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Abstract 
 
Single-cell transcriptomics allows the identification of cellular types, subtypes and states 
through cell clustering. In this process, similar cells are grouped before determining co-
expressed marker genes for phenotype inference. The performance of computational tools is 
directly associated to their marker identification accuracy, but the lack of an optimal solution 
challenges a systematic method comparison. Moreover, phenotypes from different studies are 
challenging to integrate, due to varying resolution, methodology and experimental design. In 
this work we introduce matchSCore (https://github.com/elimereu/matchSCore), an approach 
to match cell populations fast across tools, experiments and technologies. We compared 14 
computational methods and evaluated their accuracy in clustering and gene marker 
identification in simulated data sets. We further used matchSCore to project cell type identities 
across mouse and human cell atlas projects. Despite originating from different technologies, 
cell populations could be matched across data sets, allowing the assignment of clusters to 
reference maps and their annotation. 
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Introduction 
 
Single-cell RNA sequencing (scRNA-seq) is a powerful tool to quantify phenotype 
heterogeneity across individual cells. Recent discoveries of novel cell types and states provide 
the basis for more refined classifications of complex tissues and dynamic systems1. Rapid 
improvements of single-cell technologies and corresponding computational solutions allowed 
the processing of large sample sizes, resulting in the first cell atlases of tissues, organs and 
organisms2–5. Single-cell data analysis involves cell clustering to define biologically distinct 
types or to describe dynamic processes where cells transform in a continuum of states. Cells 
are grouped by transcriptional similarities before specific marker genes are identified. Both 
steps critically impact on the phenotyping resolution by providing population structures and 
their molecular characteristics. However, the analysis of single-cell transcriptomics data sets 
is challenged by the stochastic component of gene expression and technical sources of noise 
(e.g., dropout events and batch effects)6,7. Further, complex subtype structure and large intra-
group variability lead to highly variable gene expression distributions and fuzzy clusters. 
Hence, biological and technical factors can confound the cellular population structure, critically 
impacting on the performance of analytical tools and challenging the integration of data sets 
across studies and technologies. 
Comparative work has been performed for differential expression analysis tools8–10, but 
approaches for clustering and gene marker identification have not been systematically tested. 
To date, cluster quality assessments were based on robustness and stability11–13, cohesion11 
or the visual inspection of cluster separation14. Validation was performed through classification 
techniques, such as support vector machines11,15 or supervised with established gene 
markers16. However, in the light of the attempts to generate comprehensive cellular atlases, 
cluster accuracy and marker identification become extremely important to explain the 
molecular basis underlying phenotype formation. It is the combined performance in cell 
clustering and gene marker identification that defines a method’s suitability to describe sample 
complexity. Moreover, the power to identify population gene markers strongly relates to the 
type and quality of the underlying data sets, challenging the integration of experiments from 
different studies and technologies. However, straightforward matching of future data sets into 
current efforts to produce reference cell atlases of organisms is strongly desired. In this regard, 
researchers should be enabled to compare their experimentally derived clusters with reference 
maps, to annotate cells and to determine perturbation effects, such as present in diseases. 
Recent computational tools enable data integration across experiments through normalization 
or the projection of cells into a reference maps17–19. However, these methods do not provide 
a straightforward solution for cell type annotation or use heuristic steps and distance 
quantifications that are suboptimal for the context of noisy single-cell gene expression data. 
To enable systematic comparison of computational tools and straightforward cross-study data 
integration, we introduce matchSCore, a Jaccard index based scoring system, to quantify 
clustering and marker accuracy in a combined score and to integrate cluster identities across 
different data sets. The approach allowed us to evaluate consistencies between simulated 
populations and predicted clusters from commonly used computational tools. Specifically, we 
performed simulation-based benchmarking of 14 single-cell phenotyping methods by 
measuring their agreement with a simulated optimal solution. The matchSCores could be 
tracked at different thresholds, thereby providing a trend of accuracy and indicating the sweet 
spots of the tested methods. Our comparative analysis will help users to make an informed 
decision to select tools tailored to their respective data sets and priorities. Next, we used the 
metric of matchSCore to combine results from single-cell RNA sequencing data sets from 
different studies. Specifically, we produced single-cell transcriptome profiles for bladder and 
pancreas tissues and projected our and publically available cell clusters onto a mouse or 
human organ reference atlas, respectively. The integration of tissue-matched data sets across 
different RNA sequencing techniques (full-length and 3’-digital counting methods) underlined 
the broad utility of our scoring system to annotate a given data set in the framework of a 
predefined reference.  
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Results  
 
We introduce matchSCore as metric to integrate cell type identities by combining clustering 
information with associated population markers. To derive a matchSCore, simulated groups 
of cells are matched to computational clusters to assign true-positive group labels. Then, 
predicted and simulated group markers are compared to determine consistencies (Fig.1). The 
matching of markers takes into account their group and cluster specificity (marker ranking), 
according to their fold-change (simulation) and p-value (tool), respectively. Highly specific 
genes (for a group or cluster) are top-ranked, while shared markers across groups (low-
specific markers) are ranked at lower positions. Alternatively, clusters of a given single-cell 
RNA sequencing experiment are mapped to a reference data set to score cell identity 
similarities. In both contexts, the Jaccard index20 is the metric utilized to determine similarities 
across simulated or reference group markers and their predicted or experimentally derived 
counterparts, respectively. The Jaccard index represents the standard metric to assess the 
accuracy in object detections and image segmentations. In that context, accuracy is 
determined by the matching area over the total area of a ground truth and a tested image. 
Similarly, we used the Jaccard index to compare experimentally derived gene markers to an 
optimal solution or reference. The index allows features in multiple groups and thus provides 
an adequate measure for marker set similarities (including shared markers across groups). It 
is of note that the matchSCore tolerates imperfect clustering, but strictly penalizes low marker 
accuracy. With cell clustering being inevitably impacted by the incomplete and stochastic 
nature of single-cell data sets, marker genes are crucial to support computational clusters and 
to guide biological interpretation. We used matchSCore to benchmark clustering accuracy and 
the sensitivity to identify gene markers of computational tools with respect to an optimal 
(simulated) solution. Then we applied our scoring metric to match cell type identities of 
different organs across experiments and scRNA-seq methods. 
 

 
 
Figure 1. Schematic representation of the matchSCore metric to measure similarity and accuracy 
between computational clusters with relative cluster-specific genes and reference groups with true 
group markers. The metric includes a step to identify true group labels based on the highest match 
between simulated groups and clusters. Then the Jaccard index is computed across corresponding 
sets of markers. A matchSCore can be computed at different level of marker specificity to identify the 
performance peak of a tool. 
 
 
Benchmarking computational tools for cellular phenotyping 
We simulated four levels of complexity for two common scenarios in single-cell experiments: 
a) a heterogeneous mixture of cell types and subtypes (S1) and b) a dynamic process with 
continuous cellular states (S2). The simulations were based on two reference data sets from 
which genes and cell numbers, gene expression mean, variance and library size were 
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estimated (Online Methods). Specifically, we used scRNA-seq data from 2700 peripheral 
blood mononuclear cells, available from 10x Genomics (PBMC; S1), from which we simulated 
eight cell populations (including six with proportions of 0.1 and two of equal size). Dynamic 
processes were simulated based on 2730 myeloid progenitor cells21 during lineage 
commitment (S2), harboring three groups with similar cell proportions that represent different 
states along the differentiation trajectory. The complexity levels of simulated data were tuned 
by decreasing the probability of a gene to be differentially expressed and by varying the 
dispersion across all genes. Considering these parameters as an ordered pair, we created 
four different levels of data complexity (L1-L4). The rationale behind the parameter choice was 
the creation of a baseline data set (L1), readily clusterable for most tools (reference 
matchSCore). Subsequently, we modified conditions, where L2 presented a reduced number 
of differentially expressed genes and L3/L4 showed higher gene dispersion at different 
proportions of group markers. In the research context, tools with broad application spectrum 
might be preferable, as an a priori estimation of sample complexity is difficult (even with 
expected outcomes). As expected, most clustering algorithms performed better in the L1 data 
set as indicated by the Fowlkes and Mallows index (FMI, Online Methods; S1: average FMI= 
0.73; S2: average FMI = 0.58, Fig. 2). With increased complexity we observed strong 
differences in the performance within and between methods, indicating distinct optimal 
application scenarios for the tested methods. 
 
 

 
 
Figure 2. Distribution of the Fowlkes-Mallows Index (FMI) for each simulated data set, indicating the 
cluster accuracy for a) cell type (S1) and b) cell state (S2) scenarios. The x-axis labels indicate the level 
of complexity (L1-L4) with information about the simulation parameters (proportion of differentially 
expressed genes and gene dispersion, respectively). An FMI of 1 relates to complete agreement with 
true group labels, whereas 0 is comparable to a random assignation. 
 
 
Scenario 1 (S1 - Cell type heterogeneity) 
Testing the performance of tools on data sets simulating distinct cell types and subclusters 
revealed strong differences in both clustering performance (FMI, Fig. 2a) and total 
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matchSCore values (Fig. 3, Supplementary Figs. 1-3). As aforementioned, the matchSCore 
is not strictly reflecting the clustering performance, exemplified by the near perfect cluster 
identification of SINCERA22 (L1, FMI = 0.99; Fig. 2a), but a low total score due to a reduced 
capability to identify the group markers (Fig. 3a,c). Vice versa, bigSCale23 was outperformed 
in the clustering but reached the highest matchSCore by identifying the largest number of 
markers. Importantly, matchSCore curves not only provide a quantitative measure, but also 
give a qualitative indication of the accuracy across methods. For instance, SC324 and Seurat 
BM15 showed different matchSCore trends (Supplementary Fig. 4), with Seurat BM showing 
a performance peak at 50% specificity (top 50% of real group markers) and the top 1000 
ranked genes (computed by tool) per group, while SC3 detected an increasing number of 
marker with increasing specificity and tested genes (top genes). The continuously improving 
matchSCore in SC3 indicates the presence of true positive markers also at higher ranked 
positions, though the tool showed the overall lowest number of total markers in all simulations 
(Supplementary Figs. 1-3). SC3 displayed increased sensitivity at high specificity level 
(Supplementary Fig. 1b), in line with the original application spectrum. However, markers 
shared between two or more groups are detected as unique group-specific markers, resulting 
in overall reduced matchSCore values.  
At complexity level 2 (L2, Supplementary Fig. 1), the impact of the lower number of 
differentially expressed genes (7% of all genes compared to 14% in L1) seemed to split tool 
performance into two groups, with CIDR25, bigSCale, SIMLR14, Monocle DDRTree16, ascend26 
and TSCAN27, producing low FMI values in clustering and also reduced matchSCore 
measures. In this context SC3 presented the highest matchSCore (Supplementary Fig. 1a,c), 
considerably outperforming all other tools. The improved overall cluster performance in level 3 
(L3, Fig. 2a)  suggests that an increased number of differentially expressed genes (40% of 
total genes) allows the correct cluster assignation even with high dispersion. Here, SC3 and 
Seurat BM presented highest matchSCore values at lower numbers of top marker genes, 
which dropped with increasing marker quantity (Supplementary Fig. 2). In contrast, bigSCale 
showed a continuously increasing trend, supporting its sensitivity in the detection of low-
specificity markers. As expected, most of tools performed worse at complexity level 4 (L4, 
Supplementary Fig. 3), which included the highest gene dispersion and the lowest number 
of differentially expressed genes. Nevertheless, SC3 and Monocle clearly outperformed the 
other tools, with the former showing improved performance as the number of marker genes 
increase. 
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Figure 3. Benchmarking of 14 computational tools by using matchSCore for the simulation scenario 1 
at level1. matchScores are computed at different cutoffs (from 250 to 2000 by 250) of ranked markers 
(top genes). a) At each cutoff the plot shows the relative matchSCore at different level of specificity for 
the true group markers (represented by points). A local fitting regression (loess) was used to fit the trend 
of points. b) Barplots of matchSCores at different levels of specificity for group markers provided by the 
simulation. The value of specificity is indicated by the proportion of top ranked markers. c) Boxplots of 
matchSCores for all tested tools. Min, Max, 1st, 2nd and 3rd quartile are indicated considering all tested 
values of top-ranked markers. 
 
 
Scenario 2 (S2 - Cell state dynamics) 
In the second scenario simulating a continuum of cell states (instead of discrete cell types) we 
identified a strikingly different performance of many tools compared to the first scenario 
(Supplementary Fig. 5-8). In contrast with the analysis of simulated cell types, the analysis 
of cells in a dynamic context challenged the clustering and the assignment of cells to a unique 
group (Fig. 2b). Accordingly, none of the methods yielded perfect clustering. However, some 
approaches appeared more suitable in this context, especially tools developed to reconstruct 
continuous processes, such as Monocle DDRTree and TSCAN (average FMI > 0.8). It is 
important to note that low FMI values do not necessarily point to poor group assignment in the 
matchSCore cluster matching, if clusters are proportionally representing correct groups. 
However, the miss-assignment within clusters can impact on the marker identification, unless 
a tool is able to discriminate (giving different weights in the model) between good and poor 
representative cells. The fitted matchSCore curves resulted more flat in the second scenario, 
denoting a stability of matchSCore trends between high and low specificity markers in contrast 
with the previous scenarios. 
At L1 the bigSCale matchSCore level largely outperformed all other tools (Supplementary 
Fig. 5), in contrast to its clustering capacity in this scenario (Fig. 2b). This is related to the 
increased presence of markers that are shared between the groups. Indeed, the dynamic 
nature of the simulated process was favorable for tools that better detect low-specificity 
markers, a strength of the bigSCale model. Next, TSCAN and Seurat BM had similar trends, 
although TSCAN resulted in overall higher matchSCore values. Both tools clearly differed from 
the other approaches in their accuracy in defining top-ranked gene markers. Noteworthy, 
Monocle DDRTree performance greatly improved when detecting less specific genes, while 
showing poor accuracy for the top-markers. At L2 (Supplementary Fig. 6), we observed a 
similar profile with stably good performance of TSCAN, Seurat BM and Monocle DDRTree. 
The bigSCale matchSCore decreased, due to the poorer clustering performance. L2 and L4 
complexity simulations, as well as L1 and L3, had very similar matchSCore patterns supporting 
the correlation between the proportion of differentially expressed genes and tool performance. 
Overall, tools obtained higher matchSCores with more simulated differentially expressed 
genes, while at lower marker numbers, many methods reduced performance considerably. In 
all S2 simulations, Seurat ROC failed to identify markers, resulting in a constant matchSCore 
of zero. A more detailed interpretation of the tool benchmarking results is accessible in the 
Supplementary Notes.   
  
Mapping cell clusters across single-cell experiments 
The logic behind deriving a machSCore does not only apply to the comparison of 
computational tools using a simulated ground truth, but also enables the matching of 
experimentally derived cell clusters to a reference data set. The fact that scores are computed 
over the reproducibility of population markers, equally allows matching of two different data 
sets and even across distinct scRNA-seq technologies. To formally test this assumption, we 
integrated experiments from human and mouse cell atlas studies that deconvoluted cell type 
composition of various organs by scRNA-seq. Specifically, we utilized Smart-seq228 derived 
data sets as reference for cell type annotation and projected cell clusters from tissue-matched 
experiments onto this atlas. Smart-Seq2 was shown to produce high-quality single-cell 
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expression profiles through the sensitive detection of RNA molecules, being most suitable to 
serve as reference technique29,30. 
As an illustrative example we selected the mouse bladder, an organ composed of two major 
cell types (luminal and mesenchymal cells) and a hierarchy of distinct subpopulations. Bladder 
tissues were included in two large-scale mouse atlas projects2,3, providing a rich resource for 
data integration across experiments and technologies. Clustering of 1287 cells profiled using 
Smart-Seq2 led to the annotation of eight reference subpopulations (four mesenchymal, three 
luminal and one basal, Fig. 4a,b). When we then used matchSCore to integrate a microfluidic-
based mouse bladder data set2 (Chromium, Single Cell 3’, Fig. 4c,d) we observed a clear 
consistency in cell type annotation between the test and reference data sets (Fig. 4e). 
Specifically, two mesenchymal subpopulations (A1 and A2) showed strong association to two 
reference populations of the same type, but being clearly distinct from other mesenchymal 
clusters (B1 and B2). In line, the luminal clusters A1 and B were related to two distinct 
reference subpopulations, while an intermediate cluster (A2) presented association to all 
luminal types. The expression of population specific signatures (Fig. 4f) underscored the 
correct cluster classification using matchSCore. Noteworthy, immune and endothelial cells 
that have exclusively been included in the test experiment were not assigned to any reference 
subpopulations (Fig. 4e). When we integrated a second data set derived from mouse bladder 
that has not been annotated before (Microwell-Seq3; cluster 1-16), we could associate all 
reference subpopulations to specific clusters (Supplementary Fig. 9). Gene markers for 
unassigned clusters did not show an enrichment in any of the reference subpopulations, 
suggesting the absence of the cell types in the reference data set (e.g. blood cell types). 
To further confirm the applicability of matchSCore guided data integration, we produced a 
single-cell RNA sequencing data set for mouse bladder cells using MARS-seq31. Specifically, 
we isolated urothelial epithelial cells from normal mouse bladder by FACS by negative 
selection of leukocytes (CD45), fibroblasts (CD140a), endothelial cells (CD31), and 
erythrocytes (Ter119) and derived scRNA-seq data for 1018 cells. Cell clustering identified 
four putative subpopulations and respective gene markers. To annotate these experimentally 
derived populations, we used matchSCore to integrate our results with the Smart-Seq2 
reference data set (Supplementary Fig. 10a,b). Two principal clusters could be clearly 
assigned to luminal and mesenchymal reference cell types of the bladder; and two additional 
subclusters showed enrichment in luminal subpopulations. Consistently, cells assigned to 
luminal populations (cluster 0,1,2) presented high levels of related signatures and the cell type 
specific markers Krt5 and Upk1a; while mesenchymal signatures and markers (Vim and 
Upk3b) were specific for cluster 3 (Supplementary Fig. 10c,d). 
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Figure 4. Data integration of bladder samples from two different experiments and technologies (Smart-
seq2 and Chromium). a,c) The t-SNE plot displays the different cell populations identified by the 
clustering of the a) Smart-Seq2 (reference data) and c) Chromium (test data) experiment2. b,d) t-SNE 
plots showing the relative expression of most significant bladder markers (blue: low; red: high; grey: 
intermediate) for b) Smart-Seq2 and d) Chromium data sets. e) matchSCore values computed by 
comparing the test clusters (Chromium) against the reference cell groups (Smart-Seq2). f) Relative 
expression of the matching cluster signatures (top 100 ranked genes) from the test data within cell 
reference populations.  
 
 
Considering the wealth of reference data sets that are being created within the framework of 
the Human Cell Atlas project1, we further aimed to confirm the suitability of matchSCore 
annotation in a human context. Such integration tool will be extremely powerful to interpret 
future experiments in respect to a predefined human reference atlas. We used human 
pancreas, an organ with a well-known anatomy and defined cellular subtypes. As before, we 
used an annotated Smart-Seq2 data set2 as reference before matching cell cluster from 
different studies and techniques. The reference atlas (Supplementary Fig. 11) described five 
subpopulations of endocrine pancreatic islets cells (PP, alpha, beta 1/2 and delta cells) and 
five additional cell types (stellate, ductal, exocrine, endothelial and immune). We projected two 
well-annotated (CEL-seq32, Supplementary Fig. 12a; Indrop33, Supplementary Fig. 13a) and 
an unannotated (Microwell-Seq3; Supplementary Fig. 14a) pancreas data sets on the 
reference map and could assign clusters to all reference subpopulations. Population specific 
signatures supported the correct annotation of the clusters and the accuracy of our approach 
(Supplementary Fig. 12b,13b,14b). Of note, stellate cells were assigned to multiple clusters, 
likely representing different activation states (activated or quiescent33, Supplementary Figs. 
13a and 14a). Also immune cells had multiple matches, pointing to the different blood cell 
types. To further validate the broad utility and sensitivity of our approach in a human context 
we produced and projected MARS-Seq data from 289 short-term cultured gradient-purified 
primary human pancreatic islet cells (Fig. 5a,b). Consistently, the largest cell clusters 
(Cluster_0 and Cluster_1) matched to endocrine subpopulations, with scores and population 
signatures distinguishing alpha and beta cell types (Fig. 5c,d). In addition, minor populations 
of contaminating duct and stellate cells could be clearly annotated.  
Conclusively, the organ-matched integration of six different RNA sequencing technologies and 
nine experiments using matchSCore pointed to the conservation of sufficient gene marker 
signal across methods and varying sequencing depths. Moreover, it illustrates the broad 
application spectrum of matchSCore to integrate cell populations from different experiments.   
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Figure 5. Using matchSCore to annotate pancreatic islet cell types derived from MARS-Seq. a) The t-
SNE plot displays the different cell populations identified by the clustering analysis of 289 pancreas 
cells from MARS-Seq. b) t-SNE plots displaying the expression (blue: low; red: high; grey: intermediate) 
of pancreatic subpopulation markers. c) matchSCore values computed by comparing the test clusters 
(MARS-Seq) against the reference cell groups (Smart-Seq2). Each tested cluster is matched against 
all reference clusters in order to find its most similar reference group. d) Relative expression of the 
matching cluster signatures (top 100 ranked genes) from the MARS-seq experiment within the 
reference clusters (Smart-Seq2).  
 
 
Discussion 
 
Cellular phenotyping using RNA sequencing is at the forefront at describing cell types and 
states. The resolution to which a sample is characterized relates to technical features, such 
as library preparation method and sequencing depth, but also to the choice of data analytic 
strategy. Computational tools are conceptually different and harbor largely different statistical 
approaches that impact on their sensitivity to describe cellular phenotypes. In general, cell 
clustering approaches detect patterns in a data set and group cells that co-express gene sets. 
However, different clustering algorithms prioritize genes differently and, thus, can come to 
different conclusions. We developed a scoring system that allowed us to systematically test 
single-cell phenotyping tools for their accuracy and sensitivity to chart sample heterogeneity 
by comparing them against a simulated ground truth. We were able to quantify the combined 
performance of clustering and marker detection at different levels of specificity and two 
biological single-cell scenarios. Consistent with the fact that tool design centered on cell 
clustering, most tools showed decent accuracy in group assignments, but often failed to 
determine cluster-specific markers. In addition, tools have different capacity to deal with more 
challenging data types, exemplified by dynamic systems. Figure 6 summarizes the 
performance for both biological scenarios and the different levels of complexity. Here, we 
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display the relative average matchSCore (across different levels of top-markers) as a measure 
of accuracy in retrieving a cell’s phenotype.  
The logic in our matchSCore system also allowed us to enlarge its application to the 
comparative analysis of phenotypes across data sets, thus providing a straightforward solution 
to annotate future single-cell projects. Clustering single cells into a subtype structure provides 
unprecedented resolution of complex samples, however, data interpretation is extremely 
challenging. Here, the data-driven results often exceed prior knowledge about tissue 
composition and novel cell clusters are not straightforward to characterize. Consequently, 
comparative analysis between experiments can guide researchers to interpret their data in 
respect to related experiments or previously produced references. matchSCore enables this 
straightforward cross-annotation between studies, even in cases of data types from largely 
different scRNA-seq methodologies. We have provided examples for human and mouse tissue 
atlas projects and selected organs. However, our method is readily applicable for any single-
cell research context and species. Compared to other strategies to project clusters into 
reference maps, matchSCore can be directly applied at the gene marker level, thereby 
combining findings (post clustering) rather than through data integration. In fact, published 
integration approaches using nomalization are combining data in its rawest format without 
providing a straighforward solution to compare cell identities17,19. Notably, our approach 
showed to be also viable when reference and test samples included non-overlapping 
populations, which can lead to misinterpretations particularly when rare subpopulations are 
present. A recent approach for direct cell projection18 includes several heuristic steps and 
arbitrary cutoffs, which could amplify technical biases, reducing the power of classification. 
The approach also makes use of distance metrics (Pearson, Spearman and Cosine) that are 
not tailored to the exceptionally sparse and noisy nature of scRNA-seq data sets, which could 
lead to shortcomings during data interpretation.  
In conclusion, matchSCore provides a direct and reliable solution to match cell identities 
across single-cell analyses and data sets, allowing to perform a systematic comparison of 
computational and experimental outcomes, respectively. Considering the rapid computational 
tool development and large-scale data production, matchSCore can contribute to define high-
quality analysis standards and the meaningful data interpretation. 
 
 

 
 
Figure 6. Summary heatmap of the performance of computational tools. For each scenario and level of 
complexity, the normalized average across different thresholds of top markers (from 250 to 2000 by 
250) matchSCores are shown as Z-scores. Higher Z-scores are related to better performance.  
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Online Methods 
 
The matchSCore metric  
The matchSCore quantifies the consistency in the assignment of cell clusters and gene marker 
across analyses and experiments. Specifically, it measures the combined accuracy of 
clustering and identification of cluster-specific markers with respect to the optimal solution, 
provided by the simulation. In addition, it enables to match ranked marker genes between 
experiments and to convert their agreement in a score. To benchmark analysis tools, a 
matching step between clusters and simulated groups was performed to assign true group 
labels to each cluster. The label for each cluster is defined according to the most frequent 
original cell group present in a given cluster. Once labels have been assigned to clusters, a 
Jaccard Index is used to measure similarities across corresponding cluster markers and true 
(simulated) group markers. The Jaccard index is commonly used to quantify the similarity of 
two sample sets by computing their intersection over their union. For shared markers across 
groups, the Jaccard index allows to have elements in more than one group, an important 
feature in the context of cellular phenotyping. In order to compare different experiments, 
cluster markers were matched against all group markers from the reference sample and a 
matchSCore was computed for all combinations. Group markers were ranked according to 
their specificity and the 100 top-ranked markers were used for all data set comparisons.   
 
Simulated data.  
To simulate data we used Splatter34, which allows to estimate parameters from real data sets 
and to control the proportion of differentially expressed genes and dispersion. When simulating 
several groups or paths, Splatter stores information about group fold-changes for each gene, 
which is needed for the ranking of group-specific markers. The complexity levels of our 
simulated data sets were defined by two parameters: the probability of a gene to be 
differentially expressed (de.prob) and the underlying common dispersion across genes (cv). 
Considering these parameters as an ordered pair (de.prob,cv), we created four different data 
quality levels L1, L2, L3 and L4 with the corresponding pairs (0.2, 0.28), (0.1,0.28), (0.4,0.5), 
(0.1,0.5) in scenario 1 and (0.7,0.17), (0.5,0.17), (0.7,0.3), (0.5,0.3) in scenario 2. The rationale 
behind the choice of combinations was to determine a reference matchSCore with a baseline 
data set (L1), for which most of tools perform well at clustering level. In subsequent levels we 
then increased the complexity with L2 presenting a reduced number of differentially expressed 
genes and L3 and L4 higher gene dispersion at different proportions of differentially expressed 
genes. 
 
Definition of gene markers and their ranking  
The definition of a cell type is strictly related to the markers used for their characterization. A 
cell type marker is a gene that is positively and stably differentially expressed in a given group 
with respect to a reference gene mean. However, in order to have a more complete insight 
into complex samples and dynamic process, shared markers between cell types or states can 
also be relevant. Accordingly, we ranked markers based on their specificity in groups, where 
lower ranks reflect higher specificity level and higher ranking positions include genes shared 
across groups. Here, the sorting of markers was performed according to their fold-changes, 
with higher fold-changes ranking at top positions. For each of the tested tools, cluster-specific 
ranking has been performed ordering p-values by significance, resulting in a ranked list of 
genes for each cluster.  
With the aim to quantify the accuracy of methods in ranking group markers, we set different 
thresholds of specificity. Specifically, we define a common proportion of top ranked markers 
across all groups before comparing the simulated true markers with those predicted by the 
methods (at different numbers (k) of top genes). For example, from the simulation point of 
view a specificity of 0.1 relates to the top 10% markers per group. Consequently, tools 
reaching higher matchSCore values at high specificity levels (low percentages of top markers) 
are more accurate in the detection of markers specific for each group. For lower specificities, 
matchSCores will progressively increase with the predicted matching the true markers until a 
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maximum is reached. Best performing tools show an increasing matchSCore function as the 
number of predicted markers get larger, indicating that they are able to detect not only cluster-
specific but also higher order cluster markers.  
 
Clustering and identification of cluster-specific markers  
The benchmarking involved 14 methods from 11 different tools. Some tools provide more than 
one approach for clustering (Monocle, pcaReduce, Seurat) and for the identification of markers 
(Seurat). Despite the large number of tools for clustering scRNA-seq data, only few include 
the detection of cluster-specific markers. Consequently, for those tools that do not provide the 
computation of cluster-specific markers, we used MAST35 (as implemented in the Seurat 
package), a flexible and scalable tool for differentially expression analysis and specifically 
designed for single-cell data.  Before conducting MAST, log-normalization and scaling has 
been applied for tools that do not provide a normalized count matrix. The cluster accuracy has 
been evaluated by the Fowlkes and Mallows Index (FMI), a metric defined as the geometric 
mean of precision and recall. The index ranges between 0 and 1, where 1 represents perfect 
match of the two partitions and 0 completely independent clustering. The parameters of all 
methods were set to their default setting, but we used the exact number of clusters as defined 
in the simulated data set. All data sets and cell type annotations were downloaded from their 
public accessions. Clustering (if missing) and marker identification were done using Seurat 
with default settings.  
  
Cell isolation from primary mouse bladder and human pancreas tissues  
Mice were sacrificed and the bladder was accessed and turned inside-out leaving the 
urothelial surface exposed. The urothelium was enzymatically digested with collagenase P 
(0.5μg/mL) in Hank's Balanced Salt Solution (HBSS) in a thermoblock with gentle shaking at 
37ºC for 20min. Collagenase P was inactivated with 2mM EDTA and 50% of fetal bovine 
serum. The cell suspension was collected and the remaining urothelium was scraped. After 
filtering through a 70μm strainer and centrifugation at 1200rpm for 5min at 4ºC, cells were 
washed 1x in PBS and incubated with blocking buffer (1% BSA/3mM EDTA in PBS) for 15min 
at room temperature. After washing 2x with PBS, cells were incubated with APC-labeled anti-
CD45 (BD biosciences, Cat. No. 559864), PE-labeled anti-CD31 (BD biosciences, Cat. No. 
555027), PE-labeled anti-CD140a (Labclinics, Cat. No. 16-1401-82) and PE-labeled anti-
Ter119 (BD biosciences, Cat. No. 116208) antibodies in FACS buffer (0.1% BSA / 3mM EDTA 
in PBS) for 30min at 4ºC. After washing 2x with PBS, cells were resuspended in FACS buffer 
and stained with DAPI (Sigma-Aldrich). A control sample lacking primary antibody and a 
Fluorescence Minus One (FMO) control were used in all experiments. All samples were 
analysed using a FACS Influx or AriaII (BD Biosciences) flow cytometer and at least 10,000 
events were acquired. Analyses were performed using FlowJo flow cytometer analysis 
software. 
Human pancreatic islets from organ donors were isolated and purified using established 
isolation procedures previously described36, shipped in culture medium and then re-cultured 
at 37°C in a humidified chamber with 5% CO2 in RPMI 1640 medium supplemented with 10% 
fetal calf serum, 100 U/ml penicillin, and 100 U/ml streptomycin for three days prior to 
dissociation and FACS isolation.  
 
Library preparation and sequencing 
To construct single-cell libraries from poly(A)-tailed RNA, we applied massively parallel single-
cell RNA sequencing (MARS-Seq)21,37. Briefly, single cells were FACS isolated into 384-well 
plates, containing lysis buffer (0.2% Triton X-100 (Sigma-Aldrich); RNase inhibitor 
(Invitrogen)) and reverse-transcription (RT) primers. The RT primers contained the single-cell 
barcodes and unique molecular identifiers (UMIs) for subsequent de-multiplexing and 
correction for amplification biases, respectively. Single-cell lysates were denatured and 
immediately placed on ice. The RT reaction mix, containing SuperScript III reverse 
transcriptase (Invitrogen) was added to each sample. After RT, the cDNA was pooled using 
an automated pipeline (epMotion, Eppendorf). Unbound primers were eliminated by 
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incubating the cDNA with exonuclease I (NEB). A second pooling was performed through 
cleanup with SPRI magnetic beads (Beckman Coulter). Subsequently, pooled cDNAs were 
converted into double-stranded DNA with the Second Strand Synthesis enzyme (NEB), 
followed by clean-up and linear amplification by T7 in vitro transcription overnight. Afterwards, 
the DNA template was removed by Turbo DNase I (Ambion) and the RNA was purified with 
SPRI beads. Amplified RNA was chemically fragmented with Zn2+ (Ambion), then purified 
with SPRI beads. The fragmented RNA was ligated with ligation primers containing a pool 
barcode and partial Illumina Read1 sequencing adapter using T4 RNA ligase I (NEB). Ligated 
products were reverse-transcribed using the Affinity Script RT enzyme (Agilent Technologies) 
and a primer complementary to the ligated adapter, partial Read1. The cDNA was purified with 
SPRI beads. Libraries were completed through a PCR step using the KAPA Hifi Hotstart 
ReadyMix (Kapa Biosystems) and a forward primer that contains Illumina P5-Read1 sequence 
and the reverse primer containing the P7-Read2 sequence. The final library was purified with 
SPRI beads to remove excess primers. Library concentration and molecular size were 
determined with High Sensitivity DNA Chip (Agilent Technologies). The libraries consisted of 
192 single-cell pools. Multiplexed pools were run on Illumina HiSeq 2500 Rapid flow cells 
following the manufacturer’s protocol. Primary data analysis was carried out with the standard 
Illumina pipeline. We produced 52 nt of transcript sequence reads. 
 
MARS-Seq data processing 
The MARS-Seq technique takes advantage of two-level indexing that allows the multiplexed 
sequencing of 192 cells per pool and multiple pools per sequencing lane. Sequencing was 
carried out as paired-end reads; wherein the first read contains the transcript sequence and 
the second read the cell barcode and UMI. Quality check of the generated reads was 
performed with the FastQC quality control suite. Samples that reached the quality standards 
were then processed to deconvolute the reads to single-cell level by de-multiplexing according 
to the cell and pool barcodes. Reads were filtered to remove poly(T) sequences. Reads were 
mapped with the RNA pipeline of the GEMTools 1.7.0 suite38 using default parameters (6% of 
mismatches, minimum of 80% matched bases, and minimum quality threshold of 26) and the 
genome references for mouse (Gencode release M15, assembly GRCm38) or human 
(Gencode release  26, assembly GRCh38). Gene quantification was performed using UMI 
corrected transcript information to correct for amplification biases, collapsing read counts for 
reads mapping on a gene with the same UMI (allowing an edit distance up to 2 nt in UMI 
comparisons). Only unambiguously mapped reads were considered. Before clustering low 
quality cells were filtered out by removing cells having higher mapping rate to ERCC spike-ins 
and mitochondrial genes. Further, we removed cells with a log number of detected genes 
lower than expected (more than 3 median absolute deviations below the median). In addition, 
we positively filtered for genes detected in at least 5 cells, having a minimum level of 
expression greater or equal to the median expression value across all genes. 
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