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Abstract/Summary 

Inbreeding and consanguinity leave distinct genomic traces, most notably long genomic tracts 

that are identical by descent and completely homozygous. These runs of homozygosity (ROH) 

can contribute to inbreeding depression if they contain deleterious variants that are fully or 

partially recessive. Several lines of evidence have been used to show that long (> 5 megabase 

(Mb)) ROH are disproportionately likely to harbor deleterious variation, but the extent to which 

long versus short tracts contribute to autozygosity at loci known to be deleterious and recessive 

has not been studied. 

In domestic dogs, nearly 200 mutations are known to cause recessive diseases, most of 

which can be efficiently assayed using SNP arrays. By examining genome-wide data from over 

200,000 markers, including 150 recessive disease variants, we built high-resolution ROH 

density maps for nearly 2,500 dogs, recording ROH down to 500 kilobases. We observed over 

500 homozygous deleterious recessive genotypes in the panel, 90% of which overlapped with 

ROH inferred by GERMLINE. Although most of these genotypes were contained in ROH over 5 

Mb in length, 14% were contained in short (0.5 - 2.5 Mb) tracts, a significant enrichment 

compared to the genetic background, suggesting that even short tracts are useful for computing 

inbreeding metrics like the coefficient of inbreeding estimated from ROH (FROH). 
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In our dataset, FROH differed significantly both within and among dog breeds. All breeds 

harbored some regions of reduced genetic diversity due to drift or selective sweeps, but the 

degree of inbreeding and the proportion of inbreeding caused by short versus long tracts 

differed between breeds, reflecting their different population histories. Although only available 

for a few species, large genome-wide datasets including recessive disease variants hold 

particular promise not only for disentangling the genetic architecture of inbreeding depression, 

but also evaluating and improving upon current approaches for detecting ROH.  

 

Introduction 

Chromosomal segments that are homozygous by descent (autozygous) are a hallmark of 

inbreeding. Close consanguineous matings typically result in offspring with several long runs of 

homozygosity (ROH), while matings between more distant shared relatives (as often occurs in 

small or bottlenecked populations) produce a distribution of ROH skewed towards shorter tract 

lengths (see, for example Figure 2 in (Howrigan et al. 2011)). Most organisms of interest contain 

a wide array of segregating, often rare, recessive or partially recessive variants that can 

produce a deleterious phenotype when exposed as homozygous on genomic segments of 

autozygosity. Therefore, the efficient and accurate identification of ROH is of immense interest 

in the field of genetics, particularly in conservation biology and plant/animal breeding where 

avoidance of inbreeding depression is of critical importance. 

Estimates of autozygosity can be derived from known pedigrees, where the coefficient of 

inbreeding (F) is estimated as half the coefficient of relatedness (r) between the parents of an 

individual (Wright 1922). However, a pedigree-based estimate of F merely measures the mean 

expected autozygosity of an individual and not the true inbreeding level for an individual, which 

depends on the actual segregation and transmission of chromosomal segments (Hill and Weir 

2011; Keller et al. 2011). Furthermore, in many populations, pedigrees may be inaccurate, 
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incomplete, or missing, leading to incorrect or biased estimates of inbreeding (Cassell et al. 

2003). 

Genetic marker-based F estimates can be more accurate than pedigree-based estimates, 

but estimates based on only a handful of markers are typically less precise than pedigree-based 

estimates. For example, early molecular approaches to indirectly estimate F from microsatellites 

involved calculations of multi-locus heterozygosity (MLH), d2, and internal relatedness (IR) 

(Coulson et al. 1998; Slate and Pemberton 2002; Amos et al. 2001; Coltman et al. 1998).  

However, several studies later demonstrated that small microsatellite panels are ineffective at 

accurately estimating F (Slate et al. 2004; Balloux et al. 2004; DeWoody and DeWoody 2005). 

Dense genotyping from either whole-genome sequencing or array-based genotyping allows 

for the detection of ROH and the inference of autozygous segments of the genome. Long ROH 

are indicative of recent identity-by-descent (IBD) and the sum of these tracts is, in theory, the 

exact inbreeding level of an individual. However, what constitutes a “long” ROH is unclear 

(Peripolli et al. 2016) and establishing an optimum length threshold is a challenge (McQuillan et 

al. 2008).  

The two parental chromosomes within a diploid individual can be considered IBD at any 

point, as IBD is ultimately determined by coancestry back to a coalescent event. Such a 

definition of IBD is unhelpful, particularly because some evidence exists that longer tracts of 

homozygosity carry disproportionately more deleterious variation than shorter tracts (Szpiech et 

al. 2013). Generally, the threshold at which a ROH is considered as an IBD segment has been 

determined empirically (if not arbitrarily) as a tract length that is long enough to likely have been 

inherited from a recent common ancestry (Ku et al. 2010).  

Estimates of inbreeding are correlated with negative fitness consequences in many 

populations (Lencz et al. 2007; Nalls et al. 2009; Szpiech et al. 2013; Mészáros et al. 2015; 

Zhang et al. 2015). Precise estimation of inbreeding is particularly important for understanding 

inbreeding genetic load (Charlesworth and Willis 2009) and the degree to which this load is a 
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consequence of ROH of various sizes (and thus the thresholds by which biologically relevant 

IBD tracts should be inferred). Previous studies have used functional predictions rather than 

known deleterious mutations and have led to different conclusions as to whether short or long 

ROH harbor more deleterious genetic variation (Szpiech et al. 2013; Zhang et al. 2015).  

Domestic dogs are an ideal organism in which to study the phenotypic effects of recent 

inbreeding. Hundreds of dog breeds, each with their own unique genetic history, form closed 

populations usually characterized by significant levels of autozygosity owing to founder effects, 

bottlenecks, popular sires, and artificial selection for conformation or performance. 

Approximately 200 known Mendelian recessive disease variants have been identified in dogs, 

the majority of which are potential models for human disease (OMIA) and can be tested 

efficiently with genotyping arrays. While a few of these variants, like the SOD1 mutation, which 

predisposes dogs to degenerative myelopathy (a relatively late-onset disorder), are ancient 

mutations segregating in dozens of breeds, most of these disease variants are found in only one 

breed, or at most a few related breeds, suggesting they are relatively recent mutations (Awano 

et al. 2009; Boyko 2011). 

If a method to detect ROH is highly accurate, the vast majority of homozygous recessive 

disease genotypes should occur in regions classified as ROH (and essentially all homozygous 

genotypes for diseases caused by recent mutations). Furthermore, the distribution of tract 

lengths for tracts overlapping these genotypes will enable a direct test of whether longer or 

shorter ROH tracts disproportionately harbor known recessive disease mutations. By 

incorporating knowledge of known recessive disease variants along with dense genome-wide 

data, we can better refine and evaluate methods of ROH detection, and more precisely 

investigate patterns of ROH across populations and across genomic regions. 

Here, we estimate ROH using two popular methods, PLINK (Purcell et al. 2007; Chang et al. 

2015) and GERMLINE (Gusev et al. 2009), to examine the association between ROH and 

known at-risk genotypes (observed cases of homozygous recessive deleterious genotypes) in 
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domestic dogs. We hypothesize that at-risk genotypes will be highly enriched in ROH regions 

compared to the non-ROH genomic background. This enrichment can be used to evaluate the 

sensitivity and specificity of ROH-calling methods and can provide a direct test of whether 

longer ROH tracts are more or less enriched for these recessive disease variants. We 

additionally characterize the distribution of ROH in 11 common dog breeds as an example of 

how the distribution of ROH is influenced by the timing and extent of artificial selection in a 

breed.  

 

Results 

Distribution of overlaps of ROH with known homozygous at-risk alleles 

In total, 670 dogs whose owners consented to participate in research were homozygous for at 

least one of 29 Mendelian disease alleles assayed by Embark and considered in our analysis. 

Of those, we measured the genome-wide distribution of ROH in order to compare it to the set of 

ROH overlapping a homozygous at-risk allele in our sample. We identified the set of ROH 

overlapping each occurrence of an at-risk genotype and summarized these tracts in four length 

categories (< 0.5 Mb -- below ROH detection threshold; 0.5 Mb - 2.5 Mb -- short; 2.5 Mb - 5.0 

Mb -- medium; > 5Mb -- long). 

We analyzed ROH generated from PLINK and GERMLINE using similar parameters for 

identifying ROH. In short, we considered ROH >= 0.5 Mb as long as they consisted of at least 

41 markers. The results are broadly consistent between these two analyses (Table 1), although 

GERMLINE was modestly more sensitive, in terms of at-risk genotypes overlapping GERMLINE 

ROH tracts slightly more often than PLINK-generated ROH tracts, so we focus on results from 

the former here.  

For all at-risk cases excluding SOD1, 92 % of at-risk genotypes had an ROH 

overlapping the at-risk allele. While the longest ROH in our analysis harbor the majority (66%) of 

deleterious recessive alleles in this panel of at-risk dogs, short ROH nonetheless harbor known 
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recessive disease homozygous genotypes at a rate nearly 30x higher than stretches of DNA 

that are not considered ROH. Across all tract lengths that we considered, the relative risk of a 

ROH carrying a deleterious mutation was similar across classes, suggesting that ROH of all 

lengths may contribute to inbreeding depression in dogs (see Figure 1, Table 1). To ensure that 

the deviation of the tracts overlapping at-risk genotypes is not a product of random sampling, we 

resampled the full distribution of homozygosity tracts from at-risk dogs to mimic the sampling of 

tracts from at-risk dogs (see Figure 1). 

Although all the recessive diseases we studied had at-risk genotypes that were highly 

enriched in ROH tracts, the enrichment was not uniform across these disease variants. Notably 

for the SOD1 mutation leading to canine degenerative myelopathy (DM) (Awano et al. 2009), an 

ancient mutation found in dozens of breeds, we observe a weaker enrichment of at-risk 

genotypes in long ROH (Figure 1, Table 1).  

 

Genome-wide distribution of ROH in 11 common dog breeds 

We estimated and analyzed the distribution of ROH in 1792 dogs from 11 common dog breeds. 

First, we calculated FROH for all breed dogs and assessed the distribution within breeds for both 

autosomes and chromosome X. Of the breeds we analyzed Doberman Pinscher had the highest 

overall levels of FROH and Beagle the lowest. In general, FROH  of chromosome X varied in 

concert with the autosomes, although some breed (e.g. Doberman Pinscher and Golden 

Retriever) had somewhat elevated FROH on X compare to autosomes while others (e.g. English 

Bulldog) had lower FROH (Figure 2).  

For each breed, we also assessed the distribution of ROH by length across all dogs in 

the breed (Figure 3). These distributions illustrate variation in the timing of diversity loss via 

inbreeding across breeds. For example, while today Doberman Pinschers have the highest 

average FROH  of  all breeds in our analysis, the relatively higher fraction of inbreeding in short 

tracts in English Bulldogs reflects the tremendous bottleneck that occurred in that breed after 
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bull-baiting was banned in the 1830s and the breed was driven to the brink of extinction 

(Pedersen et al. 2016). Finally, for each breed we calculated a map of the local density of ROH, 

in other words the fraction of dogs in the breed sample carrying a ROH at each position (Figures 

S1-11). These maps highlight the deterministic loss of diversity (ROH islands) within breeds, 

and variation in ROH islands across breeds. Regions of homozygosity associated with fixation 

of certain variants (e.g. the chr13 RSPO2 locus in poodles) are clearly evident and are 

concordant with previously identified homozygosity regions in these breeds (c.f. (Vaysse et al. 

2011)). However there is also marked variation in rates of homozygosity outside of these fixed 

haplotype windows, demonstrating that drift and selection have led to non-uniform diversity loss 

across the genome in these breeds. 

 

Discussion 

Our study is the first to examine patterns of ROH in dogs to a resolution of 500kb. While 

undoubtedly the sensitivity and specificity of detecting ROH is lower in short (0.5 - 2.5 Mb) tracts 

compared to long ones, we observe a clear signal of enrichment of known recessive deleterious 

homozygous genotypes in these regions(Figure 1, Table 1). Thus, these short tracts on 

aggregate represent a real signal of autozygosity, and furthermore these short tracts, often 

overlooked in studies of ROH, may be important and measurable contributors to inbreeding 

depression in dogs and other species. Indeed, 4.8-10.7% of the genomes of these 11 common 

breeds were covered by ROH tracts between 0.5 to 2.5 Mb (Figure 3A) and these tracts 

contained 18.7% of the SOD1 and 14.7% of the non-SOD1 known deleterious recessive 

homozygous genotype calls. Only 34.3% and 7.8% of the SOD1 and non-SOD1 homozygous 

genotype calls were not detected in ROHs, respectively (Table 1). Because these false negative 

calls were usually flanked by many homozygous markers (but for less than 500kb) rather than 

heterozygous markers, we believe they are due to ROH below our detection threshold and not 

due to point mutations arising on different haplotype backgrounds. 
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Knowing the extent to which long versus short ROH contribute to inbreeding depression 

would enable an assessment of the risk posed by recent consanguineous matings, which are 

often avoidable in dog breeding, and the risk from matings between more distant relatives which 

is generally unavoidable for purebred dogs. If inbreeding depression in dogs is mainly caused 

by rare, large-effect recessive (or partially recessive) variants, the contribution of long versus 

short tracts to inbreeding depression is likely well approximated by the contribution of long 

versus short tracts to recessive homozygotes at known Mendelian disease alleles, most of 

which are rare on aggregate, although possibly common in the breed(s) they affect. In contrast if 

inbreeding depression is mainly caused by common, small-effect recessive or partially recessive 

variations, the contribution of short tracts to inbreeding depression will be much greater, 

possibly even greater than the contribution of short tracts to DM risk at the SOD1 locus. 

We do see substantial variability in levels of autozygosity between breeds as well as 

across the genome within a breed. These differences represent the unique history of each 

breed, and the effect of drift and selection for particular traits over time. At one extreme, many 

breeds have complete autozygosity in certain windows of the genome. However, genomic 

regions of high autozygosity that are not completely fixed are also evident in every breed, and 

efforts to preserve breed diversity should focus on preserving rare haplotypes in these regions 

rather than rare markers in randomly selected genomic regions. Where fixed haplotypes harbor 

deleterious variation, marker-assisted crossings and backcrossings to introduce new diversity at 

the locus or gene-editing techniques like CRISPR to remove the deleterious variant(s) are 

required to reverse the otherwise irreversible turn of Muller’s ratchet. 

Given the intense interest in developing and comparing methods to detect ROH, it is 

somewhat surprising that these methods are not typically evaluated for their sensitivity and 

specificity to detect known deleterious recessive mutations (indeed we are aware of no other 

genomic studies that have done so). While several studies have examined predicted 

deleteriousness of variants (Szpiech et al. 2013; Zhang et al. 2015), current methods for 
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predicting deleteriousness are almost certainly less accurate than current methods to detect 

ROH (and predicting recessiveness is even more fraught), making them a poor way evaluate 

the sensitivity and specificity of ROH detection methods. Being able to evaluate ROH methods 

in this way, however, is extremely valuable for comparing ROH detection methods and fine-

tuning parameters to optimize accurate ROH inference for a population and genomic dataset of 

interest. Accurate ROH tract detection is invaluable not only for inferring the coefficient of 

inbreeding and other genetic parameters of interest, but also for accurate reconstruction of 

population history and identification of relatives. 

The dog is an excellent genomic model for evaluating ROH methods as over 200 

Mendelian, mostly recessive, variants are known and the requisite genomic resources (e.g. 

high-quality reference genome and high-density SNP arrays) are available, although at present 

only the canine array platform used in this study includes both dense genome-wide coverage 

and probes to assay most of the Mendelian variants known in dogs. Although humans generally 

have much lower levels of inbreeding than purebred dogs, many more recessive disease 

variants are known in humans (OMIM), and even denser arrays (including probes for many 

Mendelian variants) have been used to investigate over 10 million humans to date, largely on 

commercial DNA testing platforms 

(https://isogg.org/wiki/Autosomal_DNA_testing_comparison_chart). Thus, high-powered studies 

looking at many more at-risk loci and many more at-risk individuals with even denser marker 

panels could potentially be done to further investigate the sensitivity and specificity of various 

ROH methods and the contribution of different size ROH tracts to inbreeding risk if privacy 

concerns could be managed and data access granted to researchers in the field. Until then, 

researchers are encouraged to use this publicly available canine genetic database and to 

develop similar databases in other model genetic species to improve both the methodology by 

which ROH is computed and our insights into the genetic architecture of inbreeding depression 

in these species. 
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Methods 

At-Risk Dog Dataset 

We queried Embark’s customer database on April 4th, 2018 for all dogs whose owners 

consented to participate in research that were homozygous (at-risk) for recessive deleterious 

conditions assayed by Embark’s platform. In total, we identified a total of 678 at-risk cases in 

670 dogs (some dogs were at-risk for more than one condition). We separated these at-risk 

cases into two categories: 1) at-risk for SOD1-based degenerative myelopathy (Awano et al. 

2009), of which we observed 283 at-risk dogs, and 2) at-risk for all 28 other recessive 

deleterious conditions assayed by Embark, of which we observed 395 at-risk cases across 393 

dogs (Table S1).  

 

Breed Dog Dataset 

We queried Embark’s customer database on January 23rd, 2018 for all customer dogs identified 

as purebred by Embark from the most common 11 breeds and whose owners consented to 

participate in research. We then used the ‘--genome’ flag in PLINK v1.9 (Chang et al. 2015) to 

identify pairs of dogs for which the proportion of IBD (PI_HAT) was greater than 0.45 and used 

these pairs to remove dogs that were potentially related as parent-offspring or full siblings. In 

total, our final dataset included 1,792 dogs from 11 breeds (Table S2). 

 

Genotyping & Quality Control  

Customer dogs were genotyped on Embark’s custom high-density genotyping platform 

containing approximately 220,000 markers including all 173,000 markers found on the Illumina 

CanineHD platform and probes to detect over 160 Mendelian disease variants. SNP filtering 

using PLINK 1.9 (Chang et al. 2015) was done to ensure genotype concordance rates above 
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99.99% and missingness rates below 0.1%. Genotype data was phased against a proprietary 

reference panel and missing data imputed using Eagle2 (Loh et al. 2016). SNP data was also 

pruned with PLINK to remove markers in close linkage disequilibrium using “--indep-pairwise 

200 100 0.90”. After pruning, 170,728 autosomal and 4,395 chrX markers remained, for an 

average of one marker per 12.8 kb for autosomes (one marker per 28.2 kb on chromosome X). 

 

Defining Runs of Homozygosity with PLINK 

We generated ROH for at-risk dogs in PLINK using software version 1.9 (Chang et al. 2015) 

(which uses the algorithm from software version 1.07 (Purcell et al. 2007)).  

            --homozyg-window-het 0 

            --homozyg-snp 41 

            --homozyg-window-snp 41  

            --homozyg-window-missing 0 

            --homozyg-window-threshold 0.05 

            --homozyg-kb 500 

            --homozyg-density 5000 (set high to ignore) 

            --homozyg-gap 1000 (set high to ignore) 

 

Defining Runs of Homozygosity with GERMLINE 

Initially, we attempted to use GERMLINE’s internal filtering to identify ROH >= 0.5 Mb and 

consisting of at least 41 markers using the following parameters: 

 

 germline -homoz-only -min_m 0.5 -err_hom 0 -err_het 0 -bits 41 -w_extend 

 

Where -min_m = 0.5 is in units of Megabase-pairs (all measurement in this study was computed 

in physical distance).  
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However, we noticed an issue with the germline software in which using the -w_extend flag in 

conjunction with the -homoz-only whereby all tracts are extended beyond the first mismatching 

marker to the end of the next slice (or beginning of the previous slice). 

 

As an alternative, we used the following command in germline to generate preliminary 

homozygosity tracts for all dogs in this study: 

 

 germline -homoz-only -min_m 0.5 -err_hom 0 -err_het 0 -bits 1 -w_extend 

 

This identified all segments of the genome >500 kb with no heterozygous markers. We then 

merged all such segments separated by <50 kb from a neighboring autozygous segment and 

subsequently removed all merged segments containing fewer than 41 markers (to avoid 

spurious inference of ROH in regions with few markers). We found this approach superior to 

allowing a certain set number of heterozygous markers within an ROH for two reasons: (1) 

requiring no heterozygous variants for at least 500kb vastly improves the specificity for detecting 

short ROH (500kb - 4000kb), and (2) allowing one or a number of tightly clustered (<50kb) 

heterozygous variants between two ROHs improves the sensitivity for detecting long ROHs that 

would otherwise be broken up by genotyping error or copy-number variation (deletions or 

duplications, most of which are <50kb, can lead to clustered heterozygous at the markers within 

the structural variant). 

 

Defining FROH 

FROH  was computed as in previous studies (e.g. (McQuillan et al. 2008)) as: 
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Where ROHk is the kth ROH in individual j’s genome and L is the total length of the genome (or 

X-chromosome). 
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Figure 1. Cumulative density plot of runs of homozygosity (ROH) by length ordered from longest 
to shortest. Yellow line is all ROH in all dogs at-risk for a deleterious recessive disease, 
excluding the SOD1 Degenerative Myelopathy (DM) allele. Blue line is the distribution of ROH 
overlapping at-risk loci (no SOD1) in the same set of dogs. Red is the set of ROH overlapping 
the SOD1 DM allele only. Gray lines are 1000 sets of ROH, with the same sample size as the 
blue line, sampled randomly from the set of all ROH and illustrate that the blue and red sets or 
ROH are highly non-random samples from the full set of ROH. 
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Figure 2. Distribution of FROH values across autosomes and the X chromosome for 11 common 
dog breeds.  
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Figure 3. Cumulative density of ROH in 11 common breeds.  
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ROH Length PLINK GERMLINE PLINK GERMLINE PLINK GERMLINE PLINK GERMLINE
< 0.5 Mb * 75.9 75.1 36.4 34.3 9.9 7.8 1.0 1.0
0.5 - 2.5 Mb 4.5 4.7 19.4 18.7 14.9 14.7 25.7 29.8
2.5 - 5.0 Mb 3.3 3.1 15.2 14.5 11.6 11.4 27.4 35.7
> 5.0 Mb 16.4 17.1 29.0 32.5 63.5 66.1 29.8 37.0

% of all ROH % of SOD1 % of at-risk (no 
SOD1 )

Relative risk 
compared to ROH 

< 0.5 Mb

Table 1. Analysis of runs of homozygosity (ROH) in dogs carrying homozygous recessive 
deleterious mutations. ROH > 0.5 Mb (detected by our ROH analysis) harbor recessive 
deleterious alleles at minimum 28.7X more than ROH < 0.5 Mb.

*ROH below our detection threshold
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