bioRxiv preprint doi: https://doi.org/10.1101/315788; this version posted May 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Intercellular Signaling Network Underlies Bio-
logical Time Across Multiple Temporal Scales

Joshua Millstein®”, Keith C. Summa?, Xia Yang?®, Jun Zhu*, Huaiyu Mi', Mar-
tha H. Vitaterna?, Fred W. Turek?, and Bin Zhang*

'Department of Preventive Medicine of the Keck School of Medicine of the University of Southern
California, Los Angeles, CA 90032; 2Center for Sleep and Circadian Biology, Northwestern Universi-
ty, Evanston, lllinois 60208; *Department of Integrative Biology and Physiology, University of Califor-
nia Los Angeles, Los Angeles, CA 90095; “Department of Genetics and Genomics Sciences, Icahn
Institute for Genomics and Multiscale Biology, New York, NY 10029

*To whom correspondence should be addressed.

Abstract

Motivation: Cellular, physiological and molecular processes must be organized and regulated across
multiple time domains throughout the lifespan of an organism. The technological revolution in molecu-
lar biology has led to the identification of numerous genes implicated in the regulation of diverse tem-
poral biological processes. However, it is natural to question whether there is an underlying regulato-
ry network governing multiple timescales simultaneously.

Results: Using queries of relevant databases and literature searches, a single dense multiscale tem-
poral regulatory network was identified involving core sets of genes that regulate circadian, cell cycle,
and aging processes. The network was highly enriched for genes involved in signal transduction (P =
1.82e-82), with p53 and its regulators such as p300 and CREB binding protein forming key hubs, but
also for genes involved in metabolism (P = 6.07e-127) and cellular response to stress (P = 1.56e-93).
These results suggest an intertwined molecular signaling network that affects biological time across
multiple temporal scales in response to environmental stimuli and available resources.

Contact: joshua.millstein@usc.edu
Supplementary information: Supplementary data are available online.

physiological function at the tissue- and organ-system levels. On yet

1 Introduction another time scale, individual cells progress through a cycle of quies-

The passage of time is a fundamental feature of life. Although time is

cence and division that enables the maintenance of a stable population of

cells while allowing for the division, differentiation and replenishment of

often considered to be linear, organisms must organize developmental, specific cell types. Cell division and differentiation require numerous

cellular and physiological processes across multiple time domains. For complex temporally ordered processes, such as DNA replication, chro-

example, segmentation and patterning in animals requires the initiation matin condensation and chromosome alignment and segregation into

of precise temporally ordered molecular programs throughout develop- daughter cells. All organisms also experience characteristic age-related

ment to ensure correct morphology of the organism. Although the specif- changes that occur throughout the lifespan and most experience deleteri-

ic length of time that this process takes differs between species, the tem- ous changes that accumulate over time, eventually resulting in age-

poral pattern is largely conserved, indicating universal control mecha- related diseases, senescence, and death.

nisms involved in regulating the timing of development. On a separate Thus, cellular, physiological and molecular processes must be organized

time scale, the regular rotation of the Earth about its axis every 24 hours and regulated across multiple time domains throughout the lifespan. The

leads to predictable daily changes in the environment. Organisms have technological revolution in molecular biology has led to the identifica-

evolved endogenous circadian rhythms to anticipate these changes and tion of numerous genes implicated in the regulation of circadian

organize behavior and internal physiology to occur at the correct time in thythms, the cell cycle and aging. We here report a systems-level analy-

relation to cycles in the external environment. A set of well-conserved sis using various network methodologies to systematically investigate

circadian clock genes encodes a cell-autonomous pacemaker character- whether constituents of temporal regulation within a single time domain

ized by a transcriptional-translational feedback loop that is itself modu- are involved in others as well, that organisms utilize common sets of

lated and reciprocally regulated by hundreds of other genes, including time regulatory genes and networks to ensure multi-scale temporal or-

several key metabolic regulatory genes. The circadian system controls ganization. Such analysis is expected to reveal insight into the common

the expression of thousands of genes (i.e., clock-controlled genes) in cellular and molecular mechanisms used in the regulation of timing

nearly all cells of the body, establishing overt rhythms in cellular and across multiple domains. Indeed, this concept that genes with a known
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role in one domain have critical functions in another has support in the
literature: cyclin A and its regulator, both essential cell cycle factors,
were recently shown to regulate sleep in Drosophila via activity in a
small set of post-mitotic neurons associated with the circadian clock
(Rogulja and Young, 2012). Interestingly, as described below, one of the
critical multi-scale nodes (i.e., genes present across the three time scales
examined: circadian, cell cycle and aging) revealed in our analysis is
cyclin-dependent kinase 6 (CDK6). Given the well-described role of the
cyclins and cyclin-dependent kinases in the cell cycle, traditionally it
would not be expected to observe such a gene to be active in post-mitotic
neurons. However, given our analyses of coordinated temporal regula-
tion across multiple domains using common factors, it is reasonable that
specific genes and pathways be examined for important roles related to
the regulation of timing across scales.

2 Methods

The ultimate objective was to find evidence of an underlying gene net-
work affecting biological time across multiple scales. The overall ap-
proach involved identifying sets of genes that regulate temporal process-
es for several time scales, determining regulatory relationships between
these genes, and finding links that operate across time scales. Core com-
ponents of the resulting multi-scale network would likely affect temporal
biological processes generally.

2.1 Defining Timekeeping Genes

Core sets of genes, ‘timekeepers’, that regulate human temporal biologi-
cal processes at the i) circadian, ii) cell cycle, and iii) ageing scales were
defined through queries of relevant databases and literature searches.
Circadian clock genes were identified using several comprehensive
reviews of the genetics and physiology of mammalian circadian rhythms
and one genome-wide RNAI screen for genes that modulate circadian
rhythms in cultured human cells (Lowrey and Takahashi, 2011;
Rosenwasser and Turek, 2011; Vitaterna and Turek, 2011; Zhang, et al.,
2009). These resources were supplemented with manual examination of
each of the reference lists and PubMed searches using the MeSH subject
headings “circadian rhythms” and “genes”. In addition, the Molecular
Signatures Database (MSigDB) (Subramanian, et al., 2005) was used to
download REACTOME circadian clock pathway genes, KEGG, circadi-
an rhythm genes from the Kyoto Encyclopedia of Genes and Genomies
(KEGG) (Kanehisa, et al., 2016), and circadian pathway genes from the
Pathways Intereaction Database (PID). The Human Ageing Genomic
Resources (HAGR) (Tacutu, et al., 2013) was used to identify genes
involved in regulation of human aging processes. Genes involved in
human longevity were downloaded from MSigDB, curated by BioCarta.
Genes involved in regulating the cell cycle were also identified from
MSigDB sets, REGULATION OF CELL CYCLE, KEGG CELL
CYCLE, and REACTOME CELL CYCLE MITOTIC.

2.2 Reconstructing a Multiscale Network of Timekeepers

There are many types of dependencies that can define gene-gene rela-
tionships as well as a diverse array of methods for identifying them. Our
intent was to determine whether a core regulatory network that operates
across temporal scales exists, and if so to reconstruct it. The approach
involves using a variety of public resources and databases to identify

links with strong evidence of dependence. The following methods were
used:

Coexpression. We made use of a compendium of previously reconstruct-
ed gene coexpression networks from multiple human cohort studies
(Chen, et al., 2008; Emilsson, et al., 2008; Lum, et al., 2006; Tran, et al.,
2011; Wang, et al., 2012; Yang, et al., 2010). Gene co-expression net-
work analysis (GCENA) has been increasingly used to identify gene
subnetworks for prioritizing gene targets associated with a variety of
common human diseases such as cancer and obesity (Chen, et al., 2008;
Emilsson, et al., 2008; Gargalovic, et al., 2006; Horvath, et al., 2006). In
a gene coexpression network, the nodes represent genes and edges
(links) between any two nodes indicate a relationship (a similar expres-
sion pattern) between the two corresponding genes. One important end
product of GCENA is gene modules comprised of highly interconnected
sets of genes. It has been demonstrated that these types of modules are
generally enriched for known biological pathways, for genes that associ-
ate with disease traits, and for genes that are linked to common genetic
loci (Liu, et al., 2015; Schadt, et al., 2008; Werling and Sanders, 2016;
Zhang and Horvath, 2005; Zhu, et al., 2008).

Bayesian Network. While coexpression networks can provide a global
view of how genes coordinate as groups, they can’t explicitly infer caus-
al relationships among genes, which are critical to identify key regula-
tors. Probabilistic causal networks are one way to model such relation-
ships, where causality in this context reflects a probabilistic belief that
one node in the network affects the behavior of another either directly or
indirectly. Bayesian networks (Zhu, et al., 2004; Zhu, et al., 2012; Zhu,
et al., 2007; Zhu, et al., 2008) are one type of probabilistic causal net-
works that provide a natural framework for integrating highly dissimilar
types of data. Unlike co-expression networks, which allow one to look at
the overall gene-gene correlation structure at a high level, Bayesian
networks (BN) are sparser but allow a more granular look at the relation-
ships and directional predictions among genes or between genes and
other traits such as disease. Thus, we constructed a network for each
dataset independently. Each Bayesian network was tissue-specific and
was constructed using genetic and gene expression data generated from
multiple human populations (Zhu, et al., 2004; Zhu, et al., 2007; Zhu, et
al., 2008). For each Bayesian Network, a Markov Chain Monte Carlo
(MCMC) approach was used to generate thousands of different plausible
networks that were then combined by taking the union to obtain a con-
sensus network (Zhu, et al., 2007).

PPI. A variety of databases have been developed to catalog protein-
protein interactions, experimentally validated in the lab using a variety of
assays. The STRING project (Szklarczyk, et al., 2015) has aggregated
this information in their “experiments” type of evidence, which is either
direct or indirect. The strength of evidence is quantified according to a
numeric score, scaled from 0 to 1, where | represents complete confi-
dence in the existence of the interaction. We used the stringent threshold
of 0.9 to conclude that there was sufficient evidence of a protein-protein
interaction corresponding to a pair of genes.

Pathway. Another type of evidence aggregated by STRING is pathway
knowledge derived from manually curated databases. The stringent con-
fidence threshold of 0.9 was also used for this type.

Consensus. To further the objective of identifying a core multiscale
temporal regulatory network, edges that were found using more than one
of the preceding four methods were combined into a final summary
network, robust to the approaches used to determine interactions.
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Multiscale temporal network

To insure that the identified networks operated across multiple time
scales, edges were included only if the two nodes represented more than
one time scale (Figure 1). For instance, an edge that linked two genes
involved in cell cycle but not circadian or aging would be excluded, but
if at least one of these nodes was involved in aging or circadian process-
es, the edge would be included. Another example, if an edge linked one
node involved in aging and another involved in circadian, it would be
included. Thus, the networks would be fragmented and sparse if there
were no underlying multiscale temporal network but more highly con-

Step 2 I
Step 3 I

Figure 1. The procedure to construct a multiscale temporal regulatory

nected if one exists.

Step 1

network includes three steps, 1) identify nodes for multiple temporal
scales, 2) determine which nodes are functionally linked, and 3) remove
edges that do not span time scales and nodes that do not represent multi-
ple time scales when including first degree neighbors.

2.3 Key Driver Analysis

One primary goal of gene network analysis is to identify key regulatory
components, or key driver nodes of sub-networks with respect to varying
biological contexts. The key drivers will represent the core nodes of the
network and tend to have high ‘node degree’, number of edges directly
connected to the node. We identified candidate key drivers for each of
the subnetworks (evidence types) mentioned. The algorithm takes as
input nodes and edges from a network. We first compute the size of the
h-layer neighborhood (HLN) for each node. The range of h is from 1 to
the diameter of the network. Specifically, for a given node g, the size of
its HLN is the number of its downstream nodes that are within h edges of
g. Let u be an array of the sizes of HLNs and d be an array of the out-
degrees for all the nodes. The nodes are nominated as candidate drivers
if their sizes of their HLN are greater than u+0o, where (4 is the mean
of u and O is the standard deviation of u.

3 Results

Figure 2 shows significant overlaps between the three temporal scales.
All the three sets highly significantly overlapped with each other, with
the aging and cell cycle the most significant (FET P=7.8¢-32, 11.2 fold
enrichment) followed by aging and circadian (FET P=1.4e-18, 8.2 fold
enrichment) and then cell cycle and circadian (FET P=6.0e-13, 5.1 fold
enrichment). Clearly, these processes are not independent of each other.

While 91 genes were implicated in at least two time-scales, only six had
roles supported for all three (Table 1).

Cell Cycle

Aging

Figure 2. Venn diagram of regulatory genes involved in the temporal
scales circadian, aging, and cell cycle.

Three of these, CSNKIE, GSK3B, and ATR, have serine-threonine pro-
tein kinase activity, 4BLI, is a tyrosine kinase, and the remaining two,
CREBBP and EP300, share substantial functional homology and are
involved in transcriptional coactivation of many transcription factors. All
of these genes play an essential role in cell signaling, the protein kinases
by phosphorylating other proteins. CREBBP and EP300 are histone
acetyltransferases that play an essential role in multiple signal transduc-
tion pathways and are involved in the coordination and integration of
signals (Chan and La Thangue, 2001).

3.1 Network of Molecular Timekeepers

After identifying interactions between all the timekeepers using
STRING, coexpression, and Bayesian network analysis, the resulting
network included 39,693 edges (Tables S1 and S2). The large size and
high density of the global network necessitated focusing strategies to
drill down into biological features and topology of interest. These fea-
tures include key drivers of the subnetwork of edges that span temporal
domains. However, even after filtering out single-domain edges and
partitioning by evidence type, the resulting multiscale networks are quite
dense, suggesting a complex underlying molecular process that regulates
biological time generally, unrestricted to just a single temporal domain.
Nodes and network edges are available in supplemental online data.

Table 1. Regulatory genes that span circadian, aging, and cell cycle
time scales

Symbol Name Source

Circadian Aging  Cell Cycle
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CSNKIE Casein Kinase 1 Epsilon

GSK3B  Glycogen Synthase Kinase
3 Beta

ABLI Abelson Tyrosine-Protein

Kinase 1

CREBBP  CREB Binding Protein

EP300  ElA Binding Protein P300

ATR ATR Serine/Threonine
Kinase

LIT
LIT

LIT

LIT

LIT
PID

HAGR
HAGR

HAGR

HAGR
HAGR

KEGG
KEGG

KEGG

KEGG
KEGG

HAGR REACTOME

LIT denotes a search of primary literature. PID, the Pathway Interaction Database
PMID: 18832364]. HAGR, the Human Ageing Genomic Resources [PMID:
23193293]. KEGG, Kyoto Encyclopedia of Genes and Genomies [PMID:
26476454]. REACTOME, curated pathway database [PMID: 26656494].
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Figure 3. Multiscale Bayesian Network. Nodes are gene symbols of

identified molecular timekeepers found to interact with other timekeep-

ers in Bayesian network analyses of genetic and gene expression varia-

tion in multiple human cohorts. Edges were included only if they linked

two nodes that represented two or more temporal domains. Node size is

proportional to node degree. Black indicates key drivers.

3.1.1 Multiscale Bayesian Network

The most highly connected region of the Bayesian network (Figure 3,
Table S3) includes the core genes CENPM, MCM5, NUSAP1, CCNEI
PCNA, EXOI, ORCIL and BUBIB, which are involved in cell division
and more specifically the kinetochore (CENPM, BUBIB, NUSAPI,
CCNE]) (Li, et al., 2016; Thiru, et al., 2014), connecting microtubules to
chromotids. Most of these genes (CENPM, MCM5, NUSAPI, CCNEI
PCNA, ORCIL, and BUBIB), in addition to the key driver BTG2 are
targets of P53 (Fischer, et al., 2016; Riley, et al., 2008). Another key
driver in this region is HIF1A, a master transcriptional regulator of cellu-

lar response to hypoxia that requires recruitment of coactivators such as
CREBBP and EP300. Key drivers YWHAH and PTPN11 are both known
to be involved in signal transduction for a variety of cell processes.

3.1.2 Multiscale Coexpression Network

With 1533 edges, this network (Figure 4, Table S4) was more highly
connected than the Bayesian network, which had 371. Key drivers that
were also labeled as such in the Bayesian network include BUBIB,
PCNA, and HIFI1A. As observed above, a substantial proportion of key
drivers (CCNA2, BUBIB, PCNA, FOXM1, MAD2L1, CENPF) are regu-
lated by p53 (TP53), also a key driver in this network. Most of the key
drivers are involved in cell division and many are also involved the
kinetochore (BUBIB, MYC, MAD2L1, CENPE, CENPF, TOP24) (Li, et
al., 2016; Thiru, et al., 2014; Tipton, et al., 2012). p53 plays a critical
role in cellular response to both intrinsic and extrinsic stresses such as
DNA damage, which can cause the cell to respond by cell cycle arrest,
senescence, or cellular apoptosis (Harris and Levine, 2005). p53 is in-
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volved in multiple signal transduction pathways and communication of
signals to surrounding cells.

Figure 4. Multiscale Coexpression Network. Nodes are gene symbols of
identified molecular timekeepers found to interact with other timekeep-
ers in coexpression network analyses of genetic and gene expression
variation in multiple human cohorts. Edges were included only if they
linked two nodes that represented two or more temporal domains. Node
size is proportional to node degree. Black indicates key drivers.

3.1.3 Multiscale Pathway Network

The pathway network, constructed using the STRING database, was very
highly connected with 5446 edges among the 1182 nodes (Figure 5,
Table S5). The key drivers include some reported above, (7P53,
CENPM, MAD2L1, MYC, and BUBIB). Similarity between the coex-
pression and PPI networks is also exhibited by interdependence between
the key drivers with the highest node degrees, CCNA2 and CDKI.
CCNA2 is essential in mitosis during the G2 to M transition when it
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Multiscale temporal network

activates CDK/, which is itself essential for cell cycle progression
[Bendris 2011].

3.1.4 Multiscale PPI Network

The vast majority of nodes with edges are part of a densely connected
protein-protein interaction network (Figure 6, Table S6), as observed
above for the other nework types. This topological trait implies a large
extent of regulatory communication across temporal domains. Node
degree of the p53 gene is substantial greater than the other key drivers,
building on coexpression evidence of its prominent status in the mul-
tiscale temporal network. The highly connected gene MDM? fits this
pattern in that it is regulated by p53 but is also responsible for targeting
p53 for degredation.
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Figure 5. Multiscale Pathway Network. Nodes are gene symbols of
identified molecular timekeepers found to interact with other timekeep-
ers in STRING database for ‘databases’,
curated pathway databases. Edges were included only if they linked two

evidence of interactions from

nodes that represented two or more temporal domains. Node size is
proportional to node degree. Black indicates key drivers.

3.1.5 Consensus Multiscale Network

The consensus network that included only edges appearing in greater
than or equal to two network types (Figure 7, Table S7), with 491 nodes
and 812 edges, largely reflects aspects of the topologies observed for the
single evidence types, but the similarities are greatest with evidence from
PPIL. Prominent within the most highly connected region are the genes
p33, EP300 and CREBBP, supporting the central importance of the latter
two genes, identified across all three temporal scales (Table 1). A node
that was highly connected in all the networks was PCNA, a circular ring-
shaped protein that surrounds DNA, functioning as a molecular platform
for replication and repair enzymes and involved in transcription, chroma-
tin remodeling, chromatid cohesion, cell cycle regulation, and apoptosis
[Cazzalini 2014]. CREBBP and EP300 play a critical roll in genome
stability by acetylation of PCNA, which causes its removal from DNA
and degradation.

To further investigate molecular functions of genes in the consensus
network, PANTHER overrepresentation tests were conducted with Bon-
ferroni corrections using the GO Ontology database (Mi, et al., 2016).

After cell cycle related categories, which were enriched by design, cate-
gories relating to metabolic processes were most significantly enriched,
for example, regulation of metabolic process (GO:0019222) (P = 6.07e-
127). Also very highly enriched were the categories, cellular response to
stress (GO:0033554), regulation of signal transduction (GO:0009966),
regulation of cell communication (GO:0010646), and cellular response
to stimulus (GO:0051716), (P = 1.56e-93, P = 1.82e-82, P = 5.90e-79,
and P = 1.60e-78, respectively).
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Figure 6. Multiscale PPI Network. Nodes are gene symbols of identified
molecular timekeepers found to interact with other timekeepers in
STRING database for ‘experiments’, experimental evidence of protein-
protein interactions. Edges were included only if they linked two nodes
that represented two or more temporal domains. Node size is proportion-
al to node degree. Black indicates key drivers.

The most highly connected node by a large margin was p53, a gene that
has been demonstrated to be involved in regulating a bewildering array
of cell behaviors such as proliferation, senescence, cell death, growth,
DNA repair, differentiation, stem cell reprograming, metabolism, and
motility (Kruiswijk, et al., 2015), as well as mediating circadian regula-
tion of cellular pathways (Gotoh, et al., 2014). p53 fits the general pat-
tern for nodes in the multiscale network in that it plays an important role
in cellular signaling, responding to intrinsic or extrinsic signals to insti-
tute a transcriptional program to achieve different outcomes in a cell
(Levine, et al., 2006).

4 Discussion

Genes in the multiscale network are likely to affect temporal processes
not yet identified in the literature. Drugs, compounds, and exposures that
affect transcription or function of genes in the network, or the regulatory
relationships between those genes, may also affect multiple temporal
biological processes, including processes that are beyond the scope of
this analysis, such as growth and development or age at menarche. For
example, given the important role of protein kinases in the consensus
multiscale network, one might hypothesize that deficiency in Mg®’, an
essential cofactor in many biological processes involving protein kinas-
es, would result in dysregulation of temporal biological processes. In
fact, it has been found that hypomagnesaemia can result in ventricular
tachycardia, ventricular fibrillation, aging, young gestational age, trem-
ors, and tumors (Long and Romani, 2014; Shah, et al., 2014). Despite
substantial differences between multiscale network types, important


https://doi.org/10.1101/315788
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/315788; this version posted May 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

J. Millstein et al.

reoccurring themes are apparent, such as signal transduction and p53

pathways.
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Figure 7. Consensus Multiscale Network. Edges were included only if
they were in two or more multiscale networks described above. Node
size is proportional to node degree, number of connections to the node.
Black indicates key drivers. Edge width indicates the number of mul-
tiscale networks that include the edge, with the range being from 2 to 4.

The consensus network is not intended to be comprehensive but rather a
core set of genes and regulatory relationships that control human tem-
poral biological processes across time scales. The fact that each edge was
required to be supported by two types of evidence, each at a stringent
confidence threshold, lends a high degree of certainty to the network.
While it is possible that a small proportion of edges represent non-
regulatory relationships, there is strong justification for interpreting the
majority of edges as representing true interactions. Though at least three
time scales are represented in the network and the majority of nodes in
the network are densely connected, it is still not known definitively
whether any particular node can be generalized to operate beyond its
currently annotated temporal scales. We hope that these results will not
only lead to studies that test hypotheses involving these genes individual-
ly but also to studies that explore new hypotheses about the role of the
network in temporal biology.

Conclusions

These results demonstrate a concept that has recently been advanced
piecemeal by researchers in related disciplines, that is, the intertwined
nature of the cell cycle, circadian, aging, metabolic, and signaling mo-
lecular processes. Further, the results highlight the possibility that a core
network plays an important role in temporal biological processes gener-
ally. It also suggests the central role that signaling molecules play in
temporal processes generally by integrating multiple signal inputs to
institute a coordinated response.
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