

1 Deconvolution of single-cell multi-omics layers reveals regulatory 2 heterogeneity 3

4 Longqi Liu^{1,2,3,16}, Chuanyu Liu^{1,2,4,16}, Andrés Quintero^{5,6,16}, Liang Wu^{1,2,4,16}, Yue Yuan^{1,2,4,16}, Mingyue
5 Wang^{1,2,4}, Mengnan Cheng^{1,2,4}, Lizhi Leng^{7,8}, Liqin Xu^{1,2}, Guoyi Dong^{1,2}, Rui Li^{1,2,3}, Yang Liu^{1,2,4}, Xiaoyu
6 Wei^{1,2,4}, Jiangshan Xu^{1,2,4}, Xiaowei Chen², Haorong Lu², Dongsheng Chen^{1,2}, Quanlei Wang^{1,2,4}, Qing
7 Zhou^{1,2}, Xinxin Lin^{1,2}, Guibo Li^{1,2}, Shiping Liu^{1,2}, Qi Wang⁵, Hongru Wang⁹, J. Lynn Fink¹, Zhengliang
8 Gao¹⁰, Xin Liu^{1,2}, Yong Hou^{1,2}, Shida Zhu^{1,2}, Huanming Yang^{1,11}, Yunming Ye³, Ge Lin^{7,8,12}, Fang
9 Chen^{1,2,13}, Carl Herrmann^{5,6}, Roland Eils^{6,14*}, Zhouchun Shang^{1,2,10*} & Xun Xu^{1,2,15*}

10 ¹BGI-Shenzhen, Shenzhen, China. ²China National GeneBank, BGI-Shenzhen, Shenzhen, China.

11 ³Harbin Institute of Technology Shenzhen Graduate School, Xili University Town, Shenzhen, China. ⁴BGI

12 Education Center, University of Chinese Academy of Sciences, Shenzhen, China. ⁵Division of Theoretical

13 Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany. ⁶Health Data Science

14 Unit, Heidelberg University Hospital, Heidelberg, Germany. ⁷Institute of Reproductive & Stem Cell

15 Engineering, Central South University, Changsha, China. ⁸Key Laboratory of Stem Cells and

16 Reproductive Engineering, Ministry of Health, Changsha, China. ⁹Institute of Vertebrate Paleontology

17 and Paleoanthropology, Chinese Academy of Sciences, Beijing, China. ¹⁰Department of Regenerative

18 Medicine, Tongji University School of Medicine, Shanghai, China. ¹¹James D. Watson Institute of

19 Genome Sciences, Hangzhou, China. ¹²National Engineering and Research Center of Human Stem Cell,

20 Changsha, China. ¹³Section of Molecular Disease Biology, Department of Veterinary Disease Biology,

21 Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. ¹⁴Center for

22 Digital Health, Berlin Institute of Health and Charité, Berlin, Germany. ¹⁵Institute of Stem cell and

23 Regeneration, Chinese Academy of Sciences, Beijing, China. ¹⁶These authors contributed equally to this

24 work.

25 *Correspondence should be addressed to R.E. (roland.eils@bihealth.de), Z.S.
26 (shangzhouchun@genomics.cn) or X.X. (xuxun@genomics.cn)

27

28 **Abstract**

29 Integrative analysis of multi-omics layers at single cell level is critical for accurate dissection
30 of cell-to-cell variation within certain cell populations. Here we report scCAT-seq, a
31 technique for simultaneously assaying chromatin accessibility and the transcriptome within
32 the same single cell. We show that the combined single cell signatures enable accurate
33 construction of regulatory relationships between *cis*-regulatory elements and the target
34 genes at single-cell resolution, providing a new dimension of features that helps direct
35 discovery of regulatory patterns specific to distinct cell identities. Moreover, we generated
36 the first single cell integrated maps of chromatin accessibility and transcriptome in human

1 pre-implantation embryos and demonstrated the robustness of scCAT-seq in the precise
2 dissection of master transcription factors in cells of distinct states during embryo
3 development. The ability to obtain these two layers of omics data will help provide more
4 accurate definitions of “single cell state” and enable the deconvolution of regulatory
5 heterogeneity from complex cell populations.

6

7 The rapid proliferation of single cell sequencing technologies has greatly improved our
8 understanding of heterogeneity in terms of genetic, epigenetic and transcriptional regulation
9 within cell populations¹. We, and others, have developed single-cell whole genome²,
10 exome^{3, 4}, methylome⁵ and transcriptome^{6, 7} technologies and applied these approaches to
11 analyzing the complexity of cell populations in tumorigenesis, developmental process and
12 cellular reprogramming⁸. Meanwhile, single-cell epigenome techniques, including single cell
13 ChIP-seq⁹, ATAC-seq^{10, 11}, DNase-seq¹² and Hi-C^{13, 14}, have been developed to decipher
14 histone modifications, transcription factor (TF) accessibility landscapes, and 3D chromatin
15 contacts, respectively, in single cells. These techniques provide important information on
16 regulatory heterogeneity by assessing chromatin structure across various cell types.

17

18 Measuring the epigenomic and transcriptomic characteristics of single cells is important for
19 understanding the maintenance and conversion of cell fates, as well as manipulating cell
20 fates into different lineages¹⁵. The regulation of these processes involves sequential events
21 including the binding of TFs to *cis*-regulatory elements (CREs) and the recruitment of
22 chromatin regulators, resulting in changes of chromatin structure and activation or
23 repression of cell type specific genes¹⁵. Single-cell ATAC-seq and RNA-seq represent a
24 great opportunity to study how TFs and epigenomic features induce transcriptional
25 outcomes that influence cell fate determinations. For example, combined analyses of
26 datasets by these two approaches have enabled characterization of subtypes in mouse
27 tissues¹⁶ or during human hematopoietic differentiation¹⁷. However, it still remains
28 challenging to integrate the two approaches experimentally in individual cells, thus
29 hampering a full understanding of regulatory association between these two layers. Here,
30 we present scCAT-seq (**s**ingle-**c**ell **ch**romatin **a**ccessibility and **t**ranscriptome **s**equencing),
31 a technique that integrates single-cell ATAC-seq and RNA-seq to measure chromatin
32 accessibility (CA) and gene expression (GE) simultaneously in single cells. scCAT-seq
33 employs a mild lysis approach and a physical dissociation strategy to separate the nucleus
34 and cytoplasm of each single cell. Thereafter, the supernatant cytoplasm component is
35 subjected to the Smart-seq2 method as described previously⁷. The precipitated nucleus is

1 then subjected to a Tn5 transposase-based and carrier DNA-mediated protocol to amplify
2 the fragments within accessible regions (**Fig. 1a** and **Supplementary Methods**). Beyond
3 parallel CA and GE profiling in the same single cell, scCAT-seq will be particularly useful for
4 analyzing samples when the amount of input material is limited.

5

6 **Results**

7 **Simultaneous profiling of accessible chromatin and gene expression in single cells.**

8 We applied scCAT-seq to the K562 chronic myelogenous leukemia cell line, which has
9 been widely used in the ENCODE project. We sorted single cell and multi-cell samples (e.g.,
10 500 cells) into wells of 96-well plates using flow cytometry. Empty wells were used as
11 negative control. Samples were then processed using the scCAT-seq protocol. qPCR
12 analysis confirmed the successful capture of single cell nuclei during library preparation
13 (**Supplementary Fig. 1a**). We generated combined CA and GE profiles from a total of 192
14 samples. Of the 176 single cell profiles, 74 (42.0%) of them passed both CA and GE data
15 quality control criteria (**Supplementary Fig. 1b** and **Supplementary Methods**).

16

17 For scCAT-seq-generated CA data, we obtained an average of 2.1×10^5 uniquely mapped,
18 usable fragments from single cells (**Supplementary Table 1** and **Supplementary Fig.**
19 **1c,d**). Similar to bulk ATAC-seq¹⁸, the CA fragments show fragment-size periodicity
20 corresponding to integer multiples of nucleosomes (**Supplementary Fig. 1e**) and are
21 strongly enriched on accessible regions (**Fig. 1b** and **Supplementary Table 1**). We found
22 that about 9% of the fragments were mapped to the mitochondrial genome (**Supplementary**
23 **Fig. 1f**) which is largely reduced in comparison to standard bulk ATAC-seq studies (typically
24 over 30%)¹⁸. Pearson correlation analyses revealed our single-cell profiles could reproduce
25 features of bulk profiles (**Supplementary Fig. 1g**). In comparison to the published scATAC-
26 seq profiles by Buenrostro *et al.*¹⁰, we obtained a higher number of usable fragments per
27 single cell but with lower signal-to-noise ratio (**Supplementary Fig. 1h**). However, the
28 correlation between single cells increases remarkably (**Supplementary Fig. 1h**), suggesting
29 that scCAT-seq is able to capture the chromatin features more accurately.

30

31 For mRNA data generated by scCAT-seq, we obtained an average of 4.6 million reads
32 covering over 8000 genes (GENCODE v19, TPM > 1), which is comparable to published
33 scRNA-seq profiles by Pollen *et al.*¹⁹ (**Supplementary Fig. 1j** and **Supplementary Table**
34 **1**). Consistent with published Smart-seq profiles, our mRNA data showed full coverage of
35 the transcript body (**Fig. 1b**), enabling identification of transcript isoforms and not merely

1 gene expression quantification. The aggregate profile was close to the RNA-seq profile
2 obtained from 500 cells (Pearson correlation value > 0.9, **Supplementary Fig. 1i**),
3 suggesting that scCAT-seq is able to accurately quantify GE of single cells. The density of
4 CA and GE reads of all single cells surrounding a constitutively accessible region showed
5 that scCAT-seq data recapitulate major features obtained by separately performed bulk
6 ATAC-seq and RNA-seq (**Fig. 1c**).
7

8 GE regulation is associated with the structure of the CREs (e.g., histone modifications, DNA
9 methylation) and the binding of *trans*-factors (e.g., TFs, epigenetic modifiers)²⁰. Therefore,
10 we examined the overall distribution of single-cell CA fragments across different genomic
11 contexts, as well as the expression levels of the putative regulated genes. We observed that
12 the CA fragments were enriched at CREs with active histone modifications (e.g., H3K27ac,
13 H3K9ac and H3K4me3), whereas repressive or inaccessible regions (e.g., H3K27me3 and
14 H3K36me3-associated regions) showed lower fragment density (**Fig. 1d**). We also observed
15 other association patterns between CA and GE. For example, we found low levels of CA
16 fragments on H3K36me3-associated regions but high levels of GE. This is not surprising
17 because H3K36me3 is known to be enriched on the active gene body which is occupied by
18 nucleosomes and rendered inaccessible²⁰. Notably, genes with bivalent marks (co-
19 enrichment of H3K4me3 or H3K4me1 and H3K27me3) showed similar level of accessibility
20 as active genes (co-enrichment of H3K4me3 or H3K4me1 and H3K27ac, but lack of
21 H3K27me3), and both of them showed higher levels of accessibility than inactive genes
22 (enrichment of H3K27me3, but not H3K27ac, H3K4me1 and H3K4me3). Conversely, the
23 expression levels of bivalent genes were remarkably lower than active genes and were
24 similar to those of inactive genes. We also investigated the distribution of CA fragments
25 across genomic contexts bound by different TFs and found an overall consistent pattern
26 between CA and GE level. Notably, we observed substantial decrease of expression levels
27 of genes associated with binding of EZH2 while the accessibility level showed just a
28 moderate change (**Fig. 1e**). This pattern is similar to that of bivalent genes and is consistent
29 with the role of EZH2 which, as part of the repressive polycomb complex, catalyzes
30 H3K27me3. Thus, the combined signatures from scCAT-seq well reflect known processes
31 well and are useful to assess the transcriptional state of genes within different genomic
32 contexts. This approach is undoubtedly of high value for many biological applications, for
33 example, studying the heterogeneous transition of bivalent genes during development or
34 cellular reprogramming.
35

1 We further validated our approach by generating different batches of scCAT-seq profiles
2 from two additional ENCODE cell lines: HeLa-S3 cervix adenocarcinoma and HCT116
3 colorectal carcinoma cell lines (**Supplementary Table 1**). To test the feasibility of scCAT-
4 seq in real tissue samples, we also generated profiles from two lung cancer patient-derived
5 xenograft (PDX) models (**Supplementary Table 1**). One is derived from a moderately
6 differentiated squamous cell carcinoma patient (PDX1) and the other one from a large-cell
7 lung carcinoma patient (PDX2). Principal components analysis (PCA) on both CA and GE
8 profiles resulted in separation of cells from different origin (**Supplementary Fig. 2a,b**). A
9 comparison of our datasets with published profiles revealed that the differences across
10 protocols and batches had a substantially smaller effect than difference across cell types
11 (**Supplementary Fig. 2c,d**).

12

13 **Establishment of regulatory relationships between CREs and genes in single cells.**

14 Next, we explored the dynamic associations between the two omics layers across single
15 cells. We first tested the correlation between accessibility level of single CREs and their
16 expression of the putative target genes in each of the three cell lines, and the hypothetical
17 cell population merged from them. As expected, we identified remarkably more positive
18 correlations (Pearson correlation > 0 ; FDR $< 10\%$) than negative correlations
19 (**Supplementary Fig. 3a**), which is consistent with the known relationship between CA and
20 GE in bulk profiles²¹.

21

22 An earlier study showed the co-variability of accessibility between CREs across single cells
23 defines regulatory domains highly concordant with observed chromosome compartments,
24 which provides an alternative approach to the discovery of regulatory links¹⁰. However, it
25 still remains impossible to directly infer the transcriptional outcomes of each chromatin
26 accessible region. Given the overall positive correlation between CA and GE, we reasoned
27 that the co-variability between accessibility of individual elements and expression of genes
28 could enhance discovery of regulatory links that influence transcription. To this end, while
29 employing the reported strategy using scATAC-seq¹⁰ (strategy 1, **Fig. 2a**), we proposed two
30 additional strategies for inferring regulatory relationships (strategy 2 and 3, **Fig. 2a**). For
31 strategy 1 and 2, regulatory relationships between chromatin accessible regions and target
32 genes were identified based on scATAC-seq and scCAT-seq data, respectively. Based on
33 scATAC-seq data, regulatory relationships for every gene were assigned when the
34 Spearman correlation of the accessibility of CREs located at the promoter and distal peaks
35 was above 0.25 (strategy 1, **Fig. 2a** and **Supplementary Methods**). Likewise, for the

1 scCAT-seq data, the regulatory links were assigned if the Spearman correlation between
2 the GE and the accessibility of distal CREs was above 0.25 (strategy 2, **Fig. 2a** and
3 **Supplementary Methods**). However, these regulatory relationships are defined across all
4 cells. In order to more accurately depict the regulatory relationship between chromatin and
5 genes, in strategy 3, single-cell-specific regulatory relationships between genes and their
6 nearby accessible regions were assigned using the scCAT-seq data as follows: i)
7 identification of active TFs for every cell by SCENIC²² using the normalized GE matrix; ii)
8 identification of active accessible regions by matching the binding motifs of active TFs to
9 accessible chromatin regions; and iii) assignment of regulatory relationships after applying
10 a Wilcoxon test to determine if the presence of a nearby active accessible region was
11 associated with a significant change in the target GE (p-value < 0.05) (**Fig. 2a** and
12 **Supplementary Methods**).

13

14 By applying the 3 strategies to single cells of the 3 cell lines, we found that strategy 3
15 identified the largest number of regulatory relationships (62,769), compared to strategy 1
16 (46,813) and strategy 2 (21,219) (**Fig. 2b**). Over 1/3 of the regulatory relationships from
17 scATAC-seq based method (strategy 1) were shared by those from scCAT-seq based
18 method (strategy 2 and 3), suggesting strong synergistic effects between regulation at
19 chromatin and transcriptome levels. Nevertheless, although a similar correlation approach
20 was used in strategies 1 and 2, strategy 2 identified a lower number of regulatory
21 relationships, suggesting a possible decoupling between accessibility at the promoter and
22 the expression of the gene. Notably, we also observed a large fraction of regulatory
23 relationships specifically identified by each method, which suggests that different
24 information can be obtained from single-omics and combined analysis.

25

26 To assess the accuracy of the regulatory links inferred by each method, we next counted
27 the regulatory relationships that could be verified by chromatin interaction analysis by
28 paired-end tag sequencing (ChIA-PET)²³. Encouragingly, using the ChIA-PET interactions
29 of the three widely used cell types (K562, HeLa-S3 and HCT116)²⁴, we observed higher
30 proportion of validations in scCAT-seq based method (strategy 2 and 3) than that in
31 scATAC-seq based method (strategy 1) in all 3 cell types (**Fig. 2c**). These suggest that the
32 co-variability between CA and GE layers could better reflect higher-order chromatin
33 structure than co-variability between CREs. One explanation is that regulatory relationships
34 inferred from scATAC-seq may result from either chromatin interactions or from co-binding
35 of master TFs without interaction, while those inferred from scCAT-seq could be considered

1 to be “functional” regulatory relationships as include information from both chromatin
2 interactions and co-binding of master TFs. Therefore, based on the largest number of
3 validated regulatory relationships, strategy 3 outperformed the other strategies (hereafter,
4 the “regulatory relationship” indicates those identified only by strategy 3). The distribution of
5 distance between each pair of peak and gene in all regulatory relationships showed higher
6 enrichment in proximal regions than distal regions (**Supplementary Fig. 3b**), suggesting
7 that GE tends to be regulated by proximal elements which is consistent with earlier
8 findings²⁵.

9

10 To assess whether the regulatory relationships in each single cell reflect cell type-specific
11 features, we generated a binary matrix where columns represent single cells, and rows
12 represent all identified regulatory relationships between accessible sites and genes, and the
13 entries indicate the on or off state of each regulatory relationship in each cell. We applied a
14 non-negative matrix factorization (NMF) method, implemented in the R package Bratwurst²⁶,
15 to decompose the matrix into different signatures that could distinguish single cell identities.
16 As expected, NMF clustering of the regulatory relationships identified signatures containing
17 numerous cell type-specific regulatory relationships, resulting in clear separation of the 3
18 cell types (**Fig. 2d,e** and **Supplementary Fig. 3c**). For example, SAMS1 is a known
19 oncogene, preferentially expressed in the blood cancer, multiple myeloma²⁷. We observed
20 highly specific regulatory relationships around SAMS1 in K562, a myelogenous leukemia
21 cell line (**Fig. 2e**), revealing a strong association between its expression and accessibility of
22 CREs. This observation again reconfirmed the importance of epigenetic mechanisms during
23 progression of tumors. Likewise, we generated regulatory relationship matrix for single cells
24 from PDX tissues and clustering of the matrix clearly separated these two type of cells (**Fig.**
25 **2f,g** and **Supplementary Fig. 3d**). Interestingly, we also observed a subpopulation of cells
26 showing specific regulatory relationships in PDX2 (**Fig. 2f,g**), likely reflecting the regulatory
27 heterogeneity present in real tissues.

28

29 **Integrated single-cell epigenome and transcriptome maps of human pre-implantation**
30 **embryos.**

31 We next explored the potential of scCAT-seq in the characterization of single cell
32 identities in continuous developmental processes. The human pre-implantation embryo
33 development is a fascinating time that involves dramatic changes in both chromatin state
34 and transcriptional activity. However, it has only been investigated at either the chromatin
35 or the RNA level due to the lack of truly integrative approaches²⁸. By using clinically

1 discarded human embryos (**Supplementary methods**), we generated scCAT-seq profiles
2 for a total of 110 individual cells, and successfully obtained 29 quality-filtered profiles from
3 morula stage and 43 from blastocyst stage (success rate 65.5%) (**Fig. 3a, Supplementary**
4 **Fig. 4a and Supplementary Table 1**). To explore the regulation relevant to each stage, we
5 identified ~100K regulatory relationships and generated a matrix of regulatory relationships
6 across all single cells as described above. NMF clustering analysis of the matrix showed
7 separation of all single cells into two main groups (group 1 and 2), corresponding to these
8 two stages (**Fig. 3b**). The heatmap of exposure scores to each signature revealed activation
9 of regulatory relationships of pluripotency markers (such as NANOG and KLF17) in morula,
10 and trophectoderm (TE) markers (such as CDX2 and GATA3) in blastocyst stage²⁸ (**Fig.**
11 **3b,c and Supplementary Fig. 4b,c**), which strongly suggests that the expression of these
12 markers is activated/maintained by epigenomic states²⁸.

13

14 The transition between cell fates largely depends on TFs, which bind to CREs and recruit
15 chromatin modifiers to reconfigure chromatin structure¹⁵. Single-cell chromatin accessibility
16 data provides a great opportunity to find the key TFs in individual cells^{10, 17}. However, TFs
17 of the same family often share similar motifs, which makes it difficult to determine the key
18 TFs of functional specificity. Previous efforts have proposed computational algorithms to
19 integrate CA and GE data, but the accuracy remains uncertain because the analyses are
20 based on separate multi-omics datasets^{16, 17}.

21

22 We reasoned that functionally relevant master TFs in each cell type should be determined
23 by integrated omics data obtained by scCAT-seq. We applied chromVAR²⁹, a method for
24 inferring TF accessibility with single cell CA data, to compute the deviations of known TFs
25 across all single cells. This method identified TF motifs with high variances (**Supplementary**
26 **Fig. 4d**), dividing all single cells into two main groups (**Supplementary Fig. 4e**), in
27 agreement with the clustering results on regulatory relationships (**Fig. 3b**). We observed
28 that motifs from the POU-Homebox, SOX-HMG and KLF-zf families showed high deviation
29 score in cells of the group 1, while motifs from GATA-zf and GRHL-CP2 families showed a
30 high deviation score in cells of the group 2 (**Fig. 3d**). To determine the master TF from each
31 family, we next integrated the expression level of these TFs. Interestingly, we found that the
32 well-known pluripotency factors (such as NANOG, POU5F1, SOX2, KLF4, TBX4), as well
33 as early markers (such as KLF17), both showed relatively high levels of CA and GE in cells
34 of the group 1, whereas other TFs of the same families (such as POU3F1, SOX5, KLF7 and
35 TBX1) showed opposite trends (**Fig. 3d**). These results are highly consistent with the

1 features of the pluripotent morula cells, which are the main component of group 1. We also
2 found GATA3, but not GATA4 and GATA6, to show a specific role in the group 2, which
3 contains cells from the blastocyst stage. This is in agreement with the important role of
4 GATA3 during differentiation of trophoblast³⁰. In addition, we also observed similar results
5 from other TFs of the same families, such as SOX9, HOXD4, MEF2C and GRHL1,
6 suggesting they likely playing critical roles in these two groups (**Fig. 3d**). Overall, these
7 results suggest that our integrated method could increase the power of discovery of
8 functionally relevant TFs at single-cell resolution.

9

10 The blastocyst stage consists of inner cell mass (ICM) and TE lineages. During the
11 maturation of blastocysts, the ICM segregates into pluripotent epiblast (EPI) and primitive
12 endoderm (PE) cells³¹. The number and size of ICM cells vary across blastocysts, and is
13 important for the grading of embryos that determine the success of implantation³². Notably,
14 the clustering of both regulatory relationships and TF accessibility deviation showed that 3
15 (#504, #539, #522) out of the 43 blastocyst cells are similar to morula cells (**Fig. 3b**). This
16 reveals the pluripotency feature of these 3 single cells in the blastocyst stage and suggests
17 that they might be from ICM cells (hereafter termed ICM-like cells). This result is also
18 supported by our data based on immunostaining in a human blastocyst embryo, which
19 showed a comparable small proportion using the known, lineage-specific markers NANOG
20 (EPI), SOX17 (PE) (**Fig. 3e**).

21

22 We next sought to validate the ICM-like cells by molecular features based on their two omics
23 signatures. It is known that OCT4 is initially expressed in all cells within the ICM, and
24 becomes restricted to the EPI in the late blastocyst³¹. Interestingly, although OCT4 was not
25 a general marker of the blastocyst stage (**Fig. 3d**), it has a higher deviation score in the 3
26 single cells compared to other cells in the blastocyst (**Supplementary Fig. 4f**). Notably, 2
27 of them (#504 and #539) showed even higher deviations from the other single cell (#522)
28 (**Supplementary Fig. 4f**), which may describe the segregation into EPI (#504 and #539)
29 and PE (#522) lineages (hereafter termed “EPI-like” and “PE-like” cells).

30

31 We next attempted to support this hypothesis by identifying the key TFs in the EPI- or PE-
32 like cells. Encouragingly, in addition to enrichment of OCT4, we also observed specific
33 enrichment of the well-known EPI specific regulators, such as NANOG, and KLF17, in EPI-
34 like cells (**Fig. 3f**), while the PE-like cell showed high activity of the well-known PE
35 regulators, such as SOX17, HNF1B and FOXA2 (**Fig. 3f**). The other members of the same

1 families (such as SOX9, FOXA1 and HNF1A) are not likely to be the key regulators because
2 of the inconsistent patterns of CA and GE. Further supporting this conclusion, the well-
3 known non-TF markers were also found to be highly specific to each cell type, including
4 GDF3, TGDF1, DPPA2, DPPA5, ARGFX in EPI-like cells and BMP2, PDGFRA, FN1,
5 COL4A1 and LINC00261 in PE-like cells³³ (**Fig. 3f**). Although the EPI- and PE-like cells are
6 similar to morula cells, the above markers tend to be transcriptionally active in EPI- or PE-
7 like cells based on CA and GE profiles. (**Supplementary Fig. 4g,h**), suggesting distinct
8 pluripotent states in the morula and blastocyst stages. Taken together, these results indicate
9 that our integrated approach can faithfully identify the two distinct subtypes from the same
10 origin. The robustness of scCAT-seq in the precise definition of single-cell identities would
11 be particularly useful for characterization of cells that are rare within complex cell
12 populations.

13

14 In summary, our work demonstrates that scCAT-seq is able to provide high resolution
15 epigenomic and transcriptomic portraits of individual cells. We showed that the accessibility
16 levels of both regulatory elements and particular TFs are positively correlated with the GE
17 program. This provides a highly relevant insight into regulatory relationships, one which is
18 not possible based on individual omics profiles. We proposed a method to establish
19 regulatory relationships by linking CREs to the putative target genes, resulting in a larger
20 numbers of high-confidence regulatory interactions compared to state-of-the-art methods.
21 The cell-specific regulatory relationship is a new feature that enables the direct discovery of
22 gene centered 3D regulatory patterns in certain cell populations, thus providing the basis for
23 a more comprehensive study of regulatory mechanisms at the single cell level. Moreover,
24 we generated the first integrated single cell epigenomic and transcriptomic maps during pre-
25 implantation embryo development. The robustness of scCAT-seq in the characterization of
26 distinct cell states reveals the great potential of scCAT-seq in faithful identification of new
27 cell types in complex cell populations, which enables a better understanding of
28 developmental abnormalities caused by either genomic variants or environmental
29 influences. Overall, we show that scCAT-seq is a highly promising tool for the joint study of
30 multimodal data of single cells, paving the way to a thorough assessment of regulatory
31 heterogeneity in a variety of clinical applications including pre-implantation screening.

32

33 **ACKNOWLEDGEMENTS**

34 We thank all members of the Stem Cell and Development Lab (BGI) for their support and
35 Scott Edmunds, Christian Conrad, Kun Ma and Ying Shan for helpful discussion. We also

1 thank Jijun Cheng, Yuan Long and Feifei Zhang from Shanghai LIDE Biotech Co., Ltd. for
2 technical support. This work was supported by the Strategic Priority Research Program of
3 the Chinese Academy of Sciences (XDA16010100), the Shenzhen Municipal Government
4 of China Peacock Plan (KQTD20150330171505310) and the Shenzhen Engineering
5 Laboratory for Innovative Molecular Diagnostics (DRC-SZ (2016) 884). Longqi Liu is funded
6 by the China Postdoctoral Science Foundation (2017M610553).

7

8 COMPETING FINANCIAL INTERESTS

9 The authors declare no competing financial interests.

10

11 REFERENCES

- 12 1. Shapiro, E., Biezuner, T. & Linnarsson, S. Single-cell sequencing-based technologies will
13 revolutionize whole-organism science. *Nature reviews. Genetics* **14**, 618-630 (2013).
- 14 2. Zong, C., Lu, S., Chapman, A.R. & Xie, X.S. Genome-wide detection of single-nucleotide and
15 copy-number variations of a single human cell. *Science* **338**, 1622-1626 (2012).
- 16 3. Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics
17 of a kidney tumor. *Cell* **148**, 886-895 (2012).
- 18 4. Hou, Y. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative
19 myeloproliferative neoplasm. *Cell* **148**, 873-885 (2012).
- 20 5. Guo, H. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early
21 embryos analyzed using reduced representation bisulfite sequencing. *Genome research* **23**,
22 2126-2135 (2013).
- 23 6. Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. *Nature methods* **6**,
24 377-382 (2009).
- 25 7. Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. *Nat
26 Methods* **10**, 1096-1098 (2013).
- 27 8. Wen, L. & Tang, F. Reconstructing complex tissues from single-cell analyses. *Cell* **157**, 771-
28 773 (2014).
- 29 9. Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state.
30 *Nature biotechnology* **33**, 1165-1172 (2015).
- 31 10. Buenrostro, J.D. et al. Single-cell chromatin accessibility reveals principles of regulatory
32 variation. *Nature* **523**, 486-490 (2015).
- 33 11. Cusanovich, D.A. et al. Multiplex single cell profiling of chromatin accessibility by
34 combinatorial cellular indexing. *Science* **348**, 910-914 (2015).
- 35 12. Jin, W. et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE
36 tissue samples. *Nature* **528**, 142-146 (2015).
- 37 13. Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure.
38 *Nature* **502**, 59-64 (2013).
- 39 14. Ramani, V. et al. Massively multiplex single-cell Hi-C. *Nature methods* **14**, 263-266 (2017).
- 40 15. Moris, N., Pina, C. & Arias, A.M. Transition states and cell fate decisions in epigenetic
41 landscapes. *Nature reviews. Genetics* **17**, 693-703 (2016).
- 42 16. Cusanovich, D.A. et al. A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility.
43 *Cell* **174**, 1309-1324 e1318 (2018).
- 44 17. Buenrostro, J.D. et al. Integrated Single-Cell Analysis Maps the Continuous Regulatory
45 Landscape of Human Hematopoietic Differentiation. *Cell* **173**, 1535-1548 e1516 (2018).
- 46 18. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y. & Greenleaf, W.J. Transposition of
47 native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding
48 proteins and nucleosome position. *Nature methods* **10**, 1213-1218 (2013).

1 19. Pollen, A.A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity
2 and activated signaling pathways in developing cerebral cortex. *Nat Biotechnol* **32**, 1053-
3 1058 (2014).

4 20. Li, B., Carey, M. & Workman, J.L. The role of chromatin during transcription. *Cell* **128**, 707-
5 719 (2007).

6 21. Boyle, A.P. et al. High-resolution mapping and characterization of open chromatin across the
7 genome. *Cell* **132**, 311-322 (2008).

8 22. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. *Nature
9 methods* **14**, 1083-1086 (2017).

10 23. Li, G. et al. Chromatin Interaction Analysis with Paired-End Tag (ChIA-PET) sequencing
11 technology and application. *BMC genomics* **15 Suppl 12**, S11 (2014).

12 24. Teng, L., He, B., Wang, J. & Tan, K. 4DGenome: a comprehensive database of chromatin
13 interactions. *Bioinformatics* **32**, 2727 (2016).

14 25. Heidari, N. et al. Genome-wide map of regulatory interactions in the human genome.
15 *Genome research* **24**, 1905-1917 (2014).

16 26. Hübschmann D, et al. Deciphering programs of transcriptional regulation by combined
17 deconvolution of multiple omics layers. *bioRxiv*, 199547 (2017).

18 27. Claudio, J.O. et al. HACS1 encodes a novel SH3-SAM adaptor protein differentially
19 expressed in normal and malignant hematopoietic cells. *Oncogene* **20**, 5373-5377 (2001).

20 28. Xu, Q. & Xie, W. Epigenome in Early Mammalian Development: Inheritance, Reprogramming
21 and Establishment. *Trends in cell biology* **28**, 237-253 (2018).

22 29. Schep, A.N., Wu, B., Buenrostro, J.D. & Greenleaf, W.J. chromVAR: inferring transcription-
23 factor-associated accessibility from single-cell epigenomic data. *Nature methods* **14**, 975-
24 978 (2017).

25 30. Home, P. et al. GATA3 is selectively expressed in the trophectoderm of peri-implantation
26 embryo and directly regulates Cdx2 gene expression. *The Journal of biological chemistry*
27 **284**, 28729-28737 (2009).

28 31. Shahbazi, M.N. & Zernicka-Goetz, M. Deconstructing and reconstructing the mouse and
29 human early embryo. *Nature cell biology* **20**, 878-887 (2018).

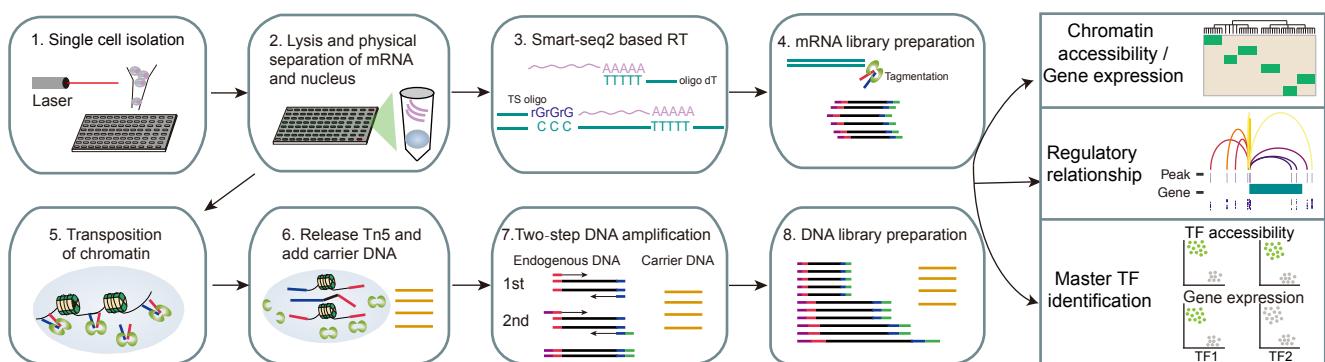
30 32. Richter, K.S., Harris, D.C., Daneshmand, S.T. & Shapiro, B.S. Quantitative grading of a
31 human blastocyst: optimal inner cell mass size and shape. *Fertility and sterility* **76**, 1157-
32 1167 (2001).

33 33. Petropoulos, S. et al. Single-Cell RNA-Seq Reveals Lineage and X Chromosome Dynamics
34 in Human Preimplantation Embryos. *Cell* **165**, 1012-1026 (2016).

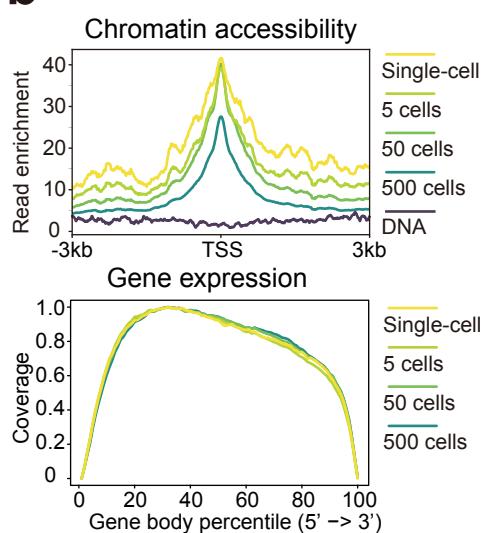
35

Figure 1

a



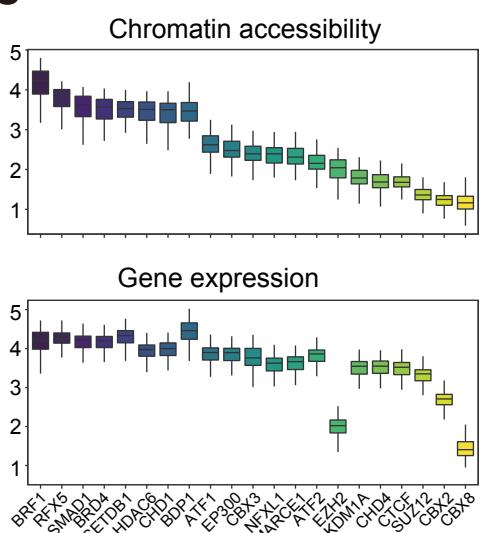
b



d



e



c

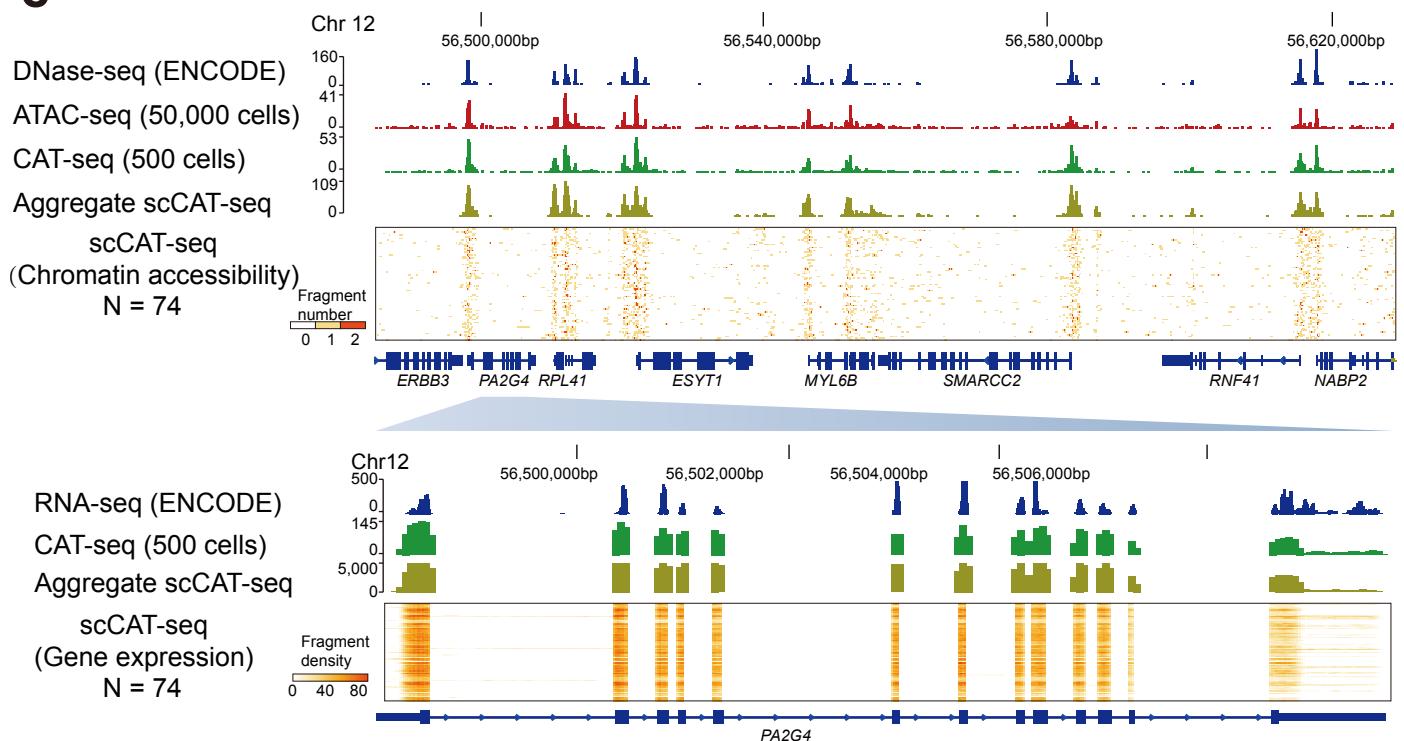
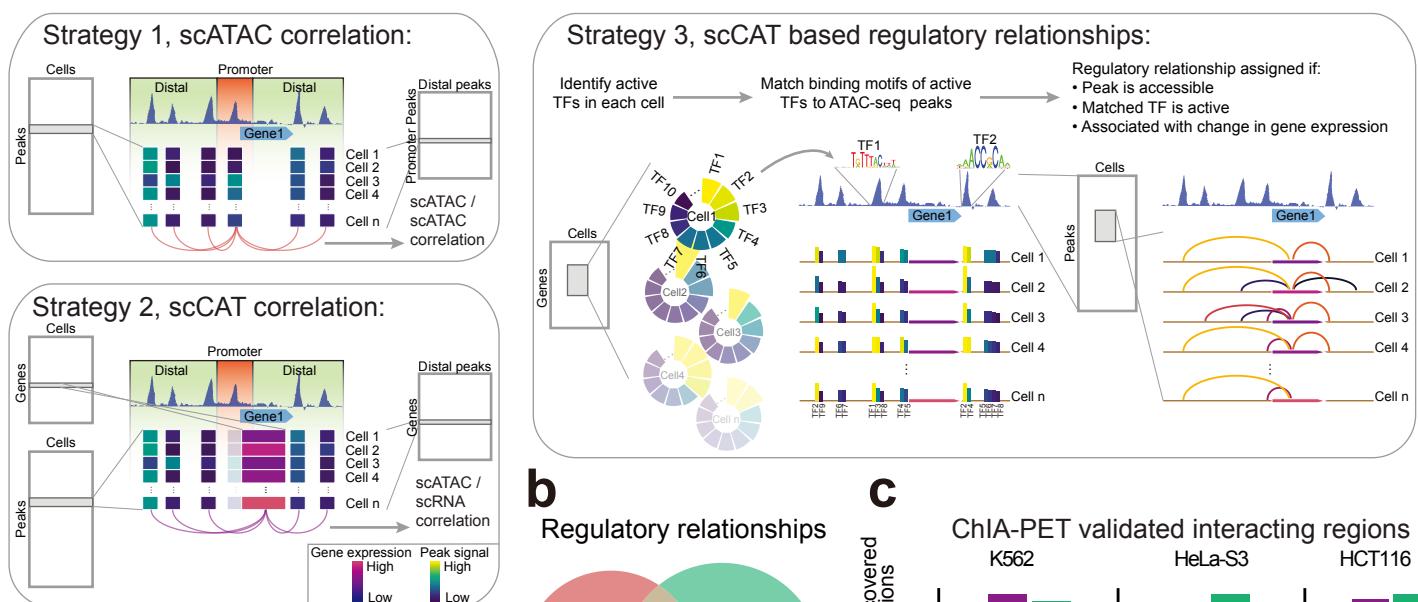


Figure 1. scCAT-seq provides an accurate genome-wide measure of both chromatin accessibility and gene expression. **(a)** Overview of the scCAT-seq protocol. **(b)** Top panel: chromatin accessibility read enrichment around the transcription start site (TSS). Bottom panel: coverage of mRNA reads along the body of transcripts. Titration series (one single-cell, 5 cells, 50 cells, 500 cells) were marked by the indicated colours. All profiles were generated using the scCAT-seq protocol with the indicated number of cells as input. **(c)** A representative region showing a consistent pattern of chromatin accessibility and gene expression across datasets generated using different number of input cells. The bulk ATAC-seq track was generated using 50,000 K562 cells. The DNase-seq and bulk RNA-seq data of K562 cells were downloaded from ENCODE. The scCAT-seq tracks are chromatin accessibility (upper) and gene expression read density (bottom) from a total of 74 K562 single cells. **(d)** Top panel: mean chromatin accessibility read density around regions that are enriched by the indicated individual or combined histone modifications. Bottom panel: mean expression level of genes associated with regions that are enriched by the indicated individual or combined histone modifications. **(e)** Top panel: mean chromatin accessibility read density within regions that are bound by the indicated transcription factors. Bottom panel: mean expression level of genes associated with regions that are bound by the indicated transcription factors.

Figure 2

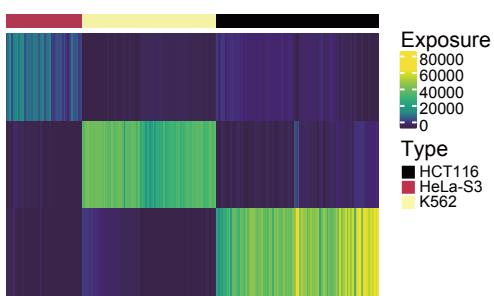
a



d

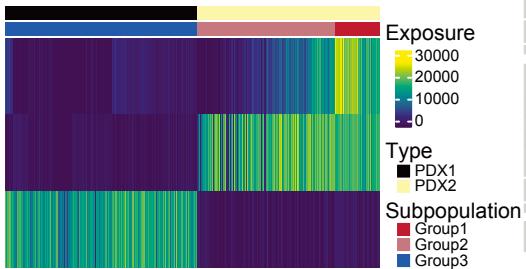
Regulatory relationship binary matrix

Different cell types



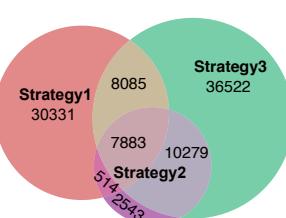
f

PDX tissues



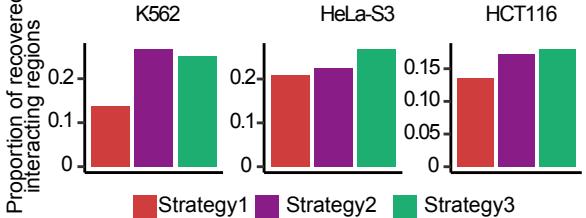
b

Regulatory relationships



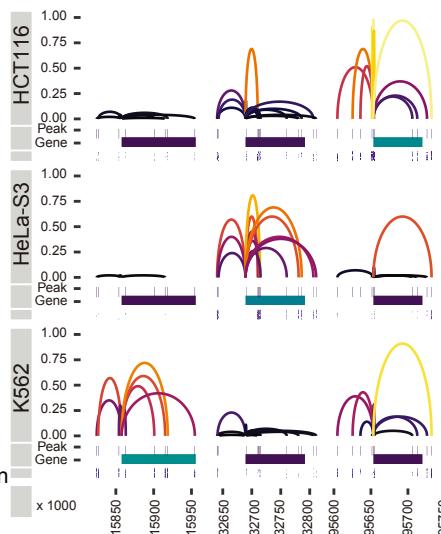
c

ChIA-PET validated interacting regions



e

SAMSN1, NPR3, ESRP1



g

PDX 2

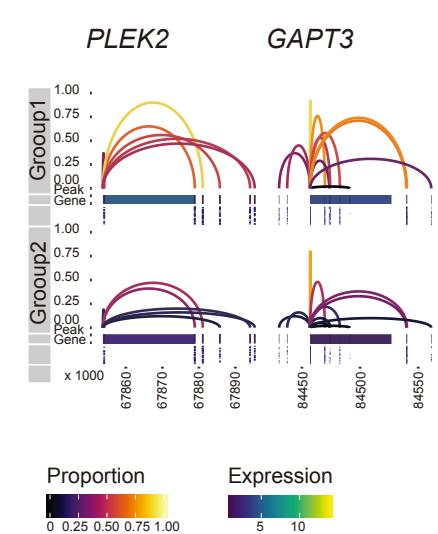


Figure 2. Inferring regulatory relationships between CREs and genes by scCAT-seq. **(a)** Overview of three strategies for inferring regulatory relationships. Strategy 1: regulatory links for every gene were assigned when the Spearman correlation of the signal of peaks located at the promoter and distal peaks was above 0.25. Strategy 2: the regulatory links were assigned if the Spearman correlation between the gene expression and the signal of distal peaks was above 0.25. Strategy 3: active transcription factors for every cell were identified by SCENIC, then active regions were identified by matching the binding motifs of active transcription factors to accessible regions. Then regulatory relationships were assigned after applying a Wilcoxon test to determine if the presence of a nearby active accessible region was associated with a significant change in the target gene expression (p -value < 0.05). **(b)** Venn plot showing the number of overlapping regulatory relationships identified by the three strategies. **(c)** Proportion of ChIA-PET validated regulatory relationships identified by the three strategies in K562 (left), HeLa-S3 (middle) and HCT116 (right) single cells. **(d and f)** Heatmaps showing exposure scores of all cells to each signature identified by the NMF clustering of regulatory relationship binary matrix in cell lines **(d)** and PDX **(f)**. The exposure score represents the contributions of the signatures to the different samples. **(e and g)** Regulatory relationships for the indicated genes in single cell groups of the cell lines **(e)** and PDX2 **(g)**. Each panel contains three tracks: the top track shows the regulatory relationship between one peak and the gene (linking them with an arch), where the height and colour of the arch show the proportion of cells that share the regulatory relationships; the middle track shows the genomic location of the gene and the associated peaks, where the colour of the gene shows the mean expression in each cell type; the bottom track shows the accessible states (on and off) for each peak in each single cell.

Figure 3

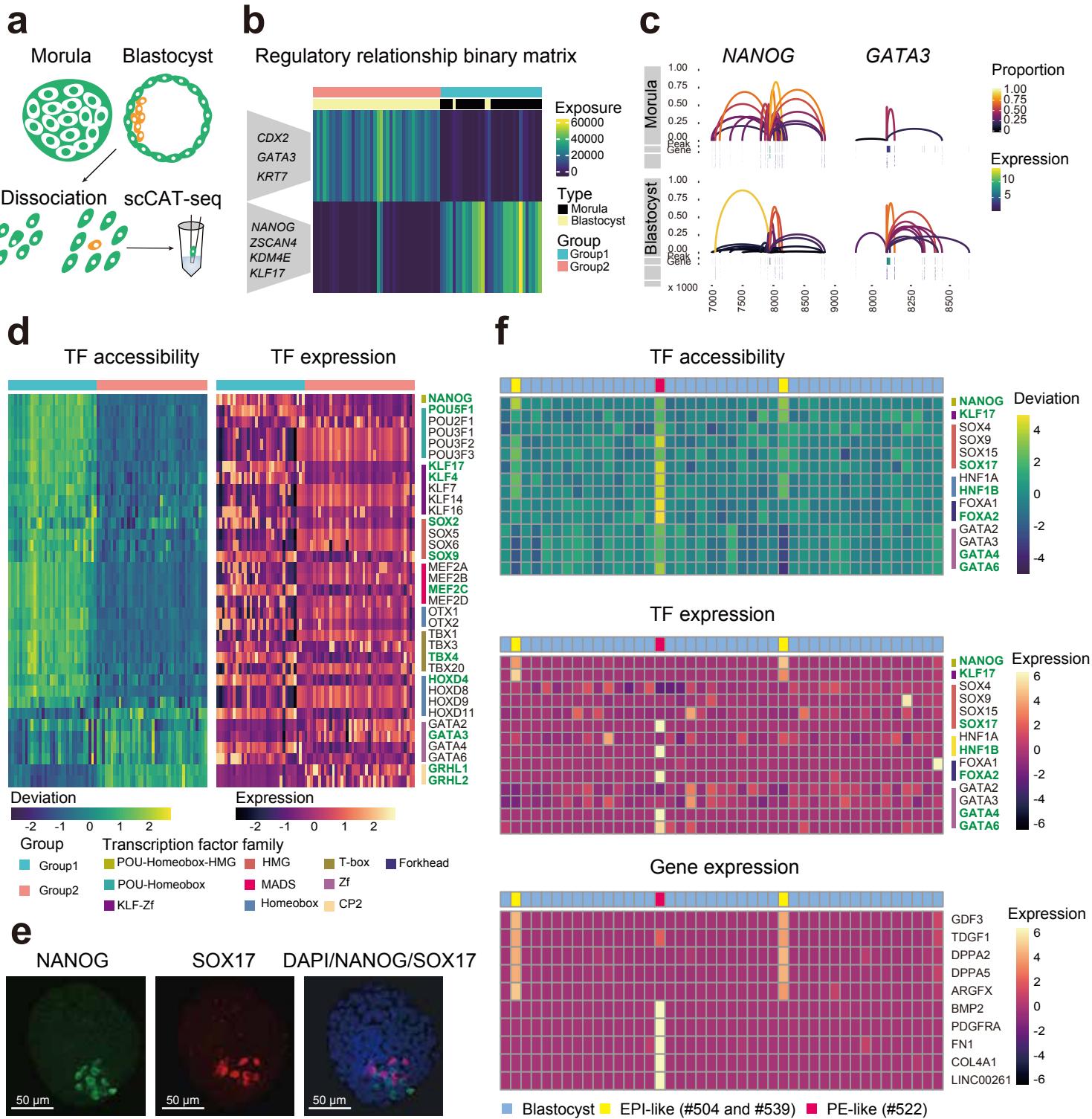
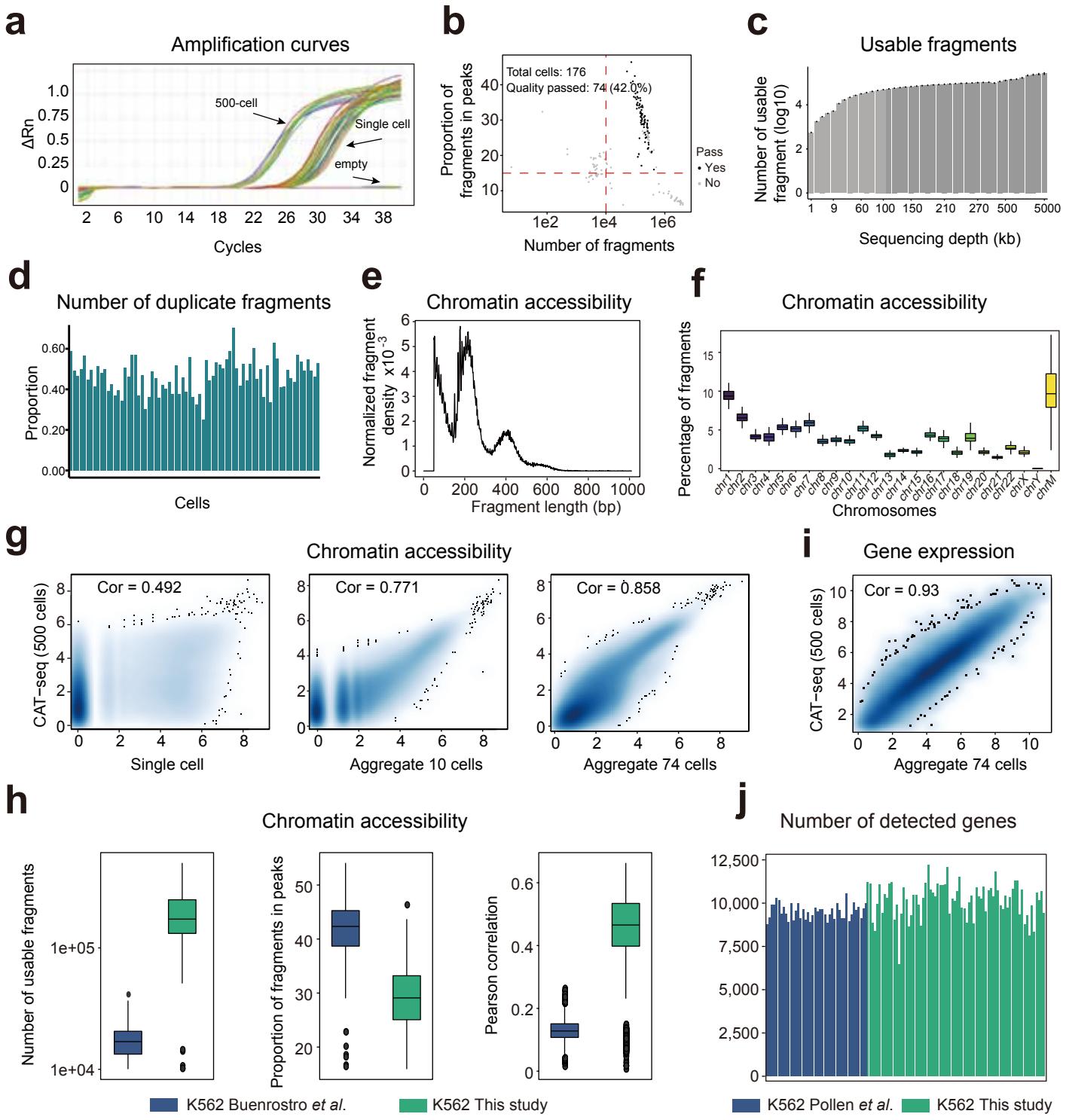


Figure 3. scCAT-seq enables precise characterization of single cell identities in human pre-implantation embryos. **(a)** A workflow showing the generation of scCAT-seq profiles of human pre-implantation embryos. **(b)** Heatmap showing exposure scores of all cells to each signature identified by the NMF clustering of regulatory relationship binary matrix of human embryos. Example genes are shown. **(c)** Regulatory relationships for the indicated genes in single cells of the morula and blastocyst stage. **(d)** Heatmaps showing accessibility deviation (left) and expression level (right) of the indicated TFs. The TFs coloured in green were the ones showing consistent patterns in accessibility and gene expression. **(e)** Immunofluorescence imaging of human morula- and blastocyst-stage embryos using the indicated antibodies (left to right: NANOG, SOX17 and merged DAPI/NANOG/SOX17). **(f)** Top and middle panel: Heatmaps showing the accessibility deviation (top) and expression level (middle) of the indicated TFs in single cells of blastocyst-stage embryos. Bottom panel: heatmap showing the expression level of the indicated genes. The TFs coloured in green were the ones showing consistent patterns in accessibility and gene expression.

Supplementary Figure 1

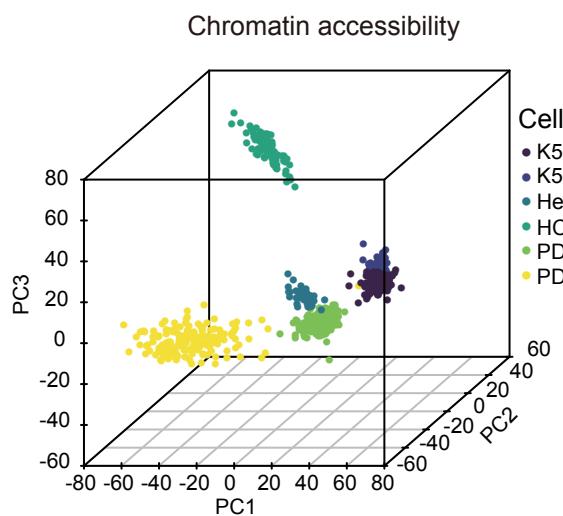


Supplementary Figure 1

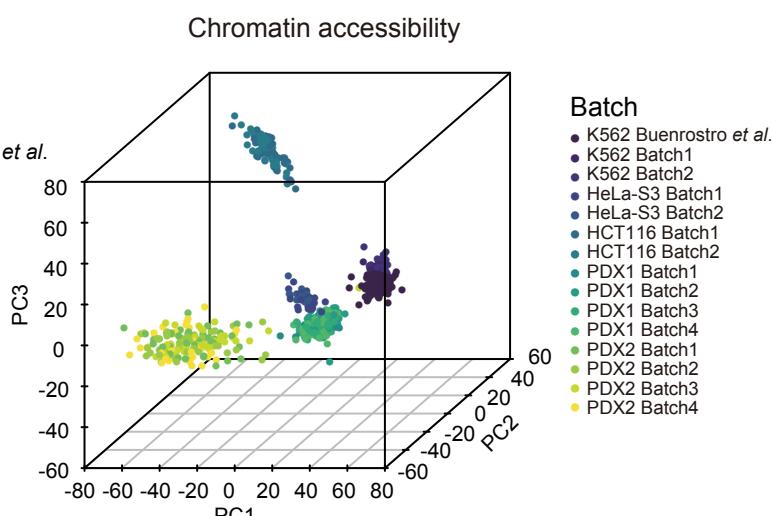
Quality metrics of scCAT-seq data. **(a)** qPCR amplification curve using materials in the bottom of wells after the separation step of the scCAT-seq protocol. Wells containing 0, 1 and 500 cells were analyzed. After the separation step the materials were amplified for 8 cycles using primers targeting the Tn5 adaptor. The PCR product was then purified and amplified by qPCR using primers targeting an accessible region in the human genome. **(b)** K562 scCAT-seq profiles were quality-filtered according to the number of fragments, proportion of fragments within accessible regions and detected gene numbers. **(c)** Bar plot showing the number of usable fragment at the indicated sequencing depths **(d)** Proportion of the duplicate fragments of all K562 single cells at the sequencing depth of 400 kb. **(e)** Size distribution of chromatin accessibility fragments from an example of K562 single cell. **(f)** Percentage of the single cell chromatin accessibility fragments mapped to each nuclear chromosome and the mitochondrial genome. **(g)** Correlation of chromatin accessibility between aggregate chromatin accessibility profiles and CAT-seq profile of 500 cells. **(h)** Comparison of number of usable chromatin accessibility fragments (left), proportion of fragments within the accessible regions (middle) and Pearson correlation coefficients (right) between scCAT-seq and published scATAC-seq profiles. The peaks indicated in middle panel are called based on aggregate profiles. **(i)** Correlation between aggregate gene expression profiles of all single cells and gene expression profiles generated from 500 cells. **(j)** Comparison of the number of detected genes between scCAT-seq and published scRNA-seq profiles.

Supplementary Figure 2

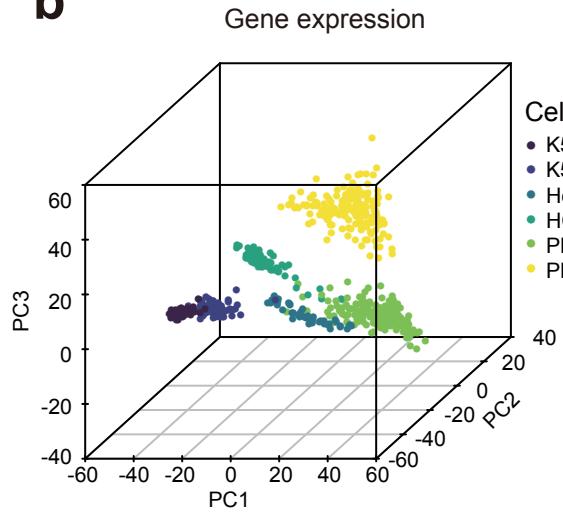
a



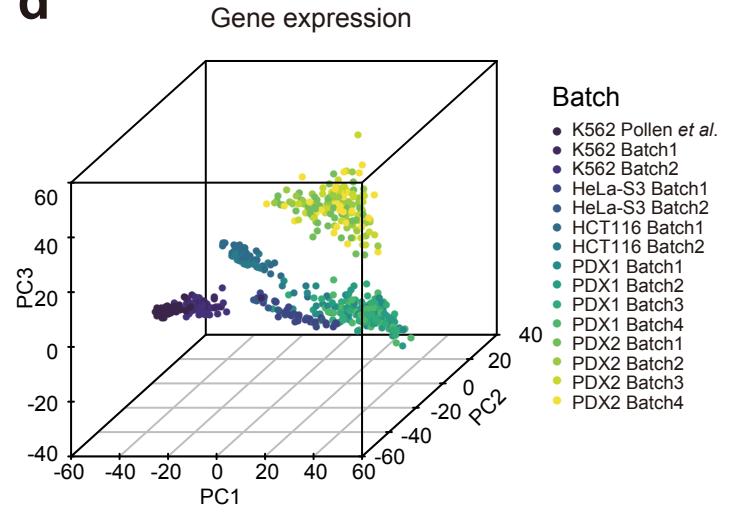
c



b



d

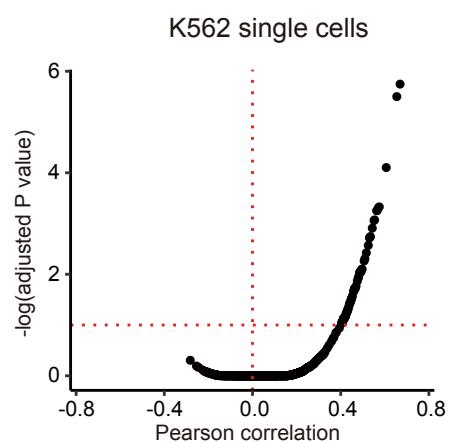
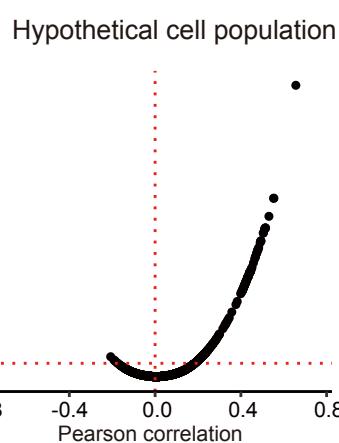


Supplementary Figure 2

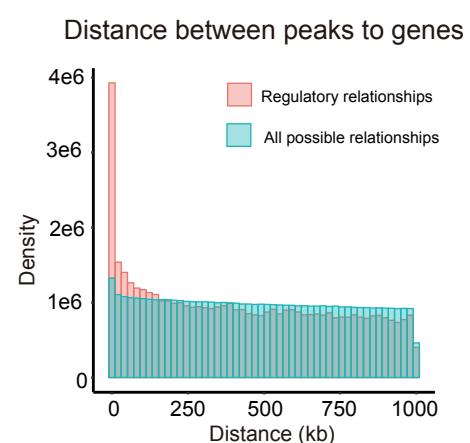
Principle components analysis across diverse techniques and different batches of scCAT-seq profiles. **(a and c)** Principle components analysis of different batches of scCAT-seq-generated chromatin accessibility data and published datasets. **(b and d)** Principle components analysis of different batches of scCAT-seq-generated gene expression data and published datasets.

Supplementary Figure 3

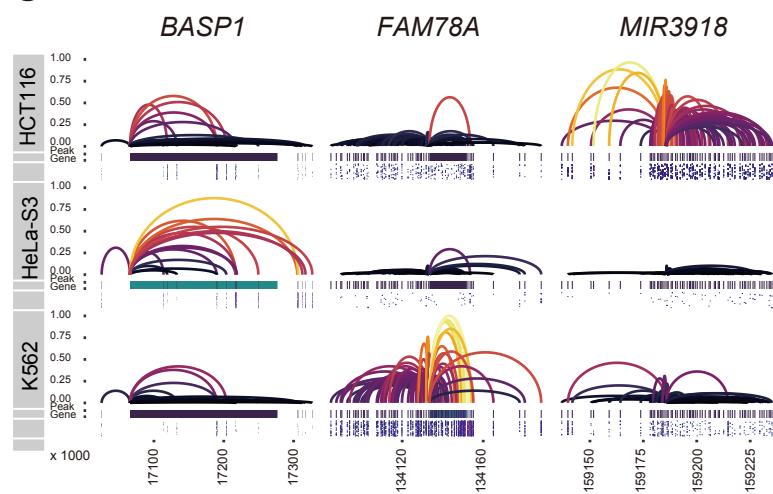
a



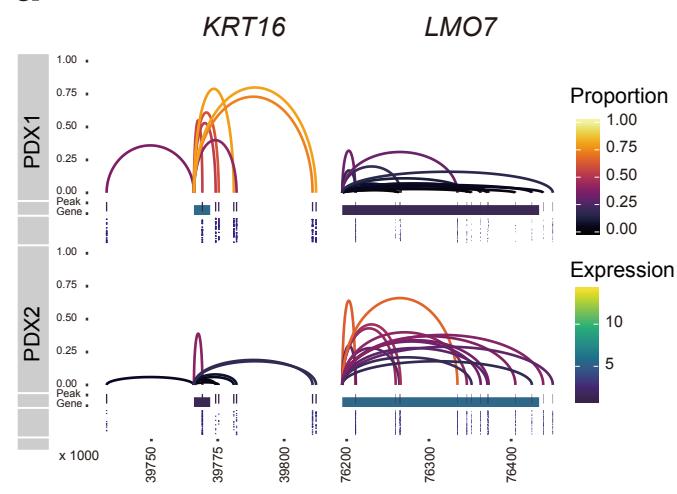
b



c



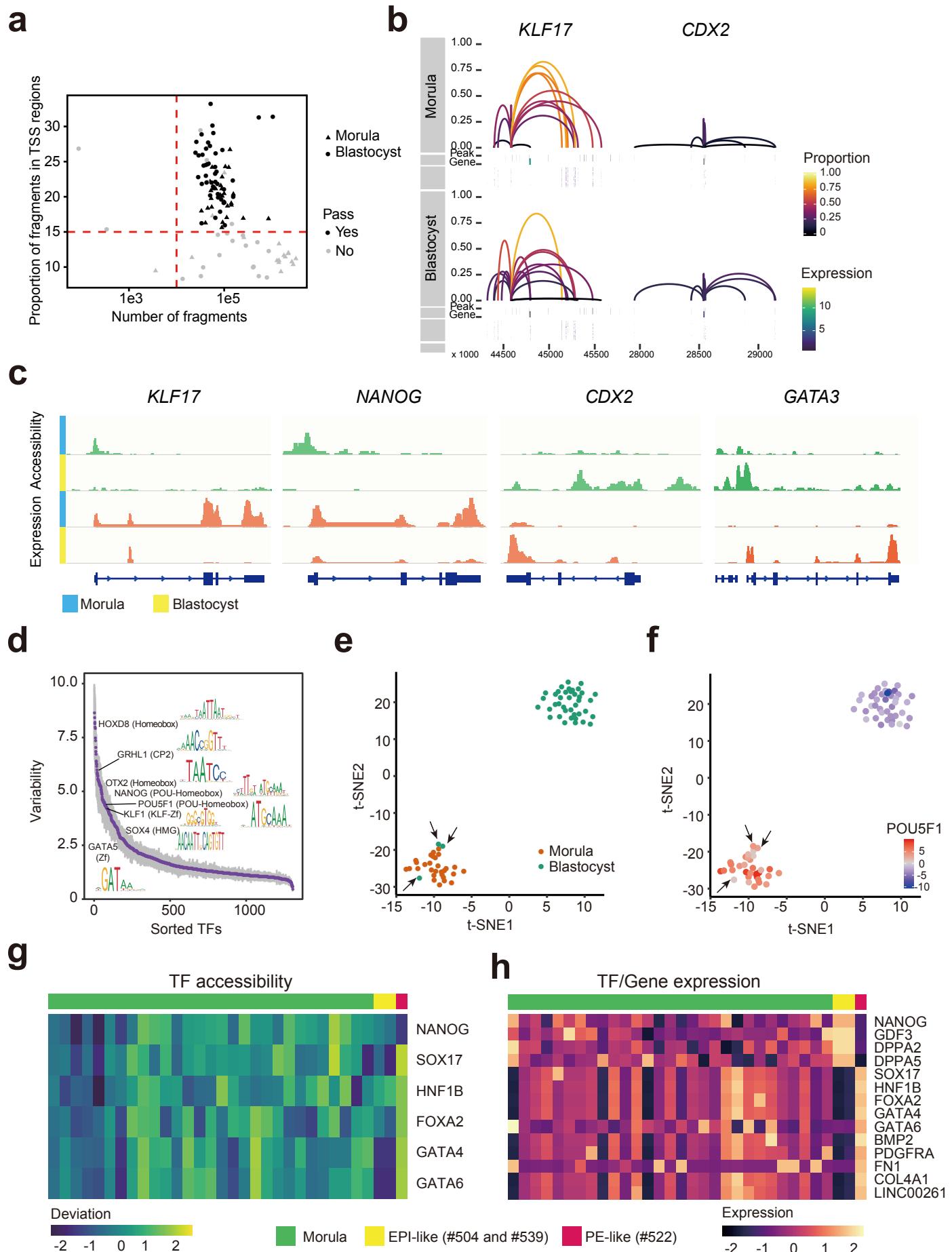
d



Supplementary Figure 3

scCAT-seq uncovers the regulatory relationships between CREs and genes. **(a)** Correlation analysis between chromatin accessibility of individual element and the putative gene expression in K562 single cells and hypothetical cell population from the three cell lines. Shown are Pearson correlation coefficients versus the Benjamini-Hochberg adjusted p-value. Significant relationships (adjusted p-value ≤ 0.05) are above the red dotted line. **(b)** Bar plot showing the density distribution of distances between CREs and genes in regulatory relationships (red) and random relationships (blue) **(c-d)** Regulatory relationships for the indicated genes in single cells of the three cell types **(c)** and two PDX tissues **(d)**.

Supplementary Figure 4



Supplementary Figure 4

Integrated profiling of chromatin accessibility and gene expression in human pre-implantation embryos. **(a)** Morula and blastocyst scCAT-seq profiles were quality-filtered according to the number of fragments, proportion of fragments within promoter regions and detected gene number. **(b)** Regulatory relationships for the indicated genes in single cells of morula and blastocyst stage. **(c)** Genome browser views of chromatin accessibility and gene expression surrounding the indicated genes. **(d)** Observed cell-to-cell variability of TFs. TF families and motifs are indicated. **(e)** t-SNE plot of TF motif accessibility deviation, colored by the stage of all single cells. **(f)** t-SNE plot colored by accessibility deviation z-score of POU5F1 motif. The three blastocyst cells that are closest to the morula cells are highlighted with the black arrows. **(g)** Heatmaps showing accessibility deviation (left) and expression level (right) of the indicated TFs.