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Abstract

Integrative analysis of multi-omics layers at single cell level is critical for accurate dissection
of cell-to-cell variation within certain cell populations. Here we report scCAT-seq, a
technique for simultaneously assaying chromatin accessibility and the transcriptome within
the same single cell. We show that the combined single cell signatures enable accurate
construction of regulatory relationships between cis-regulatory elements and the target
genes at single-cell resolution, providing a new dimension of features that helps direct
discovery of regulatory patterns specific to distinct cell identities. Moreover, we generated

the first single cell integrated maps of chromatin accessibility and transcriptome in human
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pre-implantation embryos and demonstrated the robustness of scCAT-seq in the precise
dissection of master transcription factors in cells of distinct states during embryo
development. The ability to obtain these two layers of omics data will help provide more
accurate definitions of “single cell state” and enable the deconvolution of regulatory

heterogeneity from complex cell populations.

The rapid proliferation of single cell sequencing technologies has greatly improved our
understanding of heterogeneity in terms of genetic, epigenetic and transcriptional regulation
within cell populations’. We, and others, have developed single-cell whole genome?,
exome® 4, methylome® and transcriptome® ’ technologies and applied these approaches to
analyzing the complexity of cell populations in tumorigenesis, developmental process and
cellular reprogramming®. Meanwhile, single-cell epigenome techniques, including single cell
ChlIP-seq®, ATAC-seq'” ", DNase-seq'? and Hi-C'> ', have been developed to decipher
histone modifications, transcription factor (TF) accessibility landscapes, and 3D chromatin
contacts, respectively, in single cells. These techniques provide important information on

regulatory heterogeneity by assessing chromatin structure across various cell types.

Measuring the epigenomic and transcriptomic characteristics of single cells is important for
understanding the maintenance and conversion of cell fates, as well as manipulating cell
fates into different lineages'®. The regulation of these processes involves sequential events
including the binding of TFs to cis-regulatory elements (CREs) and the recruitment of
chromatin regulators, resulting in changes of chromatin structure and activation or
repression of cell type specific genes15. Single-cell ATAC-seq and RNA-seq represent a
great opportunity to study how TFs and epigenomic features induce transcriptional
outcomes that influence cell fate determinations. For example, combined analyses of
datasets by these two approaches have enabled characterization of subtypes in mouse
tissues'® or during human hematopoietic differentiation’’. However, it still remains
challenging to integrate the two approaches experimentally in individual cells, thus
hampering a full understanding of regulatory association between these two layers. Here,
we present scCAT-seq (single-cell chromain accessibility and transcriptome sequencing),
a technique that integrates single-cell ATAC-seq and RNA-seq to measure chromatin
accessibility (CA) and gene expression (GE) simultaneously in single cells. scCAT-seq
employs a mild lysis approach and a physical dissociation strategy to separate the nucleus
and cytoplasm of each single cell. Thereafter, the supernatant cytoplasm component is

subjected to the Smart-seq2 method as described previously’. The precipitated nucleus is
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then subjected to a TnS transposase-based and carrier DNA-mediated protocol to amplify
the fragments within accessible regions (Fig. 1a and Supplementary Methods). Beyond
parallel CA and GE profiling in the same single cell, scCAT-seq will be particularly useful for

analyzing samples when the amount of input material is limited.

Results
Simultaneous profiling of accessible chromatin and gene expression in single cells.
We applied scCAT-seq to the K562 chronic myelogenous leukemia cell line, which has
been widely used in the ENCODE project. We sorted single cell and multi-cell samples (e.g.,
500 cells) into wells of 96-well plates using flow cytometry. Empty wells were used as
negative control. Samples were then processed using the scCAT-seq protocol. qPCR
analysis confirmed the successful capture of single cell nuclei during library preparation
(Supplementary Fig. 1a). We generated combined CA and GE profiles from a total of 192
samples. Of the 176 single cell profiles, 74 (42.0%) of them passed both CA and GE data
quality control criteria (Supplementary Fig. 1b and Supplementary Methods).

For scCAT-seq-generated CA data, we obtained an average of 2.1 x 10° uniquely mapped,
usable fragments from single cells (Supplementary Table 1 and Supplementary Fig.
1c,d). Similar to bulk ATAC-seq'®, the CA fragments show fragment-size periodicity
corresponding to integer multiples of nucleosomes (Supplementary Fig. 1e) and are
strongly enriched on accessible regions (Fig. 1b and Supplementary Table 1). We found
that about 9% of the fragments were mapped to the mitochondrial genome (Supplementary
Fig. 1f) which is largely reduced in comparison to standard bulk ATAC-seq studies (typically
over 30%)'®. Pearson correlation analyses revealed our single-cell profiles could reproduce
features of bulk profiles (Supplementary Fig. 1g). In comparison to the published scATAC-

seq profiles by Buenrostro et al.™

, we obtained a higher number of usable fragments per
single cell but with lower signal-to-noise ratio (Supplementary Fig. 1h). However, the
correlation between single cells increases remarkably (Supplementary Fig. 1h), suggesting

that scCAT-seq is able to capture the chromatin features more accurately.

For mRNA data generated by scCAT-seq, we obtained an average of 4.6 million reads
covering over 8000 genes (GENCODE v19, TPM > 1), which is comparable to published
scRNA-seq profiles by Pollen et al.'® (Supplementary Fig. 1j and Supplementary Table
1). Consistent with published Smart-seq profiles, our mRNA data showed full coverage of

the transcript body (Fig. 1b), enabling identification of transcript isoforms and not merely
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gene expression quantification. The aggregate profile was close to the RNA-seq profile
obtained from 500 cells (Pearson correlation value > 0.9, Supplementary Fig. 1i),
suggesting that scCAT-seq is able to accurately quantify GE of single cells. The density of
CA and GE reads of all single cells surrounding a constitutively accessible region showed
that scCAT-seq data recapitulate major features obtained by separately performed bulk
ATAC-seq and RNA-seq (Fig. 1c).

GE regulation is associated with the structure of the CREs (e.g., histone modifications, DNA
methylation) and the binding of trans-factors (e.g., TFs, epigenetic modifiers)zo. Therefore,
we examined the overall distribution of single-cell CA fragments across different genomic
contexts, as well as the expression levels of the putative regulated genes. We observed that
the CA fragments were enriched at CREs with active histone modifications (e.g., H3K27ac,
H3K9ac and H3K4me3), whereas repressive or inaccessible regions (e.g., H3K27me3 and
H3K36me3-associated regions) showed lower fragment density (Fig. 1d). We also observed
other association patterns between CA and GE. For example, we found low levels of CA
fragments on H3K36me3-associated regions but high levels of GE. This is not surprising
because H3K36me3 is known to be enriched on the active gene body which is occupied by
nucleosomes and rendered inaccessible”. Notably, genes with bivalent marks (co-
enrichment of H3K4me3 or H3K4me1 and H3K27me3) showed similar level of accessibility
as active genes (co-enrichment of H3K4me3 or H3K4me1 and H3K27ac, but lack of
H3K27me3), and both of them showed higher levels of accessibility than inactive genes
(enrichment of H3K27me3, but not H3K27ac, H3K4me1 and H3K4me3). Conversely, the
expression levels of bivalent genes were remarkably lower than active genes and were
similar to those of inactive genes. We also investigated the distribution of CA fragments
across genomic contexts bound by different TFs and found an overall consistent pattern
between CA and GE level. Notably, we observed substantial decrease of expression levels
of genes associated with binding of EZH2 while the accessibility level showed just a
moderate change (Fig. 1e). This pattern is similar to that of bivalent genes and is consistent
with the role of EZH2 which, as part of the repressive polycomb complex, catalyzes
H3K27me3. Thus, the combined signatures from scCAT-seq well reflect known processes
well and are useful to assess the transcriptional state of genes within different genomic
contexts. This approach is undoubtedly of high value for many biological applications, for
example, studying the heterogeneous transition of bivalent genes during development or

cellular reprogramming.
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We further validated our approach by generating different batches of scCAT-seq profiles
from two additional ENCODE cell lines: HelLa-S3 cervix adenocarcinoma and HCT116
colorectal carcinoma cell lines (Supplementary Table 1). To test the feasibility of sScCAT-
seq in real tissue samples, we also generated profiles from two lung cancer patient-derived
xenograft (PDX) models (Supplementary Table 1). One is derived from a moderately
differentiated squamous cell carcinoma patient (PDX1) and the other one from a large-cell
lung carcinoma patient (PDX2). Principal components analysis (PCA) on both CA and GE
profiles resulted in separation of cells from different origin (Supplementary Fig. 2a,b). A
comparison of our datasets with published profiles revealed that the differences across
protocols and batches had a substantially smaller effect than difference across cell types

(Supplementary Fig. 2c,d).

Establishment of regulatory relationships between CREs and genes in single cells.

Next, we explored the dynamic associations between the two omics layers across single
cells. We first tested the correlation between accessibility level of single CREs and their
expression of the putative target genes in each of the three cell lines, and the hypothetical
cell population merged from them. As expected, we identified remarkably more positive
correlations (Pearson correlation > 0; FDR < 10%) than negative correlations
(Supplementary Fig. 3a), which is consistent with the known relationship between CA and
GE in bulk profiles?".

An earlier study showed the co-variability of accessibility between CREs across single cells
defines regulatory domains highly concordant with observed chromosome compartments,
which provides an alternative approach to the discovery of regulatory links'®. However, it
still remains impossible to directly infer the transcriptional outcomes of each chromatin
accessible region. Given the overall positive correlation between CA and GE, we reasoned
that the co-variability between accessibility of individual elements and expression of genes
could enhance discovery of regulatory links that influence transcription. To this end, while
employing the reported strategy using scATAC-seq'® (strategy 1, Fig. 2a), we proposed two
additional strategies for inferring regulatory relationships (strategy 2 and 3, Fig. 2a). For
strategy 1 and 2, regulatory relationships between chromatin accessible regions and target
genes were identified based on scATAC-seq and scCAT-seq data, respectively. Based on
scATAC-seq data, regulatory relationships for every gene were assigned when the
Spearman correlation of the accessibility of CREs located at the promoter and distal peaks

was above 0.25 (strategy 1, Fig. 2a and Supplementary Methods). Likewise, for the
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scCAT-seq data, the regulatory links were assigned if the Spearman correlation between
the GE and the accessibility of distal CREs was above 0.25 (strategy 2, Fig. 2a and
Supplementary Methods). However, these regulatory relationships are defined across all
cells. In order to more accurately depict the regulatory relationship between chromatin and
genes, in strategy 3, single-cell-specific regulatory relationships between genes and their
nearby accessible regions were assigned using the scCAT-seq data as follows: i)
identification of active TFs for every cell by SCENIC?? using the normalized GE matrix; ii)
identification of active accessible regions by matching the binding motifs of active TFs to
accessible chromatin regions; and iii) assignment of regulatory relationships after applying
a Wilcoxon test to determine if the presence of a nearby active accessible region was
associated with a significant change in the target GE (p-value < 0.05) (Fig. 2a and

Supplementary Methods).

By applying the 3 strategies to single cells of the 3 cell lines, we found that strategy 3
identified the largest number of regulatory relationships (62,769), compared to strategy 1
(46,813) and strategy 2 (21,219) (Fig. 2b). Over 1/3 of the regulatory relationships from
SCATAC-seq based method (strategy 1) were shared by those from scCAT-seq based
method (strategy 2 and 3), suggesting strong synergistic effects between regulation at
chromatin and transcriptome levels. Nevertheless, although a similar correlation approach
was used in strategies 1 and 2, strategy 2 identified a lower number of regulatory
relationships, suggesting a possible decoupling between accessibility at the promoter and
the expression of the gene. Notably, we also observed a large fraction of regulatory
relationships specifically identified by each method, which suggests that different

information can be obtained from single-omics and combined analysis.

To assess the accuracy of the regulatory links inferred by each method, we next counted
the regulatory relationships that could be verified by chromatin interaction analysis by
paired-end tag sequencing (ChlA-PET)?. Encouragingly, using the ChIA-PET interactions
of the three widely used cell types (K562, HeLa-S3 and HCT116)**, we observed higher
proportion of validations in scCAT-seq based method (strategy 2 and 3) than that in
scATAC-seq based method (strategy 1) in all 3 cell types (Fig. 2c). These suggest that the
co-variability between CA and GE layers could better reflect higher-order chromatin
structure than co-variability between CREs. One explanation is that regulatory relationships
inferred from scATAC-seq may result from either chromatin interactions or from co-binding

of master TFs without interaction, while those inferred from scCAT-seq could be considered
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to be “functional” regulatory relationships as include information from both chromatin
interactions and co-binding of master TFs. Therefore, based on the largest number of
validated regulatory relationships, strategy 3 outperformed the other strategies (hereafter,
the “regulatory relationship” indicates those identified only by strategy 3). The distribution of
distance between each pair of peak and gene in all regulatory relationships showed higher
enrichment in proximal regions than distal regions (Supplementary Fig. 3b), suggesting
that GE tends to be regulated by proximal elements which is consistent with earlier

findings?°.

To assess whether the regulatory relationships in each single cell reflect cell type-specific
features, we generated a binary matrix where columns represent single cells, and rows
represent all identified regulatory relationships between accessible sites and genes, and the
entries indicate the on or off state of each regulatory relationship in each cell. We applied a
non-negative matrix factorization (NMF) method, implemented in the R package Bratwurst®®,
to decompose the matrix into different signatures that could distinguish single cell identities.
As expected, NMF clustering of the regulatory relationships identified signatures containing
numerous cell type-specific regulatory relationships, resulting in clear separation of the 3
cell types (Fig. 2d,e and Supplementary Fig. 3c). For example, SAMSN17 is a known
oncogene, preferentially expressed in the blood cancer, multiple myeloma®’. We observed
highly specific regulatory relationships around SAMSN1 in K562, a myelogenous leukemia
cell line (Fig. 2e), revealing a strong association between its expression and accessibility of
CREs. This observation again reconfirmed the importance of epigenetic mechanisms during
progression of tumors. Likewise, we generated regulatory relationship matrix for single cells
from PDX tissues and clustering of the matrix clearly separated these two type of cells (Fig.
2f,g and Supplementary Fig. 3d). Interestingly, we also observed a subpopulation of cells
showing specific regulatory relationships in PDX2 (Fig. 2f,g), likely reflecting the regulatory

heterogeneity present in real tissues.

Integrated single-cell epigenome and transcriptome maps of human pre-implantation
embryos.

We next explored the potential of scCAT-seq in the characterization of single cell
identities in continuous developmental processes. The human pre-implantation embryo
development is a fascinating time that involves dramatic changes in both chromatin state
and transcriptional activity. However, it has only been investigated at either the chromatin

or the RNA level due to the lack of truly integrative approaches®. By using clinically
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discarded human embryos (Supplementary methods), we generated scCAT-seq profiles
for a total of 110 individual cells, and successfully obtained 29 quality-filtered profiles from
morula stage and 43 from blastocyst stage (success rate 65.5%) (Fig. 3a, Supplementary
Fig. 4a and Supplementary Table 1). To explore the regulation relevant to each stage, we
identified ~100K regulatory relationships and generated a matrix of regulatory relationships
across all single cells as described above. NMF clustering analysis of the matrix showed
separation of all single cells into two main groups (group 1 and 2), corresponding to these
two stages (Fig. 3b). The heatmap of exposure scores to each signature revealed activation
of regulatory relationships of pluripotency markers (such as NANOG and KLF17) in morula,
and trophectoderm (TE) markers (such as CDX2 and GATA3) in blastocyst stage?® (Fig.
3b,c and Supplementary Fig. 4b,c), which strongly suggests that the expression of these

markers is activated/maintained by epigenomic states?.

The transition between cell fates largely depends on TFs, which bind to CREs and recruit
chromatin modifiers to reconfigure chromatin structure'. Single-cell chromatin accessibility
data provides a great opportunity to find the key TFs in individual cells'® . However, TFs
of the same family often share similar motifs, which makes it difficult to determine the key
TFs of functional specificity. Previous efforts have proposed computational algorithms to
integrate CA and GE data, but the accuracy remains uncertain because the analyses are

based on separate multi-omics datasets'® ",

We reasoned that functionally relevant master TFs in each cell type should be determined
by integrated omics data obtained by scCAT-seq. We applied chromVAR?®, a method for
inferring TF accessibility with single cell CA data, to compute the deviations of known TFs
across all single cells. This method identified TF motifs with high variances (Supplementary
Fig. 4d), dividing all single cells into two main groups (Supplementary Fig. 4e), in
agreement with the clustering results on regulatory relationships (Fig. 3b). We observed
that motifs from the POU-Homebox, SOX-HMG and KLF-zf families showed high deviation
score in cells of the group 1, while motifs from GATA-zf and GRHL-CP2 families showed a
high deviation score in cells of the group 2 (Fig. 3d). To determine the master TF from each
family, we next integrated the expression level of these TFs. Interestingly, we found that the
well-known pluripotency factors (such as NANOG, POUSF1, SOX2, KLF4, TBX4), as well
as early markers (such as KLF17), both showed relatively high levels of CA and GE in cells
of the group 1, whereas other TFs of the same families (such as POU3F1, SOX5, KLF7 and
TBX1) showed opposite trends (Fig. 3d). These results are highly consistent with the
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features of the pluripotent morula cells, which are the main component of group 1. We also
found GATA3, but not GATA4 and GATAG, to show a specific role in the group 2, which
contains cells from the blastocyst stage. This is in agreement with the important role of
GATAS3 during differentiation of trophoblast®. In addition, we also observed similar results
from other TFs of the same families, such as SOX9, HOXD4, MEF2C and GRHL1,
suggesting they likely playing critical roles in these two groups (Fig. 3d). Overall, these
results suggest that our integrated method could increase the power of discovery of

functionally relevant TFs at single-cell resolution.

The blastocyst stage consists of inner cell mass (ICM) and TE lineages. During the
maturation of blastocysts, the ICM segregates into pluripotent epiblast (EPI) and primitive
endoderm (PE) cells®". The number and size of ICM cells vary across blastocysts, and is
important for the grading of embryos that determine the success of implantation?. Notably,
the clustering of both regulatory relationships and TF accessibility deviation showed that 3
(#504, #539, #522) out of the 43 blastocyst cells are similar to morula cells (Fig. 3b). This
reveals the pluripotency feature of these 3 single cells in the blastocyst stage and suggests
that they might be from ICM cells (hereafter termed ICM-like cells). This result is also
supported by our data based on immunostaining in a human blastocyst embryo, which
showed a comparable small proportion using the known, lineage-specific markers NANOG
(EPI), SOX17 (PE) (Fig. 3e).

We next sought to validate the ICM-like cells by molecular features based on their two omics
signatures. It is known that OCT4 is initially expressed in all cells within the ICM, and
becomes restricted to the EPI in the late blastocyst'. Interestingly, although OCT4 was not
a general marker of the blastocyst stage (Fig. 3d), it has a higher deviation score in the 3
single cells compared to other cells in the blastocyst (Supplementary Fig. 4f). Notably, 2
of them (#504 and #539) showed even higher deviations from the other single cell (#522)
(Supplementary Fig. 4f), which may describe the segregation into EPI (#504 and #539)
and PE (#522) lineages (hereafter termed “EPI-like” and “PE-like” cells).

We next attempted to support this hypothesis by identifying the key TFs in the EPI- or PE-
like cells. Encouragingly, in addition to enrichment of OCT4, we also observed specific
enrichment of the well-known EPI specific regulators, such as NANOG, and KLF17, in EPI-
like cells (Fig. 3f), while the PE-like cell showed high activity of the well-known PE
regulators, such as SOX17, HNF1B and FOXA2 (Fig. 3f). The other members of the same
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families (such as SOX9, FOXA1 and HNF1A) are not likely to be the key regulators because
of the inconsistent patterns of CA and GE. Further supporting this conclusion, the well-
known non-TF markers were also found to be highly specific to each cell type, including
GDF3, TGDF1, DPPA2, DPPA5, ARGFX in EPI-like cells and BMP2, PDGFRA, FN1,
COL4A1 and LINC00261 in PE-like cells® (Fig. 3f). Although the EPI- and PE-like cells are
similar to morula cells, the above markers tend to be transcriptionally active in EPI- or PE-
like cells based on CA and GE profiles. (Supplementary Fig. 4g,h), suggesting distinct
pluripotent states in the morula and blastocyst stages. Taken together, these results indicate
that our integrated approach can faithfully identify the two distinct subtypes from the same
origin. The robustness of scCAT-seq in the precise definition of single-cell identities would
be particularly useful for characterization of cells that are rare within complex cell

populations.

In summary, our work demonstrates that scCAT-seq is able to provide high resolution
epigenomic and transcriptomic portraits of individual cells. We showed that the accessibility
levels of both regulatory elements and particular TFs are positively correlated with the GE
program. This provides a highly relevant insight into regulatory relationships, one which is
not possible based on individual omics profiles. We proposed a method to establish
regulatory relationships by linking CREs to the putative target genes, resulting in a larger
numbers of high-confidence regulatory interactions compared to state-of-the-art methods.
The cell-specific regulatory relationship is a new feature that enables the direct discovery of
gene centered 3D regulatory patterns in certain cell populations, thus providing the basis for
a more comprehensive study of regulatory mechanisms at the single cell level. Moreover,
we generated the first integrated single cell epigenomic and transcriptomic maps during pre-
implantation embryo development. The robustness of scCAT-seq in the characterization of
distinct cell states reveals the great potential of sScCCAT-seq in faithful identification of new
cell types in complex cell populations, which enables a better understanding of
developmental abnormalities caused by either genomic variants or environmental
influences. Overall, we show that scCAT-seq is a highly promising tool for the joint study of
multimodal data of single cells, paving the way to a thorough assessment of regulatory

heterogeneity in a variety of clinical applications including pre-implantation screening.
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Figure 1. scCAT-seq provides an accurate genome-wide measure of both
chromatin accessibility and gene expression. (a) Overview of the scCAT-seq
protocol. (b) Top panel: chromatin accessibility read enrichment around the
transcription start site (TSS). Bottom panel: coverage of mMRNA reads along the
body of transcripts. Titration series (one single-cell, 5 cells, 50 cells, 500 cells)
were marked by the indicated colours. All profiles were generated using the
scCAT-seq protocol with the indicated number of cells as input. (c) A
representative region showing a consistent pattern of chromatin accessibility
and gene expression across datasets generated using different number of input
cells. The bulk ATAC-seq track was generated using 50,000 K562 cells. The
DNase-seq and bulk RNA-seq data of K562 cells were downloaded from
ENCODE. The scCAT-seq tracks are chromatin accessibility (upper) and gene
expression read density (bottom) from a total of 74 K562 single cells. (d) Top
panel: mean chromatin accessibility read density around regions that are
enriched by the indicated individual or combined histone modifications. Bottom
panel: mean expression level of genes associated with regions that are
enriched by the indicated individual or combined histone modifications. (e) Top
panel: mean chromatin accessibility read density within regions that are bound
by the indicated transcription factors. Bottom panel: mean expression level of
genes associated with regions that are bound by the indicated transcription

factors.


https://doi.org/10.1101/316208
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/316208; this version posted October 31, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

. available under aCC-BY-NC 4.0 International license.
Figure 2
d

Strategy 1, scATAC correlation: / Strategy 3, scCAT based regulatory relationships: \
Cells Promoter Identify acti Match bindi tifs of acti Regulatory relationship assigned if:
Distal H Dist ., Distal peaks entify active atch binding motifs of active « Peak i ibl
L o T A § TFs in each cell > TFs to ATAC-seq peaks > .Mzetzcr::da%::eisss;c:ve
P - T % 62 « Associated with change in gene expression
; E E éeel:l:é ﬁ-g' ((q, /N ”TTC L ACC CA” - Cells
e <
B W Cit | aac) TF;"& 5 LA_LL_ ‘ A A da LL
B M Celin/ sCATAC ol . ‘e'“’r ” [EHTETD>
) e correlation e <¢ 7, =
- & 5 EN e e mocent & N gt
s |:| .‘C'em% Chowm hom 1 mm ocen2 RN canz
. 8
6§£Etegy 2, scCAT correlation: "l’.‘ “hen b1 mm cel3 Y cars
Cell3,
Promoter "“v _em i mocela N cela
2 i ‘ Distal peaks : :
é - » 4 BT T | — L.LCeII n A Celln
g BE B OEEE EE e
oot ey 9 A J
=t G—y
SCATA!
P S Celin / scRNA b C
& L A comelaion | Ragylatory relationships ChIA-PET validated interacting regions
Gene eip’[‘esﬁlon Peak zﬁnal HeI a 83 HCT116
k LOM
Strategy3
36522

02 0.15
0.10
"l

[l Strategy1 [Jjj Strategy2 [ Strategy3

Regulatory relationship binary matrix 10279
Different cell types

Proportion of recovered
mteractlng reglons

Exposure
80000
60000 e
40000 SAMSN1 NPR3  ESRP1 PDX 2
20000 100
0 « .
Type < 075 - PLEK?2 GAPT3
=
RS G
s e 025 - ﬂ
0 S
Gene = ! IH ! H ! I i
1.00 = . .
[30]
Cfl) 0.75 =
f . % 050 -
PDX tissues D o2
[ 000 =
SN 0 W E xposure CK T i | k| |
30000 100 i P
20000 T !
10000 o 075" E
0 © 050 - x1000 g o 8 3 3 2 2
0 R B R 3 3 3
Type X 025 - © © © © o ) o
W PDX1 209 = Q——m ‘ mm\
PDX2 ) Gene - | IH | H | | — ) .
Subpopulation b i R I ! Proportion Expression
Il Group1 ' ' [ T T ' ' '
M Group2 xt000 8 8 2 2 8388 3 8 B B
M Group3 8 8 8 § 8888 8 5 b 0 0.25 0.50 0.75 1.00 5 10


https://doi.org/10.1101/316208
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/316208; this version posted October 31, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Figure 2. Inferring regulatory relationships between CREs and genes by
scCAT-seq. (a) Overview of three strategies for inferring regulatory
relationships. Strategy 1: regulatory links for every gene were assigned when
the Spearman correlation of the signal of peaks located at the promoter and
distal peaks was above 0.25. Strategy 2: the regulatory links were assigned if
the Spearman correlation between the gene expression and the signal of distal
peaks was above 0.25. Strategy 3: active transcription factors for every cell
were identified by SCENIC, then active regions were identified by matching the
binding motifs of active transcription factors to accessible regions. Then
regulatory relationships were assigned after applying a Wilcoxon test to
determine if the presence of a nearby active accessible region was associated
with a significant change in the target gene expression (p-value < 0.05). (b)
Venn plot showing the number of overlapping regulatory relationships identified
by the three strategies. (c) Proportion of ChIA-PET validated regulatory
relationships identified by the three strategies in K562 (left), HeLa-S3 (middle)
and HCT116 (right) single cells. (d and f) Heatmaps showing exposure scores
of all cells to each signature identified by the NMF clustering of regulatory
relationship binary matrix in cell lines (d) and PDX (f). The exposure score
represents the contributions of the signatures to the different samples. (e and
d) Regulatory relationships for the indicated genes in single cell groups of the
cell lines (e) and PDX2 (g). Each panel contains three tracks: the top track
shows the regulatory relationship between one peak and the gene (linking them
with an arch), where the height and colour of the arch show the proportion of
cells that share the regulatory relationships; the middle track shows the
genomic location of the gene and the associated peaks, where the colour of the
gene shows the mean expression in each cell type; the bottom track shows the

accessible states (on and off) for each peak in each single cell.


https://doi.org/10.1101/316208
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/316208; this version posted October 31, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Figure 3
a

Morula  Blastocyst

D0

D|SSOC|at|on scCAT-seq

o
o’a ﬂo .

09 g0

d

TF accessibility

available under aCC-BY-NC 4.0 International license.

b

Regulatory relationship binary matrix

CDX2
GATA3

NANOG
ZSCAN4
KDMA4E
KLF17

TF expression

f

| 1 N | Exposure

(9]

NANOG GATA3 )
100 . Proportion
® o075 . 1.00
g 050 . 922
60000 = 025 . —_n/\ 8:25
40000 E-O .
8??% : 1 .
izoooo i ; Expression
W 100 . 10
Type D 075 . 5
W Morula Sl 050
Blastocyst ~+= "¢ °
G 025 .
roup o 000 . .
M Group1 g‘éak : | 1 |l
[ Group2 ne . i
x1000

7000 —
7500

8000

8500 *

9000

8000

8250

8500

TF accessibility

1 NANOG Deviation
1 KLF17
SOX4
SOX9
SOX15
SOX17 2
HNF1A

HNF1B 0
FOXA1

FOXA2

GATA2 -2
GATA3

GATA4 4
GATA6

IN

TF expression

1 NANOG Expression
1 KLF17 6
SOX4
SOX9 4
SOX15 |
SOX17 2
HNF1A
HNF1B 0
FOXA1
FOXA2 2
— " GATA2
Deviation Expression GATA3 -4
1L — 1 GATA4
2 -1 0 1 2 2 - 12 GATA6 -6
Group Transcription factor family
M Group1 m POU-Homeobox-HMG @ HMG W T-box M Forkhead Gene expression
o Groupz M POU-Homeobox W MADS W Zf
KLF-2f Homeobox ~ CP2 HENNENNNNNNNNEE NENNNNNNNENEEN NN R RN .
u = cDF3  EXxpression
e TDGF1 6
NANOG SOX17  DAPI/NANOG/SOX17 il
2
ARGFX
BMP2 0
PDGFRA 2
COL4A1 -4
LINC00261 & -6
50 um 50 pm 50 pm
T =T —tT = Blastocyst

EPl-like (#504 and #539) W PE-like (#522)


https://doi.org/10.1101/316208
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/316208; this version posted October 31, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Figure 3. scCAT-seq enables precise characterization of single cell identities
in human pre-implantation embryos. (a) A workflow showing the generation of
scCAT-seq profiles of human pre-implantation embryos. (b) Heatmap showing
exposure scores of all cells to each signature identified by the NMF clustering
of regulatory relationship binary matrix of human embryos. Example genes are
shown. (c) Regulatory relationships for the indicated genes in single cells of the
morula and blastocyst stage. (d) Heatmaps showing accessibility deviation
(left) and expression level (right) of the indicated TFs. The TFs coloured in
green were the ones showing consistent patterns in accessibility and gene
expression. (e) Immunofluorescence imaging of human morula- and blastocyst-
stage embryos using the indicated antibodies (left to right: NANOG, SOX17 and
merged DAPI/NANOG/SOX17). (f) Top and middle panel: Heatmaps showing
the accessibility deviation (top) and expression level (middle) of the indicated
TFs in single cells of blastocyst-stage embryos. Bottom panel: heatmap
showing the expression level of the indicated genes. The TFs coloured in green
were the ones showing consistent patterns in accessibility and gene

expression.
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Supplementary Figure 1
Quality metrics of scCAT-seq data. (a) qPCR amplification curve using

materials in the bottom of wells after the separation step of the scCAT-seq
protocol. Wells containing 0, 1 and 500 cells were analyzed. After the
separation step the materials were amplified for 8 cycles using primers targeting
the Tn5 adaptor. The PCR product was then purified and amplified by gqPCR
using primers targeting an accessible region in the human genome. (b) K562
scCAT-seq profiles were quality-filtered according to the number of fragments,
proportion of fragments within accessible regions and detected gene numbers.
(c) Bar plot showing the number of usable fragment at the indicated sequencing
depths (d) Proportion of the duplicate fragments of all K562 single cells at the
sequencing depth of 400 kb. (e) Size distribution of chromatin accessibility
fragments from an example of K562 single cell. (f) Percentage of the single cell
chromatin accessibility fragments mapped to each nuclear chromosome and
the mitochondrial genome. (g) Correlation of chromatin accessibility between
aggregate chromatin accessibility profiles and CAT-seq profile of 500 cells. (h)
Comparison of number of usable chromatin accessibility fragments (left),
proportion of fragments within the accessible regions (middle) and Pearson
correlation coefficients (right) between scCAT-seq and published scATAC-seq
profiles. The peaks indicated in middle panel are called based on aggregate
profiles. (i) Correlation between aggregate gene expression profiles of all single
cells and gene expression profiles generated from 500 cells. (j) Comparison of
the number of detected genes between scCAT-seq and published scRNA-seq

profiles.
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Supplementary Figure 2

Principle components analysis across diverse techniques and different batches
of scCAT-seq profiles. (a and ¢) Principle components analysis of different
batches of scCAT-seq-generated chromatin accessibility data and published
datasets. (b and d) Principle components analysis of different batches of

scCAT-seq-generated gene expression data and published datasets.
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Supplementary Figure 3

scCAT-seq uncovers the regulatory relationships between CREs and genes. (a)
Correlation analysis between chromatin accessibility of individual element and
the putative gene expression in K562 single cells and hypothetical cell
population from the three cell lines. Shown are Pearson correlation coefficients
versus the Benjamini-Hochberg adjusted p-value. Significant relationships
(adjusted p-value <= 0.05) are above the red dotted line. (b) Bar plot showing
the density distribution of distances between CREs and genes in regulatory
relationships (red) and random relationships (blue) (c-d) Regulatory
relationships for the indicated genes in single cells of the three cell types (c)

and two PDX tissues (d).
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Supplementary Figure 4

Integrated profiling of chromatin accessibility and gene expression in human
pre-implantation embryos. (a) Morula and blastocyst scCAT-seq profiles were
quality-filtered according to the number of fragments, proportion of fragments
within promoter regions and detected gene number. (b) Regulatory
relationships for the indicated genes in single cells of morula and blastocyst
stage. (c¢) Genome browser views of chromatin accessibility and gene
expression surrounding the indicated genes. (d) Observed cell-to-cell variability
of TFs. TF families and motifs are indicated. (e) t-SNE plot of TF motif
accessibility deviation, colored by the stage of all single cells. (f) t-SNE plot
colored by accessibility deviation z-score of POU5SF1 motif. The three
blastocyst cells that are closed to the morula cells are highlighted with the black
arrows. (g) Heatmaps showing accessibility deviation (left) and expression level

(right) of the indicated TFs.
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