754 **Figure 3.** Heterogeneity of detected glycoproteins in CHO cell lysate and medium. (a)
755 Distribution of glycosites per protein. (b) Distribution of glycans per glycosite. (c)
756 Heat map of the differences in abundance of the sub-types of N-linked glycans
757 between CHO cell lysate and medium on glycopeptide
758 VPFIFNINPSTTN[#]FTGSCHPQTAQLR. [#] indicates an N-linked glycosite.

759

760 **Figure 4.** Identification of atypical N-linked glycopeptides and preference of N-
761 glycosylation peptide consensus sequence. (a) Representative MS/MS spectra of the
762 atypical N-glycopeptides of TYN[#]IVLGSGQVVLGMDMGLR+N2H6F0S0G0 from
763 peptidyl-prolyl cis-trans isomerase FKBP9 and
764 LCN[#]ECSEGSFHL SK+N2H6F0S0G0 from basement membrane-specific heparin
765 sulfate proteoglycan core protein. [#] indicates an N-linked glycosite. (b) Distribution

766 and preference of typical and atypical glycosite consensus sequence derived using
767 pLogo.

768

769 **Figure 5.** Relative abundance analysis of N-linked intact glycopeptides (IGPs). (a)
770 Relative abundance profiling of IGPs between CHO cell lysate and medium, showing
771 a strong correlation between the IGP abundance in cell lysate and medium. (b) The N-
772 glycosylation of prolow-density lipoprotein receptor-related protein 1 in cell lysate
773 and medium, including the structure and relative abundance (PSM) of glycans on each
774 glycosite. The inner circle shows the relative abundance in CHO cell lysate and the
775 outer circle shows the relative abundance in medium.

776

777 **Comprehensive Glycoproteomic Analysis of Chinese Hamster Ovary Cells**

778

779

780 **Ganglong Yang¹, Yingwei Hu¹, Shisheng Sun¹, Chuanzi Ouyang¹, Weiming**
781 **Yang¹, Michael Betenbaugh², Hui Zhang^{1*}**

782

783 ¹Department of Pathology ²Chemical and Molecular Engineering, Johns Hopkins
784 University, Baltimore, Maryland, USA

785

786 *Corresponding author: Dr. Hui Zhang at huizhang@jhu.edu

787

788

789

790

791 **Supplemental Figures and Tables:**

792

793 Table S1: The glycosite-containing peptides identified from CHO cells.

794 Table S2: Identification of intact glycopeptides from CHO-K1 cell lysate and medium.

795 Table S3: Subcellular location, signal peptides, and transmembrane segments for
796 identified glycoproteins from CHO cell lysate and medium.

797

798 Figure S1: Identification of Peptide Spectrum Matches (PSMs) for intact
799 glycopeptides from human EPO-expressing CHO-K1 cell lysate using different
800 analytical workflows.

801

802 Figure S2: Identification of N-linked intact glycopeptides from CHO-K1 cell lysate
803 and medium using MAX enrichment of intact glycopeptides followed by fractionation
804 of enriched glycopeptides using bRPLC.

805

806 Figure S3: Relationship between the number of N-linked glycosylation sites and
807 protein abundance in CHO cell lysate and medium. (a) Distribution of average
808 abundance of glycoproteins with different numbers of glycosites represented by violin
809 plots. (b) Distribution of average abundance of glycopeptides with different numbers
810 of glycans represented by boxplots.

811

812 Figure S4: Proportion of identified IGPs with different N-glycan compositions on
813 prolow-density lipoprotein receptor-related protein 1 from CHO cell lysate and
814 medium.

815

816 Figure S5. Relative abundance of specific glycan-containing forms of the glycosite-
817 containing EPO peptide, GQALLVN[#]SSQPWEPLQLHVVDK from CHO cell lysate and
818 medium.

819