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Abstract  28 

Integrative analysis of multi-omics layers at single cell level is critical for accurate dissection 29 

of cell-to-cell variation within certain cell populations. Here we report scCAT-seq, a 30 

technique for simultaneously assaying chromatin accessibility and the transcriptome within 31 

the same single cell. We show that the combined single cell signatures enable accurate 32 

construction of regulatory relationships between cis-regulatory elements and the target 33 

genes at single-cell resolution, providing a new dimension of features that helps direct 34 

discovery of regulatory patterns specific to distinct cell identities. Moreover, we generated 35 

the first single cell integrated maps of chromatin accessibility and transcriptome in human 36 
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 2 

pre-implantation embryos and demonstrated the robustness of scCAT-seq in the precise 1 

dissection of master transcription factors in cells of distinct states during embryo 2 

development. The ability to obtain these two layers of omics data will help provide more 3 

accurate definitions of “single cell state” and enable the deconvolution of regulatory 4 

heterogeneity from complex cell populations. 5 

 6 

The rapid proliferation of single cell sequencing technologies has greatly improved our 7 

understanding of heterogeneity in terms of genetic, epigenetic and transcriptional regulation 8 

within cell populations1. We, and others, have developed single-cell whole genome2, 9 

exome3, 4, methylome5 and transcriptome6, 7 technologies and applied these approaches to 10 

analyzing the complexity of cell populations in tumorigenesis, developmental process and 11 

cellular reprogramming8. Meanwhile, single-cell epigenome techniques, including single cell 12 

ChIP-seq9, ATAC-seq10, 11, DNase-seq12 and Hi-C13, 14, have been developed to decipher 13 

histone modifications, transcription factor (TF) accessibility landscapes, and 3D chromatin 14 

contacts, respectively, in single cells. These techniques provide important information on 15 

regulatory heterogeneity by assessing chromatin structure across various cell types. 16 

 17 

Measuring the epigenomic and transcriptomic characteristics of single cells is important for 18 

understanding the maintenance and conversion of cell fates, as well as manipulating cell 19 

fates into different lineages15. The regulation of these processes involves sequential events 20 

including the binding of TFs to cis-regulatory elements (CREs) and the recruitment of 21 

chromatin regulators, resulting in changes of chromatin structure and activation or 22 

repression of cell type specific genes15. Single-cell ATAC-seq and RNA-seq represent a 23 

great opportunity to study how TFs and epigenomic features induce transcriptional 24 

outcomes that influence cell fate determinations. For example, combined analyses of 25 

datasets by these two approaches have enabled characterization of subtypes in mouse 26 

tissues16 or during human hematopoietic differentiation17. However, it still remains 27 

challenging to integrate the two approaches experimentally in individual cells, thus 28 

hampering a full understanding of regulatory association between these two layers. Here, 29 

we present scCAT-seq (single-cell chromain accessibility and transcriptome sequencing), 30 

a technique that integrates single-cell ATAC-seq and RNA-seq to measure chromatin 31 

accessibility (CA) and gene expression (GE) simultaneously in single cells. scCAT-seq 32 

employs a mild lysis approach and a physical dissociation strategy to separate the nucleus 33 

and cytoplasm of each single cell. Thereafter, the supernatant cytoplasm component is 34 

subjected to the Smart-seq2 method as described previously7. The precipitated nucleus is 35 
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 3 

then subjected to a Tn5 transposase-based and carrier DNA-mediated protocol to amplify 1 

the fragments within accessible regions (Fig. 1a and Supplementary Methods). Beyond 2 

parallel CA and GE profiling in the same single cell, scCAT-seq will be particularly useful for 3 

analyzing samples when the amount of input material is limited.  4 

 5 

Results 6 

Simultaneous profiling of accessible chromatin and gene expression in single cells. 7 

    We applied scCAT-seq to the K562 chronic myelogenous leukemia cell line, which has 8 

been widely used in the ENCODE project. We sorted single cell and multi-cell samples (e.g., 9 

500 cells) into wells of 96-well plates using flow cytometry. Empty wells were used as 10 

negative control. Samples were then processed using the scCAT-seq protocol. qPCR 11 

analysis confirmed the successful capture of single cell nuclei during library preparation 12 

(Supplementary Fig. 1a). We generated combined CA and GE profiles from a total of 192 13 

samples. Of the 176 single cell profiles, 74 (42.0%) of them passed both CA and GE data 14 

quality control criteria (Supplementary Fig. 1b and Supplementary Methods).  15 

 16 

For scCAT-seq-generated CA data, we obtained an average of 2.1 x 105 uniquely mapped, 17 

usable fragments from single cells (Supplementary Table 1 and Supplementary Fig. 18 

1c,d). Similar to bulk ATAC-seq18, the CA fragments show fragment-size periodicity 19 

corresponding to integer multiples of nucleosomes (Supplementary Fig. 1e) and are 20 

strongly enriched on accessible regions (Fig. 1b and Supplementary Table 1). We found 21 

that about 9% of the fragments were mapped to the mitochondrial genome (Supplementary 22 

Fig. 1f) which is largely reduced in comparison to standard bulk ATAC-seq studies (typically 23 

over 30%)18. Pearson correlation analyses revealed our single-cell profiles could reproduce 24 

features of bulk profiles (Supplementary Fig. 1g). In comparison to the published scATAC-25 

seq profiles by Buenrostro et al.10, we obtained a higher number of usable fragments per 26 

single cell but with lower signal-to-noise ratio (Supplementary Fig. 1h). However, the 27 

correlation between single cells increases remarkably (Supplementary Fig. 1h), suggesting 28 

that scCAT-seq is able to capture the chromatin features more accurately.  29 

 30 

For mRNA data generated by scCAT-seq, we obtained an average of 4.6 million reads 31 

covering over 8000 genes (GENCODE v19, TPM > 1), which is comparable to published 32 

scRNA-seq profiles by Pollen et al.19 (Supplementary Fig. 1j and Supplementary Table 33 

1). Consistent with published Smart-seq profiles, our mRNA data showed full coverage of 34 

the transcript body (Fig. 1b), enabling identification of transcript isoforms and not merely 35 
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gene expression quantification. The aggregate profile was close to the RNA-seq profile 1 

obtained from 500 cells (Pearson correlation value > 0.9, Supplementary Fig. 1i), 2 

suggesting that scCAT-seq is able to accurately quantify GE of single cells. The density of 3 

CA and GE reads of all single cells surrounding a constitutively accessible region showed 4 

that scCAT-seq data recapitulate major features obtained by separately performed bulk 5 

ATAC-seq and RNA-seq (Fig. 1c). 6 

 7 

GE regulation is associated with the structure of the CREs (e.g., histone modifications, DNA 8 

methylation) and the binding of trans-factors (e.g., TFs, epigenetic modifiers)20. Therefore, 9 

we examined the overall distribution of single-cell CA fragments across different genomic 10 

contexts, as well as the expression levels of the putative regulated genes. We observed that 11 

the CA fragments were enriched at CREs with active histone modifications (e.g., H3K27ac, 12 

H3K9ac and H3K4me3), whereas repressive or inaccessible regions (e.g., H3K27me3 and 13 

H3K36me3-associated regions) showed lower fragment density (Fig. 1d). We also observed 14 

other association patterns between CA and GE. For example, we found low levels of CA 15 

fragments on H3K36me3-associated regions but high levels of GE. This is not surprising 16 

because H3K36me3 is known to be enriched on the active gene body which is occupied by 17 

nucleosomes and rendered inaccessible20. Notably, genes with bivalent marks (co-18 

enrichment of H3K4me3 or H3K4me1 and H3K27me3) showed similar level of accessibility 19 

as active genes (co-enrichment of H3K4me3 or H3K4me1 and H3K27ac, but lack of 20 

H3K27me3), and both of them showed higher levels of accessibility than inactive genes 21 

(enrichment of H3K27me3, but not H3K27ac, H3K4me1 and H3K4me3). Conversely, the 22 

expression levels of bivalent genes were remarkably lower than active genes and were 23 

similar to those of inactive genes. We also investigated the distribution of CA fragments 24 

across genomic contexts bound by different TFs and found an overall consistent pattern 25 

between CA and GE level. Notably, we observed substantial decrease of expression levels 26 

of genes associated with binding of EZH2 while the accessibility level showed just a 27 

moderate change (Fig. 1e). This pattern is similar to that of bivalent genes and is consistent 28 

with the role of EZH2 which, as part of the repressive polycomb complex, catalyzes 29 

H3K27me3. Thus, the combined signatures from scCAT-seq well reflect known processes 30 

well and are useful to assess the transcriptional state of genes within different genomic 31 

contexts. This approach is undoubtedly of high value for many biological applications, for 32 

example, studying the heterogeneous transition of bivalent genes during development or 33 

cellular reprogramming. 34 

 35 
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 5 

We further validated our approach by generating different batches of scCAT-seq profiles 1 

from two additional ENCODE cell lines: HeLa-S3 cervix adenocarcinoma and HCT116 2 

colorectal carcinoma cell lines (Supplementary Table 1). To test the feasibility of scCAT-3 

seq in real tissue samples, we also generated profiles from two lung cancer patient-derived 4 

xenograft (PDX) models (Supplementary Table 1). One is derived from a moderately 5 

differentiated squamous cell carcinoma patient (PDX1) and the other one from a large-cell 6 

lung carcinoma patient (PDX2). Principal components analysis (PCA) on both CA and GE 7 

profiles resulted in separation of cells from different origin (Supplementary Fig. 2a,b). A 8 

comparison of our datasets with published profiles revealed that the differences across 9 

protocols and batches had a substantially smaller effect than difference across cell types 10 

(Supplementary Fig. 2c,d).  11 

 12 

Establishment of regulatory relationships between CREs and genes in single cells.  13 

    Next, we explored the dynamic associations between the two omics layers across single 14 

cells. We first tested the correlation between accessibility level of single CREs and their 15 

expression of the putative target genes in each of the three cell lines, and the hypothetical 16 

cell population merged from them. As expected, we identified remarkably more positive 17 

correlations (Pearson correlation > 0; FDR < 10%) than negative correlations 18 

(Supplementary Fig. 3a), which is consistent with the known relationship between CA and 19 

GE in bulk profiles21. 20 

 21 

An earlier study showed the co-variability of accessibility between CREs across single cells 22 

defines regulatory domains highly concordant with observed chromosome compartments, 23 

which provides an alternative approach to the discovery of regulatory links10. However, it 24 

still remains impossible to directly infer the transcriptional outcomes of each chromatin 25 

accessible region. Given the overall positive correlation between CA and GE, we reasoned 26 

that the co-variability between accessibility of individual elements and expression of genes 27 

could enhance discovery of regulatory links that influence transcription. To this end, while 28 

employing the reported strategy using scATAC-seq10 (strategy 1, Fig. 2a), we proposed two 29 

additional strategies for inferring regulatory relationships (strategy 2 and 3, Fig. 2a). For 30 

strategy 1 and 2, regulatory relationships between chromatin accessible regions and target 31 

genes were identified based on scATAC-seq and scCAT-seq data, respectively. Based on 32 

scATAC-seq data, regulatory relationships for every gene were assigned when the 33 

Spearman correlation of the accessibility of CREs located at the promoter and distal peaks 34 

was above 0.25 (strategy 1, Fig. 2a and Supplementary Methods). Likewise, for the 35 
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 6 

scCAT-seq data, the regulatory links were assigned if the Spearman correlation between 1 

the GE and the accessibility of distal CREs was above 0.25 (strategy 2, Fig. 2a and 2 

Supplementary Methods). However, these regulatory relationships are defined across all 3 

cells. In order to more accurately depict the regulatory relationship between chromatin and 4 

genes, in strategy 3, single-cell-specific regulatory relationships between genes and their 5 

nearby accessible regions were assigned using the scCAT-seq data as follows: i) 6 

identification of active TFs for every cell by SCENIC22 using the normalized GE matrix;  ii) 7 

identification of active accessible regions by matching the binding motifs of active TFs to 8 

accessible chromatin regions; and iii) assignment of regulatory relationships after applying 9 

a Wilcoxon test to determine if the presence of a nearby active accessible region was 10 

associated with a significant change in the target GE (p-value < 0.05) (Fig. 2a and 11 

Supplementary Methods). 12 

 13 

By applying the 3 strategies to single cells of the 3 cell lines, we found that strategy 3 14 

identified the largest number of regulatory relationships (62,769), compared to strategy 1 15 

(46,813) and strategy 2 (21,219) (Fig. 2b). Over 1/3 of the regulatory relationships from 16 

scATAC-seq based method (strategy 1) were shared by those from scCAT-seq based 17 

method (strategy 2 and 3), suggesting strong synergistic effects between regulation at 18 

chromatin and transcriptome levels. Nevertheless, although a similar correlation approach 19 

was used in strategies 1 and 2, strategy 2 identified a lower number of regulatory 20 

relationships, suggesting a possible decoupling between accessibility at the promoter and 21 

the expression of the gene. Notably, we also observed a large fraction of regulatory 22 

relationships specifically identified by each method, which suggests that different 23 

information can be obtained from single-omics and combined analysis. 24 

 25 

To assess the accuracy of the regulatory links inferred by each method, we next counted 26 

the regulatory relationships that could be verified by chromatin interaction analysis by 27 

paired-end tag sequencing (ChIA-PET)23. Encouragingly, using the ChIA-PET interactions 28 

of the three widely used cell types (K562, HeLa-S3 and HCT116)24, we observed higher 29 

proportion of validations in scCAT-seq based method (strategy 2 and 3) than that in 30 

scATAC-seq based method (strategy 1) in all 3 cell types (Fig. 2c). These suggest that the 31 

co-variability between CA and GE layers could better reflect higher-order chromatin 32 

structure than co-variability between CREs. One explanation is that regulatory relationships 33 

inferred from scATAC-seq may result from either chromatin interactions or from co-binding 34 

of master TFs without interaction, while those inferred from scCAT-seq could be considered 35 
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 7 

to be “functional” regulatory relationships as include information from both chromatin 1 

interactions and co-binding of master TFs. Therefore, based on the largest number of 2 

validated regulatory relationships, strategy 3 outperformed the other strategies (hereafter, 3 

the “regulatory relationship” indicates those identified only by strategy 3). The distribution of 4 

distance between each pair of peak and gene in all regulatory relationships showed higher 5 

enrichment in proximal regions than distal regions (Supplementary Fig. 3b), suggesting 6 

that GE tends to be regulated by proximal elements which is consistent with earlier 7 

findings25.  8 

 9 

To assess whether the regulatory relationships in each single cell reflect cell type-specific 10 

features, we generated a binary matrix where columns represent single cells, and rows 11 

represent all identified regulatory relationships between accessible sites and genes, and the 12 

entries indicate the on or off state of each regulatory relationship in each cell. We applied a 13 

non-negative matrix factorization (NMF) method, implemented in the R package Bratwurst26, 14 

to decompose the matrix into different signatures that could distinguish single cell identities.  15 

As expected, NMF clustering of the regulatory relationships identified signatures containing 16 

numerous cell type-specific regulatory relationships, resulting in clear separation of the 3 17 

cell types (Fig. 2d,e and Supplementary Fig. 3c). For example, SAMSN1 is a known 18 

oncogene, preferentially expressed in the blood cancer, multiple myeloma27. We observed 19 

highly specific regulatory relationships around SAMSN1 in K562, a myelogenous leukemia 20 

cell line (Fig. 2e), revealing a strong association between its expression and accessibility of 21 

CREs. This observation again reconfirmed the importance of epigenetic mechanisms during 22 

progression of tumors. Likewise, we generated regulatory relationship matrix for single cells 23 

from PDX tissues and clustering of the matrix clearly separated these two type of cells (Fig. 24 

2f,g and Supplementary Fig. 3d). Interestingly, we also observed a subpopulation of cells 25 

showing specific regulatory relationships in PDX2 (Fig. 2f,g), likely reflecting the regulatory 26 

heterogeneity present in real tissues.  27 

 28 

Integrated single-cell epigenome and transcriptome maps of human pre-implantation 29 

embryos. 30 

We next explored the potential of scCAT-seq in the characterization of single cell 31 

identities in continuous developmental processes. The human pre-implantation embryo 32 

development is a fascinating time that involves dramatic changes in both chromatin state 33 

and transcriptional activity. However, it has only been investigated at either the chromatin 34 

or the RNA level due to the lack of truly integrative approaches28. By using clinically 35 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2018. ; https://doi.org/10.1101/316208doi: bioRxiv preprint 

https://doi.org/10.1101/316208
http://creativecommons.org/licenses/by-nc/4.0/


 8 

discarded human embryos (Supplementary methods), we generated scCAT-seq profiles 1 

for a total of 110 individual cells, and successfully obtained 29 quality-filtered profiles from 2 

morula stage and 43 from blastocyst stage (success rate 65.5%) (Fig. 3a, Supplementary 3 

Fig. 4a and Supplementary Table 1). To explore the regulation relevant to each stage, we 4 

identified ~100K regulatory relationships and generated a matrix of regulatory relationships 5 

across all single cells as described above. NMF clustering analysis of the matrix showed 6 

separation of all single cells into two main groups (group 1 and 2), corresponding to these 7 

two stages (Fig. 3b). The heatmap of exposure scores to each signature revealed activation 8 

of regulatory relationships of pluripotency markers (such as NANOG and KLF17) in morula, 9 

and trophectoderm (TE) markers (such as CDX2 and GATA3) in blastocyst stage28 (Fig. 10 

3b,c and Supplementary Fig. 4b,c), which strongly suggests that the expression of these 11 

markers is activated/maintained by epigenomic states28. 12 

 13 

The transition between cell fates largely depends on TFs, which bind to CREs and recruit 14 

chromatin modifiers to reconfigure chromatin structure15. Single-cell chromatin accessibility 15 

data provides a great opportunity to find the key TFs in individual cells10, 17. However, TFs 16 

of the same family often share similar motifs, which makes it difficult to determine the key 17 

TFs of functional specificity. Previous efforts have proposed computational algorithms to 18 

integrate CA and GE data, but the accuracy remains uncertain because the analyses are 19 

based on separate multi-omics datasets16, 17.  20 

 21 

We reasoned that functionally relevant master TFs in each cell type should be determined 22 

by integrated omics data obtained by scCAT-seq. We applied chromVAR29, a method for 23 

inferring TF accessibility with single cell CA data, to compute the deviations of known TFs 24 

across all single cells. This method identified TF motifs with high variances (Supplementary 25 

Fig. 4d), dividing all single cells into two main groups (Supplementary Fig. 4e), in 26 

agreement with the clustering results on regulatory relationships (Fig. 3b). We observed 27 

that motifs from the POU-Homebox, SOX-HMG and KLF-zf families showed high deviation 28 

score in cells of the group 1, while motifs from GATA-zf and GRHL-CP2 families showed a 29 

high deviation score in cells of the group 2 (Fig. 3d). To determine the master TF from each 30 

family, we next integrated the expression level of these TFs. Interestingly, we found that the 31 

well-known pluripotency factors (such as NANOG, POU5F1, SOX2, KLF4, TBX4), as well 32 

as early markers (such as KLF17), both showed relatively high levels of CA and GE in cells 33 

of the group 1, whereas other TFs of the same families (such as POU3F1, SOX5, KLF7 and 34 

TBX1) showed opposite trends (Fig. 3d). These results are highly consistent with the 35 
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 9 

features of the pluripotent morula cells, which are the main component of group 1. We also 1 

found GATA3, but not GATA4 and GATA6, to show a specific role in the group 2, which 2 

contains cells from the blastocyst stage. This is in agreement with the important role of 3 

GATA3 during differentiation of trophoblast30. In addition, we also observed similar results 4 

from other TFs of the same families, such as SOX9, HOXD4, MEF2C and GRHL1, 5 

suggesting they likely playing critical roles in these two groups (Fig. 3d). Overall, these 6 

results suggest that our integrated method could increase the power of discovery of 7 

functionally relevant TFs at single-cell resolution.     8 

 9 

The blastocyst stage consists of inner cell mass (ICM) and TE lineages. During the 10 

maturation of blastocysts, the ICM segregates into pluripotent epiblast (EPI) and primitive 11 

endoderm (PE) cells31. The number and size of ICM cells vary across blastocysts, and is 12 

important for the grading of embryos that determine the success of implantation32. Notably, 13 

the clustering of both regulatory relationships and TF accessibility deviation showed that 3 14 

(#504, #539, #522) out of the 43 blastocyst cells are similar to morula cells (Fig. 3b). This 15 

reveals the pluripotency feature of these 3 single cells in the blastocyst stage and suggests 16 

that they might be from ICM cells (hereafter termed ICM-like cells). This result is also 17 

supported by our data based on immunostaining in a human blastocyst embryo, which 18 

showed a comparable small proportion using the known, lineage-specific markers NANOG 19 

(EPI), SOX17 (PE) (Fig. 3e). 20 

 21 

We next sought to validate the ICM-like cells by molecular features based on their two omics 22 

signatures. It is known that OCT4 is initially expressed in all cells within the ICM, and 23 

becomes restricted to the EPI in the late blastocyst31. Interestingly, although OCT4 was not 24 

a general marker of the blastocyst stage (Fig. 3d), it has a higher deviation score in the 3 25 

single cells compared to other cells in the blastocyst (Supplementary Fig. 4f). Notably, 2 26 

of them (#504 and #539) showed even higher deviations from the other single cell (#522) 27 

(Supplementary Fig. 4f), which may describe the segregation into EPI (#504 and #539) 28 

and PE (#522) lineages (hereafter termed “EPI-like” and “PE-like” cells).  29 

 30 

We next attempted to support this hypothesis by identifying the key TFs in the EPI- or PE-31 

like cells. Encouragingly, in addition to enrichment of OCT4, we also observed specific 32 

enrichment of the well-known EPI specific regulators, such as NANOG, and KLF17, in EPI-33 

like cells (Fig. 3f), while the PE-like cell showed high activity of the well-known PE 34 

regulators, such as SOX17, HNF1B and FOXA2 (Fig. 3f). The other members of the same 35 
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families (such as SOX9, FOXA1 and HNF1A) are not likely to be the key regulators because 1 

of the inconsistent patterns of CA and GE. Further supporting this conclusion, the well-2 

known non-TF markers were also found to be highly specific to each cell type, including 3 

GDF3, TGDF1, DPPA2, DPPA5, ARGFX in EPI-like cells and BMP2, PDGFRA, FN1, 4 

COL4A1 and LINC00261 in PE-like cells33 (Fig. 3f). Although the EPI- and PE-like cells are 5 

similar to morula cells, the above markers tend to be transcriptionally active in EPI- or PE-6 

like cells based on CA and GE profiles. (Supplementary Fig. 4g,h), suggesting distinct 7 

pluripotent states in the morula and blastocyst stages. Taken together, these results indicate 8 

that our integrated approach can faithfully identify the two distinct subtypes from the same 9 

origin. The robustness of scCAT-seq in the precise definition of single-cell identities would 10 

be particularly useful for characterization of cells that are rare within complex cell 11 

populations.   12 

 13 

In summary, our work demonstrates that scCAT-seq is able to provide high resolution 14 

epigenomic and transcriptomic portraits of individual cells. We showed that the accessibility 15 

levels of both regulatory elements and particular TFs are positively correlated with the GE 16 

program. This provides a highly relevant insight into regulatory relationships, one which is 17 

not possible based on individual omics profiles. We proposed a method to establish 18 

regulatory relationships by linking CREs to the putative target genes, resulting in a larger 19 

numbers of high-confidence regulatory interactions compared to state-of-the-art methods. 20 

The cell-specific regulatory relationship is a new feature that enables the direct discovery of 21 

gene centered 3D regulatory patterns in certain cell populations, thus providing the basis for 22 

a more comprehensive study of regulatory mechanisms at the single cell level. Moreover, 23 

we generated the first integrated single cell epigenomic and transcriptomic maps during pre-24 

implantation embryo development. The robustness of scCAT-seq in the characterization of 25 

distinct cell states reveals the great potential of scCAT-seq in faithful identification of new 26 

cell types in complex cell populations, which enables a better understanding of 27 

developmental abnormalities caused by either genomic variants or environmental 28 

influences. Overall, we show that scCAT-seq is a highly promising tool for the joint study of 29 

multimodal data of single cells, paving the way to a thorough assessment of regulatory 30 

heterogeneity in a variety of clinical applications including pre-implantation screening. 31 
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Figure 1. scCAT-seq provides an accurate genome-wide measure of both 

chromatin accessibility and gene expression. (a) Overview of the scCAT-seq 

protocol. (b) Top panel: chromatin accessibility read enrichment around the 

transcription start site (TSS). Bottom panel: coverage of mRNA reads along the 

body of transcripts. Titration series (one single-cell, 5 cells, 50 cells, 500 cells) 

were marked by the indicated colours. All profiles were generated using the 

scCAT-seq protocol with the indicated number of cells as input. (c) A 

representative region showing a consistent pattern of chromatin accessibility 

and gene expression across datasets generated using different number of input 

cells. The bulk ATAC-seq track was generated using 50,000 K562 cells. The 

DNase-seq and bulk RNA-seq data of K562 cells were downloaded from 

ENCODE. The scCAT-seq tracks are chromatin accessibility (upper) and gene 

expression read density (bottom) from a total of 74 K562 single cells. (d) Top 

panel: mean chromatin accessibility read density around regions that are 

enriched by the indicated individual or combined histone modifications. Bottom 

panel: mean expression level of genes associated with regions that are 

enriched by the indicated individual or combined histone modifications. (e) Top 

panel: mean chromatin accessibility read density within regions that are bound 

by the indicated transcription factors. Bottom panel: mean expression level of 

genes associated with regions that are bound by the indicated transcription 

factors.  
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Figure 2. Inferring regulatory relationships between CREs and genes by 

scCAT-seq. (a) Overview of three strategies for inferring regulatory 

relationships. Strategy 1: regulatory links for every gene were assigned when 

the Spearman correlation of the signal of peaks located at the promoter and 

distal peaks was above 0.25. Strategy 2: the regulatory links were assigned if 

the Spearman correlation between the gene expression and the signal of distal 

peaks was above 0.25. Strategy 3: active transcription factors for every cell 

were identified by SCENIC, then active regions were identified by matching the 

binding motifs of active transcription factors to accessible regions. Then 

regulatory relationships were assigned after applying a Wilcoxon test to 

determine if the presence of a nearby active accessible region was associated 

with a significant change in the target gene expression (p-value < 0.05). (b) 

Venn plot showing the number of overlapping regulatory relationships identified 

by the three strategies. (c) Proportion of ChIA-PET validated regulatory 

relationships identified by the three strategies in K562 (left), HeLa-S3 (middle) 

and HCT116 (right) single cells. (d and f) Heatmaps showing exposure scores 

of all cells to each signature identified by the NMF clustering of regulatory 

relationship binary matrix in cell lines (d) and PDX (f). The exposure score 

represents the contributions of the signatures to the different samples. (e and 

g) Regulatory relationships for the indicated genes in single cell groups of the 

cell lines (e) and PDX2 (g). Each panel contains three tracks: the top track 

shows the regulatory relationship between one peak and the gene (linking them 

with an arch), where the height and colour of the arch show the proportion of 

cells that share the regulatory relationships; the middle track shows the 

genomic location of the gene and the associated peaks, where the colour of the 

gene shows the mean expression in each cell type; the bottom track shows the 

accessible states (on and off) for each peak in each single cell.  
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Figure 3. scCAT-seq enables precise characterization of single cell identities 

in human pre-implantation embryos. (a) A workflow showing the generation of 

scCAT-seq profiles of human pre-implantation embryos. (b) Heatmap showing 

exposure scores of all cells to each signature identified by the NMF clustering 

of regulatory relationship binary matrix of human embryos. Example genes are 

shown. (c) Regulatory relationships for the indicated genes in single cells of the 

morula and blastocyst stage. (d) Heatmaps showing accessibility deviation 

(left) and expression level (right) of the indicated TFs. The TFs coloured in 

green were the ones showing consistent patterns in accessibility and gene 

expression. (e) Immunofluorescence imaging of human morula- and blastocyst-

stage embryos using the indicated antibodies (left to right: NANOG, SOX17 and 

merged DAPI/NANOG/SOX17). (f) Top and middle panel: Heatmaps showing 

the accessibility deviation (top) and expression level (middle) of the indicated 

TFs in single cells of blastocyst-stage embryos. Bottom panel: heatmap 

showing the expression level of the indicated genes. The TFs coloured in green 

were the ones showing consistent patterns in accessibility and gene 

expression. 
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Supplementary Figure 1 
Quality metrics of scCAT-seq data. (a) qPCR amplification curve using 

materials in the bottom of wells after the separation step of the scCAT-seq 

protocol. Wells containing 0, 1 and 500 cells were analyzed. After the 

separation step the materials were amplified for 8 cycles using primers targeting 

the Tn5 adaptor. The PCR product was then purified and amplified by qPCR 

using primers targeting an accessible region in the human genome. (b) K562 

scCAT-seq profiles were quality-filtered according to the number of fragments, 

proportion of fragments within accessible regions and detected gene numbers. 

(c) Bar plot showing the number of usable fragment at the indicated sequencing 

depths (d) Proportion of the duplicate fragments of all K562 single cells at the 

sequencing depth of 400 kb. (e) Size distribution of chromatin accessibility 

fragments from an example of K562 single cell. (f) Percentage of the single cell 

chromatin accessibility fragments mapped to each nuclear chromosome and 

the mitochondrial genome. (g) Correlation of chromatin accessibility between 

aggregate chromatin accessibility profiles and CAT-seq profile of 500 cells. (h) 

Comparison of number of usable chromatin accessibility fragments (left), 

proportion of fragments within the accessible regions (middle) and Pearson 

correlation coefficients (right) between scCAT-seq and published scATAC-seq 

profiles. The peaks indicated in middle panel are called based on aggregate 

profiles. (i) Correlation between aggregate gene expression profiles of all single 

cells and gene expression profiles generated from 500 cells. (j) Comparison of 

the number of detected genes between scCAT-seq and published scRNA-seq 

profiles. 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2018. ; https://doi.org/10.1101/316208doi: bioRxiv preprint 

https://doi.org/10.1101/316208
http://creativecommons.org/licenses/by-nc/4.0/


Supplementary Figure 2
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Supplementary Figure 2 

Principle components analysis across diverse techniques and different batches 

of scCAT-seq profiles. (a and c) Principle components analysis of different 

batches of scCAT-seq-generated chromatin accessibility data and published 

datasets. (b and d) Principle components analysis of different batches of 

scCAT-seq-generated gene expression data and published datasets. 
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Supplementary Figure 3 

scCAT-seq uncovers the regulatory relationships between CREs and genes. (a) 

Correlation analysis between chromatin accessibility of individual element and 

the putative gene expression in K562 single cells and hypothetical cell 

population from the three cell lines. Shown are Pearson correlation coefficients 

versus the Benjamini-Hochberg adjusted p-value. Significant relationships 

(adjusted p-value <= 0.05) are above the red dotted line. (b) Bar plot showing 

the density distribution of distances between CREs and genes in regulatory 

relationships (red) and random relationships (blue) (c-d) Regulatory 

relationships for the indicated genes in single cells of the three cell types (c) 

and two PDX tissues (d). 
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Supplementary Figure 4 

Integrated profiling of chromatin accessibility and gene expression in human 

pre-implantation embryos. (a) Morula and blastocyst scCAT-seq profiles were 

quality-filtered according to the number of fragments, proportion of fragments 

within promoter regions and detected gene number. (b) Regulatory 

relationships for the indicated genes in single cells of morula and blastocyst 

stage. (c) Genome browser views of chromatin accessibility and gene 

expression surrounding the indicated genes. (d) Observed cell-to-cell variability 

of TFs. TF families and motifs are indicated. (e) t-SNE plot of TF motif 

accessibility deviation, colored by the stage of all single cells. (f) t-SNE plot 

colored by accessibility deviation z-score of POU5F1 motif. The three 

blastocyst cells that are closed to the morula cells are highlighted with the black 

arrows. (g) Heatmaps showing accessibility deviation (left) and expression level 

(right) of the indicated TFs. 
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