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Abstract

The Alzheimer’ s Disease Sequencing Project (ADSP) performed whole genome sequencing
(WGS) of 584 subjects from 111 multiplex families at three sequencing centers. Genotype
calling of single nucleotide variants (SNV's) and insertion-deletion variants (indels) was
performed centrally using GATK-HaplotypeCaller and Atlas V2. The ADSP Quality Control
(QC) Working Group applied QC protocols to project-level variant call format files (V CFs) from
each pipeline, and developed and implemented a novel protocol, termed “consensus calling,” to
combine genotype calls from both pipelines into a single high-quality set. QC was applied to
autosomal bi-allelic SNVs and indels, and included pipeline-recommended QC filters, variant-
level QC, and sample-level QC. Low-quality variants or genotypes were excluded, and sample
outliers were noted. Quality was assessed by examining Mendelian inconsistencies (M1s) among
67 parent-offspring pairs, and MIs were used to establish additional genotype-specific filters for
GATK calls. After QC, 578 subjects remained. Pipeline-specific QC excluded ~12.0% of GATK
and 14.5% of Atlas SNVs. Between pipelines, ~91% of SNV genotypes across all QCed variants
were concordant; 4.23% and 4.56% of genotypes were exclusive to Atlas or GATK, respectively;
the remaining ~0.01% of discordant genotypes were excluded. For indels, variant-level QC
excluded ~36.8% of GATK and 35.3% of Atlas indels. Between pipelines, ~55.6% of indel
genotypes were concordant; while 10.3% and 28.3% were exclusive to Atlas or GATK,
respectively; and ~0.29% of discordant genotypes were. The final WGS consensus dataset

contains 27,896,774 SNV's and 3,133,926 indels and is publicly available.
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Introduction

While genome-wide association studies (GWAS) have successfully identified thousands
of common genetic variants associated with hundreds of complex diseases and traits, next-
generation sequencing (NGS) technologies aim to widen the scope and ability of genomic studies
to identify the genetic underpinnings of disease. Unlike array-based GWAS genotyping, NGS
technol ogies, which include whole genome sequencing (WGS) and whole exome sequencing
(WES), are able to comprehensively capture genotypes for both common and rare single
nucleotide variants, insertion-deletion polymorphisms, and even structural variants that may
contribute to disease risk. By capturing all sequence within targeted regions, NGS may facilitate
identification of causal variants rather than merely associated variants. It achieves a substantial
gainin base-pair coverage of the genome compared to high-density GWAS array genotyping, a
multi-fold increase in read depth compared to traditional Sanger sequencing, and a much lower
per-base cost.*

Both WGS and WES genotype calling can be affected by a variety of types of errors or
sources of bias, such as sample swaps and low call rates that can alter the quality of genotypes
used in analyses and thus affect the ability of analyses to detect associations with disease.
Quality issues that are unique to sequencing assays can arise at multiple stepsin the process.
During the library preparation and sequencing phases, these include low quality reads resulting
from duplications, unfavorable base composition of the amplified sequence, inclusion of tag
(adapter/barcode) sequences into reads; aswell as read contamination from external sources,
such as bacteriain DNA samples used for sequencing.” At the alignment phase, quality issues
can arise from alignment to duplicated genomic regions or repeat-rich regions, and require

assessments of read depth, mapping quality, insert size and the number of discordantly mapped
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paired reads’. Issues at these phases can only be remedied by appropriate experimental design
and use of sensitive bioinformatic tools. At the variant-calling level, quality issues include
elevated numbers of novel non-synonymous SNPs or excesses of ‘private’ variants (within
individual samples), alelic read ratio biases (causing true homozygotes to be called as
heterozygotes), and low-quality calls based on low read depths. While a number of QC software
packages and protocols exist for the cleaning at the raw data phase®*° and at the alignment
phase,® few tools or protocols exist’ at the variant-calling/post-variant-calling phase. For this
reason, anovel QC protocol, including the development of a consensus-calling approach to
integrate genotype calls from multiple pipelines, was devel oped for WGS data in the Alzheimer
Disease Sequencing Project (ADSP).

The ADSP is a collaboration between the National Institutes on Aging (NIA) and the
National Human Genome Research Institute (NHGRI), with data contributions from the
Alzheimer Disease Genetics Consortium (ADGC) and the neurology working group of the
Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and
seguencing contributions from the Large Scale Sequencing and Analysis Centers (LSSACS) at
Baylor University, the Broad Institute and Washington University-St. Louis. The ADSP was
initiated to identify both protective and risk genetic variants for Alzheimer Disease (AD) [MIM:
104300], a devastating neurodegenerative disorder characterized by progressive loss of cognitive
function. The ADSP generated WGS on 584 individuals from 111 large, multiplex late onset AD
families to detect risk variants having large effect on familial forms of AD. Raw data processing,
map alignment, and variant calling were performed by both the Broad Institute, which called
variants using the GATK-HaplotypeCaller package,®*° and the Baylor College of Medicine

Human Genome Sequencing Center , which called variants using the Atlas V2 pipeine.*
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The ADSP QC protocol integrated QC strategies from multiple sources including the
CHARGE consortium QC protocol,*? prior sequencing study experiences of ADGC and
CHARGE investigators, GWAS QC approaches, and proprietary QC recommendations for the
Atlas V2 and GATK-HaplotypeCaller genotype calling pipelines. The final protocol included 1)
independent QC of each variant calling set, 2) comparison of the QCed calls from each pipeline,
and 3) implementation of a consensus calling protocol to remove discordant calls and integrate
genotypes called in only one pipeline, resulting in asingle set of SNV and indel genotypes for
analysis.

Here we discuss the workflow and implementation of this novel QC protocol and
consensus calling approach on WGS autosomal SNV and indel datain the ADSP. We
demonstrate improved quality of SNV and indel genotype data after pipeline-specific QC
filtering and show further improvementsin quality through higher concordance of genotype calls
and lower rate of Mendelian inconsistencies by combining genotype calls from two calling

pipelines compared to using calls from only one pipeline.

Subjectsand Methods

Subjects

The ADSP family study spans seven cohorts. Detailed description of the study design has
been published elsewhere.**® In brief, 1,100 multiplex AD families were screened to identify
111 high priority families consisting of more than three AD cases with limited presence of the
APOE ¢4 allele and other known pathogenic variants (e.g., APP, PSEN1/2). All subjects selected

for sequencing had either genome-wide or exome chip SNV genotype data available.
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A total of 584 subjects were selected for sequencing from these pedigrees. Three
subjects were sequenced in replicate at all three sequencing centers, adding six more samples, for
atotal of 590 samples. Six samples were dropped because of sequencing quality issues, including
one with low DNA concentration, three with poor GWAS concordance, and two with low-
guality sequence data. Of the remaining 584 samples from 578 unique subjects, 12 samples were
resequenced due to issues with reagents. These family dataincluded individuals of European
American, African American, and Caribbean Hispanic ancestry, and members of alarge multi-

generational pedigree with high burden of AD from a Dutch isolate™® (Table S1).

Whole genome sequencing methods

Genomic DNA from whole blood, frozen brain, or fibroblasts was sent to one of three
LSSACs: Broad Institute Genomics Service (Broad), Baylor College of Medicine Human
Genome Sequencing Center (Baylor), and McDonnell Genome Institute at the Washington
University in St. Louis (WashU). The breakdown of samples sequenced by each of three centers
isshown in Table S1. lllumina WGS technology was used at all three centers. Library
preparation and sequencing protocols details are provided in the Supplementary Materials (Text

S1; Table S2).

Whole genome alignment and variant genotype calling

After sequencing, Broad and Baylor performed alignment and variant calling on all
whole genomes from all three LSSACs. Genome alignment at Broad was performed using the
1000 Genomes version of the GRCh37/hg19 build, while alignment at Baylor was performed

using the GRCh37-lite version. Broad and Baylor subsequently applied two variant genotype
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callers, GATK-HaplotypeCaller V2.6 and Atlas V2, respectively, to the sequencing data.
Additional details regarding genome alignment are provided in Table S2, while a detailed
description and workflow characterizing variant genotype calling in GATK and Atlas are

described in Text S2.

Pre-QC sample checking

Concordance checking between high-density genotyping chip-based genotype data (either
GWAS or exome chip) was performed by the sequencing centers prior to implementing the QC
protocol. Samples with a concordance rate of <80% between chip genotype data and sequence
were removed from subsequent QC and analysis. The final QCed genotype set includes only a
single set of sequence genotypes for the three replicated subjects, specifically the data generated
by the sequencing center to which other members of the subjects’ pedigrees were originally
alocated. Findly, only data for subjects that were successfully called in both Atlas and GATK
pipelines were carried forward to QC.

Familial relationships between samples were evaluated via the software suite PBAP
(Pedigree-based analysis pipeline)’ using selected sets of ~5,000-6,000 high frequency
(MAF>0.05) variants from the GWAS arrays to obtain maximum likelihood estimates of
pairwise IBD sharing coefficients. Relative pairs with coefficient estimates that deviated strongly
from expectation based on the reported familial relationships were flagged but not excluded prior
to QC.

Checking for Mendelian inconsistencies (MIs) between related individuals was
performed in 67 parent-offspring pairs that were sequenced within the ADSP pedigrees using
Pedcheck software or R scripts.*® This was done prior to QC to establish baseline rates of Mls

within each pipeline and after QC in order to quantify the improvement in data quality following
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the implementation of QC filters. Given that only biallelic variants were considered and no trios
(with both parents) were available, MIs could only be detected when the parent and offspring
were homozygotes for different alleles (depicted in Figure S1). Because the incorrect genotype
in each pair could not be established, genotypes involved in MIs were not excluded from QCed

datasets.

Pipeline-specific quality control

SNV and indel genotypes were QCed independently, although the same protocol was
applied to each variant type. QC was applied to biallelic autosomal SNV's and indels; any
variants with more than two alleles were removed from the data set prior to other QC steps and
are not addressed in the current study. Three levels of QC were applied: (a) pipeline-specific
‘primary’ QC (i.e., sequencing center-recommended filtering); (b) standardized variant-level QC;
and (c) sample-level QC.

Figure 1 depicts all components of the QC protocol. For pipeline-specific primary QC,
Atlas V2 genotype calls werefirst evaluated at a genotype-level. Genotypes that had alow read
depth (DP <10) or an out-of-range allelic read ratio (VR/DP <0.75 or VR/DP >0.25 for
heterozygous genotypes, where VR and DP are referent allele and overall read depths,
respectively) were set to missing. Next on the variant level, any variants with low mapping score
(MS) (inthe VCF s“INFO” field, MS <0.8) and any variants with completely missing genotypes
were flagged/excluded as failed variants. GATK-HaplotypeCaller primary QC was applied at the
variant level, excluding any variants that were not flagged as “PASS’ by the VQSR algorithm,
thus excluding variants outside the 95% sensitivity tranches (i.e., the lowest 5% of recalibrated

guality scores).
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After primary QC, variant-level QC was applied to the remaining variantsin the Atlas
and GATK VCFs. Variant filters (exclusions) were applied in the following order: 1)
monomorphic; 2) high missing rate (>20%); 3) high read depth (>500 reads); and 4) extreme
heterozygosity (>5 SD from mean z-score across all variants). For step #4, we evaluated excess
heterozygosity empirically in lieu of testing for departure from Hardy-Weinberg equilibrium
(HWE) due to concerns about the potentially biasing effects of familial relationships on variance
estimation and consequently on the P-value. Instead, a score statistic approach was applied
across all sequenced individuals except members of the Dutch Isolate pedigrees, and this
approach is described in the Supplement (Text S3).

After implementation of variant-level QC, within-individual quality metrics were
estimated, and the distributions of these metrics were assessed to exclude potential outliers.
Among these metrics were: (1) counts of singleton/doubleton variant calls to identify an excess
of private variants; (2) genotype missingness rate (per individual) > 0.2; (3)
Transition/Transverion (Ti/Tv) ratio outliers[for SNVs only]; (4) heterozygosity-to-
homozygosity ratio (across all within-individual genotypes); and (5) mean read depth (across all
within-individual genotypes). Samples with genotype missingness rate >0.2 were excluded and
samples were examined as potential outliersif their values for any of the other criteriawere
greater than 6 SD from the mean value based on ethnic group. Three groups were defined:

European American, Dutch Isolate, and Caribbean Hispanic

Concordance matching
Once primary and variant-level filtering were completed, genotypes were compared

between the two QCed VCFs. Table 1 contains the concordance codes (“CS”) derived for

10
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comparing the genotypes. In addition, a concordant set of genotype calls in which only

genotypes present and concordant between the two QCed calling pipelines was created.

Consensus Calling

The ‘concordant’ dataset contains high-certainty genotype calls that were identical in the
two variant calling pipelines, but it did not allow inclusion of high-quality variants called in only
one pipeline. To arrive at asingle set of genotype calls that includes high-quality variants from
each of the two variant calling pipelines, several approaches for consensus calling were explored.
While methods for QC and reconciliation of variant calls from multiple calling algorithms have

1921 these methods did not enable the inclusion of

been developed and evaluated elsewhere,
certain filtering criteria we sought to implement and did not generate QC annotation at the
variant-level that preserved al metrics from multiple callers. Additionally, they were not yet
extensible implemented for indel variants, and to adapt these pipelines to perform these functions
would have required extensive modifications or substantial additional scripting. The ADSP
protocol described here was implemented on two platforms. first viaR and Perl scripting in
Linux for al SNV data, and then via SQL commands within a Hadoop Hive database system for
indels. The steps of the consensus calling protocol are detailed in Box 1.

Examination of MIsin the genotype data after pipeline-specific QC identified a pattern of
higher M1 rates among variants called only in GATK compared to those called only in Atlas and
those called in both pipelines, suggesting that additional genotype-level filtering for these
variants was warranted. As exploration of genotype-specific QC metricsin the ADSP data

identified GQ (“ Genotype Quality”) as an informative filter to reduce Ml rate, GQ filtering

thresholds were implemented to remedy the higher rate of MIsin GATK data. The use of GQ as

11


https://doi.org/10.1101/318857
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/318857; this version posted May 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

afilter hereis supported by several prior studies that identified the utility of GQ in reducing Ml
rate’* and improving the quality of other metrics.**?® Analyses to identify the genotype-

specific GQ exclusion thresholds characterized are described in the Supplement (Text $4).

Post-consensus calling variant-level QC

After the consensus calling process, variant-level QC filters were applied again to remove
variants that now failed these criteria after consensus calling. These included the previous
variant-level QC filtration steps: 1) excluding monomorphic variants; 2) excluding variants
with missing rate >20%; and 3) excluding variants with extreme heterozygosity. After thisfinal
variant-level QC, individual sample statistics were also recomputed to assess quality after

consensus calling.

Post-processing

QCed data were reformatted as both PLINK binary-format files (*.bed, *.bim, *.fam) and
as annotated VCFs, all containing only QC-passing variants. VCF releases included QC
annotation (Table S3) on all variantsindicating their final disposition (whether they were
dropped in pipeline-specific QC, failed consensus calling or post-consensus QC, or whether they

passed all QC stages).

Evaluation of post-QC data quality through full pedigree Mendelian inconsistency evaluation
A summary measure from family-based genotype imputation was used to evaluate the
variant-call pipelines. The full pedigree structures coupled with the existing GWAS data allowed

use of imputation success of the WGS datain the context of GWAS markers as a proxy for

12
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genotype-call quality. This extended our ability to check for genotype quality beyond the limited
case of parent-offspring pairs, which can identify errors only when there is homozygosity for
different alelesin the two individuals (the parent-offspring pairs). The concept underlying this
approach to genotype imputation is that, with the exception of rare de-novo mutations, real
variants are inherited, and therefore high-quality called genotypes should show greater
Mendelian consistency (MC) with pedigree inheritance vectors (IVs)?’ than lower-quality called
genotypes. We computed the M C probabilities within pedigrees and averaged these across
pedigrees to obtain the “ Imputation Rate” for each WGS position. Higher values of the
imputation rate are indicative of higher quality called genotypes. The imputation rate was
estimated by sampling Vs at the positions of each of the variants, conditional on the complete
pedigree structure and sampled IVs at the positions of SNPs from the GWAS panels, followed by
pedigree-based imputation®® from the WGS data. Details of the computation are provided in the
Supplement (Text S5/Table $4). We computed the imputation rate for each of four categories of
variants: (1) the 25,531,054 variants that initially passed QC in both pipelines, keeping the
“concordant-only” genotypes at these variant positions [all non-concordant genotypes set to
missing]; (2) the “consensus-only” 2,365,720 variants that passed QC in either the Atlas or
GATK pipelines but not both; (3) the 1,241,253 variants that passed QC in only the Atlas
pipeling; and (4) the 1,124,467 variants that passed QC in only the GATK pipeline. These last
two categories represent each of the mutually exclusive variant sets that together represent the
“consensus-only” category. We focused our evaluation on averages across all pedigrees with
exactly h observed heterozygotes per pedigree, with h=1- 4. Thiscontrolsfor variant allele
frequency, which affects ease of successful family-based imputation because imputation is easier

when there are fewer heterozygotesin a pedigree.
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ADSP QC Pipeline Availability

The ADSP QC Pipdineisimplemented in Perl and runs on the command line, with
parameters of the QC run, including filtering thresholds, input/output directories, and reporting
rules specified in a separate “control” (parameter) file. The Perl script, sample control file,
sample ‘fam’ file, and accompanying documentation, are all available at

https://www.niagads.org/adsp/ADSP_QC_Script. All formatting modifications performed on the

V CF files during the QC process have been documented in the updated V CF header, ensuring the

readability of these files by any program using the VCF v4.0 format.

Results

Comparisons of replicate samples across sequencing centers

The average pair-wise concordance rate between replicate samples prior to any QC, for
the three replicates sequenced at all three centers, was 99.49% (ranging from 99.46% to 99.53%)
for the GATK pipeline and 98.60% (ranging from 98.54% to 98.71%) for the Atlas pipeline. All
three subjects showed similar patterns of between-replicate concordance, suggesting that the
discrepancy of average concordance rates might be attributable to differencesin calling pipeline
rather than DNA quality. For comparison, we also examined the genotype concordance rate
between two different unrelated subjects and found the average concordance rate was 91.52% for
the GATK pipeline and 90.62% for the ATLAS pipeline. Both were significantly lower than the
concordance rate of the same subject as expected. All comparisons of replicates are described in

Text S6, and concordance counts are shown in Tables S5 and S6.
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WGS SNV and Indel QC on 578 family-based samples

The vast mgjority of QCed genotype calls, ~91%, were concordant between the two sets
of VCFs. Table 1 contains the counts of all genotypes in each concordance category, aswell as
definitions of each category. Among SNV's, primary QC of Atlas-generated SNV genotype data
removed 2,605,141 low-quality variants (8.32%), while primary QC of GATK-generated SNV
genotypes removed 3,493,548 low-quality variants (11.51%). For indels, primary QC among
Atlas-generated genotypes removed 224,979 variants (5.85%) of low quality, and among GATK-
generated indels removed 1,353,892 variants (27.82%). Once primary QC was completed,
genotypes were compared between the two QCed VCFs.

Table 2 provides counts for the QC filtering of SNVs and indels at each step of variant-
level QC (implemented after primary QC) as applied to Atlas and GATK VCFs. Overall,
pipeline-specific QC filtering excluded an additional 1,932,851 SNVs (6.17%) from Atlas-
generated SNV genotype data and 141,192 SNV's (0.46%) from GATK-generated SNV genotype
data. QC filtering excluded 1,289,564 indels (30.91%) from Atlas and 362,593 indels (7.45%)
from GATK. While most filtration steps excluded variants in both pipelines, it is notable that due
to differencesin processing of the BAMs by the centers, no variants with high read depth were
identified among the GATK SNV or indel genotypes.

For both SNVs and indels, a higher proportion of MIs was observed among GATK SNVs
and indels (0.01087% and 0.08%, respectively) than among Atlas (0.00392% for SNVs and
0.02% for indels). This rate was highest among variants that were called only in the GATK VCF.
For example, after pipeline-specific QC the M1 rate for WGS SNVs was 0.12% for variants
called only by GATK and 0.01% for variants called only by Atlas. A similar pattern among

pipeline-unique variants was seen for indels (0.15% vs 0.04%). MlIsin each VCF were counted
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but the genotypes implicated in the inconsistencies were retained. Table 3 provides a summary of
MI rates from the pipeline specific QCed GATK and Atlas VCFs. Given the M1 rates observed
per parent-offspring pair (Figure 2), the sequence information appeared to be consistent with the
relationships specified among the sequenced subjects in the pedigree files.

Table 4 provides the number of variants removed at each filtering step for the second
round of post-consensus variant level QC. While pipéine-specific QC previously removed
variants of low quality from the individual call sets, this second round of QC excluded variants
that appeared low quality after consensus calling (e.g., after the exclusion of discordant
genotypes, etc.). The frequency of concordant and pipeline-unique genotypes after consensus
calling issummarized in Table 5. Table 6 provides the final number of variants and genotypesin
the consensus WGS genotype sets.

Mendelian incons stencies were evaluated again in the final consensus genotype sets.
Employing the consensus protocol reduced the M1 rate among the variants called only by GATK
from 0.12% to 0.02% in the SNV's and from 0.15% to 0.04% in the indels (see Table 3),
providing evidence that the calls remaining in the consensus genotype set are likely higher

quality.

Data quality after implementation of QC and consensus calling

Most variants had extremely high imputation rates, with higher rates in the concordant
than the consensus-only call sets (Figure 2, Table $4). The median imputation rate for variants
was >0.995 for all configurations evaluated, and imputation rates at the lowest quartile were still
high, ranging from 0.927 to 0.964 depending on the number of sequenced heterozygotes per
pedigree. Even the very low fifth percentile achieved reasonably high imputation rates; for the

concordant variants, imputation rates ranged from 0.762 to 0.848, while the consensus-only
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variant rates were 0.553-0.7 for families with 2-4 sequenced heterozygotes. A low imputation
rate of 0.167 was found only for the consensus-only variants for families with asingle
heterozygote among the sequenced subjects. These observations suggest that the WGS
genotypes are of high quality, overall, with only a small fraction that may have unusually high
genotyping rates.

Genotypes in the concordant variant call set were of higher quality than thosein the
consensus call set. Thisinferenceis derived from the observation that imputation rates were
higher, at all percentiles, for the concordant than consensus genotypes. The differencein quality
between call sets was most extreme for variants heterozygous in only one sequenced subject
(Figure 2A), with rapid attenuation of the difference with increasing numbers of heterozygotes
per pedigree. Figure 2 panels A and B show results for the extremes of heterozygotes examined
per pedigree. Intermediate results were obtained (not shown) for the remaining situations
examined. The fraction of variants that had a 0% imputation rate (failed imputation) was also
consistent with higher quality genotypes for the concordant variants. The fraction of concordant
variants that failed imputation was a low 0.003-0.004 and was effectively independent of the
number of heterozygotes per family. In contrast, for the consensus variants, the imputation
failure rate was higher, and was a function of the number of heterozygotes per pedigree,
decreasing monotonically from rates of 0.032 to 0.006 with increasing numbers of heterozygotes
from oneto four.

Genotypes in the consensus-only call set appeared to be of higher quality when derived
from the GATK than the Atlas pipeline. The difference between the results for the two individual
pipelines was most apparent in the case of single heterozygotes per pedigree, with the difference

between pipelines particularly evident in the lowest tail of the distribution (Figure 2C-D). For

17


https://doi.org/10.1101/318857
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/318857; this version posted May 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

variants with multiple heterozygotes per pedigree the differences between the two pipelines were
minimal (Figure 2B). It is worth noting that of the variants that were in the consensus-only call
set, the fraction of variants called by Atlas that could be found in the 1000 Genomes data®
(13.2%) was lower than the equivalent fraction for GATK (37.5%). Correspondingly there were
lower allele frequencies for the Atlas variants than the GATK variants, with 55% and 50% of

variants, respectively, below a 1000 Genomes EUR sample minor allele frequency of 0.05.

Sample-level QC findings

Tables 7 and 8 present sample-level QC metrics, stratified by ethnicity and sequencing
center, respectively. Few samples were flagged as outliers for sample-level QC metrics,
suggesting high overall quality of all samples after QC. These samples were not excluded.

Figures S2 and S3 depict the distribution of heterozygosity for WGS samples after QC
and consensus calling. Five members within one family were initially reported as European
samples showed excess heterozygosity relative to other European samples, but were within the
range of excess heterozygosity observed among Caribbean Hispanic samples (Figure $4). Later
examination of clinical records found that the five samples were actually of African ancestry,
and these were reclassified and co-anayzed with Caribbean Hispanic samples. The mean
sample-specific genome-wide Ti/Tv ratio was 2.12 for al ethnic groups and sequencing centers
(see Figures S2C and S3C and Tables 7 and 8). Whole genome sequencing is expected to have a
Ti/Tv ratio of 2.10 for known variants’ and the consensus called variantsfall at that expected
threshold. Text S6 provides additional details on within-sample comparisons of three replicates

done at each of the sequencing centers.

Discussion
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In the largest sequencing effort to date to discover rare genetic variation playing a direct
rolein AD, the ADSP has generated WGS data on 578 subjects from 111 multiplex AD families.
Maximizing the potential to reveal true associations and minimizing potential false-positive
findings requires comprehensive and rigorous quality control of sequence data prior to any
analysis. In order to provide a consistent high-quality dataset, the QC working group of the
ADSP devel oped and implemented anovel QC protocol that generated a concordant genotype
set and a consensus genotype set from two variant calling pipelines. These QCed datasets are
available via the database of Genotypes and Phenotypes (dbGaP) and the NIA Genetics of
Alzheimer’ s Disease Data Storage Site (NIAGADS) portal and include PLINK binary files and
V CF files containing only genotypes that passed QC and QC annotation files containing
information on all variants regardless of pass/fail status. Use of these standardized QCed datasets
will also facilitate comparison across analyses by different research groups, efficiencies that are
important to aid in the discovery of AD-related genetic factors. It isanticipated that this
information will streamline future in silico replication using ADSP data. The availability of these
datasets will increase efficiency in the use of the ADSP data by precluding the need for each
authorized investigator to perform QC.

Among the most useful features for data users in this QC process is the creation of
‘companion’ files, or QC annotation files. These files provide a dataset-specific reference guide
containing information on all variants and genotypes called by either pipeline regardless of
whether the variants passed or failed and include the pass/fail status for al original called
variants after QC filters are applied. This detailed information (Table S3) on the disposition of all
variants serves multiple purposes. Firstly, it provides a detailed record of all quality issues

identified during the QC process, improving reproducibility of the process. Secondly, it allows
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for comprehensive examinations of widely agreed-upon QC filters and their downstream effects
on data quality; by utilizing annotation that identifies all QC criteriafor which avariant fails
independently of order of implementation, authorized investigators can know the effects of
applying any QC filtersin any desired order before applying them. Thirdly, the QC annotation
can be used to confirm that the QC process has been implemented correctly, as recorded values
of metrics on failing variants should be consistent with exclusion criteria. Finally, thesefiles
explain why variants of interest may be missing from the QCed data. Typically, information on
variants that are removed is not recorded, and which QC criteria a variant may fail are subject to
the order of QC filter implementation. Notably, our approach identifies all QC criteriaa variant
may fail, which makes it independent of QC filter implementation order and fully reproducible.
One of the strengths of the study, yet one that provided the biggest challenge for QC, was
the use of multiple variant-calling pipelines (Atlas and GATK). Different variant-calling
algorithms have been developed and the strengths and weaknesses of each are not well
documented. Elucidating specific conditions (e.g., what type of variant or sequencing method)
under which each algorithm performs optimally is beyond the scope of the current study. The
current goal was to use the information from the two calling pipelines to generate a set of
consistently high-quality genotypes to facilitate the discovery of AD-related genetic variants.
The concordant data set includes genotypes from variants that were called by both pipelines, met
all filtering criteria, and were identical between the two pipelines. For SNVsand indels, 91%
and 56% of genotypes, respectively, were concordant between the two pipelines. These
concordant calls represent our highest-confident genotype set. The quality of these concordant
calls was further supported by the lower M1 rate and higher mean GQ levels relative to

discordant calls.
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The concordant genotype set does not, however, take advantage of unique strengths of
the two calling algorithms applied and may be overly conservative. To address thisissue, a
consensus protocol was developed that incorporates variants called by only one of the pipelines.
For WGS SNVs and indels, alarger number of variants uniquely called by GATK compared to
Atlas were included in the consensus sets. Examination of M| indicated that after implementation
of the pipeline-specific QC filters that the GATK-only variants might be more error prone than
variants called only in Atlas or by both pipelines. Thisislikely driven by the fact that the
pipeline-specific QC protocol for Atlas included both genotype-specific and variant-specific
filtering, whereas the pipeline specific QC protocol for GATK included only variant-specific
filtering, following sequencing center recommendations. Implementation of a GQ filter on
genotypes within variants called only by GATK improved the quality as measured by M| rate.
The final consensus genotype datasets i nclude the genotypes that were concordant in both
pipdines, and additionally include high-quality genotypes from variants called in only one of the
two pipelines. While concordant variants are of generally higher quality than the high-quality
genotypes called in only one pipeline, it should be noted that calling criteriaor artifactsin one
pipeline may lead to true causal variants being missed in that pipeline, and this approach
maximizes the number of high-quality variants retained to improve the likelihood of identifying
causal variantsin a dataset.

The Menddian consistency rate in family-based imputation was used to compare the
quality of genotype calls when two calling algorithms were implemented. A first question
addressed was whether use of two pipelines resulted in improved quality of variants called
relative to use of only a single pipeline; a second was whether there was a differencein the

quality of variants called between the two individual pipelines. Although not specifically
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designed for the purpose used here, the MC rate during pedigree-based imputation makes use of
results of other ongoing computations (e.g., generation of inheritance vectorsin pedigrees and
MI frequency) and was sufficient to address the two questions of interest. These results suggest
that the genotypes called identically in both pipelines were of higher quality than calls from a
single pipeline. While the consistency rate was dlightly higher for variants called only by GATK
compared to those called only by Atlas, this difference was very small and overall quality after
pipeline-specific QC was high for both Atlas- and GATK-generated genotypes.

The QC protocol implemented on the ADSP WGS data is generalizable to other large-
scale sequencing studies. While the protocol implemented for this study utilized data-driven
thresholds and hence specific values (e.g., GQ thresholds or heterozygosity score statistic
threshold) that may not translate to other studies, the pipeline protocol simplifies determination
of these threshold for each novel dataset, tailoring the pipeline to the unique characteristics of the
dataset and alowing for easy implementation. This protocol offers a paradigm for other studies
to develop their own metrics and, under the condition of using multiple genotype calling
pipelines, an approach not previously applied to large NGS datasets. As more sequencing studies
are conducted, the potential for universal guidelines may be feasible, and many features of the
ADSP pipédline, such as QC filtering on multiple criteriain parallel, have been designed with
adaptability to future guidelinesin mind. For example, the pipeline was constructed to allow for
the assessment of HWE using tests that assume independence of observations are part of the
variant-level QC if most or all samplesin the dataset are unrelated or using empirical thresholds
with an excess heterozygosity statistic as was done here with family data. It should be noted that
in population-based datasets, assessments of quality would be unable to utilize M1 checking

unless some informative relative pairs are included in sequencing to examine this quality;
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alternative quality assessments could be applied to smilar effect, including genotype
concordance between sequence and GWAS data by strata of GQ values, concordance among
unfiltered variants across replicate samples, etc.

Thiswork also highlights the value of utilizing information available prior to sequencing,
including identification of parent-offspring pairs and high-density genotyping chip data. Even
though identification of MIsis limited with biallelic variants, the change in M| rate with different
genotype sets provided important information on genotype quality. Inclusion of relative pairs for
QC may be useful even if the main study design is based on unrelated cases and controls.
Similarly, the availability of GWAS data for sample validation was also important, both in
determining quality of sequence genotypes through concordance checks, and in characterizing
between-sample relatedness and population substructure with a high quality subset of GWAS
genotypes. For these reasons, the availability of additional data from sequenced samples, such as
relatedness information and the availability of other independent genetic resources, should be
considered when prioritizing samples for sequencing and/or designing sequencing proj ects.

In summary, the ADSP has generated high-quality QCed WGS datasets by devel oping
and implementing a novel QC protocol that integrates calls from both the Atlas and GATK
variant calling algorithms. This approach provides amodel for QC for other large-scale
sequencing studies. The distribution of these carefully QCed high-quality WGS SNV and indel
genotype sets, shared via the Database for Genotypes and Phenotypes (dbGaP), will provide an

important public resource for untangling the genetic etiology of AD.
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Table 1. Genotype concordance counts after preliminary and pipeline-specific QC for all possible genotype pairs between Atlas and GATK, g%’

across al individuals and variants. Included is atwo-digit “ concordance code” label, summarizing genotype pairs between the pipelines, Atlas ;ﬁ

°©

(thefirst digit) and GATK (the second digit). Digit valuesare®0” for referent allele homozygote, “1” for heterozygote”, “2" for alternate allele =

homozygote, and “9” for missing/not available. The category “33” represents al genotypes (including referent homozygotes concordant between % <)

the two VCEFs) for variants in which a different alternative allele was called between the two sets of VCFs. %g

Whole G Seq (WGS) §§

ole Genome Sequence 22

Code I nter pretation EXe)

SNV genotypes Inde genotypes s

go

00 Concordant reference allele (REF) homozygote 12,822,511,444 1,020,985,877 % 5

11 Concordant heterozygote 1,193,810,170 75,163,355 f_—; §

o]

22 Concordant alternate alele (ALT) homozygote 684,475,930 44,941,526 :’Q 7] %

1 Q =3

01 Discordant; Atlas REF homozygote; GATK heterozygote 247,853 1,662,092 S% <

02g

02 Discordant; Atlas REF homozygote; GATK ALT homozygote 11,257 265,112 '%g. g

Ao

09 Atlas REF homozygote; GATK missing 647,757,411 200,377,988 5 <8

528

10 Discordant; Atlas heterozygote; GATK REF homozygote 629,047 1,344,533 8=

2a<

12 Discordant; Atlas heterozygote; GATK ALT heterozygote 103,484 2,317,666 g'g_ﬁ

.. 9:’ al

19 Atlas heterozygote; GATK missing 24,279,157 7,477,521 38 E
a Q

20 Discordant; Atlas ALT homozygote; GATK REF homozygote 21,765 13,036 @ %%‘

(o]

21 Discordant; Atlas ALT homozygote; GATK heterozygote 716,059 260,906 Eé

=a

29 Atlas ALT homozygote; GATK missing 11,916,104 4,124,707 g—g

o

90 Atlas missing; GATK REF homozygote 619,012,699 516,306,709 § &

D =

91 Atlas missing; GATK heterozygote 87,373,375 43,251,176 ES

92 Atlas missing; GATK ALT homozygote 31,581,133 14,675,561 ;é

37

99 Atlas missing; GATK missing 42,738,514 104,183,397 f%’i

2=

All genotypes for variants with different alternative alleles between 52

33 Atlas and GATK 117,912 14,169,670 5 2
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Box 1. Steps and implementation hierarchy of the consensus calling process. Concordance code (“CS”) definitions are detailed in
Table 1.

Consensus Calling Filter Final Variant Disposition

1) All genotypesin remaining variants that were concordant between the

two QCed sets of VCFs (CS = “00", “11”, or 22") Include n thefinal consensuis set

2) Variantsin which adifferent alternate allele was called between the

two QCed sets of VCFs. (CS = “33") Excludefrom all datasets

3) All genotypes that were discordant between the two QCed sets of

VCFS. (CS — {3 01” , 1] 02” , 1] 10” , 1] 12” , 1] 20” Or 1] 21”) % ga’]O‘typ6 to ml$ ng

4) All genotypes that were present only in the QCed Atlas V2 VCFs (but
were missing in the QCed GATK-HaplotypeCaller VCFs) (CS= 09", Include in the final consensus set
“19”, or “29")

5) Genotypes that were present only in the QCed GATK-
HaplotypeCaller VCF (but were missing in the QCed Atlas V2 VCF)
that met a GQ (genotype quality score) threshold were included in the
final consensus set. (CS="90", “91”, or “92")

a) For SNVs, the GQ threshold was set to the 0.1 percentile
(genotype-specific) based on genome-wide concordant
genotype calls.

b) For indels, the GQ threshold was set to the 1.0 percentile
(genotype-specific)

c) The genotype specific GQ thresholds implemented were:

i)  WGSSNVs: GQ<7 for ‘0/0" genotypes,
GQ<88 for ‘0/1" genotypes and GQ< 25 for
‘1/1’ genotypes.

i)  WGSindes: GQ < 14 for ‘0/0’ genotypes,
GQ<98 for ‘0/1" genotypes and GQ <30 for
‘1/1’ genotypes

'9SUa|| [euoneulslul ' AN-ON-AG-00®

Include after additional filtering
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Table2. WGS variant counts by QC filtration step. Entriesin parentheses represent QC filters and the counts of variants excluded §§
with the implementation of that filter, whereas non-parenthetical entries represent total counts after implementation of filtration steps. %E
o =.
SNVs Indels 8
Counts sz
Atlas GATK Atlas GATK =
Total variants 31,314,231 30,364,600 3,848,314 4,866,737 § g
So
(Multi-allelic variants) (0) (177,445) (0) (1,205,637) 3<
o
Biallelic variants 31,314,231 30,187,155 3,848,314 3,661,100 28
Biallelic variants with £
“PASS’ (GATK) or 28,709,090 26,871,052 3,623,335 3,512,845 o :’:@
MS>0.8 (Atlas) 382
He 3
' i <52
(Failed Monomorphic (854,440) (37,798) (394,767) (13,337) 582
filter) 2og
O ]
(Failed Missing Rate filter) (1,009,878) (58,845) (765,852) (302,609) » %’E
523
(Failed Mean Depth filter) (461) (0) (619) (0) g §§
. . D P<
(Failed Het filter son
[MAF<0.2]) (15,013) (27,333) (14,900) (34,607) B8
(Failed Het fil o5
ai et filter 28
[MAF>0.2]) (53,059) (17,216) (13,336) (12,040) ® =3
T O
(Failed Het filter g_g_
[MAF=0.2] dueto all (31,131) (0) () () EEs
heterozygous) 3 %
After variant QC 26,776,239 26,729,860 2,433,771 3,150,252 @ 5
g5
53
23
59
&=
o3

-
23
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Table 3. Menddian error rates from the QCed GATK and Atlas VCFs, and final post-QC consensus genotype set.

Calling Pipdine MI Category SNVs Indels
Tota 0.01087% 0.08%
GATK Unique 0.12009% 0.15%
Common 0.00581% 0.03%
Tota 0.00392% 0.02%
Atlas Unique 0.01638% 0.04%
Common 0.00337% 0.01% )
O
Total 0.00420% 0.02% 5
O
GATK unique 0.02043% 0.04% z
Consensus N
Atlas unique 0.01638% 0.04% o
Common 0.01838% 0.01% ]
Q
g.
8
g
e
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Table4. WGS variant counts with by post-consensus variant-level QC filtration step. Entriesin parentheses represent counts of
variants excluded with the implementation, whereas non-parenthetical entries represent total counts after implementation of filtration
steps.

Counts SNVs Indels
Total variants 27,970,909 3,549,344
(Failed Monomorphic filter) (12,058) (166,069)
(Failed Missing Ratefilter) (61,252) (244,045)
(Failed Excess Heterozygosity filter [MAF<0.2]) (760) (3,219)
(Failed Excess Heterozygosity filter [MAF>0.2]) (65) (2,085)
Total after variant-level QC 27,896,774 3,133,926
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Table5. Post pipeline-specific quality control (QC) percentages for genotype concordance, discordance, or calling in only one

pipeline (Atlas or GATK).

Genotype Pairs SNVs Indels
Concordant 90.93 55.62
Discordant 0.0107 0.286

Called only in GATK 456 27.99
Called only in Atlas 4.23 10.33
Missing in both 0.264 5.08
Called in both with 0.000729 0.690

different dternate dlele
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Table 6. Final counts of genotypes and variants after implementation of pipeline-specific QC, the consensus protocol, and post-
consensus variant-level QC. “REF” indicates reference allele, and “ALT” indicates alternate allele.

Counts SNVs Indels
REF/REF 14,050,706,093 1,595,662,048
REF/ALT 1,293,864,012 118,839,494
ALT/ALT 722,702,957 60,368,310

Missing 57,062,310 36,539,376

Total # variants 27,896,774 3,133,926
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Table7. Sample-level QC metrics stratified by ethnicity (EA, European American; ERF, Dutch Isolate; CH, Caribbean Hispanic).
Values reported are mean, standard error (SE) in parentheses, and count of outliers at 4 SE and 6 SE, respectively, in square brackets
unless otherwise specified.

Ethnic Subgrou
Sample-level Metrics group

EA ERF CH
% Samples (N) 192 30 356
# REF/REF genotypes 24,484,692 (34,145) [1, 0] 24,525,871 (20,686) [0, 0] 24,190,270 (154,500) [0, O]
#REF/ALT genotypes 2,035,314 (23,228) [1, 0] 2,023,070 (31,060) [0, O] 2,365,800 (161,320) [0, 0]
# ALT/ALT genotypes 1,271,991 (10,318) [1, O] 1,284,034 (15,692) [0, O] 1,235,478 (32,757) [0, O]
# Missing genotypes 100,440 (43,356) [2, O] 50,462 (16,285) [0, 0] 100,889 (42,421) [2, 2]
Missingness Rate (%) 0.0036 [2, O] 0.0021 [0, O] 0.0036 2, 2]
# Singletons 7,005 (5,521) [0, O] 13,856 (5,030) [0, O] 8,158 (9,046) [2, 0]
# Doubletons 8,467 (3,346) [0, O] 8,346 (1,854) [0, 0] 12,567 (7,017) [0, O]
Heterozy gos'“g;(’)Homozygos'ty 1.6003 (0.0256) [, 0] 1.576 (0.0421) [0, O] 1.9183 (0.1634) [0, 0]
TilTv Ratio 2.1256 (0.0027) [0,0] 2.1242 (0.002) [0, O] 2.1239 (0.0032) [1, 0]
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Table8. Sample-level QC metrics stratified by sequencing center. Values reported are mean, standard error (SE) in parentheses, and
count of outliers at 4 SE and 6 SE, respectively, in square brackets unless otherwise specified.

. Sequencing Center
Samplelevel Metrics Broad WashU Baylor
# Samples (N) 229 183 166
# REF/REF genotypes [mean (SD)] 24,275,244 (178,846) [0, Q] 244,040,032 (176,288) [4, Q] 24,238,582 (180,562) [0, O]
# REF/ALT genotypes [mean (SD)] 2,262,291 (196,200) [0, O] 2,127,330 (176,042) [0, Q] 2,327,295 (196,027) [0, Q]
# ALT/ALT genotypes [mean (SD)] 1,245,780 (31,703) [0, O] 1,266,015 (23,634) [0, 0] 1,238,609 (35,480) [0, O]
# Missing genotypes [mean (SD)] 109,122 (42,151) [2, Q] 95,060 (33,063) [3, O] 87,952 (49,452) [1, 1]
Missingness Rate (%) 0.0039 [2, 0] 0.0034[3, 0] 0.0032[1, 1]
# Singletons [ mean (SD)] 7,662 (8,466) [1, O] 7,670(7,155) [2, O] 9,076 (8,141) [0, O]
# Doubletons [mean (SD)] 10,976 (6,454) [0, O] 10,023 (5,598) [2, O] 12,062 (6,263) [0, 0]
Heterozygosity-to-Homozygosity
ratio [mean (SD)] 1.82(0.1929) [0, O] 1.6824 (0.161) [0, Q] 1.8842 (0.2029) [0, O]
Ti/Tv Ratio [mean (SD)] 2.1266 (0.0025) [0, O] 2.1238(0.0024) [0, Q] 2.1223(0.0026) [1, Q]
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Figure 1. Diagrams of the Caller-specific QC and Consensus Calling Pipeline, including (a) an
overview diagram of the process, (b) details of the caller-specific variant-level QC steps, and (c) details
of the post-consensus variant-level QC steps.
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Figure 2. Cumulative distribution of genotype imputation rates for variants occurring 1-4 times as
heterozygotes in the ADSP pedigrees. Panels A and B: full cumulative distributions for the cases of 1
(Panel A) and 4 (Panel B) heterozygotes per pedigree. Panels C and D provide detail for the variants
with the lowest 5 percent of the imputation rate, for the cases of 1 (Panel C) and 2 (Panel D)
heterozygotes per pedigree. The variants with observed data after the QC protocol to establish
concordant calls between the pipelines are indicated by the solid black line (Concordant), while the
variants subsequently retained as having high quality in one of the two pipelines are indicated by the
long-dashed purple line (Consensus). The information for each of the two contributing pipelinesto the
Consensus variantsis also represented, with the Atlas pipeline represented by the dark red, dotted line,

and the GATK pipeline by the medium-dash blue line.

| Haterozygote per pedigres

4 Heterozygotes per pedigree

T T T
1 T
08
& g &
€ o5 I . @
s J =
= 5o 2
= e =
3 I S
2 oal | { g
1 I E
H
¥
02t | .
‘H
H Concordant e Concordant e
i Atlag =ewes Atlas seses
H _ GATK GATK
0F - | | , Consensus === ; , Consensys === 7
0 20 40 &0 80 100 a0 &0 80 100
Parcentile Parcentila
1 Haterozygote per pedigrea 2 Hetarozygotes per pedigrea
T T T T T T T T T T T
1FC Concordant s 1+D Concardant s
Atlas sesss Atlas weees
GATK _ GATK
Consansus === Consensus ===
0B 08 [
& &
E 06F E 06F
= [
Q o
= =
= 3
2 04l 2 04t
E E
02 02
or 0F
0 1 2 3 4 £ 1 2 3 4 5
Percentile Percentila

38


https://doi.org/10.1101/318857
http://creativecommons.org/licenses/by-nc-nd/4.0/

corthed by peer review) s ihe aithariunder. who has granted bR a cence o dispiay the prepint in perpeuity. 1115 made avalable under
" aCC-BY-NC-ND 4.0 International license. '
Supplemental Data
Table S1. Sample counts by sequencing center
Text S1. Library preparation and whole genome sequencing
Table S2. Parameters used for whole genome alignment and calling by sequencing center
Text S2. Description and workflows for genotyping calling in GATK and Atlas
Text S3. Filtering for Extreme Heterozygosity
Text $4. Determination of GQ thresholds for GATK genotype filtering
Table S3. QC Annotation file field descriptions for variant-level QC and sample-level QC

Text S5. Estimation of Inconsistency Rate in Family-based Imputed Genotypes

Table S4. Mean imputation rates across pedigrees

Text S6. Comparison of samples replicated between sequencing centers
Table S5. Concordance among replicate sample genotypes from GATK
Table S6. Concordance among replicate sample genotypes from Atlas

Figure S1. Potential genotype configurations where there are Mendelian inconsistencies (M) and
discordant calls between the two pipelines.

Figure S2. Distribution of the heterozygosity-to-homozygosity ratio anong WGS samples prior to
variant-level QC and consensus calling, stratified by race/ethnicity.

Figure S3. Distributions of sample-level metrics among WGS samples after variant-level QC and
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