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Abstract

Bacteriocins are ribosomally produced antimicrobial peptides that represent an untapped
source of promising antibiotic alternatives. However, inherent challenges in isolation and
identification of natural bacteriocins in substantial yield have limited their potential use as
viable antimicrobial compounds. In this study, we have developed an overall pipeline for
bacteriocin-derived compound design and testing that combines sequence-free prediction of
bacteriocins using a machine-learning algorithm and a simple biophysical trait filter to generate
minimal 20 amino acid peptide candidates that can be readily synthesized and evaluated for
activity. We generated 28,895 total 20-mer peptides and scored them for charge, a-helicity, and
hydrophobic moment, allowing us to identify putative peptide sequences with the highest
potential for interaction and activity against bacterial membranes. Of those, we selected sixteen
sequences for synthesis and further study, and evaluated their antimicrobial, cytotoxicity, and
hemolytic activities. We show that bacteriocin-based peptides with the overall highest scores for
our biophysical parameters exhibited significant antimicrobial activity against E. coli and P.
aeruginosa. Our combined method incorporates machine learning and biophysical-based
minimal region determination, to create an original approach to rapidly discover novel

bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.
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Introduction

Many bacteria have become resistant to conventional antibiotics, necessitating the
discovery of novel antimicrobial compounds!. However, pharmaceutical antibiotic development
has declined chiefly due to brief usability window of existing antibiotic scaffolds 2. To combat
the lack of novel antimicrobial discovery, many bioinformatic approaches have been developed
to mine the genomes of bacteria for natural products®. One promising class of natural products
are bacteriocins, the ribosomally produced antimicrobial peptides of bacteria*®. These
chemically and functionally diverse peptides are divided into two main classes. The class I
bacteriocins include extensive post-translational modifications in their final form; for example,
nisin is a commonly studied bacteriocin whose features include post-translational modifications
such as lanthionine and methyllanthionine®. Enterocin AS-48, another class I bacteriocin,
undergoes head-to-tail circularization’. The class II bacteriocins primarily consist of peptides
that do not undergo post-translational modification*. Bacteriocins are often located in genetic
clusters containing the structural gene encoding the precursor peptide, as well as the context
genes necessary for bacteriocin maturation, export, and immunity. The bacteriocin structural
gene is often expressed as a prepropeptide, consisting of the unmodified bacteriocin functional
domain and an N-terminal leader sequence. Upon installation of the post-translational
modifications and cleavage of the leader peptide, the mature peptide is exported by an ABC-
cassette type transporter>S,

Genome mining approaches have taken advantage of the bacteriocin operon-like structure
to identify novel bacteriocin candidates through two approaches: identification of the
bacteriocin precursor gene or identification of bacteriocin context genes**1°. Online genome

mining tools, such as BAGEL, and bacteriocin databases, such as BACTIBASE, allow
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investigators to identify and classify putative bacteriocins based on their homology to other
known bacteriocin genes®!°. Similar tools, such as anti-SMASH, have been expanded to not
only identify putative bacteriocins, but also secondary metabolites and other genetically
identifiable antibiotics®%!1:12,

Large sequence heterogeneity and a small number of experimentally determined
bacteriocins, as well as the small size of most structural genes (30-150aa) have presented
challenges in identifying novel bacteriocins using BLAST and other sequence similarity
approaches 8. To overcome these problems, some bacteriocin prediction software identify novel
bacteriocins by searching for conserved context genes of the bacteriocin operon®!. The
bacteriocin operon and gene block associator (BOA) identifies context genes through
homology-based genome searches®. BOA has identified 95% of BAGEL annotated bacteriocins
in addition to 1,033 putative bacteriocins not identified by BAGEL. ClusterFinder, another
context gene based approach, has been used to mine the genomes of human commensal
organisms. This approach led to the identification of the novel thiopeptide bacteriocin
lactocillin'®. Another tool, MetaRiPPquest, connects genomic bacteriocin predictions to tandem
mass spectrometry data. Peptidogenomic approaches attempt to bridge the gap between
computational and in vitro identification'*. While context-based approaches seem to
circumvent the need for sequence similarity, novel methods that move away from homology-
based mining tools are still needed. Recently, A-mer based machine learning approaches have
been used successfully to classify protein sequences without the need for homology!>!6.
Regardless of the genome mining approach, in vitro verification of the antimicrobial

activity of computationally identified putative bacteriocins also remains a major challenge due

to several factors. First, bacteriocins have diverse mechanisms of action with most having
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80 specific targets within or on host cells. This is especially true for the class I bacteriocins; for

81 example, microcin B17 (MccB17) inhibits the activity of DNA gyrase while nisin inhibits

82  peptidoglycan synthesis by binding to lipid II'7-!°. Even class II bacteriocins can have extremely
83 specific targets; for example, lactococcin A targets the mannose phosphotransferase system to
84  induce pore formation>?°. Secondly, bacteriocins may exhibit a very narrow spectrum of

85 activity and be highly specific against a competitor strain. Many bacteriocins produced by lactic
86 acid bacteria will only kill other closely related species such as Lactobacillus, Enterococcus,

87 and Listeria’. Finally, some bacteriocins may not have bacterial targets. Streptolysin S (SLS) is
88 structurally similar to MccB17 as both are thiazole-oxazole modified microcins; however, SLS
89 s a virulence factor that promotes invasion upon Group A Streptococcus infection?!?2, Other

90 bacteriocin-like peptides may act as signaling molecules, as nisin and subtilosin have both been

91 implicated as autoregulators acting as autocrine signaling peptides at distinct concentrations

92 L% However, some bacteriocins target the bacterial membrane in a non-specific fashion

93  through electrostatic and hydrophobic interactions, including enterocin AS-48 and sakacin®7-3,
94 Recently, we have shown that membrane targeting bacteriocins can serve as templates for

95 the efficient design of synthetic antimicrobial peptides?*. Using the AS-48 homologue, safencin
96 AS-48, we created a synthetic peptide corresponding to the membrane interacting region of
97 enterocin AS-487-2°, This region is a cationic, hydrophobic, alpha-helical peptide that abstracts
98 the full-length 70 amino acid bacteriocin to a 25 amino acid peptide. Interestingly, these
99 biophysical qualities are very similar to synthetic antimicrobial peptides derived from

100 eukaryotic sources, whose activity relies on their overall positive charge, conformation, and

101 amphipathicity?®%. To determine if these biophysical guidelines of antimicrobial peptide design

102 could select for regions of putative membrane-targeting bacteriocins, we wrote a script to scan
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103 for 20 amino acid stretches at a time along the length of a putative bacteriocin and score each
104 20-mer for charge, alpha-helical propensity, and hydrophobic moment. Upon chemical

105 synthesis and antimicrobial testing of a set of these 20-mers, we observed that peptide

106 candidates with the highest scores in all three categories exhibited significant antimicrobial
107 activity. This approach represents a method by which membrane-targeting regions of putative
108 bacteriocins can be rapidly selected, synthesized, and verified in vitro. We propose that peptides
109 discovered through this process could then serve as scaffolds for subsequent optimization and
110 eventual therapeutic development.

111 Materials and Methods

112 Initial selection of candidate bacteriocins

113 We selected an initial set of putative novel bacteriocins using a word embedding algorithm,
114 Word2vec, as described previously'®. Briefly, we created a vocabulary of all possible 8,000
115 amino-acid trimers. Each trimer is then represented as a vector, which captures the probabilities
116 of that trimer being in the neighborhood of other trimers, also known as the skip-gram model'>.
117 Each protein sequence was then represented as the sum of vectors representing the trimers

118 comprising the protein. We then trained several supervised learning models with a positive set
119 of 346 known bacteriocins and a negative set of the same size. The best performing method,
120 and support vector machine (SVM) was then used to discover the set of 676 putative

121 bacteriocins used in this study. In essence, the machine learning algorithm employed thus

122 generates a list of new bacteriocin-like sequences that preserve key evolved features of natural
123 bacteriocins products. We eliminated from the list all known bacteriocins which were

124 discovered using BLAST against GenBank with an e-value of 107 or less, and which were
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125 annotated as bacteriocins. The result was a set of 676 putative bacteriocins, not obviously

126 homologous, by sequence similarity, to existing bacteriocins.

127 Biophysical selection of 20-mer peptides

128 Using a sliding window, we generated 28,895 20-mers from the 676 predicted peptides,
129 and calculated the following biophysical parameters for each 20-mer candidate: (1)Charge, (2)
130  Helicity, and (3) Hydrophobic moment (Figure 1)**-32, Net charge was calculated as a sum of
131 the charge for each amino acid at pH 7. Helicity was calculated as a sum of the Chou-Fasman
132 probabilities of each amino acid. Finally, the hydrophobic moment was calculated using the
133 hydrophobicity values for each residue assuming that the 20-mer peptides would adopt an alpha
134 helical structure. For each of the biophysical parameters, the 20-mers were ranked as high,
135 middle, or low based on the range of scores within that parameter (Figure 2A).

136 Peptide Selection and Synthesis

137 To evaluate our biophysical parameter scores, we selected a total of sixteen 20-mer

138 peptides for synthesis and further experimentation. Peptides were synthesized by Genscript
139 (Piscataway, NJ), to >95% purity and verified by HPLC and mass spectrometry. All peptides
140 were dissolved in DMSO for subsequent experimentation (Thermo Fischer).

141 Bacteria and Growth Conditions

142 E. coli BL-21 (Thermo Fischer) and P. aeruginosa PAO1 (gift from J. Shrout at the
143 University of Notre Dame) were grown in LB broth Miller (EMD chemicals, Gibbstown NJ).
144 Staphylococcus aureus USA300 was grown in Todd Hewitt broth (Neogen Corporation,

145 Lansing, MI). All cultures were grown at 37 °C.

146 Antimicrobial Activity Assays


https://doi.org/10.1101/314740
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/314740; this version posted May 4, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

147 Minimal inhibitory concentrations (MICs) of the 20-mer peptides were determined via
148  microtiter dilution assay?. Briefly, dilute bacterial cultures were added to a series of serial two-
149 fold dilutions of peptide in Mueller-Hinton broth (Thermo Fischer). The lowest concentration at
150 which no bacterial growth was observed after overnight incubation at 37 °C was defined as the
151 MIC. If an MIC could be determined, cultures from the MIC experiment were plated and

152 incubated overnight at 37 °C. The concentration at which no colonies were visible after

153 overnight incubation was defined as the minimal bactericidal concentration (MBC).

154  Antibiofilm Formation Assays

155 Antibiofilm activity of the peptides were assessed using USA 300 and PAOL1. For

156 USA300 biofilms, overnight cultures grown in TSB (Sigma-Aldrich) were diluted 1:100 in TSB
157 .1% glucose 1% NaCl with or without peptide**. For PAO1 biofilms, overnight cultures grown
158  in LB were diluted 1:100 in M63 1mM MgSO4 and .4% arginine with or without peptide??.

159 Samples were incubated for 24 hours in a microplate. Planktonic cells were removed from the
160 wells and the biofilms were washed three times with ddH>O. Biofilms were then stained with
161  .1% crystal violet, washed three times with ddH»O, and resuspended in 30% acetic acid*®. These
162 were then quantified by OD 550 reading on an Synergy Microplate Reader (Biotek).

163 Peptide Cytotoxicity Assays

164 Eukaryotic cytotoxicity was determined by ethidium homodimer and hemolysis assays.

165 Ethidium homodimer assays were carried out with HaCaT cells in 24 well culture dishes grown
166 to 90% confluency. Medium was aspirated, and cells were washed with PBS (Thermo Fischer).
167 Peptide in fresh DMEM (Dibco) was added to the cells at the desired concentration. Cells were
168 incubated with peptide for 16 hours. Medium was aspirated, and cells were washed with PBS.

169 Cells were incubated in 4 uM ethidium homodimer (Molecular Probes) in PBS for 30 minutes.
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170 Fluorescence was determined by 528 excitation and 617 nm emission and a cutoff value of 590
171 nm. Saponin (.1%) was then added to each well and incubated for 20 minutes. The fluorescence
172 was read again. Percent membrane permeabilization was determined by dividing the initial

173 fluorescence by the second fluorescence reading. For hemolysis assays, 100 uL of sheep red
174 blood cells (RBCs) were washed 3 times in cold PBS. Washed cells were resuspended in 25 ml
175 of PBS. Triton, PBS, or peptide in 10% DMSO/PBS were added to 180 pL of resuspended

176 RBCs and incubated at 37°C for 1 hour. Samples were read at 450 nm. Data was expressed as
177 percent hemolysis by relativizing to the Triton and PBS controls.

178 Results

179 Design and biophysical selection of 20-mer minimal bacteriocins

180 From the initial set of 676 putative novel bacteriocins using the word embedding algorithm,
181 Word2vec, 28,895 total 20-mer bacteriocin peptide candidates were generated (Figure 1). Each
182 peptide was then assigned a low, middle, or high ranking for each of the biophysical parameters
183 based on the range of scores within that parameter (Figure 2A). For example, a peptide with a
184 net charge of 5, a helical score of 17, and a uH of 900 would rank middle for charge, low for
185 helicity, and high for puH (Figure 2A).

186 80% of the 20-mers received a low ranking for charge (a net positive charge between +1 and
187 +3) while only 1% ranked high (Figure 2B). For the hydrophobic moment values, a majority of
188 the peptides also ranked low (any hydrophobic moment value below 333) with only 5%

189 receiving a high score (Figure 2B). However, for the helicity score, a majority of the peptides,
190 65%, fell into the middle range of scores between 19 and 22 with only 2% scoring high for

191 helicity (Figure 2B). It is important to note that the hydrophobic moment and helicity scores
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192 may not truly represent these parameters for the peptides as the propensity to form a beta sheet
193 was not taken into consideration when calculating these values.

194 Peptide Selection for Chemical Synthesis

195 Many cationic antimicrobial peptides will adopt an amphipathic alpha helical

196 conformation. Therefore, we reasoned that of the peptides generated by our script those ranking
197 high in all three biophysical categories would yield the most antimicrobial activity. Of the

198 sixteen peptides selected for synthesis, peptides 1 and 2 ranked low for all three biophysical
199 parameters while peptides 3 and 4 ranked high for the three parameters (Table 1). The

200 remaining 12 peptides were randomly selected from all 20-mers ranking middle in at least one
201 category and high for the remaining parameters (Table 1).

202 PEP-FOLD prediction of secondary structure

203 To determine if our biophysical selection criteria were able to accurately predict an

204 amphipathic alpha helical structure of the peptides selected for synthesis, we modeled their

205 secondary structure using the PEP-FOLD online tool. For peptides 1 and 2, which received low
206 scores for helicity and hydrophobic moment, their structures are predicted to exist as a majority
207 random coil (Figure 3A). In contrast, peptides 3 and 4, having high scores for helicity and

208 hydrophobic moment, are predicted to exist as fully extended alpha helices with clear clustering
209 of the polar and charged amino acids to one side of the helix and the hydrophobic residues on
210 the other, indicative of a strong hydrophobic moment (Figure 3B). Peptides 5 through 10 have a
211 high helicity score; however, the modeling predictions expect unstructured regions owing to
212 helix-breakering residues glycine and proline that occur within their sequences (Figure 3 and
213 Table 1). All of these peptides also received middle scores for their hydrophobic moment which

214 is visible as hydrophobic residues within the polar face of the helix, such as peptide 6, and
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215 charged amino acids within the hydrophobic face, such as peptide 9. Interestingly, peptide 11 is
216 predicted to exist as a beta sheet (Figure 3E). The biophysical calculator only takes into account
217 the Chou-Fasman residue helical propensity score and does not calculate the individual

218 likelihood of forming a beta sheet; therefore, peptides with a higher sheet propensity were not
219 excluded from the list of peptides for synthesis. Finally, the rest of the peptides are predicted to
220 adopt various helical structures with differing amphipathic characteristics (Figure 3).

221 Antimicrobial Properties of Synthetic 20-mers

222 The peptides were assessed for their minimal inhibitory concentration (MIC) and

223 minimal bactericidal concentration (MBC) on Escherichia coli, Staphylococcus aureus, and
224 Pseudomonas aeruginosa (Table 2). As expected, peptides 1 and 2, which scored low in all

225 three biophysical parameters, did not have activity against any of the organisms tested. Peptides
226 3 and 4, which scored high in all three biophysical parameters, exhibited antimicrobial activity
227 against both E. coli and P. aeruginosa (Table 2). Peptides 5, 6, and 7 scored high in charge and
228 helicity and middle in hydrophobic moment (Table 1). Interestingly, these peptides showed a
229 range of antimicrobial activities (Table 2). Peptide 6 was more efficient at inhibiting the growth
230 of P. aeruginosa (MIC =32 uM) than E. coli (MIC =128 uM). Peptides 5 and 7 were much less
231 active than peptide 6 despite having similar values for their biophysical scores (Tables 1 and 2).
232 Peptides 8, 9, and 10 scored high for helicity with middle scores for charge and hydrophobic
233 moment. These peptides did not have any antimicrobial activity against the organisms tested.
234 This overall trend continued for the rest of the peptides tested. Indeed, peptides scoring high in
235 any one of the biophysical parameters with only middle scores for the others (peptides 8-16) did

236 not have any antimicrobial activity. We did not test any of the peptide candidates at
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237 concentrations above 128uM, so biological activities at higher concentrations cannot be ruled
238 out.

239 Inhibition of Biofilm Formation by the Synthetic 20-mers

240 Despite not having a true MIC, we observed that peptides 11 and 16 were able to

241 significantly reduce the overnight growth of S. aureus cultures (Supplementary Figure 1A-B).
242 To investigate if these peptides were exerting antibiofilm effects, we employed the biofilm

243 formation assay. Upon incubation with peptide 11 for 24 hours in biofilm inducing media, we
244 observed a significant decrease in USA 300 biofilm formation down to a concentration of 4 uM
245 (Supplementary Figure 1C). This trend was also observed for peptide 16; however, this only
246 inhibited biofilm formation down to 16 uM (Supplementary Figure 1D) Finally, to determine if
247 these peptides could inhibit the biofilms of other bacteria we used P. aeruginosa. Peptides 11
248 and 16 exhibited no bacteriostatic effects on PAO1 (Supplementary Figure 2A-B). However,
249 these peptides exerted mild antibiofilm formation activity down to 16 uM (Supplementary

250 Figure 2C-D). In addition to identifying peptides with potent antimicrobial activity, we have
251 also identified peptides with antibiofilm activity.

252 Peptide mammalian cell cytotoxicity

253 To determine if our biophysical parameters were able to select for peptides with affinity
254 for bacterial membranes instead of mammalian membranes, we assessed their ability to

255 compromise the membranes of erythrocytes and keratinocytes. Fourteen of the peptides

256 exhibited no hemolytic activity even at high concentrations (Supplementary Table 1). However,
257 peptides 2 and 10 exhibited increased levels of hemolysis at only the highest concentrations
258 (128 uM). Cytotoxicity to keratinocytes was interrogated using the ethidium homodimer assay.

259 We observed that all of the peptides were unable to cause cell death when incubated with
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260 HaCaT cells for 16 hours at the highest concentrations. Together, these data indicate that these
261 peptides generally do not target mammalian membranes.

262 Discussion

263 Bacteriocins are a barely-tapped source of highly diverse antimicrobials. However,

264 verifying the antimicrobial activity of putative bacteriocins can be difficult due to the potentially
265 narrow activity spectra and highly diverse mechanisms*3’. Additionally, traditional methods of
266 natural bacteriocin isolation as well as heterologous expression strategies are complicated by
267  purification limitations and low yield**4°, Here we describe a complete strategy by which de
268 novo mining of bacteriocins can be parsed using a biophysical algorithm to identify minimally
269 active bacteriocin peptide candidates. Biophysical selection was done by focusing on three

270 parameters that have been implicated in the activity of membrane active antimicrobial peptides:
271  helicity, charge, and amphipathicity**=241-43_ Our strategy for employing predictive algorithms
272 with biophysical selection and minimal domain candidate design allows for the development of
273 completely novel, highly active, synthetic bacteriocins that have wide applicability as

274 antimicrobial compounds. Previous studies have shown that synthetic peptide variants of full
275 length bacteriocins can be used to approximate their antimicrobial function. For example, linear
276 variants of enterocin AS-48, a circular bacteriocin consisting of five alpha helices, have been
277  shown to retain some of the antimicrobial activity of the parent****. The antimicrobial action
278 was shown to be dependent upon the cationic and hydrophobic residues present within helices
279 four and five that are designated as the membrane-interacting region®. Recently, we published a
280 strategy whereby the membrane-interacting region in an AS-48 homologue was used as a

281 template to create a series of small, optimized antimicrobial peptides®*. This establishes a

282 precedent by which synthetic peptides can be used to approximate the activity of the full length
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283 bacteriocin. We have built upon these previous studies by utilizing the biophysical parameters
284 of synthetic antimicrobial peptide design to select for membrane interacting regions of putative
285 bacteriocins®>. We observed that peptides with the highest scores for the biophysical parameters
286 of charge, helicity, and hydrophobic moment were the most active against the bacteria tested
287 (Table 2). Interestingly, the only two peptides to meet these criteria were from the same putative
288 bacteriocin. It is therefore highly likely that this putative bacteriocin works in a membrane

289  active manner 2%#>*3 The interpretation of these data becomes confounded for the peptides

290 whose biophysical parameters begin to receive middle scores. For example, peptide 6, with a
291 middle score for hydrophobic moment, is a more effective antimicrobial against P. aeruginosa,
292 MIC = 32, than E. coli, MIC = 128. This observation is in contrast to the activities of the high
293 scoring peptides, 3 and 4, whose antimicrobial activities were higher against E. coli. Therefore,
294 it may be possible to tune antimicrobial specificity by modifying the biophysical scores*®47,
295 While most research has focused on modification of these parameters and their effects on
296 eukaryotic cytotoxicity and overall antimicrobial activity few have examined how these
297  parameters tune the specificity of these compounds to specific bacteria*®#.

298 There are some drawbacks to this approach. While it seems that our approach has selected for
299 antimicrobial regions of putative bacteriocins, it is also possible that using a minimal synthetic
300 peptide strategy has decoupled the function of the synthetic bacteriocin from the function of the
301 full sequence. Enterocin AS-48 undergoes dimer formation and then subsequent tertiary

302 structural changes before inserting itself into the membrane of target bacteria®®. However,

303 synthetic AS-48 peptides lose this ability to dimerize and work in a mechanism more akin to

304 carpet or pore models of synthetic antimicrobial peptide activity?®. Therefore, some of the

305 antimicrobial function and specificity inherent in bacteriocins will be lost by utilizing synthetic
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minimal versions. Finally, our approach cannot verify the activity of bacteriocins which do not
target the bacterial membrane or whose biophysical characteristics change upon post-
translational modification*>!!,

Despite these drawbacks, the techniques described herein have potential for linking de novo
computational bacteriocin discovery with immediate therapeutic development. With the
increasing amount of computational work being done to predict novel antimicrobial compounds
there is a mounting need to verify their antimicrobial activity in vitro®-!°. Our method validates
the use of machine learning algorithms to further mine genomic information for potential
bacteriocins candidates that can be refined using biophysical scripting parameters and size
optimization for rapid synthesis and testing. The lack of mammalian cell cytotoxicity in our
synthesized peptide set indicates that selecting minimal bacteriocin candidates based on the
specific set of biophysical parameters that we have established will select for candidates that
specifically target bacterial membranes, a highly valuable outcome from our studies (Table 2
and Supplementary Table 1). Many current synthetic antimicrobial peptides used to treat human
disease have been built around an existing scaffold from eukaryotes®!. Omiganan, derived from
magainin of the African three-toed frog, is currently being developed as a topical antimicrobial
for the treatment of diabetic foot ulcers®?. In contrast, relatively few bacteriocins have been

developed for the treatment of disease’!-33-4

. Our strategy to combine machine learning
algorithms for de novo bacteriocin discovery along with biophysical refinement and minimal
design represent a particularly robust workflow for the development of new antibiotic

compounds. These synthetic bacteriocin scaffolds could be further refined via iterative testing

and data collection for efficacy and selectivity.
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334 Figure and Table Legends

335 Figure 1: Overall strategy for selection of bacteriocins for synthesis. Machine learning set of
336 676 putative bacteriocins was used to generate overlapping 20-mer peptide candidates. 28,895
337 20-mers were scored and ranked for charge, helicity, and hydrophobic moment. A

338 representative sample of 16 peptides were selected for synthesis and in vitro characterization in
339 this study.

340 Figure 2: Scoring breakdown of biophysical computational parameters of the candidate

341 peptides. A. Peptides were divided into high (grey), middle (orange), and low (blue) groups
342 based on their charge, helicity, and hydrophobic moment scores. B. Most of the peptides scored
343 low to middle with only a small percentage scoring high for each of the biophysical parameters.
344 Figure 3: PEP-FOLD models of the peptides selected for synthesis A. peptides 1 and 2, B. 3
345 and 4, C.5,6,and 7, D. 8,9, and 10, E. 11, 12, and 13, and F. 14, 15, and 16. Basic, acidic, and
346 hydrophobic residues are in blue, red, and orange respectively.

347 Table 1: 20-mers selected for synthesis and their corresponding biophysical scores.

348 Table 2: MICs and MBCs of the synthetic 20-mer bacteriocins against S. aureus, E. coli, and P.

349 aeruginosa.
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Fig 1

Machine learning discovery of 676 putative
bacteriocin candidates

| MKQFNYLSHKDLAVVVGGRNNWQTNV...

Use sliding window of 20-mer regions to
generate test set

}

Set of 20-mer peptides Biophysical Computation

MKQFNYLSHKDLAVVVGGRN Charge at pH 7
KQFNYLSHKDLAVVVGGRNN
QFNYLSHKDLAVVVGGRNNW Chou-Fasman a-helix
FNYLSHKDLAVVVGGRNNWQ
NYLSHKDLAVVVGGRNNWQT Hydrophobic moment (uH)

28,895 total 20-mer peptide candidates
scored

|

In vitro characterization of candidate
peptides

Figure 1: Overall strategy for selection of bacteriocins for synthesis.
Machine learning set of 676 putative bacteriocins was used to
generate overlapping 20-mer peptide candidates. 28,895 20-mers
were scored for charge, helicity, and hydrophobic moment. A
representative sample of 16 peptides were selected for synthesis
and in vitro characterization in this study.
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Fig 2
A.
Biophysical scoring of peptide candidates
Charge - helix pH
1-3 16-19 1-333
4-6 19.01-22 | 333.01-667
7-10 22.01-25 | 667.01-1000
B.

1%

2% 5%
19% ‘ ‘
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36%
80% 65%
62%

Charge a-helix MH

Figure 2: Scoring breakdown of biophysical computational
parameters of the candidate peptides. A. Peptides were divided
into high (grey), middle (orange), and low (blue) groups based on
their charge, helicity, and hydrophobic moment scores. B. Most
of the peptides scored low to middle with only a small
percentage scoring high for each of the biophysical parameters.
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Figure 3: PEP-FOLD models of the peptides selected for synthesis
A. peptides1and 2,B.3and 4, C.5,6,and 7,D. 8, 9, and 10, E.
11,12, and 13, and F. 14, 15, and 16. Basic, acidic, and

hydrophobic residues are in blue, red, and orange respectively.
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487 Supplemental Material

488 Supplemental Figure 1: Antibiofilm activities of peptides 11 and 16 on S. aureus. A. Peptide
489 11 exhibits a bacteriostatic effect and B. peptide 16 exhibits a bacteriostatic effect C. Peptide 11
490 inhibits biofilm formation at all concentrations tested. D. Peptide 16 inhibits biofilm formation
491 to 16 pM. Data is representative of 3 biological replicates. P-values were determined via one-
492 way ANOVA. A * indicates a significant difference determined via Tukey HSD compared to
493 the vehicle control.

494 Supplemental Figure 2: Antibiofilm activities of peptides 11 and 16 on P. aeruginosa. A.

495 Peptide 11 and B. peptide 16 exhibit no bacteriostatic activity. C. Peptide 11 exhibits mild

496 antibiofilm activities D. Peptide 16 exhibits mild antibiofilm activity. Data is representative of 3
497 biological replicates. A * represents a p-value < .05 as determined via one-way ANOVA (A,B).
498 A * represents a significant difference as determined via Tukey HSD compared to the vehicle
499 control (C,D).

500 Supplemental Table 1: Cytotoxicity of 20-mer bacteriocins at 128 uM. Y indicates an increase
501 in hemolysis or cytotoxicity at 128 uM. N indicates no increase in hemolysis or cytotoxicity at
502 128 pM.

503


https://doi.org/10.1101/314740
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/314740; this version posted May 4, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Supp Fig 1
A. B.
2.0 *
1.5 - o
2 - :
a 1.0 1 (e}
O
05

c. * D- *
0.20 1
0.15 1
0.15 4 T
3 0.10 1 %
3 T 2 0.10-
o O
0.05 i} - = 0,05
T
0.00 - T T T T 0.00- '\ ? @I @ @ @I
R NN & S
& &
0‘0 \O‘o
N c®

Supplemental Figure 1: Antibiofilm activities of peptides 11 and 16 on
S. aureus. A. Peptide 11 exhibits a bacteriostatic effect and B. peptide
16 exhibits a bacteriostatic effect C. Peptide 11 inhibits biofilm
formation at all concentrations tested. D. Peptide 16 inhibits biofilm
formation to 16 uM. Data is representative of 3 biological replicates. P-
values were determined via one-way ANOVA. A * indicates a significant

difference determined via Tukey HSD compared to the vehicle control.
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Supplemental Figure 2: Antibiofilm activities of peptides 11 and 16 on
P. aeruginosa. A. Peptide 11 and B. peptide 16 exhibit no bacteriostatic
activity. C. Peptide 11 exhibits mild antibiofilm activities D. Peptide 16
exhibits mild antibiofilm activity. Data is representative of 3 biological
replicates. A * represents a p-value < .05 as determined via one-way
ANOVA (A,B). A * represents a significant difference as determined via

Tukey HSD compared to the vehicle control (C,D).
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Supplemental Table 1: Cytotoxicity of 20-mer bacteriocins at 128 uM. Y
indicates an increase in hemolysis or cytotoxicity at 128 uM. N indicates

506 no increase in hemolysis or cytotoxicity at 128 uM.
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