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Abstract 
Motivation: Mass cytometry (CyTOF) is a valuable technology for high-dimensional analysis at the 
single cell level. Identification of different cell populations is an important task during the data analysis. 
Many clustering tools can perform this task, however, they are time consuming, often involve a manual 
step, and lack reproducibility when new data is included in the analysis. Learning cell types from an 
annotated set of cells solves these problems.  However, currently available mass cytometry classifiers 
are either complex, dependent on prior knowledge of the cell type markers during the learning process, 
or can only identify canonical cell types. 
Results: We propose to use a Linear Discriminant Analysis (LDA) classifier to automatically identify cell 
populations in CyTOF data. LDA shows comparable results with two state-of-the-art algorithms on four 
benchmark datasets and also outperforms a non-linear classifier such as the k-nearest neighbour clas-
sifier. To illustrate its scalability to large datasets with deeply annotated cell subtypes, we apply LDA to 
a dataset of ~3.5 million cells representing 57 cell types. LDA has high performance on abundant cell 
types as well as the majority of rare cell types, and provides accurate estimates of cell type frequen-
cies. Further incorporating a rejection option, based on the estimated posterior probabilities, allows LDA 
to identify cell types that were not encountered during training. Altogether, reproducible prediction of 
cell type compositions using LDA opens up possibilities to analyse large cohort studies based on mass 
cytometry data. 
 
Availability: Implementation is available on GitHub (https://github.com/tabdelaal/CyTOF-Linear-
Classifier). 
Contact: a.mahfouz@lumc.nl 
 

 
 
1 Introduction  

Mass Cytometry by time-of-flight (CyTOF) is a valuable tool for the 
field of immunology, as it allows high-resolution dissection of the im-
mune system composition at the cellular level (Bandura et al., 2009). 
Advances in CyTOF technology provide the simultaneous measurement 
of multiple cellular protein markers (> 40), producing complex datasets 
which consist of millions of cells (Spitzer and Nolan, 2016). Many 
recent studies have shown the utility of CyTOF to identify either canoni-
cal or new cell types while profiling the immune system. These include 

1) the characterization of cell type heterogeneity for a specific cancer 
(Amir et al., 2014; Levine et al., 2015; Chevrier et al., 2017), 2) assign-
ing signature cell populations when profiling a specific disease (van 
Unen et al., 2016), and 3) monitoring the immune system response to 
various infections (Newell et al., 2012, 2013). 

A key step in mass cytometry analysis is the accurate identification 
of cell types in a given sample. The high number of dimensions in Cy-
TOF data has forced researchers to depart from manual gating strategies 
based on two-dimensional plots because it’s very labour intensive and 
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subjective (Newell and Cheng, 2016). These limitations greatly impede 
the translational aspects of these technologies. Major efforts have been 
made to facilitate the analysis of CyTOF data by means of clustering 
(unsupervised learning) methods. These include SPADE (Qiu et al., 
2012), Phenograph (Levine et al., 2015) and VorteX (Samusik et al., 
2016), and they are often combined with dimensionality reduction meth-
ods like PCA (Hotelling, 1933), t-SNE (van der Maaten and Hinton, 
2008; Pezzotti et al., 2017), and HSNE (Pezzotti et al., 2016; Van Unen 
et al., 2017). 

While very instrumental in analysing high-dimensional data, cluster-
ing approaches require substantial input from researchers to assign cell 
type labels. This can be done by visually exploring the data, either by 
gating the biaxial marker expression scatter plots in the case of flow 
cytometry (FC), or by overlaying the marker expression profiles on a 
low-dimension representation (e.g. tSNE map) and define the different 
cell types (clusters). This follows from clustering being an ill-defined 
problem, which is even more pronounced with increasing number of 
cells in CyTOF datasets. While useful in identifying ‘new’ cell types in 
explorative experiments, manual interventions also significantly limit the 
reproducibility of identifying cell-types across different (batches of) 
samples. The latter is particularly important in studies comparing differ-
ent conditions, for example in cohort studies, and when building predic-
tors based on cell compositions, which cannot be performed using clus-
tering methods. 

These limitations are inherent to both FC and CyTOF, albeit more 
pronounced in the later given the higher number of dimensions and the 
larger number of cells being measured. In the field of FC, several super-
vised approaches have been proposed to automatically identify cell 
populations. They have been shown to match the performance of central-
ized manual gating based on benchmark datasets from challenges orga-
nized by the FlowCAP (“Flow Cytometry: Critical Assessment of Popu-
lation Identification Methods”) Consortium (Hsiao et al., 2016; Lux et 
al., 2018). These approaches rely on learning the manual gating from a 
set of training samples, and transferring the learned thresholds for the 
gates to new test samples. 

As gating is done based on two dimensional views of the data, this is 
not a feasible approach anymore for CyTOF data, since the number of 
markers is generally around 40, resulting in ~ 240 of gates that need to be 
defined (at least one for every pair of markers). Moreover, manual gating 
generally assumes that cells of interest can be selected for by dichoto-
mizing each marker, i.e. splitting cells on the basis of a marker being 
positively or negatively expressed (identified by a threshold value, i.e. 
the gate) . However, analyses of CyTOF data have repeatedly shown that 
cell type composition is much more complex, showing many clusters 
that are described by a combination of all marker expressions (Van Unen 
et al., 2017), requiring the need for a multitude of gates that increases the 
complexity of gating even further.  

Consequently, for CyTOF data, alternative gating approaches need 
to be considered. Recently, two methods have been developed: Automat-
ed Cell-type Discovery and Classification (ACDC) (Lee et al., 2017) and 
DeepCyTOF (Li et al., 2017). ACDC integrates prior biological 
knowledge on markers of specific cell populations, using a cell-type 
marker table in which each marker takes one of three states (1: positively 
expressed, -1: negatively expressed, 0: don’t care) for each cell type. 
This table is then used to guide a semi-supervised random walk classifier 
of canonical cell types (i.e. cell types with defined marker expression 
patterns). DeepCyTOF applies deep neural networks to learn the cluster-
ing of one sample, and uses the trained network to classify cells from 
different samples.  Both methods achieve accurate results on a variety of 
datasets. However, both methods rely on sophisticated classifiers. Inter-

estingly, none of these methods compared their performance to less 
complex classifiers. Further, both methods focused mainly on classifying 
canonical cell types, which is not the main focus of CyTOF studies 
which usually relies on the large number of markers measured for deep 
interrogation of cell populations.  

In this work, we show that a linear discriminant analysis (LDA) 
classifier can accurately classify cell types in mass cytometry datasets. 
Compared to previous methods, LDA presents a simpler, faster and 
reliable method to assign labels to cells. Moreover, using LDA instead of 
more complex classifiers enables the analysis of large datasets comprised 
of millions of cells. To illustrate this, we tested the applicability of LDA 
in classifying not only the canonical cell types but also when deeper 
subtyping the human mucosal immune system across multiple individu-
als, where the classification task become harder as the differences be-
tween cell types is much smaller. 

2 Methods 
We define a cell as the single measurement event in CyTOF data, 

𝑐𝑐 ∈ ℛ𝑝𝑝, where p is the number of markers on the CyTOF panel. Cells are 
being measured collectively from one sample, which is the biological 
specimen collected from an individual. A sample usually consists of 
thousands of cells, i.e. 𝑠𝑠 ∈ ℛ𝑛𝑛𝑐𝑐×𝑝𝑝, where nc is the number of cells in 
sample s. A CyTOF dataset consists of multiple samples, 𝑑𝑑 ∈ ℛ𝑛𝑛𝑠𝑠×𝑛𝑛𝑐𝑐×𝑝𝑝, 
where ns is the number of samples in the dataset that can comprise 
different groups of patients. Ultimately, we are interested in identifying a 
cell type which is a collection of cells that have a similar protein marker 
expression. Usually the different cell types are derived from clustering a 
large collection of cells collected from different samples using an unsu-
pervised clustering approach. Consequently, we will also refer to cell 
types as clusters or a cell population. 

2.1 Datasets description 
We used four public benchmark datasets to evaluate our classifier, 

for which manually gated populations were available and used as ground 
truth reference (Table 1 summarizes the datasets used in this study). 
First, the AML dataset is a healthy human bone marrow mass cytometry 
dataset (Levine et al., 2015), consisting of 104,184 cells analysed using 
32 markers resulting in 14 cell type populations defined by manual 
gating. Second, the BMMC dataset is also a healthy human bone mar-
row dataset (Bendall et al., 2011; Levine et al., 2015), consisting of 
81,747 cells analysed with 13 markers, and 24 manually gated popula-
tions. Third, the PANORAMA dataset entails 10 replicates of mice 
bone marrow cells (Samusik et al., 2016), analysed using a mass cytome-
try panel of 39 markers and manually gated into 24 classes, with a total 
number of cells around 0.5 million. Finally, the Multi-Center study 
dataset is a collection of 16 samples drawn from a single subject (Li et 
al., 2017), where the first eight samples are collected at the same time 
and analysed with the same instrument, and the last eight samples are 
collected two months later and analysed with a different instrument. It 
contains ~930,000 cells, analysed with 26 markers, where only eight 
markers were used for the manual gating process (Li et al., 2017), result-
ing in four canonical cell populations in addition to a fifth class repre-
senting the unlabelled cells. Measured expressions were transformed 
using hyperbolic arcsin with a cofactor of 5 before any further pro-
cessing for all datasets. 

In addition to the benchmark datasets, we used data that we collect-
ed from patients with gastrointestinal diseases as well as controls. This 
Human Mucosal Immune System mass cytometry (HMIS) dataset (van 
Unen et al., 2016) consists of 102 samples: 47 Peripheral Blood Mono-
nuclear Cells (PBMC) and 55 gut tissue samples. We focused on the 
PBMC samples only, which are further divided into 14 control samples, 
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14 samples with Crohn’s Disease (CD), 13 samples with Celiac Disease 
(CeD) and 6 samples with Refractory Celiac Disease Type II (RCDII). 
There are ~3.5 million cells in the 47 samples, which are measured with 
a panel of 28 markers. To annotate cells with cell type information, we 
clustered all cells across all samples simultaneously using Cyto-
splore+HSNE (www.cytosplore.org) (Höllt et al., 2016). Cytosplore+HSNE is 
specifically designed to interactively explore millions of cells. For that it 
makes use of different (hierarchical) abstraction layers of the individual 
cells. The bottom layer represents individual cells. To abstract those to 
the next layer, landmark cells are selected that are cells with a dense 
neighbourhood. This abstraction is iteratively repeated, with every new 
layer containing less and less landmark cells, until a top layer that then 
gives a summarized overview of all cells. At any layer, (landmark) cells 
are embedded into a two dimensional map using t-SNE (van der Maaten 
and Hinton, 2008; Pezzotti et al., 2017), and clustered using a density-
based Gaussian Mean Shift (GMS) clustering algorithm (Comaniciu and 
Meer, 2002).  

 
Table 1. Summary of the datasets used in this study. 

 

Dataset Samples Cells Markers Cell types 
AML n.a. 104,184 32 14 
BMMC n.a. 81,747 12 24 
PANORAMA 10 514,386 39 24 
Multi-Center 16 929,685 8 5 
HMIS-1 47 3,553,596 28 6 
HMIS-2 47 3,553,596 28 57 

n.a. = not available 
 

For the HMIS dataset we constructed three layers. For the top (over-
view) layer, we annotated the clusters into six major immune lineages on 
the basis of the expression of known lineage marker: 1) CD4+ T cells, 2) 
CD8+ T cells, including TCRgd cells, 3) B cells, 4) CD3-CD7+ Innate 
Lymphocytes (ILCs), 5) Myeloid cells, and 6) Others, representing 
unknown cell types (Fig.1). Note that although the clusters are created 
from the abstracted landmark cells, the cluster annotations are propagat-
ed to every individual cell, resulting in ~3.5 million cells annotated into 
six canonical cell types, which we denoted the HMIS-1 dataset. Next, in 
order to find subtypes at a more detailed level, we explored one layer 
down for each of the six cell types separately, producing six separate t-
SNE maps (Fig. 1). For each map, we applied GMS clustering with a 
kernel size of 30 (default value). For each cluster, we calculated a cluster 
representation by taking the median expression of each marker for all 
individual cells annotated with that cluster. We automatically merged 
clusters when the correlation between cluster representatives is above 
0.95. We discarded clusters containing less than 0.1% of the total num-
ber of cells (< 3500 cells). In total we ended up with 57 cell types (11 
CD4+ T cells, 9 CD8+ T cells, 4 TCRgd cells, 11 B cells, 11 CD3-CD7+ 
ILCs, 6 Myeloid cells and 5 Others) for the ~3.5 million cells, which we 
denoted the HMIS-2 dataset. Cell counts per cell type and per sample 
are summarized in Supplementary Fig. S1. 

 

2.2 Cell type predictor 
To determine cell types in a newly measured sample, one would 

need to re-cluster the new sample with all previous samples.  Besides 
being a tedious task, cells from the new sample will influence the clus-
tering and by that change the previously identified cell types, severely 
hampering reproducibility. Therefore, we learn the different cell types 

from a training set with annotated cells. The cell types in the new sample 
can then simply be predicted by this learned cell-type predictor.  

We propose to use a (simple) Linear Discriminant Analysis (LDA) 
classifier (fitcdiscr function Matlab R2016b) as well as a k-NN classi-
fier to check whether the performance of a non-linear classifier would 
outperform the linear LDA classifier. For the k-NN classifier, we used 
the Matlab R2016b implementation (fitcknn function, with Euclidean 
distance and k = 50 neighbours). We adopted an editing approach to train 
the k-NN classifier to reduce the training set size (and consequently keep 
computation times reasonable). The editing is done according to the 
following pseudo code. 

 
Temp_Training ⟵ random 50,000 cells from Training_Data 
while (not all Training_Data is covered) 
    Temp_Testing ⟵ another random 50,000 cells from 
                    Training_Data 
    Apply prediction on Temp_Testing and add mis- 
    classified cells to Temp_Training 
    Temp_Training ⟵ Temp_Training + Misclassified from 
                     Temp_Testing 
end while 
Final_Training ⟵ Temp_Training 

 

2.3 Performance metrics 
To evaluate the quality of the classification, we used four metrics:  

1) The classification accuracy (fraction of correctly identified cell).  
2) The F1-score (harmonic mean of the precision and recall) for which 

we report the median value across all cell types. When comparing to 
DeepCyTOF (Li et al., 2017), we use the weighted average of F1-
scores per cell type size, to produce a fair comparison.  
 
 

 
 
Fig. 1 Annotation of cells in the HMIS dataset. The middle image shows the embed-
ding of the overview (top) HSNE layer, clustered into six major cell types. Next, a 
separate tSNE map is obtained per cell type by exploring one layer down. 
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3) The maximum difference in population frequencies, defined as 
𝛥𝛥𝛥𝛥 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖�𝑓𝑓𝑖𝑖 −  𝑓𝑓𝑖𝑖�, where 𝑓𝑓𝑖𝑖 and 𝑓𝑓𝑖𝑖 represents the true and the pre-
dicted percentage cell frequencies for the i-th cell population, re-
spectively. 

4) The Root of Sum Squared Error (RSSE) per sample and per cell 

type, defined as 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �∑ (𝑓𝑓𝑖𝑖 −  𝑓𝑓𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 . In case of measuring the 

error per sample, 𝑓𝑓𝑖𝑖 and 𝑓𝑓𝑖𝑖 represents the true and the predicted per-
centage cell frequencies, respectively, for the i-th cell population per 
sample, and n = nt (total number of cell types). In case of measuring 
the error per cell type, 𝑓𝑓𝑖𝑖 and 𝑓𝑓𝑖𝑖 represents the true and the predicted 
percentage cell frequencies, respectively, for a certain cell type in 
the i-th sample, and n = ns (total number of samples). 

2.4 Performance estimation 
The performance of a classifier is evaluated using three different 

cross-validation setups: 
1) CV-Cells: 5-fold cross validation applied over all the cells.  
2) CV-Samples: A leave-sample-out cross validation over all the sam-

ples, regardless of the number of cells within each sample. The clas-
sifier is trained using the cells of the samples in the training set, then 
the cell type prediction is done per left-out sample.  

3) Conservative CV-Samples: Similar to CV-Samples, but with the 
main difference that the ground-truth reference labels, acquired by 
clustering, are not used for training. Instead, for each set of training 
samples the data is re-clustered, resulting in new cell types. These 
new cell types are then used to train the classifier, which is subse-
quently used to predict the labels of the cells of the left-out sample. 
Since the labels of the training set and the ground-truth are now dif-
ferent, we matched the cluster labels by calculating their pairwise 
correlation (Pearson’s r) using the median marker expression of 
each cluster. Each training cluster is matched to the ground-truth 
cluster with which the correlation is maximum. 
For the AML and the BMMC datasets, we evaluated the perfor-

mance using the CV-Cells setup only, since no sample information is 
provided. For the PANORAMA and Multi-Center datasets, we used both 
the CV-Cells and CV-Samples setups, since we have the sample infor-
mation. Considering the number of samples in each dataset, we used a 5-
fold CV-Samples for the PANORAMA dataset and a 4-fold CV-Samples 
for the Multi-Center dataset. For the HMIS-1 and HMIS-2 datasets, we 
used all three cross validation setups, using a 3-fold CV-Samples and 
Conservative CV-Samples. 

2.5 Rejection Option 
To be able to detect new cell types, we decided to include a rejection 

option for LDA by defining a minimum threshold for the posterior 
probability of the assigned cell types. Thus, a cell is labelled as ‘un-
known’ whenever the posterior probability is less than a predefined 
threshold set. 

2.6 Feature Selection 
To avoid overfitting, we explored the need to reduce the number of 

markers (i.e. features) by applying feature selection on the training data. 
First, we applied a 5-fold CV-Cells and used the classification perfor-
mance for every individual marker on the training data to rank all mark-
ers in a descending order. Next, we applied another 5-fold CV-Cells on 
the training data and trained as many classifiers as there are markers. The 
first classifier is based on the top marker only, the second one on the two 
top ranked markers, etc. Then we select the classifier which generates 
the best cross validation performance over the training set. This classifier 
is subsequently tested on the test set and the performance is reported. 

3 Results 
3.1 LDA has comparable performance on CyTOF data to 

complex classification approaches 
To evaluate the performance of the LDA classifier, we compared 

LDA with two recent state-of-the-art methods for classifying CyTOF 
data, ACDC (Lee et al., 2017) and DeepCyTOF (Li et al., 2017). We 
used the AML, BMMC and PANORAMA datasets (used by ACDC) and 
the Multi-Center dataset (the only available dataset used by 
DeepCyTOF). We compared the performance of LDA with the reported 
values in these two studies (Table 2). 

Since there was no sample information available for the AML and 
BMMC datasets, we evaluated the performance of the LDA classifier on 
both datasets using the CV-Cells setup only. For the AML dataset, LDA 
achieved comparable performance in terms of accuracy and median F1-
score to ACDC. For the BMMC dataset, we applied the LDA classifier 
to classify all 24 cell populations, resulting in ~ 96% accuracy and 0.85 
median F1-score. To have a fair comparison with ACDC, we also con-
sidered four classes as unknown (Lee et al., 2017) then classified only 20 
cell classes. In both cases, LDA outperformed ACDC, specially based on 
the median F1-score.  

On the PANORAMA dataset, we tested the LDA classifier to classi-
fy all 24 populations using both the CV-Cells and CV-Samples setups. In 
addition, we tested the performance of LDA on 22 populations only to 
have a fair comparison with ACDC (Lee et al., 2017). In both cases LDA 
produces relatively high accuracy and median F1-score, and repeatedly 
outperformed ACDC in terms of the median F1-score (no accuracy 
reported by ACDC). 

 
Table 2. Performance summary of LDA versus ACDC and DeepCyTOF 
 

 LDA  
CV-Cells 

LDA  
CV-Samples 

ACDC 
Deep- 

CyTOF 
Accuracy 

AML 98.13 ± 0.09 n.a. 98.30 ± 0.04 n.a. 

BMMC 
95.82 ± 0.10 

 (95.61 ± 0.16)* 
n.a. 92.90 ± 0.5 n.a. 

PANOR-
AMA 

97.16 ± 0.07 
 (97.70 ± 0.03)* 

97.22 ± 0.31 
(97.67 ± 0.29)* 

n.r. n.a. 

Multi-
Center 

96.98 ± 0.03 
96.91 ± 1.17 

(96.90 ± 3.26)** 
n.a. n.r. 

Median F1-score 
AML 0.95 n.a. 0.93 n.a. 

BMMC 
0.85 

(0.85)* 
n.a. 0.60 n.a. 

PANOR-
AMA 

0.93 
(0.95)* 

0.93 
(0.95)* 

0.88 n.a. 

Multi-
Center*** 

0.95 
0.95 

(0.93)** 
n.a. 0.93 

n.a. = not available, n.r. = not reported. 
*Four classes considered unknown, similar to ACDC. 
**Only one sample is training (Sample 2), similar to DeepCyTOF. 
***Weighted F1-score. 

 
For the Multi-Center dataset, we applied CV-Cells and CV-Samples 

yielding an accuracy of ~97% and weighted F1-score of 0.95 for both 
setups. To have a fair comparison with DeepCyTOF, we only used 
sample no. 2 for training and tested the classifier performance on the 
other 15 samples. LDA shows a similar performance profile per sample 
as DeepCyTOF, where the weighted F1-score is relatively high for 
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samples 1-8 (samples measured on the same instrument as sample no. 2), 
and lower performance for samples 9-16 (Supplementary Fig. S2). 
Overall, LDA had a comparable weighted F1-score to the DeepCyTOF, 
excluding the calibration step (Li et al., 2017). 

3.2 LDA accurately classifies immune cells in a larger da-
taset with deeper annotation of cell subtypes 
To test our hypothesis that LDA can achieve acceptable perfor-

mance on large datasets and with more detailed cell subtyping, we 
applied LDA to the HMIS dataset comprised of ~3.5 million cells. The 
HMIS data was clustered at two levels of detail (see Methods) resulting 
in two different annotations for the HMIS data set: HMIS-1, representing 
six major lineages, and HMIS-2 containing 57 cell types. For both 
annotations, we applied all three cross validation setups, CV-Cells, CV-
Samples and Conservative CV-Samples (Table 3). 

We first tested the LDA performance on HMIS-1, hence only classi-
fying the canonical cell types. LDA achieved an accuracy > 99% and a 
median F1-score > 0.98 for both CV-Cells and CV-Samples. Next, we 
applied LDA to HMIS-2, which implied classifying cells into 57 differ-
ent cell types including abundant and rare cell populations. As expected, 
LDA had a lower performance on HMIS-2 compared to HMIS-1 using 
both CV-Cells and CV-Samples. The confusion matrix in Fig. 2A shows 
that the performance drop between HMIS-1 and HMIS-2 is mainly 
caused by misclassifications within the same major lineages. We further 
investigated the LDA performance across different sample types (Con-
trol, CeD, RCDII and CD) in the HMIS dataset. Fig. 3A shows that LDA 
has the highest accuracy for the control samples, while the lowest accu-
racy is for the RCDII samples.  

 
Table 3. Performance summary of LDA on the HMIS dataset. 

 LDA  
CV-Cells 

LDA  
CV-Samples 

LDA Conservative 
CV-Samples 

Accuracy 
HMIS-1 99.38 ± 0.01 99.02 ± 2.26 98.91 ± 1.87 
HMIS-2 87.19 ± 0.05 86.11 ± 3.86 78.69 ± 8.65 

Median F1-score 
HMIS-1 0.99 0.99 0.99 
HMIS-2 0.81 0.79 0.62 
 

To better mimic a realistic scenario and avoid any leakage of infor-
mation from the testing samples by considering all samples when pre-
clustering cells to determine the ground truth labels, we used a conserva-
tive CV-Samples setup to evaluate the LDA classifier (see Methods). For 
the HMIS-1 dataset representing the major lineages, the performance of 
LDA in the Conservative CV-Samples was comparable to the other 
setups (CV-Cells and CV-Samples), Table 3. The performance of the 
LDA classifier dropped when considering the Conservative CV-Samples 
setup on HMIS-2 that contains a multitude of cell types. However, the 
lower performance can be explained by miss-matching clusters between 
the training set and the ground-truth, which introduces classification 
errors. For example, cluster ‘CD4 T 11’ is never predicted by the classi-
fier, which means all cells falling within this cluster will be misclassified 
(Fig. 2B). This is because in all 3-folds, no training cluster matches to 
this ground-truth cluster ‘CD4 T 11’ (Supplementary Fig. S3). Whereas 
in case of HMIS-1, with only six dissimilar clusters, the clusters map 
works perfectly, resulting in high performance (Supplementary Fig. S4). 

 
 
Fig. 2 LDA performance on the HMIS-2 dataset. (A) Classification confusion matrix 
when using CV-Samples setup, showing high percentages along the matrix diagonal, as 
well as that most of the misclassification (off-diagonal values) falls within the major cell 
types. (B) Classification confusion matrix when using Conservative CV-Samples setup, 
showing lower percentages along the matrix diagonal compared to the CV-Samples setup. 
Each cell (square) in the confusion matrix represents the percentage of overlapping cells 
between true and predicted class. 

3.3 LDA accurately estimates cell population frequencies  
One of the main aims of CyTOF studies is to estimate the frequen-

cies of different cell types in a given sample. We evaluated the LDA 
prediction performance in terms of predicted population frequencies, by 
calculating the maximum difference in population frequencies, 𝛥𝛥𝛥𝛥, for 
each dataset (see Methods). LDA produced comparable population 
frequencies to the manually gated populations (Fig. 4). The maximum 
difference in population frequency (𝛥𝛥𝛥𝛥) was 0.4%, 0.65%, 0.64% and 
1.1% for the AML, BMMC, PANORAMA and the Multi-Center da-
tasets, respectively. 
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Fig. 3 LDA accuracy and rejection size per sample (A) boxplot of the LDA accuracy 
distribution per sample, while using a rejection threshold, (0 = no rejection). (B) boxplot 
of the rejection percentage per sample while using a rejection threshold, (0 means no 
rejection). Each dot represents a sample coloured according to the sample type (CeD = 
Celiac Disease, Ctrl = Control, RCDII = Refractory Celiac Disease Type II, CD = 
Crohn’s Disease). 

 
For the HMIS-1 dataset, LDA has 𝛥𝛥𝛥𝛥 of 0.59% across the six major 

cell types. Interestingly, despite the drop in the accuracy of predicting 
cell labels on HMIS-2 compared to HMIS-1, the population frequencies 
are not significantly affected. The maximum difference of population 
frequencies in HMIS-2 was 0.46% among all 57 cell types (Fig. 4F). 
This small 𝛥𝛥𝛥𝛥 shows that LDA produces accurate performance with 
respect to the ground-truth reference, even at a detailed annotation level. 

We investigated the population differences per sample and per cell 
type using the CV-Samples setup in the HMIS-2 dataset, by calculating 
the average squared differences between the estimated and true frequen-
cies (RSSE, see Methods). We obtained small RSSE values with a 
maximum of 0.074 (sample no. 10) and 0.082 (‘Myeloid 10’ cluster) 
across different samples and different cell types, respectively (Supple-
mentary Fig. S5). For sample no. 10, the maximum absolute population 
difference was 5.17% for ‘Myeloid 3’ cell type. For ‘Myeloid 10’ clus-
ter, the maximum absolute difference 5.12% across all cells. 

3.4 LDA performs on highly abundant as well as race cell 
types 
To evaluate the performance of LDA for abundant and rare cell 

populations, we investigated the F1-score per cell type versus the popu-
lation size. Fig. 5 shows the F1-score for all 57 cell types in the HMIS-2 
dataset obtained using the CV-Samples. Remarkably, LDA performs well 
for large cell populations, as well as the majority of the small cell popu-

lations, with a median F1-score of 0.7915 for populations that contain 
less than 0.5% of the total cells. 

For the Conservative CV-Samples setup, the LDA performance is 
still high for large cell populations, but the F1-score drops for small 
populations reinforcing that the drop in performance of the Conservative 
CV-Samples is driven by the limitations with the cluster matching rather 
than the performance of the LDA (Supplementary Fig. S6A). For popula-
tions that contain less than 0.5% of the total cells, the median F1-score is 
0.4753. Similar patterns were observed for the other four datasets (Sup-
plementary Fig. S6B-E). 
 

 
 
Fig. 4 True vs predicted population frequencies. (A) AML, (B) BMMC, (C) 
PANORAMA, (D) Multi-Center, (E) HMIS-1 and (F) HMIS-2. 
 
 

 
 
Fig. 5 Relationship between performance and population size. Scatter plot of the F1-
score vs. the population size (number of cells) for the HMIS-2 dataset evaluated using 
CV-Samples. Each dot represents one cell type and coloured according to the major cell 
type annotation. 
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3.5 LDA as a probabilistic classifier directly allows the detec-
tion of unseen cell types 
 A major advantage of clustering and visual analytics over classifica-

tion approaches is the ability to identify novel unknown cell types. Here, 
we show that LDA as a probabilistic classifier can be used to flag un-
known cells that do not match any of the training cell types. We incorpo-
rated a rejection option to allow the classification of a cell as ‘unknown’ 
when the posterior probability of the classification of any cell is low. Fig. 
3A shows the classification accuracy across samples from the HMIS-2 
dataset, after excluding unknown cells for which the posterior probability 
is lower than a certain threshold. As expected, setting a threshold on the 
posterior probability resulted in more accurate predictions. For example, 
setting a threshold at 0.7 resulted in an accuracy of 89.54 ± 3.25% (com-
pared to 86.11 ± 3.86% without any thresholds), while assigning ~8% of 
cells per sample as unknown.  

Further, we observed a reverse pattern between the accuracy of cell 
classification and the percentage of cells classified as unknown per 
sample (Fig. 3A and 3B). For instance, LDA has the highest accuracy on 
classifying cells from the control samples and hence control samples are 
less likely to entail rejected (unknown) cells. On the other hand, the 
accuracy is the lowest on RCDII samples which also have the highest 
rejection percentages. Fig. 3 further shows that both the accuracy and the 
rejection size increase with increasing the minimum threshold of the 
posterior probability. 

3.6 Rejection option targets rare sample-specific cell types 
Next, we investigated the effect of the rejection option on rare and 

abundant cell populations. In the HMIS-2 dataset, the population fre-
quencies of the 57 cell types varied from 25.2% to 0.1% of the total 
number of cells in the HMIS-2 dataset (Fig. 6A). Further, we observed a 
variable distribution of cell types across different sample types (control, 
CeD, RCDII and CD), Fig. 6B. Although the majority of cell types were 
evenly distributed over all samples, some were disease-specific, especial-
ly the rare cell types. Using a rejection threshold of 0.7, we calculated 
the rejection ratio per cell type per sample (Fig. 6D) as the number of 
cells assigned as ‘unknown’ of one cell type in one sample, divided by 
the total number of cells of that cell type in all samples. We compared 
these rejection ratios with the cell type frequencies over the samples 
(Fig. 6C) where a value close to 100% means that the cell type is specific 
to only one sample. We observed a strong correlation between the cell 
type rejection ratios and the frequencies over the samples (Fig. 6E). For 
example, the majority of ‘Others 2’ (83.87%) comes from one CeD 
sample, within which ‘Others 2’ is prominently present (7.44% of the 
cells in this sample belong to ‘Others 2’ Supplementary Fig. S1). The 
classifier rejects ~15% of these cells, representing a ~12% rejection ratio 
of the total number of ‘Others 2’ cells. This is a relatively high rejection 
percentage compared to other cell types (Fig. 6E).The main reason why 
there is a large rejection ratio for these cells, is because these cells are 
mainly present in one sample. When this sample is left out in the CV-
Samples procedure, during testing these cells are rejected because they 
are missing in the training data. These results support the validity of 
using the rejection option to label unknown cells, which are likely to be 
rare sample-specific populations. 

3.7 Linear classification is sufficient for accurate classifica-
tion of CyTOF data 
 We have shown that a simple linear classifier such as LDA has a 

comparable performance to complex non-linear classifiers such as 
ACDC and DeepCyTOF. To further illustrate that non-linear classifica-
tion does not perform better than linear classification, we compared the 
performance of LDA to a k-NN classifier on the HMIS-2 dataset. Again, 

we found that LDA has a comparable performance to a k-NN classifier 
with k = 50 (Table 4), suggesting  that adding non-linearity to the classi-
fication process does not improve performance. 

 
Table 4. Performance comparison between LDA and KNN on the 
HMIS-2 dataset. 

 Accuracy Median F1-score 
LDA Samples CV 86.11 ± 3.86 0.79 
k-NN Samples CV 87.73 ± 4.09 0.81 
k-NN Samples CV FS 86.33 ± 3.17 0.79 

 
 To reduce the computation time for the k-NN classifier, we em-

ployed an editing scheme to reduce the size of the training data (see 
Methods). Using the proposed editing scheme, we reduced the training 
data size to an average of 300,000 per training fold (~12 % of the origi-
nal training set), resulting in a significant speedup of the training and 
testing times. However, the k-NN classifier still takes on average 180x 
the time needed by LDA to make predictions for one sample. 

Next, we investigated whether feature selection (using less markers 
during classification) would affect the performance of the classifiers. The 
k-NN classifier selected only 20 (out of the 28) markers and retained a 
comparable performance to that obtained using all 28 markers. On the 
other hand, feature selection did not reduce the number of markers 
selected by LDA, indicating that LDA requires all the measured markers 
in order to achieve maximum performance. 
 

4 Discussion 
 

In this work, we showed that a linear classifier can be used to auto-
matically assign labels to single cells in mass cytometry data. Using four 
different CyTOF datasets, we compared the performance of a linear 
discriminant analysis classifier (LDA) to two recent approaches meth-
ods: ACDC (Lee et al., 2017) and DeepCyTOF (Li et al., 2017). Interest-
ingly, LDA achieved similar or better performance compared to ACDC 
and DeepCyTOF in all four datasets. Compared to ACDC, LDA does not 
require any additional biological knowledge or assumptions regarding 
the distribution patterns of markers. Additionally, ACDC requires a cell-
type marker table which has several limitations: (1) designing the table 
can be very challenging in the presence of many cell-types, (2) it is not 
possible to specify the marker patterns for some cell types (e.g. ACDC 
ignored 4 subtypes in the BMMC dataset because the table could not be 
constructed), and (3) the table requires imposing assumptions on the 
marker distribution (currently binary) which can be challenging to 
model. Furthermore, results on the BMMC dataset show that LDA can 
detect rare cell populations having frequencies < 0.5% of the total num-
ber of cells, like MPP, HSC, MEP and GMP, which were the main cause 
of the lower performance of ACDC (Lee et al., 2017). Compared to 
DeepCyTOF, LDA is a much simpler classifier which means it has 
substantial advantages with respect to the reduced training/testing times, 
reproducibility, and scalability to larger datasets.  

We further evaluated LDA on a large CyTOF dataset with deep an-
notation of cell types. We showed that LDA can accurately identify cell 
types in a challenging dataset of 3.5 million cells comprised of 57 cell 
types. Further, we showed that the errors made by LDA in assigning cell 
type labels to each cell has negligible influence on the estimates of cell 
population frequencies across different individuals. 
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Fig. 6 Rejection option effect on variable sized cell populations. (A) Cell type frequen-
cy across the HMIS-2 dataset, in a descend order. (B) Cell type composition in terms of 
the different sample types (CeD, Ctrl, RCDII, CD). (C) Cell type frequencies across 
samples, normalized by the cell type size across all samples, every column summation is 
100%. (D) Percentage of rejected cells per cell type per sample, normalized by the cell 
type size across all samples, using a posterior probability threshold of 0.7. Cell types 
follow the same order for (A-D). (E) Scatter plot between values in (C) and (D) showing 
a strong correlation of 0.70 between the rejection ratio and the cell type size, per sample. 
Each point represents a cell type in a particular sample, and points are coloured according 
to the disease status of the sample annotation. 
 

To show that a linear classifier is indeed sufficient to classify cells in 
mass cytometry data, we compared LDA to a non-linear classifier (k-
NN). We show that the k-NN classifier does not outperform LDA on the 
HMIS dataset, indicating that there is no added value in using non-linear 
relationships between the markers. However, when we ran both classifi-

ers with feature selection, LDA required the full set of markers to 
achieve the best performance. On the other hand, the k-NN classifier was 
able to achieve the same performance as LDA but using less markers (20 
instead of 28). This result suggests that a non-linear classifier might be 
beneficial to reduce the number of required markers and free valuable 
slots on the CyTOF panel for additional markers. 

For the HMIS dataset, we relied on an initial clustering step to as-
sign ground-truth labels. To avoid any possible leakage of information 
from the test set of cells by including them into the clustering, we de-
signed a conservative learning scheme. In the conservative scheme, we 
don’t use the labels obtained by clustering the entire dataset (i.e. ground-
truth) for training, but rather re-cluster the training data inside each fold. 
In addition, this scheme better resembles a realistic scenario in which the 
new unseen data is never included in the initial assignment of class labels 
for training. The performance of LDA in this conservative experiment is 
lower than the initial performance obtained by classical cross validation. 
However, the drop in performance does not stem from the lack of gener-
alization, as the results show high performance on the overview-level, 
but rather from the difficulty in matching cluster labels between the 
ground truth and the training set. 

Clustering approaches in general have an advantage over classifica-
tion methods in that they can be employed to discover new cell types. 
However, an additional advantage of using a probabilistic classifier such 
as LDA is that we can directly gain information regarding the accuracy 
of each decision made by inspecting the posterior probability. We 
showed that we can allow for a rejection option when the posterior 
probability of the classification of a particular cell is low. This rejection 
option can be used to identify ‘unknown’ cells which might require 
additional investigation to determine their biological relevance. Addi-
tionally, we showed that these ‘unknown’ cells are likely to be rare and 
sample-specific. There is however a trade-off between how confident we 
are on the correctness of the predictions and the size of the ‘unknown’ 
class. A stringent threshold (i.e. high posterior probability) means that 
many cells will be classified as ‘unknown’ which will further require 
manual investigation.  

Taken together, we demonstrated the feasibility of using a simple 
linear classifier to automatically label cells in mass cytometry data which 
is a promising step forward to use mass cytometry data in cohort studies. 
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