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Abstract 
Motivation: Cellular, physiological and molecular processes must be organized and regulated across 
multiple time domains throughout the lifespan of an organism. The technological revolution in molecu-
lar biology has led to the identification of numerous genes implicated in the regulation of diverse tem-
poral biological processes. However, it is natural to question whether there is an underlying regulato-
ry network governing multiple timescales simultaneously.  
Results: Using queries of relevant databases and literature searches, a single dense multiscale tem-
poral regulatory network was identified involving core sets of genes that regulate circadian, cell cycle, 
and aging processes. The network was highly enriched for genes involved in signal transduction (P = 
1.82e-82), with p53 and its regulators such as p300 and CREB binding protein forming key hubs, but 
also for genes involved in metabolism (P = 6.07e-127) and cellular response to stress (P = 1.56e-93). 
These results suggest an intertwined molecular signaling network that affects biological time across 
multiple temporal scales in response to environmental stimuli and available resources. 
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1 Introduction  
The passage of time is a fundamental feature of life. Although time is 
often considered to be linear, organisms must organize developmental, 
cellular and physiological processes across multiple time domains. For 
example, segmentation and patterning in animals requires the initiation 
of precise temporally ordered molecular programs throughout develop-
ment to ensure correct morphology of the organism. Although the specif-
ic length of time that this process takes differs between species, the tem-
poral pattern is largely conserved, indicating universal control mecha-
nisms involved in regulating the timing of development. On a separate 
time scale, the regular rotation of the Earth about its axis every 24 hours 
leads to predictable daily changes in the environment. Organisms have 
evolved endogenous circadian rhythms to anticipate these changes and 
organize behavior and internal physiology to occur at the correct time in 
relation to cycles in the external environment. A set of well-conserved 
circadian clock genes encodes a cell-autonomous pacemaker character-
ized by a transcriptional-translational feedback loop that is itself modu-
lated and reciprocally regulated by hundreds of other genes, including 
several key metabolic regulatory genes. The circadian system controls 
the expression of thousands of genes (i.e., clock-controlled genes) in 
nearly all cells of the body, establishing overt rhythms in cellular and 

physiological function at the tissue- and organ-system levels. On yet 
another time scale, individual cells progress through a cycle of quies-
cence and division that enables the maintenance of a stable population of 
cells while allowing for the division, differentiation and replenishment of 
specific cell types. Cell division and differentiation require numerous 
complex temporally ordered processes, such as DNA replication, chro-
matin condensation and chromosome alignment and segregation into 
daughter cells. All organisms also experience characteristic age-related 
changes that occur throughout the lifespan and most experience deleteri-
ous changes that accumulate over time, eventually resulting in age-
related diseases, senescence, and death.  
Thus, cellular, physiological and molecular processes must be organized 
and regulated across multiple time domains throughout the lifespan. The 
technological revolution in molecular biology has led to the identifica-
tion of numerous genes implicated in the regulation of circadian 
rhythms, the cell cycle and aging. We here report a systems-level analy-
sis using various network methodologies to systematically investigate 
whether constituents of temporal regulation within a single time domain 
are involved in others as well, that organisms utilize common sets of 
time regulatory genes and networks to ensure multi-scale temporal or-
ganization. Such analysis is expected to reveal insight into the common 
cellular and molecular mechanisms used in the regulation of timing 
across multiple domains. Indeed, this concept that genes with a known 
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role in one domain have critical functions in another has support in the 
literature: cyclin A and its regulator, both essential cell cycle factors, 
were recently shown to regulate sleep in Drosophila via activity in a 
small set of post-mitotic neurons associated with the circadian clock 
(Rogulja and Young, 2012). Interestingly, as described below, one of the 
critical multi-scale nodes (i.e., genes present across the three time scales 
examined: circadian, cell cycle and aging) revealed in our analysis is 
cyclin-dependent kinase 6 (CDK6). Given the well-described role of the 
cyclins and cyclin-dependent kinases in the cell cycle, traditionally it 
would not be expected to observe such a gene to be active in post-mitotic 
neurons. However, given our analyses of coordinated temporal regula-
tion across multiple domains using common factors, it is reasonable that 
specific genes and pathways be examined for important roles related to 
the regulation of timing across scales. 

2 Methods 
The ultimate objective was to find evidence of an underlying gene net-
work affecting biological time across multiple scales. The overall ap-
proach involved identifying sets of genes that regulate temporal process-
es for several time scales, determining regulatory relationships between 
these genes, and finding links that operate across time scales. Core com-
ponents of the resulting multi-scale network would likely affect temporal 
biological processes generally. 

2.1 Defining Timekeeping Genes 
Core sets of genes, ‘timekeepers’, that regulate human temporal biologi-
cal processes at the i) circadian, ii) cell cycle, and iii) ageing scales were 
defined through queries of relevant databases and literature searches. 
Circadian clock genes were identified using several comprehensive 
reviews of the genetics and physiology of mammalian circadian rhythms 
and one genome-wide RNAi screen for genes that modulate circadian 
rhythms in cultured human cells (Lowrey and Takahashi, 2011; 
Rosenwasser and Turek, 2011; Vitaterna and Turek, 2011; Zhang, et al., 
2009). These resources were supplemented with manual examination of 
each of the reference lists and PubMed searches using the MeSH subject 
headings “circadian rhythms” and “genes”. In addition, the Molecular 
Signatures Database (MSigDB) (Subramanian, et al., 2005) was used to 
download REACTOME circadian clock pathway genes, KEGG, circadi-
an rhythm genes from the Kyoto Encyclopedia of Genes and Genomies 
(KEGG) (Kanehisa, et al., 2016), and circadian pathway genes from the 
Pathways Intereaction Database (PID). The Human Ageing Genomic 
Resources (HAGR) (Tacutu, et al., 2013) was used to identify genes 
involved in regulation of human aging processes. Genes involved in 
human longevity were downloaded from MSigDB, curated by BioCarta. 
Genes involved in regulating the cell cycle were also identified from 
MSigDB sets, REGULATION OF CELL CYCLE, KEGG CELL 
CYCLE, and REACTOME CELL CYCLE MITOTIC.  

2.2 Reconstructing a Multiscale Network of Timekeepers  
There are many types of dependencies that can define gene-gene rela-
tionships as well as a diverse array of methods for identifying them. Our 
intent was to determine whether a core regulatory network that operates 
across temporal scales exists, and if so to reconstruct it. The approach 
involves using a variety of public resources and databases to identify 

links with strong evidence of dependence. The following methods were 
used: 
Coexpression. We made use of a compendium of previously reconstruct-
ed gene coexpression networks from multiple human cohort studies 
(Chen, et al., 2008; Emilsson, et al., 2008; Lum, et al., 2006; Tran, et al., 
2011; Wang, et al., 2012; Yang, et al., 2010). Gene co-expression net-
work analysis (GCENA) has been increasingly used to identify gene 
subnetworks for prioritizing gene targets associated with a variety of 
common human diseases such as cancer and obesity (Chen, et al., 2008; 
Emilsson, et al., 2008; Gargalovic, et al., 2006; Horvath, et al., 2006). In 
a gene coexpression network, the nodes represent genes and edges 
(links) between any two nodes indicate a relationship (a similar expres-
sion pattern) between the two corresponding genes. One important end 
product of GCENA is gene modules comprised of highly interconnected 
sets of genes. It has been demonstrated that these types of modules are 
generally enriched for known biological pathways, for genes that associ-
ate with disease traits, and for genes that are linked to common genetic 
loci (Liu, et al., 2015; Schadt, et al., 2008; Werling and Sanders, 2016; 
Zhang and Horvath, 2005; Zhu, et al., 2008).   
Bayesian Network. While coexpression networks can provide a global 
view of how genes coordinate as groups, they can’t explicitly infer caus-
al relationships among genes, which are critical to identify key regula-
tors. Probabilistic causal networks are one way to model such relation-
ships, where causality in this context reflects a probabilistic belief that 
one node in the network affects the behavior of another either directly or 
indirectly. Bayesian networks (Zhu, et al., 2004; Zhu, et al., 2012; Zhu, 
et al., 2007; Zhu, et al., 2008) are one type of probabilistic causal net-
works that provide a natural framework for integrating highly dissimilar 
types of data. Unlike co-expression networks, which allow one to look at 
the overall gene-gene correlation structure at a high level, Bayesian 
networks (BN) are sparser but allow a more granular look at the relation-
ships and directional predictions among genes or between genes and 
other traits such as disease. Thus, we constructed a network for each 
dataset independently.  Each Bayesian network was tissue-specific and 
was constructed using genetic and gene expression data generated from 
multiple human populations (Zhu, et al., 2004; Zhu, et al., 2007; Zhu, et 
al., 2008). For each Bayesian Network, a Markov Chain Monte Carlo 
(MCMC) approach was used to generate thousands of different plausible 
networks that were then combined by taking the union to obtain a con-
sensus network (Zhu, et al., 2007).  
PPI. A variety of databases have been developed to catalog protein-
protein interactions, experimentally validated in the lab using a variety of 
assays. The STRING project (Szklarczyk, et al., 2015) has aggregated 
this information in their “experiments” type of evidence, which is either 
direct or indirect. The strength of evidence is quantified according to a 
numeric score, scaled from 0 to 1, where 1 represents complete confi-
dence in the existence of the interaction. We used the stringent threshold 
of 0.9 to conclude that there was sufficient evidence of a protein-protein 
interaction corresponding to a pair of genes. 
Pathway. Another type of evidence aggregated by STRING is pathway 
knowledge derived from manually curated databases. The stringent con-
fidence threshold of 0.9 was also used for this type. 
Consensus. To further the objective of identifying a core multiscale 
temporal regulatory network, edges that were found using more than one 
of the preceding four methods were combined into a final summary 
network, robust to the approaches used to determine interactions. 
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Multiscale temporal network 

To insure that the identified networks operated across multiple time 
scales, edges were included only if the two nodes represented more than 
one time scale (Figure 1). For instance, an edge that linked two genes 
involved in cell cycle but not circadian or aging would be excluded, but 
if at least one of these nodes was involved in aging or circadian process-
es, the edge would be included. Another example, if an edge linked one 
node involved in aging and another involved in circadian, it would be 
included. Thus, the networks would be fragmented and sparse if there 
were no underlying multiscale temporal network but more highly con-
nected if one exists.  

Figure 1. The procedure to construct a multiscale temporal regulatory 
network includes three steps, 1) identify nodes for multiple temporal 
scales, 2) determine which nodes are functionally linked, and 3) remove 
edges that do not span time scales and nodes that do not represent multi-
ple time scales when including first degree neighbors. 

2.3 Key Driver Analysis  
One primary goal of gene network analysis is to identify key regulatory 
components, or key driver nodes of sub-networks with respect to varying 
biological contexts. The key drivers will represent the core nodes of the 
network and tend to have high ‘node degree’, number of edges directly 
connected to the node. We identified candidate key drivers for each of 
the subnetworks (evidence types) mentioned. The algorithm takes as 
input nodes and edges from a network. We first compute the size of the 
h-layer neighborhood (HLN) for each node. The range of h is from 1 to 
the diameter of the network. Specifically, for a given node g, the size of 
its HLN is the number of its downstream nodes that are within h edges of 
g. Let u be an array of the sizes of HLNs and d be an array of the out-
degrees for all the nodes. The nodes are nominated as candidate drivers 
if their sizes of their HLN are greater thanµ +σ , where µ  is the mean 
of u andσ  is the standard deviation of u. 

3 Results 
Figure 2 shows significant overlaps between the three temporal scales. 
All the three sets highly significantly overlapped with each other, with 
the aging and cell cycle the most significant (FET P=7.8e-32, 11.2 fold 
enrichment) followed by aging and circadian (FET P=1.4e-18, 8.2 fold 
enrichment) and then cell cycle and circadian (FET P=6.0e-13, 5.1 fold 
enrichment). Clearly, these processes are not independent of each other. 

While 91 genes were implicated in at least two time-scales, only six had 
roles supported for all three (Table 1).  

 
Figure 2. Venn diagram of regulatory genes involved in the temporal 
scales circadian, aging, and cell cycle. 
 
Three of these, CSNK1E, GSK3B, and ATR, have serine-threonine pro-
tein kinase activity, ABL1, is a tyrosine kinase, and the remaining two, 
CREBBP and EP300, share substantial functional homology and are 
involved in transcriptional coactivation of many transcription factors. All 
of these genes play an essential role in cell signaling, the protein kinases 
by phosphorylating other proteins. CREBBP and EP300 are histone 
acetyltransferases that play an essential role in multiple signal transduc-
tion pathways and are involved in the coordination and integration of 
signals (Chan and La Thangue, 2001). 

3.1 Network of Molecular Timekeepers 
After identifying interactions between all the timekeepers using 
STRING, coexpression, and Bayesian network analysis, the resulting 
network included 39,693 edges (Tables S1 and S2). The large size and 
high density of the global network necessitated focusing strategies to 
drill down into biological features and topology of interest. These fea-
tures include key drivers of the subnetwork of edges that span temporal 
domains. However, even after filtering out single-domain edges and 
partitioning by evidence type, the resulting multiscale networks are quite 
dense, suggesting a complex underlying molecular process that regulates 
biological time generally, unrestricted to just a single temporal domain. 
Nodes and network edges are available in supplemental online data. 

Table 1. Regulatory genes that span circadian, aging, and cell cycle 
time scales 

Symbol Name  

Circadian 

Source 

Aging 

 

Cell Cycle 

Step 1

Step 2

Step 3
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CSNK1E Casein Kinase 1 Epsilon LIT HAGR KEGG 
GSK3B Glycogen Synthase Kinase 

3 Beta 
LIT HAGR KEGG 

ABL1 Abelson Tyrosine-Protein 
Kinase 1 

LIT HAGR KEGG 

CREBBP CREB Binding Protein LIT HAGR KEGG 
EP300 E1A Binding Protein P300 LIT HAGR KEGG 
ATR ATR Serine/Threonine 

Kinase 
PID HAGR REACTOME 

LIT denotes a search of primary literature. PID, the Pathway Interaction Database 
PMID: 18832364]. HAGR,  the Human Ageing Genomic Resources [PMID: 
23193293]. KEGG, Kyoto Encyclopedia of Genes and Genomies [PMID: 
26476454]. REACTOME, curated pathway database [PMID: 26656494]. 

Figure 3. Multiscale Bayesian Network. Nodes are gene symbols of 
identified molecular timekeepers found to interact with other timekeep-
ers in Bayesian network analyses of genetic and gene expression varia-
tion in multiple human cohorts. Edges were included only if they linked 
two nodes that represented two or more temporal domains. Node size is 
proportional to node degree. Black indicates key drivers.  

3.1.1 Multiscale Bayesian Network 

The most highly connected region of the Bayesian network (Figure 3, 
Table S3) includes the core genes CENPM, MCM5, NUSAP1, CCNE1 
PCNA, EXO1, ORC1L and BUB1B, which are involved in cell division 
and more specifically the kinetochore (CENPM, BUB1B, NUSAP1, 
CCNE1) (Li, et al., 2016; Thiru, et al., 2014), connecting microtubules to 
chromotids. Most of these genes (CENPM, MCM5, NUSAP1, CCNE1 
PCNA, ORC1L, and BUB1B), in addition to the key driver BTG2 are 
targets of P53 (Fischer, et al., 2016; Riley, et al., 2008). Another key 
driver in this region is HIF1A, a master transcriptional regulator of cellu-

lar response to hypoxia that requires recruitment of coactivators such as 
CREBBP and EP300. Key drivers YWHAH and PTPN11 are both known 
to be involved in signal transduction for a variety of cell processes.  

3.1.2 Multiscale Coexpression Network 

With 1533 edges, this network (Figure 4, Table S4) was more highly 
connected than the Bayesian network, which had 371. Key drivers that 
were also labeled as such in the Bayesian network include BUB1B, 
PCNA, and HIF1A. As observed above, a substantial proportion of key 
drivers (CCNA2, BUB1B, PCNA, FOXM1, MAD2L1, CENPF) are regu-
lated by p53 (TP53), also a key driver in this network. Most of the key 
drivers are involved in cell division and many are also involved the 
kinetochore (BUB1B, MYC, MAD2L1, CENPE, CENPF, TOP2A) (Li, et 
al., 2016; Thiru, et al., 2014; Tipton, et al., 2012). p53 plays a critical 
role in cellular response to both intrinsic and extrinsic stresses such as 
DNA damage, which can cause the cell to respond by cell cycle arrest, 
senescence, or cellular apoptosis (Harris and Levine, 2005). p53 is in-

volved in multiple signal transduction pathways and communication of 
signals to surrounding cells. 
Figure 4. Multiscale Coexpression Network. Nodes are gene symbols of 
identified molecular timekeepers found to interact with other timekeep-
ers in coexpression network analyses of genetic and gene expression 
variation in multiple human cohorts. Edges were included only if they 
linked two nodes that represented two or more temporal domains. Node 
size is proportional to node degree. Black indicates key drivers. 

3.1.3 Multiscale Pathway Network 

The pathway network, constructed using the STRING database, was very 
highly connected with 5446 edges among the 1182 nodes (Figure 5, 
Table S5). The key drivers include some reported above, (TP53, 
CENPM, MAD2L1, MYC, and BUB1B). Similarity between the coex-
pression and PPI networks is also exhibited by interdependence between 
the key drivers with the highest node degrees, CCNA2 and CDK1. 
CCNA2 is essential in mitosis during the G2 to M transition when it 
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activates CDK1, which is itself essential for cell cycle progression 
[Bendris 2011].  

3.1.4 Multiscale PPI Network 

The vast majority of nodes with edges are part of a densely connected 
protein-protein interaction network (Figure 6, Table S6), as observed 
above for the other nework types. This topological trait implies a large 
extent of regulatory communication across temporal domains. Node 
degree of the p53 gene is substantial greater than the other key drivers, 
building on coexpression evidence of its prominent status in the mul-
tiscale temporal network. The highly connected gene MDM2 fits this 
pattern in that it is regulated by p53 but is also responsible for targeting 
p53 for degredation.  

Figure 5. Multiscale Pathway Network. Nodes are gene symbols of 
identified molecular timekeepers found to interact with other timekeep-
ers in STRING database for ‘databases’, evidence of interactions from 
curated pathway databases. Edges were included only if they linked two 
nodes that represented two or more temporal domains. Node size is 
proportional to node degree. Black indicates key drivers. 

3.1.5 Consensus Multiscale Network 

The consensus network that included only edges appearing in greater 
than or equal to two network types (Figure 7, Table S7), with 491 nodes 
and 812 edges, largely reflects aspects of the topologies observed for the 
single evidence types, but the similarities are greatest with evidence from 
PPI. Prominent within the most highly connected region are the genes 
p53, EP300 and CREBBP, supporting the central importance of the latter 
two genes, identified across all three temporal scales (Table 1). A node 
that was highly connected in all the networks was PCNA, a circular ring-
shaped protein that surrounds DNA, functioning as a molecular platform 
for replication and repair enzymes and involved in transcription, chroma-
tin remodeling, chromatid cohesion, cell cycle regulation, and apoptosis 
[Cazzalini 2014]. CREBBP and EP300 play a critical roll in genome 
stability by acetylation of PCNA, which causes its removal from DNA 
and degradation.  
To further investigate molecular functions of genes in the consensus 
network, PANTHER overrepresentation tests were conducted with Bon-
ferroni corrections using the GO Ontology database (Mi, et al., 2016). 

After cell cycle related categories, which were enriched by design, cate-
gories relating to metabolic processes were most significantly enriched, 
for example, regulation of metabolic process (GO:0019222) (P = 6.07e-
127). Also very highly enriched were the categories, cellular response to 
stress (GO:0033554), regulation of signal transduction (GO:0009966), 
regulation of cell communication (GO:0010646), and cellular response 
to stimulus (GO:0051716),  (P = 1.56e-93, P = 1.82e-82, P = 5.90e-79, 
and P = 1.60e-78, respectively).  

Figure 6. Multiscale PPI Network. Nodes are gene symbols of identified 
molecular timekeepers found to interact with other timekeepers in 
STRING database for ‘experiments’, experimental evidence of protein-
protein interactions. Edges were included only if they linked two nodes 
that represented two or more temporal domains. Node size is proportion-
al to node degree. Black indicates key drivers. 
 
The most highly connected node by a large margin was p53, a gene that 
has been demonstrated to be involved in regulating a bewildering array 
of cell behaviors such as proliferation, senescence, cell death, growth, 
DNA repair, differentiation, stem cell reprograming, metabolism, and 
motility (Kruiswijk, et al., 2015), as well as mediating circadian regula-
tion of cellular pathways (Gotoh, et al., 2014). p53 fits the general pat-
tern for nodes in the multiscale network in that it plays an important role 
in cellular signaling, responding to intrinsic or extrinsic signals to insti-
tute a transcriptional program to achieve different outcomes in a cell 
(Levine, et al., 2006). 

4 Discussion 
Genes in the multiscale network are likely to affect temporal processes 
not yet identified in the literature. Drugs, compounds, and exposures that 
affect transcription or function of genes in the network, or the regulatory 
relationships between those genes, may also affect multiple temporal 
biological processes, including processes that are beyond the scope of 
this analysis, such as growth and development or age at menarche. For 
example, given the important role of protein kinases in the consensus 
multiscale network, one might hypothesize that deficiency in Mg2+, an 
essential cofactor in many biological processes involving protein kinas-
es, would result in dysregulation of temporal biological processes. In 
fact, it has been found that hypomagnesaemia can result in ventricular 
tachycardia, ventricular fibrillation, aging, young gestational age, trem-
ors, and tumors (Long and Romani, 2014; Shah, et al., 2014). Despite 
substantial differences between multiscale network types, important 
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reoccurring themes are apparent, such as signal transduction and p53 
pathways. 
 

Figure 7. Consensus Multiscale Network. Edges were included only if 
they were in two or more multiscale networks described above. Node 
size is proportional to node degree, number of connections to the node. 
Black indicates key drivers. Edge width indicates the number of mul-
tiscale networks that include the edge, with the range being from 2 to 4. 
 
The consensus network is not intended to be comprehensive but rather a 
core set of genes and regulatory relationships that control human tem-
poral biological processes across time scales. The fact that each edge was 
required to be supported by two types of evidence, each at a stringent 
confidence threshold, lends a high degree of certainty to the network. 
While it is possible that a small proportion of edges represent non-
regulatory relationships, there is strong justification for interpreting the 
majority of edges as representing true interactions. Though at least three 
time scales are represented in the network and the majority of nodes in 
the network are densely connected, it is still not known definitively 
whether any particular node can be generalized to operate beyond its 
currently annotated temporal scales. We hope that these results will not 
only lead to studies that test hypotheses involving these genes individual-
ly but also to studies that explore new hypotheses about the role of the 
network in temporal biology. 

Conclusions 
These results demonstrate a concept that has recently been advanced 
piecemeal by researchers in related disciplines, that is, the intertwined 
nature of the cell cycle, circadian, aging, metabolic, and signaling mo-
lecular processes. Further, the results highlight the possibility that a core 
network plays an important role in temporal biological processes gener-
ally. It also suggests the central role that signaling molecules play in 
temporal processes generally by integrating multiple signal inputs to 
institute a coordinated response. 
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