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Abstract  
 
The Alzheimer’s Disease Sequencing Project (ADSP) performed whole genome sequencing 

(WGS) of 584 subjects from 111 multiplex families at three sequencing centers. Genotype 

calling of single nucleotide variants (SNVs) and insertion-deletion variants (indels) was 

performed centrally using GATK-HaplotypeCaller and Atlas V2. The ADSP Quality Control 

(QC) Working Group applied QC protocols to project-level variant call format files (VCFs) from 

each pipeline, and developed and implemented a novel protocol, termed “consensus calling,” to 

combine genotype calls from both pipelines into a single high-quality set. QC was applied to 

autosomal bi-allelic SNVs and indels, and included pipeline-recommended QC filters, variant-

level QC, and sample-level QC. Low-quality variants or genotypes were excluded, and sample 

outliers were noted. Quality was assessed by examining Mendelian inconsistencies (MIs) among 

67 parent-offspring pairs, and MIs were used to establish additional genotype-specific filters for 

GATK calls. After QC, 578 subjects remained. Pipeline-specific QC excluded ~12.0% of GATK 

and 14.5% of Atlas SNVs. Between pipelines, ~91% of SNV genotypes across all QCed variants 

were concordant; 4.23% and 4.56% of genotypes were exclusive to Atlas or GATK, respectively; 

the remaining ~0.01% of discordant genotypes were excluded.  For indels, variant-level QC 

excluded ~36.8% of GATK and 35.3% of Atlas indels. Between pipelines, ~55.6% of indel 

genotypes were concordant; while 10.3% and 28.3% were exclusive to Atlas or GATK, 

respectively; and ~0.29% of discordant genotypes were. The final WGS consensus dataset 

contains 27,896,774 SNVs and 3,133,926 indels and is publicly available.   
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Introduction 

While genome-wide association studies (GWAS) have successfully identified thousands 

of common genetic variants associated with hundreds of complex diseases and traits, next-

generation sequencing (NGS) technologies aim to widen the scope and ability of genomic studies 

to identify the genetic underpinnings of disease.  Unlike array-based GWAS genotyping, NGS 

technologies, which include whole genome sequencing (WGS) and whole exome sequencing 

(WES), are able to comprehensively capture genotypes for both common and rare single 

nucleotide variants, insertion-deletion polymorphisms, and even structural variants that may 

contribute to disease risk.  By capturing all sequence within targeted regions, NGS may facilitate 

identification of causal variants rather than merely associated variants.  It achieves a substantial 

gain in base-pair coverage of the genome compared to high-density GWAS array genotyping, a 

multi-fold increase in read depth compared to traditional Sanger sequencing, and a much lower 

per-base cost.1 

Both WGS and WES genotype calling can be affected by a variety of types of errors or 

sources of bias, such as sample swaps and low call rates that can alter the quality of genotypes 

used in analyses and thus affect the ability of analyses to detect associations with disease.  

Quality issues that are unique to sequencing assays can arise at multiple steps in the process. 

During the library preparation and sequencing phases, these include low quality reads resulting 

from duplications, unfavorable base composition of the amplified sequence, inclusion of tag 

(adapter/barcode) sequences into reads; as well as read contamination from external sources, 

such as bacteria in DNA samples used for sequencing.2  At the alignment phase, quality issues 

can arise from alignment to duplicated genomic regions or repeat-rich regions, and require 

assessments of read depth, mapping quality, insert size and the number of discordantly mapped 
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paired reads3. Issues at these phases can only be remedied by appropriate experimental design 

and use of sensitive bioinformatic tools. At the variant-calling level, quality issues include 

elevated numbers of novel non-synonymous SNPs or excesses of ‘private’ variants (within 

individual samples), allelic read ratio biases (causing true homozygotes to be called as 

heterozygotes), and low-quality calls based on low read depths. While a number of QC software 

packages and protocols exist for the cleaning at the raw data phase2,4,5 and at the alignment 

phase,6 few tools or protocols exist7 at the variant-calling/post-variant-calling phase. For this 

reason, a novel QC protocol, including the development of a consensus-calling approach to 

integrate genotype calls from multiple pipelines, was developed for WGS data in the Alzheimer 

Disease Sequencing Project (ADSP). 

The ADSP is a collaboration between the National Institutes on Aging (NIA) and the 

National Human Genome Research Institute (NHGRI), with data contributions from the 

Alzheimer Disease Genetics Consortium (ADGC) and the neurology working group of the 

Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and 

sequencing contributions from the Large Scale Sequencing and Analysis Centers (LSSACs) at 

Baylor University, the Broad Institute and Washington University-St. Louis. The ADSP was 

initiated to identify both protective and risk genetic variants for Alzheimer Disease (AD) [MIM: 

104300], a devastating neurodegenerative disorder characterized by progressive loss of cognitive 

function. The ADSP generated WGS on 584 individuals from 111 large, multiplex late onset AD 

families to detect risk variants having large effect on familial forms of AD. Raw data processing, 

map alignment, and variant calling were performed by both the Broad Institute, which called 

variants using the GATK-HaplotypeCaller package,8-10 and the Baylor College of Medicine 

Human Genome Sequencing Center , which called variants using the Atlas V2 pipeline.11 
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The ADSP QC protocol integrated QC strategies from multiple sources including the 

CHARGE consortium QC protocol,12 prior sequencing study experiences of ADGC and 

CHARGE investigators, GWAS QC approaches, and proprietary QC recommendations for the 

Atlas V2 and GATK-HaplotypeCaller genotype calling pipelines. The final protocol included 1) 

independent QC of each variant calling set, 2) comparison of the QCed calls from each pipeline, 

and 3) implementation of a consensus calling protocol to remove discordant calls and integrate 

genotypes called in only one pipeline, resulting in a single set of SNV and indel genotypes for 

analysis.   

Here we discuss the workflow and implementation of this novel QC protocol and 

consensus calling approach on WGS autosomal SNV and indel data in the ADSP. We 

demonstrate improved quality of SNV and indel genotype data after pipeline-specific QC 

filtering and show further improvements in quality through higher concordance of genotype calls 

and lower rate of Mendelian inconsistencies by combining genotype calls from two calling 

pipelines compared to using calls from only one pipeline. 

  

Subjects and Methods 

Subjects 

The ADSP family study spans seven cohorts. Detailed description of the study design has 

been published elsewhere.13-15 In brief, 1,100 multiplex AD families were screened to identify 

111 high priority families consisting of more than three AD cases with limited presence of the 

APOE ε4 allele and other known pathogenic variants (e.g., APP, PSEN1/2). All subjects selected 

for sequencing had either genome-wide or exome chip SNV genotype data available. 
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A total of 584 subjects were selected for sequencing from these pedigrees.  Three 

subjects were sequenced in replicate at all three sequencing centers, adding six more samples, for 

a total of 590 samples. Six samples were dropped because of sequencing quality issues, including 

one with low DNA concentration, three with poor GWAS concordance, and two with low-

quality sequence data.  Of the remaining 584 samples from 578 unique subjects, 12 samples were 

resequenced due to issues with reagents. These family data included individuals of European 

American, African American, and Caribbean Hispanic ancestry, and members of a large multi-

generational pedigree with high burden of AD from a Dutch isolate16 (Table S1).  

 

Whole genome sequencing methods 

Genomic DNA from whole blood, frozen brain, or fibroblasts was sent to one of three 

LSSACs: Broad Institute Genomics Service (Broad), Baylor College of Medicine Human 

Genome Sequencing Center (Baylor), and McDonnell Genome Institute at the Washington 

University in St. Louis (WashU). The breakdown of samples sequenced by each of three centers 

is shown in Table S1. Illumina WGS technology was used at all three centers.  Library 

preparation and sequencing protocols details are provided in the Supplementary Materials (Text 

S1; Table S2). 

 

Whole genome alignment and variant genotype calling 

 After sequencing, Broad and Baylor performed alignment and variant calling on all 

whole genomes from all three LSSACs.  Genome alignment at Broad was performed using the 

1000 Genomes version of the GRCh37/hg19 build, while alignment at Baylor was performed 

using the GRCh37-lite version.  Broad and Baylor subsequently applied two variant genotype 
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callers, GATK-HaplotypeCaller V2.6 and Atlas V2, respectively, to the sequencing data. 

Additional details regarding genome alignment are provided in Table S2, while a detailed 

description and workflow characterizing variant genotype calling in GATK and Atlas are 

described in Text S2.  

 

Pre-QC sample checking   

Concordance checking between high-density genotyping chip-based genotype data (either 

GWAS or exome chip) was performed by the sequencing centers prior to implementing the QC 

protocol.  Samples with a concordance rate of <80% between chip genotype data and sequence 

were removed from subsequent QC and analysis. The final QCed genotype set includes only a 

single set of sequence genotypes for the three replicated subjects, specifically the data generated 

by the sequencing center to which other members of the subjects’ pedigrees were originally 

allocated. Finally, only data for subjects that were successfully called in both Atlas and GATK 

pipelines were carried forward to QC.  

Familial relationships between samples were evaluated via the software suite PBAP 

(Pedigree-based analysis pipeline)17 using selected sets of ~5,000-6,000 high frequency 

(MAF>0.05) variants from the GWAS arrays to obtain maximum likelihood estimates of 

pairwise IBD sharing coefficients. Relative pairs with coefficient estimates that deviated strongly 

from expectation based on the reported familial relationships were flagged but not excluded prior 

to QC.   

Checking for Mendelian inconsistencies (MIs) between related individuals was 

performed in 67 parent-offspring pairs that were sequenced within the ADSP pedigrees using 

Pedcheck software or R scripts.18  This was done prior to QC to establish baseline rates of MIs 

within each pipeline and after QC in order to quantify the improvement in data quality following 
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the implementation of QC filters.  Given that only biallelic variants were considered and no trios 

(with both parents) were available, MIs could only be detected when the parent and offspring 

were homozygotes for different alleles (depicted in Figure S1).  Because the incorrect genotype 

in each pair could not be established, genotypes involved in MIs were not excluded from QCed 

datasets.   

 

Pipeline-specific quality control  

SNV and indel genotypes were QCed independently, although the same protocol was 

applied to each variant type.  QC was applied to biallelic autosomal SNVs and indels; any 

variants with more than two alleles were removed from the data set prior to other QC steps and 

are not addressed in the current study. Three levels of QC were applied: (a) pipeline-specific 

‘primary’ QC (i.e., sequencing center-recommended filtering); (b) standardized variant-level QC; 

and (c) sample-level QC.     

Figure 1 depicts all components of the QC protocol. For pipeline-specific primary QC, 

Atlas V2 genotype calls were first evaluated at a genotype-level. Genotypes that had a low read 

depth (DP <10) or an out-of-range allelic read ratio (VR/DP ≤0.75 or VR/DP ≥0.25 for 

heterozygous genotypes, where VR and DP are referent allele and overall read depths, 

respectively) were set to missing. Next on the variant level, any variants with low mapping score 

(MS) (in the VCF’s “INFO” field, MS <0.8) and any variants with completely missing genotypes 

were flagged/excluded as failed variants. GATK-HaplotypeCaller primary QC was applied at the 

variant level, excluding any variants that were not flagged as “PASS” by the VQSR algorithm, 

thus excluding variants outside the 95% sensitivity tranches (i.e., the lowest 5% of recalibrated 

quality scores). 
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After primary QC, variant-level QC was applied to the remaining variants in the Atlas 

and GATK VCFs.  Variant filters (exclusions) were applied in the following order: 1) 

monomorphic; 2) high missing rate (≥20%); 3) high read depth (>500 reads); and 4) extreme 

heterozygosity (>5 SD from mean z-score across all variants).  For step #4, we evaluated excess 

heterozygosity empirically in lieu of testing for departure from Hardy-Weinberg equilibrium 

(HWE) due to concerns about the potentially biasing effects of familial relationships on variance 

estimation and consequently on the P-value.  Instead, a score statistic approach was applied 

across all sequenced individuals except members of the Dutch Isolate pedigrees, and this 

approach is described in the Supplement (Text S3).   

 After implementation of variant-level QC, within-individual quality metrics were 

estimated, and the distributions of these metrics were assessed to exclude potential outliers.  

Among these metrics were: (1) counts of singleton/doubleton variant calls to identify an excess 

of private variants; (2) genotype missingness rate (per individual) > 0.2; (3) 

Transition/Transverion (Ti/Tv) ratio outliers [for SNVs only]; (4) heterozygosity-to-

homozygosity ratio (across all within-individual genotypes); and (5) mean read depth (across all 

within-individual genotypes).  Samples with genotype missingness rate >0.2 were excluded and 

samples were examined as potential outliers if their values for any of the other criteria were 

greater than 6 SD from the mean value based on ethnic group. Three groups were defined: 

European American, Dutch Isolate, and Caribbean Hispanic  

 

Concordance matching  

Once primary and variant-level filtering were completed, genotypes were compared 

between the two QCed VCFs. Table 1 contains the concordance codes (“CS”) derived for 
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comparing the genotypes. In addition, a concordant set of genotype calls in which only 

genotypes present and concordant between the two QCed calling pipelines was created. 

 

Consensus Calling  

The ‘concordant’ dataset contains high-certainty genotype calls that were identical in the 

two variant calling pipelines, but it did not allow inclusion of high-quality variants called in only 

one pipeline.  To arrive at a single set of genotype calls that includes high-quality variants from 

each of the two variant calling pipelines, several approaches for consensus calling were explored.  

While methods for QC and reconciliation of variant calls from multiple calling algorithms have 

been developed and evaluated elsewhere,19-21 these methods did not enable the inclusion of 

certain filtering criteria we sought to implement and did not generate QC annotation at the 

variant-level that preserved all metrics from multiple callers.  Additionally, they were not yet 

extensible implemented for indel variants, and to adapt these pipelines to perform these functions 

would have required extensive modifications or substantial additional scripting.  The ADSP 

protocol described here was implemented on two platforms:  first via R and Perl scripting in 

Linux for all SNV data, and then via SQL commands within a Hadoop Hive database system for 

indels.  The steps of the consensus calling protocol are detailed in Box 1. 

 Examination of MIs in the genotype data after pipeline-specific QC identified a pattern of 

higher MI rates among variants called only in GATK compared to those called only in Atlas and 

those called in both pipelines, suggesting that additional genotype-level filtering for these 

variants was warranted.  As exploration of genotype-specific QC metrics in the ADSP data 

identified GQ (“Genotype Quality”) as an informative filter to reduce MI rate, GQ filtering 

thresholds were implemented to remedy the higher rate of MIs in GATK data.  The use of GQ as 
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a filter here is supported by several prior studies that identified the utility of GQ in reducing MI 

rate22,23 and improving the quality of other metrics.24-26  Analyses to identify the genotype-

specific GQ exclusion thresholds characterized are described in the Supplement (Text S4).   

 

Post-consensus calling variant-level QC 

 After the consensus calling process, variant-level QC filters were applied again to remove 

variants that now failed these criteria after consensus calling.  These included the previous 

variant-level QC filtration steps:   1) excluding monomorphic variants; 2) excluding variants 

with missing rate ≥20%; and 3) excluding variants with extreme heterozygosity.  After this final 

variant-level QC, individual sample statistics were also recomputed to assess quality after 

consensus calling. 

 

Post-processing 

 QCed data were reformatted as both PLINK binary-format files (*.bed, *.bim, *.fam) and 

as annotated VCFs, all containing only QC-passing variants. VCF releases included QC 

annotation (Table S3) on all variants indicating their final disposition (whether they were 

dropped in pipeline-specific QC, failed consensus calling or post-consensus QC, or whether they 

passed all QC stages). 

 

Evaluation of post-QC data quality through full pedigree Mendelian inconsistency evaluation  

A summary measure from family-based genotype imputation was used to evaluate the 

variant-call pipelines. The full pedigree structures coupled with the existing GWAS data allowed 

use of imputation success of the WGS data in the context of GWAS markers as a proxy for 
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genotype-call quality. This extended our ability to check for genotype quality beyond the limited 

case of parent-offspring pairs, which can identify errors only when there is homozygosity for 

different alleles in the two individuals (the parent-offspring pairs). The concept underlying this 

approach to genotype imputation is that, with the exception of rare de-novo mutations, real 

variants are inherited, and therefore high-quality called genotypes should show greater 

Mendelian consistency (MC) with pedigree inheritance vectors (IVs)27 than lower-quality called 

genotypes.  We computed the MC probabilities within pedigrees and averaged these across 

pedigrees to obtain the “Imputation Rate” for each WGS position. Higher values of the 

imputation rate are indicative of higher quality called genotypes. The imputation rate was 

estimated by sampling IVs at the positions of each of the variants, conditional on the complete 

pedigree structure and sampled IVs at the positions of SNPs from the GWAS panels, followed by 

pedigree-based imputation28 from the WGS data. Details of the computation are provided in the 

Supplement (Text S5/Table S4). We computed the imputation rate for each of four categories of 

variants: (1) the 25,531,054 variants that initially passed QC in both pipelines, keeping the 

“concordant-only” genotypes at these variant positions [all non-concordant genotypes set to 

missing]; (2) the “consensus-only” 2,365,720 variants that passed QC in either the Atlas or 

GATK pipelines but not both; (3) the 1,241,253 variants that passed QC in only the Atlas 

pipeline; and (4) the 1,124,467 variants that passed QC in only the GATK pipeline. These last 

two categories represent each of the mutually exclusive variant sets that together represent the 

“consensus-only” category. We focused our evaluation on averages across all pedigrees with 

exactly h observed heterozygotes per pedigree, with h=1- 4.  This controls for variant allele 

frequency, which affects ease of successful family-based imputation because imputation is easier 

when there are fewer heterozygotes in a pedigree.  
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ADSP QC Pipeline Availability 

The ADSP QC Pipeline is implemented in Perl and runs on the command line, with 

parameters of the QC run, including filtering thresholds, input/output directories, and reporting 

rules specified in a separate “control” (parameter) file.  The Perl script, sample control file, 

sample ‘fam’ file, and accompanying documentation, are all available at 

https://www.niagads.org/adsp/ADSP_QC_Script.  All formatting modifications performed on the 

VCF files during the QC process have been documented in the updated VCF header, ensuring the 

readability of these files by any program using the VCF v4.0 format. 

 

Results 

Comparisons of replicate samples across sequencing centers 

The average pair-wise concordance rate between replicate samples prior to any QC, for 

the three replicates sequenced at all three centers, was 99.49% (ranging from 99.46% to 99.53%) 

for the GATK pipeline and 98.60% (ranging from 98.54% to 98.71%) for the Atlas pipeline. All 

three subjects showed similar patterns of between-replicate concordance, suggesting that the 

discrepancy of average concordance rates might be attributable to differences in calling pipeline 

rather than DNA quality. For comparison, we also examined the genotype concordance rate 

between two different unrelated subjects and found the average concordance rate was 91.52% for 

the GATK pipeline and 90.62% for the ATLAS pipeline. Both were significantly lower than the 

concordance rate of the same subject as expected.  All comparisons of replicates are described in 

Text S6, and concordance counts are shown in Tables S5 and S6. 
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WGS SNV and Indel QC on 578 family-based samples 

The vast majority of QCed genotype calls, ~91%, were concordant between the two sets 

of VCFs.  Table 1 contains the counts of all genotypes in each concordance category, as well as 

definitions of each category.  Among SNVs, primary QC of Atlas-generated SNV genotype data 

removed 2,605,141 low-quality variants (8.32%), while primary QC of GATK-generated SNV 

genotypes removed 3,493,548 low-quality variants (11.51%).  For indels, primary QC among 

Atlas-generated genotypes removed 224,979 variants (5.85%) of low quality, and among GATK-

generated indels removed 1,353,892 variants (27.82%). Once primary QC was completed, 

genotypes were compared between the two QCed VCFs. 

Table 2 provides counts for the QC filtering of SNVs and indels at each step of variant-

level QC (implemented after primary QC) as applied to Atlas and GATK VCFs. Overall, 

pipeline-specific QC filtering excluded an additional 1,932,851 SNVs (6.17%) from Atlas-

generated SNV genotype data and 141,192 SNVs (0.46%) from GATK-generated SNV genotype 

data.  QC filtering excluded 1,289,564 indels (30.91%) from Atlas and 362,593 indels (7.45%) 

from GATK. While most filtration steps excluded variants in both pipelines, it is notable that due 

to differences in processing of the BAMs by the centers, no variants with high read depth were 

identified among the GATK SNV or indel genotypes. 

For both SNVs and indels, a higher proportion of MIs was observed among GATK SNVs 

and indels (0.01087% and 0.08%, respectively) than among Atlas (0.00392% for SNVs and 

0.02% for indels). This rate was highest among variants that were called only in the GATK VCF. 

For example, after pipeline-specific QC the MI rate for WGS SNVs was 0.12% for variants 

called only by GATK and 0.01% for variants called only by Atlas. A similar pattern among 

pipeline-unique variants was seen for indels (0.15% vs 0.04%). MIs in each VCF were counted 
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but the genotypes implicated in the inconsistencies were retained. Table 3 provides a summary of 

MI rates from the pipeline specific QCed GATK and Atlas VCFs. Given the MI rates observed 

per parent-offspring pair (Figure 2), the sequence information appeared to be consistent with the 

relationships specified among the sequenced subjects in the pedigree files. 

Table 4 provides the number of variants removed at each filtering step for the second 

round of post-consensus variant level QC.  While pipeline-specific QC previously removed 

variants of low quality from the individual call sets, this second round of QC excluded variants 

that appeared low quality after consensus calling (e.g., after the exclusion of discordant 

genotypes, etc.). The frequency of concordant and pipeline-unique genotypes after consensus 

calling is summarized in Table 5.  Table 6 provides the final number of variants and genotypes in 

the consensus WGS genotype sets. 

Mendelian inconsistencies were evaluated again in the final consensus genotype sets.  

Employing the consensus protocol reduced the MI rate among the variants called only by GATK 

from 0.12% to 0.02% in the SNVs and from 0.15% to 0.04% in the indels (see Table 3), 

providing evidence that the calls remaining in the consensus genotype set are likely higher 

quality.   

Data quality after implementation of QC and consensus calling 

Most variants had extremely high imputation rates, with higher rates in the concordant 

than the consensus-only call sets (Figure 2, Table S4). The median imputation rate for variants 

was >0.995 for all configurations evaluated, and imputation rates at the lowest quartile were still 

high, ranging from 0.927 to 0.964 depending on the number of sequenced heterozygotes per 

pedigree. Even the very low fifth percentile achieved reasonably high imputation rates: for the 

concordant variants, imputation rates ranged from 0.762 to 0.848, while the consensus-only 
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variant rates were 0.553-0.7 for families with 2-4 sequenced heterozygotes. A low imputation 

rate of 0.167 was found only for the consensus-only variants for families with a single 

heterozygote among the sequenced subjects.  These observations suggest that the WGS 

genotypes are of high quality, overall, with only a small fraction that may have unusually high 

genotyping rates. 

Genotypes in the concordant variant call set were of higher quality than those in the 

consensus call set. This inference is derived from the observation that imputation rates were 

higher, at all percentiles, for the concordant than consensus genotypes. The difference in quality 

between call sets was most extreme for variants heterozygous in only one sequenced subject 

(Figure 2A), with rapid attenuation of the difference with increasing numbers of heterozygotes 

per pedigree. Figure 2 panels A and B show results for the extremes of heterozygotes examined 

per pedigree. Intermediate results were obtained (not shown) for the remaining situations 

examined. The fraction of variants that had a 0% imputation rate (failed imputation) was also 

consistent with higher quality genotypes for the concordant variants. The fraction of concordant 

variants that failed imputation was a low 0.003-0.004 and was effectively independent of the 

number of heterozygotes per family. In contrast, for the consensus variants, the imputation 

failure rate was higher, and was a function of the number of heterozygotes per pedigree, 

decreasing monotonically from rates of 0.032 to 0.006 with increasing numbers of heterozygotes 

from one to four. 

Genotypes in the consensus-only call set appeared to be of higher quality when derived 

from the GATK than the Atlas pipeline. The difference between the results for the two individual 

pipelines was most apparent in the case of single heterozygotes per pedigree, with the difference 

between pipelines particularly evident in the lowest tail of the distribution (Figure 2C-D). For 
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variants with multiple heterozygotes per pedigree the differences between the two pipelines were 

minimal (Figure 2B). It is worth noting that of the variants that were in the consensus-only call 

set, the fraction of variants called by Atlas that could be found in the 1000 Genomes data29 

(13.2%) was lower than the equivalent fraction for GATK (37.5%). Correspondingly there were 

lower allele frequencies for the Atlas variants than the GATK variants, with 55% and 50% of 

variants, respectively, below a 1000 Genomes EUR sample minor allele frequency of 0.05.  

Sample-level QC findings  

Tables 7 and 8 present sample-level QC metrics, stratified by ethnicity and sequencing 

center, respectively. Few samples were flagged as outliers for sample-level QC metrics, 

suggesting high overall quality of all samples after QC.  These samples were not excluded.  

 Figures S2 and S3 depict the distribution of heterozygosity for WGS samples after QC 

and consensus calling. Five members within one family were initially reported as European 

samples showed excess heterozygosity relative to other European samples, but were within the 

range of excess heterozygosity observed among Caribbean Hispanic samples (Figure S4). Later 

examination of clinical records found that the five samples were actually of African ancestry, 

and these were reclassified and co-analyzed with Caribbean Hispanic samples.  The mean 

sample-specific genome-wide Ti/Tv ratio was 2.12 for all ethnic groups and sequencing centers 

(see Figures S2C and S3C and Tables 7 and 8). Whole genome sequencing is expected to have a 

Ti/Tv ratio of 2.10 for known variants9 and the consensus called variants fall at that expected 

threshold.  Text S6 provides additional details on within-sample comparisons of three replicates 

done at each of the sequencing centers.  

 

Discussion 
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In the largest sequencing effort to date to discover rare genetic variation playing a direct 

role in AD, the ADSP has generated WGS data on 578 subjects from 111 multiplex AD families. 

Maximizing the potential to reveal true associations and minimizing potential false-positive 

findings requires comprehensive and rigorous quality control of sequence data prior to any 

analysis.  In order to provide a consistent high-quality dataset, the QC working group of the 

ADSP developed and implemented a novel QC protocol that generated a concordant genotype 

set and a consensus genotype set from two variant calling pipelines. These QCed datasets are 

available via the database of Genotypes and Phenotypes (dbGaP) and the NIA Genetics of 

Alzheimer’s Disease Data Storage Site (NIAGADS) portal and include PLINK binary files and 

VCF files containing only genotypes that passed QC and QC annotation files containing 

information on all variants regardless of pass/fail status. Use of these standardized QCed datasets 

will also facilitate comparison across analyses by different research groups, efficiencies that are 

important to aid in the discovery of AD-related genetic factors.  It is anticipated that this 

information will streamline future in silico replication using ADSP data. The availability of these 

datasets will increase efficiency in the use of the ADSP data by precluding the need for each 

authorized investigator to perform QC. 

Among the most useful features for data users in this QC process is the creation of 

‘companion’ files, or QC annotation files. These files provide a dataset-specific reference guide 

containing information on all variants and genotypes called by either pipeline regardless of 

whether the variants passed or failed and include the pass/fail status for all original called 

variants after QC filters are applied. This detailed information (Table S3) on the disposition of all 

variants serves multiple purposes. Firstly, it provides a detailed record of all quality issues 

identified during the QC process, improving reproducibility of the process. Secondly, it allows 
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for comprehensive examinations of widely agreed-upon QC filters and their downstream effects 

on data quality; by utilizing annotation that identifies all QC criteria for which a variant fails 

independently of order of implementation, authorized investigators can know the effects of 

applying any QC filters in any desired order before applying them.  Thirdly, the QC annotation 

can be used to confirm that the QC process has been implemented correctly, as recorded values 

of metrics on failing variants should be consistent with exclusion criteria.  Finally, these files 

explain why variants of interest may be missing from the QCed data.  Typically, information on 

variants that are removed is not recorded, and which QC criteria a variant may fail are subject to 

the order of QC filter implementation.  Notably, our approach identifies all QC criteria a variant 

may fail, which makes it independent of QC filter implementation order and fully reproducible.     

One of the strengths of the study, yet one that provided the biggest challenge for QC, was 

the use of multiple variant-calling pipelines (Atlas and GATK). Different variant-calling 

algorithms have been developed and the strengths and weaknesses of each are not well 

documented.  Elucidating specific conditions (e.g., what type of variant or sequencing method) 

under which each algorithm performs optimally is beyond the scope of the current study.  The 

current goal was to use the information from the two calling pipelines to generate a set of 

consistently high-quality genotypes to facilitate the discovery of AD-related genetic variants. 

The concordant data set includes genotypes from variants that were called by both pipelines, met 

all filtering criteria, and were identical between the two pipelines.  For SNVs and indels, 91% 

and 56% of genotypes, respectively, were concordant between the two pipelines. These 

concordant calls represent our highest-confident genotype set. The quality of these concordant 

calls was further supported by the lower MI rate and higher mean GQ levels relative to 

discordant calls. 
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The concordant genotype set does not, however, take advantage of unique strengths of 

the two calling algorithms applied and may be overly conservative. To address this issue, a 

consensus protocol was developed that incorporates variants called by only one of the pipelines. 

For WGS SNVs and indels, a larger number of variants uniquely called by GATK compared to 

Atlas were included in the consensus sets. Examination of MI indicated that after implementation 

of the pipeline-specific QC filters that the GATK-only variants might be more error prone than 

variants called only in Atlas or by both pipelines. This is likely driven by the fact that the 

pipeline-specific QC protocol for Atlas included both genotype-specific and variant-specific 

filtering, whereas the pipeline specific QC protocol for GATK included only variant-specific 

filtering, following sequencing center recommendations.  Implementation of a GQ filter on 

genotypes within variants called only by GATK improved the quality as measured by MI rate. 

The final consensus genotype datasets include the genotypes that were concordant in both 

pipelines, and additionally include high-quality genotypes from variants called in only one of the 

two pipelines.  While concordant variants are of generally higher quality than the high-quality 

genotypes called in only one pipeline, it should be noted that calling criteria or artifacts in one 

pipeline may lead to true causal variants being missed in that pipeline, and this approach 

maximizes the number of high-quality variants retained to improve the likelihood of identifying 

causal variants in a dataset. 

The Mendelian consistency rate in family-based imputation was used to compare the 

quality of genotype calls when two calling algorithms were implemented.  A first question 

addressed was whether use of two pipelines resulted in improved quality of variants called 

relative to use of only a single pipeline; a second was whether there was a difference in the 

quality of variants called between the two individual pipelines. Although not specifically 
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designed for the purpose used here, the MC rate during pedigree-based imputation makes use of 

results of other ongoing computations (e.g., generation of inheritance vectors in pedigrees and 

MI frequency) and was sufficient to address the two questions of interest. These results suggest 

that the genotypes called identically in both pipelines were of higher quality than calls from a 

single pipeline. While the consistency rate was slightly higher for variants called only by GATK 

compared to those called only by Atlas, this difference was very small and overall quality after 

pipeline-specific QC was high for both Atlas- and GATK-generated genotypes. 

The QC protocol implemented on the ADSP WGS data is generalizable to other large-

scale sequencing studies. While the protocol implemented for this study utilized data-driven 

thresholds and hence specific values (e.g., GQ thresholds or heterozygosity score statistic 

threshold) that may not translate to other studies, the pipeline protocol simplifies determination 

of these threshold for each novel dataset, tailoring the pipeline to the unique characteristics of the 

dataset and allowing for easy implementation. This protocol offers a paradigm for other studies 

to develop their own metrics and, under the condition of using multiple genotype calling 

pipelines, an approach not previously applied to large NGS datasets. As more sequencing studies 

are conducted, the potential for universal guidelines may be feasible, and many features of the 

ADSP pipeline, such as QC filtering on multiple criteria in parallel, have been designed with 

adaptability to future guidelines in mind.  For example, the pipeline was constructed to allow for 

the assessment of HWE using tests that assume independence of observations are part of the 

variant-level QC if most or all samples in the dataset are unrelated or using empirical thresholds 

with an excess heterozygosity statistic as was done here with family data. It should be noted that 

in population-based datasets, assessments of quality would be unable to utilize MI checking 

unless some informative relative pairs are included in sequencing to examine this quality; 
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alternative quality assessments could be applied to similar effect, including genotype 

concordance between sequence and GWAS data by strata of GQ values, concordance among 

unfiltered variants across replicate samples, etc. 

This work also highlights the value of utilizing information available prior to sequencing, 

including identification of parent-offspring pairs and high-density genotyping chip data. Even 

though identification of MIs is limited with biallelic variants, the change in MI rate with different 

genotype sets provided important information on genotype quality. Inclusion of relative pairs for 

QC may be useful even if the main study design is based on unrelated cases and controls.  

Similarly, the availability of GWAS data for sample validation was also important, both in 

determining quality of sequence genotypes through concordance checks, and in characterizing 

between-sample relatedness and population substructure with a high quality subset of GWAS 

genotypes.  For these reasons, the availability of additional data from sequenced samples, such as 

relatedness information and the availability of other independent genetic resources, should be 

considered when prioritizing samples for sequencing and/or designing sequencing projects. 

In summary, the ADSP has generated high-quality QCed WGS datasets by developing 

and implementing a novel QC protocol that integrates calls from both the Atlas and GATK 

variant calling algorithms.  This approach provides a model for QC for other large-scale 

sequencing studies.  The distribution of these carefully QCed high-quality WGS SNV and indel 

genotype sets, shared via the Database for Genotypes and Phenotypes (dbGaP), will provide an 

important public resource for untangling the genetic etiology of AD. 
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Table 1.  Genotype concordance counts after preliminary and pipeline-specific QC for all possible genotype pairs between Atlas and GATK, 
across all individuals and variants.  Included is a two-digit “concordance code” label, summarizing genotype pairs between the pipelines, Atlas 
(the first digit) and GATK (the second digit).  Digit values are “0” for referent allele homozygote, “1” for heterozygote”, “2” for alternate allele 
homozygote, and “9” for missing/not available.  The category “33” represents all genotypes (including referent homozygotes concordant between 
the two VCFs) for variants in which a different alternative allele was called between the two sets of VCFs.  

Code Interpretation 
Whole Genome Sequence (WGS) 

SNV genotypes Indel genotypes 

00 Concordant reference allele (REF) homozygote 12,822,511,444 1,020,985,877 

11 Concordant heterozygote 1,193,810,170 75,163,355 

22 Concordant alternate allele (ALT) homozygote 684,475,930 44,941,526 

01 Discordant; Atlas REF homozygote; GATK heterozygote 247,853 1,662,092 

02 Discordant; Atlas REF homozygote; GATK ALT homozygote 11,257 265,112 

09 Atlas REF homozygote; GATK missing 647,757,411 200,377,988 

10 Discordant; Atlas heterozygote; GATK REF homozygote 629,047 1,344,533 

12 Discordant; Atlas heterozygote; GATK ALT heterozygote 103,484 2,317,666 

19 Atlas heterozygote; GATK missing 24,279,157 7,477,521 

20 Discordant; Atlas ALT homozygote; GATK REF homozygote 21,765 13,036 

21 Discordant; Atlas ALT homozygote; GATK heterozygote 716,059 260,906 

29 Atlas ALT homozygote; GATK missing 11,916,104 4,124,707 

90 Atlas missing; GATK REF homozygote 619,012,699 516,306,709 

91 Atlas missing; GATK heterozygote 87,373,375 43,251,176 

92 Atlas missing; GATK ALT homozygote 31,581,133 14,675,561 

99 Atlas missing; GATK missing 42,738,514 104,183,397 

33 
All genotypes for variants with different alternative alleles between 

Atlas and GATK  
117,912 14,169,670 
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Box 1. Steps and implementation hierarchy of the consensus calling process. Concordance code (“CS”) definitions are detailed in 
Table 1. 

Consensus Calling Filter Final Variant Disposition 
1) All genotypes in remaining variants that were concordant between the 

two QCed sets of VCFs (CS = “00”, “11”, or “22”) 
Include in the final consensus set 

2) Variants in which a different alternate allele was called between the 
two QCed sets of VCFs. (CS = “33”) 

Exclude from all datasets 

3) All genotypes that were discordant between the two QCed sets of 
VCFs. (CS = “01”, “02”, “10”, “12”, “20” or “21”) 

Set genotypes to missing 

4) All genotypes that were present only in the QCed Atlas V2 VCFs (but 
were missing in the QCed GATK-HaplotypeCaller VCFs) (CS = “09”, 
“19”, or “29”) 

Include in the final consensus set 

5) Genotypes that were present only in the QCed GATK-
HaplotypeCaller VCF (but were missing in the QCed Atlas V2 VCF) 
that met a GQ (genotype quality score) threshold were included in the 
final consensus set.  (CS = “90”, “91”, or “92”) 

a) For SNVs, the GQ threshold was set to the 0.1 percentile 
(genotype-specific) based on genome-wide concordant 
genotype calls.  

b) For indels, the GQ threshold was set to the 1.0 percentile 
(genotype-specific) 

c) The genotype specific GQ thresholds implemented were: 
i) WGS SNVs:  GQ<7 for ‘0/0’ genotypes, 

GQ<88 for ‘0/1’ genotypes and GQ< 25 for 
‘1/1’ genotypes. 

ii) WGS indels: GQ < 14 for  ‘0/0’ genotypes,  
GQ<98 for ‘0/1’ genotypes and GQ <30 for 
‘1/1’ genotypes 

 
 

Include after additional filtering 
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Table 2.  WGS variant counts by QC filtration step.  Entries in parentheses represent QC filters and the counts of variants excluded 
with the implementation of that filter, whereas non-parenthetical entries represent total counts after implementation of filtration steps. 

Counts 
SNVs  Indels 

Atlas GATK  Atlas GATK 

Total variants 31,314,231 30,364,600  3,848,314 4,866,737 

(Multi-allelic variants) (0) (177,445)  (0) (1,205,637) 

Biallelic variants 31,314,231 30,187,155  3,848,314 3,661,100 

Biallelic variants with 
“PASS” (GATK) or 

MS>0.8 (Atlas) 
28,709,090 26,871,052  3,623,335 3,512,845 

(Failed Monomorphic 
filter) 

(854,440) (37,798)  (394,767) (13,337) 

(Failed Missing Rate filter) (1,009,878) (58,845)  (765,852) (302,609) 

(Failed Mean Depth filter) (461) (0)  (619) (0) 

(Failed Het filter 
[MAF<0.2]) 

(15,013) (27,333)  (14,900) (34,607) 

(Failed Het filter 
[MAF≥0.2]) 

(53,059) (17,216)  (13,336) (12,040) 

(Failed Het filter 
[MAF≥0.2] due to all 

heterozygous) 
(31,131) (0)  (0) (0) 

After variant QC 26,776,239 26,729,860  2,433,771 3,150,252 
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Table 3.  Mendelian error rates from the QCed GATK and Atlas VCFs, and final post-QC consensus genotype set.   

Calling Pipeline MI Category SNVs Indels 

GATK 

Total 0.01087% 0.08% 

Unique 0.12009% 0.15% 

Common 0.00581% 0.03% 

Atlas 

Total 0.00392% 0.02% 

Unique 0.01638% 0.04% 

Common 0.00337% 0.01% 

Consensus 

Total 0.00420% 0.02% 

GATK unique 0.02043% 0.04% 

Atlas unique 0.01638% 0.04% 

Common 0.01838% 0.01% 
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Table 4.  WGS variant counts with by post-consensus variant-level QC filtration step.  Entries in parentheses represent counts of 
variants excluded with the implementation, whereas non-parenthetical entries represent total counts after implementation of filtration 
steps. 

Counts SNVs Indels 

Total variants 27,970,909 3,549,344 

(Failed Monomorphic filter) (12,058) (166,069) 

(Failed Missing Rate filter) (61,252) (244,045) 

(Failed Excess Heterozygosity filter [MAF<0.2]) (760) (3,219) 

(Failed Excess Heterozygosity filter [MAF≥0.2]) (65) (2,085) 

Total after variant-level QC 27,896,774 3,133,926 
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Table 5.  Post pipeline-specific quality control (QC) percentages for genotype concordance, discordance, or calling in only one 
pipeline (Atlas or GATK).  

Genotype Pairs SNVs  Indels  

Concordant 90.93 55.62 

Discordant 0.0107 0.286 

Called only in GATK 4.56 27.99 

Called only in Atlas 4.23 10.33 

Missing in both 0.264 5.08 

Called in both with 
different alternate allele 

0.000729 0.690 
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Table 6.  Final counts of genotypes and variants after implementation of pipeline-specific QC, the consensus protocol, and post-
consensus variant-level QC.  “REF” indicates reference allele, and “ALT” indicates alternate allele. 

Counts SNVs Indels 

REF/REF 14,050,706,093 1,595,662,048 

REF/ALT 1,293,864,012 118,839,494 

ALT/ALT 722,702,957 60,368,310 

Missing 57,062,310 36,539,376 

Total # variants 27,896,774 3,133,926 
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Table 7.  Sample-level QC metrics stratified by ethnicity (EA, European American; ERF, Dutch Isolate; CH, Caribbean Hispanic).  
Values reported are mean, standard error (SE) in parentheses, and count of outliers at 4 SE and 6 SE, respectively, in square brackets 
unless otherwise specified. 
 

Sample-level Metrics 
Ethnic Subgroup 

EA ERF CH 
# Samples (N) 192 30 356 

# REF/REF genotypes  24,484,692 (34,145) [1, 0] 24,525,871 (20,686) [0, 0] 24,190,270 (154,500) [0, 0] 
# REF/ALT genotypes  2,035,314 (23,228) [1, 0] 2,023,070 (31,060) [0, 0] 2,365,800 (161,320) [0, 0] 
# ALT/ALT genotypes  1,271,991 (10,318) [1, 0] 1,284,034 (15,692) [0, 0] 1,235,478 (32,757) [0, 0] 
# Missing genotypes  100,440 (43,356) [2, 0] 59,462 (16,285) [0, 0] 100,889 (42,421) [2, 2] 

Missingness Rate (%) 0.0036 [2, 0] 0.0021 [0, 0] 0.0036 [2, 2] 
# Singletons  7,005 (5,521) [0, 0] 13,856 (5,030) [0, 0] 8,158 (9,046) [2, 0] 
# Doubletons  8,467 (3,346) [0, 0] 8,346 (1,854) [0, 0] 12,567 (7,017) [0, 0] 

Heterozygosity-to-Homozygosity 
ratio  

1.6003 (0.0256) [1, 0] 1.576 (0.0421) [0, 0] 1.9183 (0.1634) [0, 0] 

Ti/Tv Ratio  2.1256 (0.0027) [0,0] 2.1242 (0.002) [0, 0] 2.1239 (0.0032) [1, 0] 
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Table 8.  Sample-level QC metrics stratified by sequencing center.  Values reported are mean, standard error (SE) in parentheses, and 
count of outliers at 4 SE and 6 SE, respectively, in square brackets unless otherwise specified. 
 

Sample-level Metrics 
Sequencing Center 

Broad WashU Baylor 
# Samples (N) 229 183 166 

# REF/REF genotypes [mean (SD)] 24,275,244 (178,846) [0, 0] 244,040,032 (176,288) [4, 0] 24,238,582 (180,562) [0, 0] 
# REF/ALT genotypes [mean (SD)] 2,262,291 (196,200) [0, 0] 2,127,330 (176,042) [0, 0] 2,327,295 (196,027) [0, 0] 
# ALT/ALT genotypes [mean (SD)] 1,245,780 (31,703) [0, 0] 1,266,015 (23,634) [0, 0] 1,238,609 (35,480) [0, 0] 
# Missing genotypes [mean (SD)] 109,122 (42,151) [2, 0] 95,060 (33,063) [3, 0] 87,952 (49,452) [1, 1]  

Missingness Rate (%) 0.0039 [2, 0] 0.0034 [3, 0] 0.0032 [1, 1] 
# Singletons [mean (SD)] 7,662 (8,466) [1, 0] 7,670 (7,155) [2, 0]  9,076 (8,141) [0, 0] 
# Doubletons [mean (SD)] 10,976 (6,454) [0, 0] 10,023 (5,598) [2, 0] 12,062 (6,263) [0, 0] 

Heterozygosity-to-Homozygosity 
ratio [mean (SD)] 

1.82 (0.1929) [0, 0] 1.6824 (0.161) [0, 0] 1.8842 (0.2029) [0, 0] 

Ti/Tv Ratio [mean (SD)] 2.1266 (0.0025) [0, 0] 2.1238 (0.0024) [0, 0] 2.1223 (0.0026) [1, 0] 
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Figure 1.  Diagrams of the Caller-specific QC and Consensus Calling Pipeline, including (a) an 
overview diagram of the process, (b) details of the caller-specific variant-level QC steps, and (c) details 
of the post-consensus variant-level QC steps. 

 

For detail see 1b 

For detail see 1c 

(a) 
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Figure 2.  Cumulative distribution of genotype imputation rates for variants occurring 1-4 times as 
heterozygotes in the ADSP pedigrees. Panels A and B: full cumulative distributions for the cases of 1 
(Panel A) and 4 (Panel B) heterozygotes per pedigree. Panels C and D provide detail for the variants 
with the lowest 5 percent of the imputation rate, for the cases of 1 (Panel C) and 2 (Panel D) 
heterozygotes per pedigree. The variants with observed data after the QC protocol to establish 
concordant calls between the pipelines are indicated by the solid black line (Concordant), while the 
variants subsequently retained as having high quality in one of the two pipelines are indicated by the 
long-dashed purple line (Consensus). The information for each of the two contributing pipelines to the 
Consensus variants is also represented, with the Atlas pipeline represented by the dark red, dotted line, 
and the GATK pipeline by the medium-dash blue line. 
 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/318857doi: bioRxiv preprint 

https://doi.org/10.1101/318857
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

Supplemental Data 
 
Table S1.  Sample counts by sequencing center      
 
Text S1.  Library preparation and whole genome sequencing     
 
Table S2.  Parameters used for whole genome alignment and calling by sequencing center 
            
Text S2.  Description and workflows for genotyping calling in GATK and Atlas    
          
Text S3.  Filtering for Extreme Heterozygosity      
 
Text S4.  Determination of GQ thresholds for GATK genotype filtering   
 
Table S3.  QC Annotation file field descriptions for variant-level QC and sample-level QC 
 
Text S5.  Estimation of Inconsistency Rate in Family-based Imputed Genotypes  
 
Table S4.  Mean imputation rates across pedigrees 

Text S6.  Comparison of samples replicated between sequencing centers   

Table S5.  Concordance among replicate sample genotypes from GATK   

Table S6.  Concordance among replicate sample genotypes from Atlas   

Figure S1.  Potential genotype configurations where there are Mendelian inconsistencies (MI) and 
discordant calls between the two pipelines.  
 
Figure S2.  Distribution of the heterozygosity-to-homozygosity ratio among WGS samples prior to 
variant-level QC and consensus calling, stratified by race/ethnicity. 
 
Figure S3.  Distributions of sample-level metrics among WGS samples after variant-level QC and 
consensus calling, stratified by race/ethnicity 
 
Figure S4.  Distributions of sample-level metrics among WGS samples after variant-level QC and 
consensus calling, stratified by sequencing center 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/318857doi: bioRxiv preprint 

https://doi.org/10.1101/318857
http://creativecommons.org/licenses/by-nc-nd/4.0/

