

1 **Novel antimicrobial peptide discovery using machine learning and biophysical selection of**
2 **minimal bacteriocin domains**

3

4 Francisco R. Fields^{1,2,3}, Stefan D. Freed^{1,2,3}, Katelyn E. Carothers^{1,2}, Md Nafiz Hamid^{4,5}, Daniel
5 E. Hammers^{1,2}, Jessica N. Ross^{1,2}, Veronica R. Kalwajtys¹, Alejandro J. Gonzalez¹, Andrew D.
6 Hildreth¹, Iddo Friedberg^{4,5}, Shaun W. Lee^{*,1,2,3}

7

8 ¹University of Notre Dame. Department of Biological Sciences, Notre Dame, IN 46556

9 ²Eck Institute for Global Health, Notre Dame, IN 46556

10 ³Chemistry-Biochemistry-Biology Interface Program, Notre Dame, IN 46556

11 ⁴Iowa State University. Department of Veterinary Microbiology and Preventive Medicine,
12 Ames, IA 50011

13 ⁵Bioinformatics and Computational Biology Program, Ames, IA 50011

14

15 *Corresponding author E-mail: Shaun.W.Lee.310@nd.edu

16 First author E-mail: ffields@nd.edu

17 **Abstract**

18 Bacteriocins are ribosomally produced antimicrobial peptides that represent an untapped
19 source of promising antibiotic alternatives. However, inherent challenges in isolation and
20 identification of natural bacteriocins in substantial yield have limited their potential use as
21 viable antimicrobial compounds. In this study, we have developed an overall pipeline for
22 bacteriocin-derived compound design and testing that combines sequence-free prediction of
23 bacteriocins using a machine-learning algorithm and a simple biophysical trait filter to generate
24 minimal 20 amino acid peptide candidates that can be readily synthesized and evaluated for
25 activity. We generated 28,895 total 20-mer peptides and scored them for charge, α -helicity, and
26 hydrophobic moment, allowing us to identify putative peptide sequences with the highest
27 potential for interaction and activity against bacterial membranes. Of those, we selected sixteen
28 sequences for synthesis and further study, and evaluated their antimicrobial, cytotoxicity, and
29 hemolytic activities. We show that bacteriocin-based peptides with the overall highest scores for
30 our biophysical parameters exhibited significant antimicrobial activity against *E. coli* and *P.*
31 *aeruginosa*. Our combined method incorporates machine learning and biophysical-based
32 minimal region determination, to create an original approach to rapidly discover novel
33 bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.

34 **Introduction**

35 Many bacteria have become resistant to conventional antibiotics, necessitating the
36 discovery of novel antimicrobial compounds¹. However, pharmaceutical antibiotic development
37 has declined chiefly due to brief usability window of existing antibiotic scaffolds². To combat
38 the lack of novel antimicrobial discovery, many bioinformatic approaches have been developed
39 to mine the genomes of bacteria for natural products³. One promising class of natural products
40 are bacteriocins, the ribosomally produced antimicrobial peptides of bacteria^{4,5}. These
41 chemically and functionally diverse peptides are divided into two main classes. The class I
42 bacteriocins include extensive post-translational modifications in their final form; for example,
43 nisin is a commonly studied bacteriocin whose features include post-translational modifications
44 such as lanthionine and methyllanthionine⁶. Enterocin AS-48, another class I bacteriocin,
45 undergoes head-to-tail circularization⁷. The class II bacteriocins primarily consist of peptides
46 that do not undergo post-translational modification⁴. Bacteriocins are often located in genetic
47 clusters containing the structural gene encoding the precursor peptide, as well as the context
48 genes necessary for bacteriocin maturation, export, and immunity. The bacteriocin structural
49 gene is often expressed as a prepropeptide, consisting of the unmodified bacteriocin functional
50 domain and an N-terminal leader sequence. Upon installation of the post-translational
51 modifications and cleavage of the leader peptide, the mature peptide is exported by an ABC-
52 cassette type transporter^{4,5,8}.

53 Genome mining approaches have taken advantage of the bacteriocin operon-like structure
54 to identify novel bacteriocin candidates through two approaches: identification of the
55 bacteriocin precursor gene or identification of bacteriocin context genes^{3,8-10}. Online genome
56 mining tools, such as BAGEL, and bacteriocin databases, such as BACTIBASE, allow

57 investigators to identify and classify putative bacteriocins based on their homology to other
58 known bacteriocin genes^{9,10}. Similar tools, such as anti-SMASH, have been expanded to not
59 only identify putative bacteriocins, but also secondary metabolites and other genetically
60 identifiable antibiotics^{3,8,11,12}.

61 Large sequence heterogeneity and a small number of experimentally determined
62 bacteriocins, as well as the small size of most structural genes (30-150aa) have presented
63 challenges in identifying novel bacteriocins using BLAST and other sequence similarity
64 approaches⁸. To overcome these problems, some bacteriocin prediction software identify novel
65 bacteriocins by searching for conserved context genes of the bacteriocin operon^{8,13}. The
66 bacteriocin operon and gene block associator (BOA) identifies context genes through
67 homology-based genome searches⁸. BOA has identified 95% of BAGEL annotated bacteriocins
68 in addition to 1,033 putative bacteriocins not identified by BAGEL. ClusterFinder, another
69 context gene based approach, has been used to mine the genomes of human commensal
70 organisms. This approach led to the identification of the novel thiopeptide bacteriocin
71 lactocillin¹³. Another tool, MetaRiPPquest, connects genomic bacteriocin predictions to tandem
72 mass spectrometry data. Peptidogenomic approaches attempt to bridge the gap between
73 computational and *in vitro* identification¹⁴. While context-based approaches seem to
74 circumvent the need for sequence similarity, novel methods that move away from homology-
75 based mining tools are still needed. Recently, *k*-mer based machine learning approaches have
76 been used successfully to classify protein sequences without the need for homology^{15,16}.

77 Regardless of the genome mining approach, *in vitro* verification of the antimicrobial
78 activity of computationally identified putative bacteriocins also remains a major challenge due
79 to several factors. First, bacteriocins have diverse mechanisms of action with most having

80 specific targets within or on host cells. This is especially true for the class I bacteriocins; for
81 example, microcin B17 (MccB17) inhibits the activity of DNA gyrase while nisin inhibits
82 peptidoglycan synthesis by binding to lipid II¹⁷⁻¹⁹. Even class II bacteriocins can have extremely
83 specific targets; for example, lactococcin A targets the mannose phosphotransferase system to
84 induce pore formation^{5,20}. Secondly, bacteriocins may exhibit a very narrow spectrum of
85 activity and be highly specific against a competitor strain. Many bacteriocins produced by lactic
86 acid bacteria will only kill other closely related species such as *Lactobacillus*, *Enterococcus*,
87 and *Listeria*⁵. Finally, some bacteriocins may not have bacterial targets. Streptolysin S (SLS) is
88 structurally similar to MccB17 as both are thiazole-oxazole modified microcins; however, SLS
89 is a virulence factor that promotes invasion upon Group A *Streptococcus* infection^{21,22}. Other
90 bacteriocin-like peptides may act as signaling molecules, as nisin and subtilosin have both been
91 implicated as autoregulators acting as autocrine signaling peptides at distinct concentrations
92^{11,19}. However, some bacteriocins target the bacterial membrane in a non-specific fashion
93 through electrostatic and hydrophobic interactions, including enterocin AS-48 and sakacin^{5,7,23}.

94 Recently, we have shown that membrane targeting bacteriocins can serve as templates for
95 the efficient design of synthetic antimicrobial peptides²⁴. Using the AS-48 homologue, safencin
96 AS-48, we created a synthetic peptide corresponding to the membrane interacting region of
97 enterocin AS-48^{7,25}. This region is a cationic, hydrophobic, alpha-helical peptide that abstracts
98 the full-length 70 amino acid bacteriocin to a 25 amino acid peptide. Interestingly, these
99 biophysical qualities are very similar to synthetic antimicrobial peptides derived from
100 eukaryotic sources, whose activity relies on their overall positive charge, conformation, and
101 amphipathicity²⁶⁻²⁹. To determine if these biophysical guidelines of antimicrobial peptide design
102 could select for regions of putative membrane-targeting bacteriocins, we wrote a script to scan

103 for 20 amino acid stretches at a time along the length of a putative bacteriocin and score each
104 20-mer for charge, alpha-helical propensity, and hydrophobic moment. Upon chemical
105 synthesis and antimicrobial testing of a set of these 20-mers, we observed that peptide
106 candidates with the highest scores in all three categories exhibited significant antimicrobial
107 activity. This approach represents a method by which membrane-targeting regions of putative
108 bacteriocins can be rapidly selected, synthesized, and verified *in vitro*. We propose that peptides
109 discovered through this process could then serve as scaffolds for subsequent optimization and
110 eventual therapeutic development.

111 **Materials and Methods**

112 ***Initial selection of candidate bacteriocins***

113 We selected an initial set of putative novel bacteriocins using a word embedding algorithm,
114 Word2vec, as described previously¹⁶. Briefly, we created a vocabulary of all possible 8,000
115 amino-acid trimers. Each trimer is then represented as a vector, which captures the probabilities
116 of that trimer being in the neighborhood of other trimers, also known as the skip-gram model¹⁵.
117 Each protein sequence was then represented as the sum of vectors representing the trimers
118 comprising the protein. We then trained several supervised learning models with a positive set
119 of 346 known bacteriocins and a negative set of the same size. The best performing method,
120 and support vector machine (SVM) was then used to discover the set of 676 putative
121 bacteriocins used in this study. In essence, the machine learning algorithm employed thus
122 generates a list of new bacteriocin-like sequences that preserve key evolved features of natural
123 bacteriocins products. We eliminated from the list all known bacteriocins which were
124 discovered using BLAST against GenBank with an e-value of 10^{-3} or less, and which were

125 annotated as bacteriocins. The result was a set of 676 putative bacteriocins, not obviously
126 homologous, by sequence similarity, to existing bacteriocins.

127 ***Biophysical selection of 20-mer peptides***

128 Using a sliding window, we generated 28,895 20-mers from the 676 predicted peptides,
129 and calculated the following biophysical parameters for each 20-mer candidate: (1)Charge, (2)
130 Helicity, and (3) Hydrophobic moment (Figure 1)³⁰⁻³². Net charge was calculated as a sum of
131 the charge for each amino acid at pH 7. Helicity was calculated as a sum of the Chou-Fasman
132 probabilities of each amino acid. Finally, the hydrophobic moment was calculated using the
133 hydrophobicity values for each residue assuming that the 20-mer peptides would adopt an alpha
134 helical structure. For each of the biophysical parameters, the 20-mers were ranked as high,
135 middle, or low based on the range of scores within that parameter (Figure 2A).

136 ***Peptide Selection and Synthesis***

137 To evaluate our biophysical parameter scores, we selected a total of sixteen 20-mer
138 peptides for synthesis and further experimentation. Peptides were synthesized by Genscript
139 (Piscataway, NJ), to >95% purity and verified by HPLC and mass spectrometry. All peptides
140 were dissolved in DMSO for subsequent experimentation (Thermo Fischer).

141 ***Bacteria and Growth Conditions***

142 *E. coli* BL-21 (Thermo Fischer) and *P. aeruginosa* PAO1 (gift from J. Shroud at the
143 University of Notre Dame) were grown in LB broth Miller (EMD chemicals, Gibbstown NJ).
144 *Staphylococcus aureus* USA300 was grown in Todd Hewitt broth (Neogen Corporation,
145 Lansing, MI). All cultures were grown at 37 °C.

146 ***Antimicrobial Activity Assays***

147 Minimal inhibitory concentrations (MICs) of the 20-mer peptides were determined via
148 microtiter dilution assay³³. Briefly, dilute bacterial cultures were added to a series of serial two-
149 fold dilutions of peptide in Mueller-Hinton broth (Thermo Fischer). The lowest concentration at
150 which no bacterial growth was observed after overnight incubation at 37 °C was defined as the
151 MIC. If an MIC could be determined, cultures from the MIC experiment were plated and
152 incubated overnight at 37 °C. The concentration at which no colonies were visible after
153 overnight incubation was defined as the minimal bactericidal concentration (MBC).

154 ***Antibiofilm Formation Assays***

155 Antibiofilm activity of the peptides were assessed using USA 300 and PAO1. For
156 USA300 biofilms, overnight cultures grown in TSB (Sigma-Aldrich) were diluted 1:100 in TSB
157 .1% glucose 1% NaCl with or without peptide³⁴. For PAO1 biofilms, overnight cultures grown
158 in LB were diluted 1:100 in M63 1mM MgSO₄ and .4% arginine with or without peptide³⁵.
159 Samples were incubated for 24 hours in a microplate. Planktonic cells were removed from the
160 wells and the biofilms were washed three times with ddH₂O. Biofilms were then stained with
161 .1% crystal violet, washed three times with ddH₂O, and resuspended in 30% acetic acid³⁶. These
162 were then quantified by OD 550 reading on an Synergy Microplate Reader (Biotek).

163 ***Peptide Cytotoxicity Assays***

164 Eukaryotic cytotoxicity was determined by ethidium homodimer and hemolysis assays.
165 Ethidium homodimer assays were carried out with HaCaT cells in 24 well culture dishes grown
166 to 90% confluence. Medium was aspirated, and cells were washed with PBS (Thermo Fischer).
167 Peptide in fresh DMEM (Dibco) was added to the cells at the desired concentration. Cells were
168 incubated with peptide for 16 hours. Medium was aspirated, and cells were washed with PBS.
169 Cells were incubated in 4 µM ethidium homodimer (Molecular Probes) in PBS for 30 minutes.

170 Fluorescence was determined by 528 excitation and 617 nm emission and a cutoff value of 590
171 nm. Saponin (.1%) was then added to each well and incubated for 20 minutes. The fluorescence
172 was read again. Percent membrane permeabilization was determined by dividing the initial
173 fluorescence by the second fluorescence reading. For hemolysis assays, 100 μ L of sheep red
174 blood cells (RBCs) were washed 3 times in cold PBS. Washed cells were resuspended in 25 ml
175 of PBS. Triton, PBS, or peptide in 10% DMSO/PBS were added to 180 μ L of resuspended
176 RBCs and incubated at 37°C for 1 hour. Samples were read at 450 nm. Data was expressed as
177 percent hemolysis by relativizing to the Triton and PBS controls.

178 **Results**

179 ***Design and biophysical selection of 20-mer minimal bacteriocins***

180 From the initial set of 676 putative novel bacteriocins using the word embedding algorithm,
181 Word2vec, 28,895 total 20-mer bacteriocin peptide candidates were generated (Figure 1). Each
182 peptide was then assigned a low, middle, or high ranking for each of the biophysical parameters
183 based on the range of scores within that parameter (Figure 2A). For example, a peptide with a
184 net charge of 5, a helical score of 17, and a μ H of 900 would rank middle for charge, low for
185 helicity, and high for μ H (Figure 2A).

186 80% of the 20-mers received a low ranking for charge (a net positive charge between +1 and
187 +3) while only 1% ranked high (Figure 2B). For the hydrophobic moment values, a majority of
188 the peptides also ranked low (any hydrophobic moment value below 333) with only 5%
189 receiving a high score (Figure 2B). However, for the helicity score, a majority of the peptides,
190 65%, fell into the middle range of scores between 19 and 22 with only 2% scoring high for
191 helicity (Figure 2B). It is important to note that the hydrophobic moment and helicity scores

192 may not truly represent these parameters for the peptides as the propensity to form a beta sheet
193 was not taken into consideration when calculating these values.

194 ***Peptide Selection for Chemical Synthesis***

195 Many cationic antimicrobial peptides will adopt an amphipathic alpha helical
196 conformation. Therefore, we reasoned that of the peptides generated by our script those ranking
197 high in all three biophysical categories would yield the most antimicrobial activity. Of the
198 sixteen peptides selected for synthesis, peptides 1 and 2 ranked low for all three biophysical
199 parameters while peptides 3 and 4 ranked high for the three parameters (Table 1). The
200 remaining 12 peptides were randomly selected from all 20-mers ranking middle in at least one
201 category and high for the remaining parameters (Table 1).

202 ***PEP-FOLD prediction of secondary structure***

203 To determine if our biophysical selection criteria were able to accurately predict an
204 amphipathic alpha helical structure of the peptides selected for synthesis, we modeled their
205 secondary structure using the PEP-FOLD online tool. For peptides 1 and 2, which received low
206 scores for helicity and hydrophobic moment, their structures are predicted to exist as a majority
207 random coil (Figure 3A). In contrast, peptides 3 and 4, having high scores for helicity and
208 hydrophobic moment, are predicted to exist as fully extended alpha helices with clear clustering
209 of the polar and charged amino acids to one side of the helix and the hydrophobic residues on
210 the other, indicative of a strong hydrophobic moment (Figure 3B). Peptides 5 through 10 have a
211 high helicity score; however, the modeling predictions expect unstructured regions owing to
212 helix-breaker residues glycine and proline that occur within their sequences (Figure 3 and
213 Table 1). All of these peptides also received middle scores for their hydrophobic moment which
214 is visible as hydrophobic residues within the polar face of the helix, such as peptide 6, and

215 charged amino acids within the hydrophobic face, such as peptide 9. Interestingly, peptide 11 is
216 predicted to exist as a beta sheet (Figure 3E). The biophysical calculator only takes into account
217 the Chou-Fasman residue helical propensity score and does not calculate the individual
218 likelihood of forming a beta sheet; therefore, peptides with a higher sheet propensity were not
219 excluded from the list of peptides for synthesis. Finally, the rest of the peptides are predicted to
220 adopt various helical structures with differing amphipathic characteristics (Figure 3).

221 ***Antimicrobial Properties of Synthetic 20-mers***

222 The peptides were assessed for their minimal inhibitory concentration (MIC) and
223 minimal bactericidal concentration (MBC) on *Escherichia coli*, *Staphylococcus aureus*, and
224 *Pseudomonas aeruginosa* (Table 2). As expected, peptides 1 and 2, which scored low in all
225 three biophysical parameters, did not have activity against any of the organisms tested. Peptides
226 3 and 4, which scored high in all three biophysical parameters, exhibited antimicrobial activity
227 against both *E. coli* and *P. aeruginosa* (Table 2). Peptides 5, 6, and 7 scored high in charge and
228 helicity and middle in hydrophobic moment (Table 1). Interestingly, these peptides showed a
229 range of antimicrobial activities (Table 2). Peptide 6 was more efficient at inhibiting the growth
230 of *P. aeruginosa* (MIC = 32 μ M) than *E. coli* (MIC = 128 μ M). Peptides 5 and 7 were much less
231 active than peptide 6 despite having similar values for their biophysical scores (Tables 1 and 2).
232 Peptides 8, 9, and 10 scored high for helicity with middle scores for charge and hydrophobic
233 moment. These peptides did not have any antimicrobial activity against the organisms tested.
234 This overall trend continued for the rest of the peptides tested. Indeed, peptides scoring high in
235 any one of the biophysical parameters with only middle scores for the others (peptides 8-16) did
236 not have any antimicrobial activity. We did not test any of the peptide candidates at

237 concentrations above 128 μ M, so biological activities at higher concentrations cannot be ruled
238 out.

239 ***Inhibition of Biofilm Formation by the Synthetic 20-mers***

240 Despite not having a true MIC, we observed that peptides 11 and 16 were able to
241 significantly reduce the overnight growth of *S. aureus* cultures (Supplementary Figure 1A-B).
242 To investigate if these peptides were exerting antibiofilm effects, we employed the biofilm
243 formation assay. Upon incubation with peptide 11 for 24 hours in biofilm inducing media, we
244 observed a significant decrease in USA 300 biofilm formation down to a concentration of 4 μ M
245 (Supplementary Figure 1C). This trend was also observed for peptide 16; however, this only
246 inhibited biofilm formation down to 16 μ M (Supplementary Figure 1D) Finally, to determine if
247 these peptides could inhibit the biofilms of other bacteria we used *P. aeruginosa*. Peptides 11
248 and 16 exhibited no bacteriostatic effects on PAO1 (Supplementary Figure 2A-B). However,
249 these peptides exerted mild antibiofilm formation activity down to 16 μ M (Supplementary
250 Figure 2C-D). In addition to identifying peptides with potent antimicrobial activity, we have
251 also identified peptides with antibiofilm activity.

252 ***Peptide mammalian cell cytotoxicity***

253 To determine if our biophysical parameters were able to select for peptides with affinity
254 for bacterial membranes instead of mammalian membranes, we assessed their ability to
255 compromise the membranes of erythrocytes and keratinocytes. Fourteen of the peptides
256 exhibited no hemolytic activity even at high concentrations (Supplementary Table 1). However,
257 peptides 2 and 10 exhibited increased levels of hemolysis at only the highest concentrations
258 (128 μ M). Cytotoxicity to keratinocytes was interrogated using the ethidium homodimer assay.
259 We observed that all of the peptides were unable to cause cell death when incubated with

260 HaCaT cells for 16 hours at the highest concentrations. Together, these data indicate that these
261 peptides generally do not target mammalian membranes.

262 **Discussion**

263 Bacteriocins are a barely-tapped source of highly diverse antimicrobials. However,
264 verifying the antimicrobial activity of putative bacteriocins can be difficult due to the potentially
265 narrow activity spectra and highly diverse mechanisms^{4,37}. Additionally, traditional methods of
266 natural bacteriocin isolation as well as heterologous expression strategies are complicated by
267 purification limitations and low yield^{38–40}. Here we describe a complete strategy by which *de*
268 *novo* mining of bacteriocins can be parsed using a biophysical algorithm to identify minimally
269 active bacteriocin peptide candidates. Biophysical selection was done by focusing on three
270 parameters that have been implicated in the activity of membrane active antimicrobial peptides:
271 helicity, charge, and amphipathicity^{30–32,41–43}. Our strategy for employing predictive algorithms
272 with biophysical selection and minimal domain candidate design allows for the development of
273 completely novel, highly active, synthetic bacteriocins that have wide applicability as
274 antimicrobial compounds. Previous studies have shown that synthetic peptide variants of full
275 length bacteriocins can be used to approximate their antimicrobial function. For example, linear
276 variants of enterocin AS-48, a circular bacteriocin consisting of five alpha helices, have been
277 shown to retain some of the antimicrobial activity of the parent^{44,45}. The antimicrobial action
278 was shown to be dependent upon the cationic and hydrophobic residues present within helices
279 four and five that are designated as the membrane-interacting region²⁵. Recently, we published a
280 strategy whereby the membrane-interacting region in an AS-48 homologue was used as a
281 template to create a series of small, optimized antimicrobial peptides²⁴. This establishes a
282 precedent by which synthetic peptides can be used to approximate the activity of the full length

283 bacteriocin. We have built upon these previous studies by utilizing the biophysical parameters
284 of synthetic antimicrobial peptide design to select for membrane interacting regions of putative
285 bacteriocins²⁵. We observed that peptides with the highest scores for the biophysical parameters
286 of charge, helicity, and hydrophobic moment were the most active against the bacteria tested
287 (Table 2). Interestingly, the only two peptides to meet these criteria were from the same putative
288 bacteriocin. It is therefore highly likely that this putative bacteriocin works in a membrane
289 active manner^{29,42,43}. The interpretation of these data becomes confounded for the peptides
290 whose biophysical parameters begin to receive middle scores. For example, peptide 6, with a
291 middle score for hydrophobic moment, is a more effective antimicrobial against *P. aeruginosa*,
292 MIC = 32, than *E. coli*, MIC = 128. This observation is in contrast to the activities of the high
293 scoring peptides, 3 and 4, whose antimicrobial activities were higher against *E. coli*. Therefore,
294 it may be possible to tune antimicrobial *specificity* by modifying the biophysical scores^{46,47}.
295 While most research has focused on modification of these parameters and their effects on
296 eukaryotic cytotoxicity and overall antimicrobial activity few have examined how these
297 parameters tune the specificity of these compounds to specific bacteria^{48,49}.
298 There are some drawbacks to this approach. While it seems that our approach has selected for
299 antimicrobial regions of putative bacteriocins, it is also possible that using a minimal synthetic
300 peptide strategy has decoupled the function of the synthetic bacteriocin from the function of the
301 full sequence. Enterocin AS-48 undergoes dimer formation and then subsequent tertiary
302 structural changes before inserting itself into the membrane of target bacteria⁵⁰. However,
303 synthetic AS-48 peptides lose this ability to dimerize and work in a mechanism more akin to
304 carpet or pore models of synthetic antimicrobial peptide activity²⁵. Therefore, some of the
305 antimicrobial function and specificity inherent in bacteriocins will be lost by utilizing synthetic

306 minimal versions. Finally, our approach cannot verify the activity of bacteriocins which do not
307 target the bacterial membrane or whose biophysical characteristics change upon post-
308 translational modification^{4,5,11}.

309 Despite these drawbacks, the techniques described herein have potential for linking *de novo*
310 computational bacteriocin discovery with immediate therapeutic development. With the
311 increasing amount of computational work being done to predict novel antimicrobial compounds
312 there is a mounting need to verify their antimicrobial activity *in vitro*⁸⁻¹⁰. Our method validates
313 the use of machine learning algorithms to further mine genomic information for potential
314 bacteriocins candidates that can be refined using biophysical scripting parameters and size
315 optimization for rapid synthesis and testing. The lack of mammalian cell cytotoxicity in our
316 synthesized peptide set indicates that selecting minimal bacteriocin candidates based on the
317 specific set of biophysical parameters that we have established will select for candidates that
318 specifically target bacterial membranes, a highly valuable outcome from our studies (Table 2
319 and Supplementary Table 1). Many current synthetic antimicrobial peptides used to treat human
320 disease have been built around an existing scaffold from eukaryotes⁵¹. Omiganan, derived from
321 magainin of the African three-toed frog, is currently being developed as a topical antimicrobial
322 for the treatment of diabetic foot ulcers⁵². In contrast, relatively few bacteriocins have been
323 developed for the treatment of disease^{51,53,54}. Our strategy to combine machine learning
324 algorithms for *de novo* bacteriocin discovery along with biophysical refinement and minimal
325 design represent a particularly robust workflow for the development of new antibiotic
326 compounds. These synthetic bacteriocin scaffolds could be further refined via iterative testing
327 and data collection for efficacy and selectivity.

328

329 **Acknowledgements**

330 IF was funded, in part, by NSF awards ABI-1551363 and ABI-1458359. SL was funded by NIH
331 Innovator Award 1DP2 OD008468-01 and an Eck Institute for Global Health Pilot Project
332 Program. FF is supported by an NSF-GRFP fellowship and a National GEM Consortium
333 Fellowship.

334 **Figure and Table Legends**

335 **Figure 1:** Overall strategy for selection of bacteriocins for synthesis. Machine learning set of
336 676 putative bacteriocins was used to generate overlapping 20-mer peptide candidates. 28,895
337 20-mers were scored and ranked for charge, helicity, and hydrophobic moment. A
338 representative sample of 16 peptides were selected for synthesis and in vitro characterization in
339 this study.

340 **Figure 2:** Scoring breakdown of biophysical computational parameters of the candidate
341 peptides. **A.** Peptides were divided into high (grey), middle (orange), and low (blue) groups
342 based on their charge, helicity, and hydrophobic moment scores. **B.** Most of the peptides scored
343 low to middle with only a small percentage scoring high for each of the biophysical parameters.

344 **Figure 3:** PEP-FOLD models of the peptides selected for synthesis **A.** peptides 1 and 2, **B.** 3
345 and 4, **C.** 5,6, and 7, **D.** 8, 9, and 10, **E.** 11, 12, and 13, and **F.** 14, 15, and 16. Basic, acidic, and
346 hydrophobic residues are in blue, red, and orange respectively.

347 **Table 1:** 20-mers selected for synthesis and their corresponding biophysical scores.

348 **Table 2:** MICs and MBCs of the synthetic 20-mer bacteriocins against *S. aureus*, *E. coli*, and *P.*
349 *aeruginosa*.

350 **References**

- 351 1. CDC. *Antibiotic resistance threats in the United States, 2013*. (2013). doi:CS239559-B
- 352 2. Martens, E. & Demain, A. L. The antibiotic resistance crisis, with a focus on the United
- 353 States. *J. Antibiot. (Tokyo)*. **70**, 520–526 (2017).
- 354 3. Fields, F. R., Lee, S. W. & McConnell, M. J. Using bacterial genomes and essential
- 355 genes for the development of new antibiotics. *Biochem. Pharmacol.* **134**, 74–86 (2017).
- 356 4. Alvarez-Sieiro, P., Montalbán-López, M., Mu, D. & Kuipers, O. P. Bacteriocins of lactic
- 357 acid bacteria: extending the family. *Appl. Microbiol. Biotechnol.* **100**, 2939–2951 (2016).
- 358 5. Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocins - a viable alternative to antibiotics? *Nat. Rev. Microbiol.* **11**, 95–105 (2013).
- 360 6. Field, D., Cotter, P. D., Ross, R. P. & Hill, C. Bioengineering of the model lantibiotic
- 361 nisin. *Bioengineered* **5979**, 37–41 (2015).
- 362 7. Sánchez-Hidalgo, M. *et al.* AS-48 bacteriocin: Close to perfection. *Cellular and*
- 363 *Molecular Life Sciences* **68**, 2845–2857 (2011).
- 364 8. Morton, J. T., Freed, S. D., Lee, S. W. & Friedberg, I. A large scale prediction of
- 365 bacteriocin gene blocks suggests a wide functional spectrum for bacteriocins. *BMC*
- 366 *Bioinformatics* **16**, 1–9 (2015).
- 367 9. Van Heel, A. J., De Jong, A., Montalbá N-Ló Pez, M., Kok, J. & Kuipers, O. P.
- 368 BAGEL3: automated identification of genes encoding bacteriocins and (non-)bactericidal
- 369 posttranslationally modified peptides. *Nucleic Acids Res.* **41**, W448–W453 (2013).
- 370 10. Hammami, R., Zouhir, A., Hamida, J. Ben & Fliss, I. BACTIBASE: a new web-
- 371 accessible database for bacteriocin characterization. *BMC Microbiol.* **7**, 1–6 (2007).
- 372 11. Flaherty, R. A., Freed, S. D. & Lee, S. W. The Wide World of Ribosomally Encoded

373 Bacterial Peptides. *PLoS Pathog.* **10**, (2014).

374 12. Blin, K. *et al.* antiSMASH 2.0—a versatile platform for genome mining of secondary
375 metabolite producers. *Nucleic Acids Res.* **41**, W204–W212 (2013).

376 13. Donia, M. S. *et al.* A systematic analysis of biosynthetic gene clusters in the human
377 microbiome reveals a common family of antibiotics. *Cell* **158**, 1402–1414 (2014).

378 14. Mohimani, H. *et al.* MetaRiPPquest : A Peptidogenomics Approach for the Discovery of
379 Ribosomally Synthesized and Post- translationally Modified Peptides. *BioRxiv* (2017).

380 doi:10.1101/227504

381 15. Mikolov, T., Corrado, G., Chen, K. & Dean, J. Efficient Estimation of Word
382 Representations in Vector Space. *Arxiv* (2013). doi:10.1162/153244303322533223

383 16. Hamid, M.-N. & Friedberg, I. Bacteriocin prediction using Word Embedding with Deep
384 Recurrent Neural Networks. *BioRxiv* (2018). doi:10.1101/255505

385 17. Vizan, J. L., Hernandez-Chico, C., Del Castillo, I. & Moreno1, F. The peptide antibiotic
386 microcin Bi 7 induces double-strand cleavage of DNA mediated by E.coli DNA gyrase. *EMBO*
387 *J.* **10**, 467–476 (1991).

388 18. Field, D., Cotter, P. D., Hill, C. & Ross, R. P. Bioengineering lantibiotics for therapeutic
389 success. *Frontiers in Microbiology* **6**, 1–6 (2015).

390 19. Kleerebezem, M. Quorum sensing control of lantibiotic production; nisin and subtilin
391 autoregulate their own biosynthesis. *Peptides* **25**, 1405–1414 (2004).

392 20. Arnison, P. G. *et al.* Ribosomally synthesized and post-translationally modified peptide
393 natural products: overview and recommendations for a universal nomenclature. *Nat. Prod. Rep.*
394 **30**, 108–160 (2013).

395 21. Lee, S. W. *et al.* Discovery of a widely distributed toxin biosynthetic gene cluster. *PNAS*

396 105, 5879–5884 (2008).

397 22. Molloy, E. M., Cotter, P. D., Hill, C., Mitchell, D. A. & Ross, R. P. Streptolysin S-like
398 virulence factors: The continuing sagA. *Nature Reviews Microbiology* **9**, 670–681 (2011).

399 23. Grande Burgos, M., Pulido, R., del Carmen López Aguayo, M., Gálvez, A. & Lucas, R.
400 The Cyclic Antibacterial Peptide Enterocin AS-48: Isolation, Mode of Action, and Possible
401 Food Applications. *Int. J. Mol. Sci.* **15**, 22706–22727 (2014).

402 24. Fields, F. R. *et al.* Rational design of syn-safencin, a novel linear antimicrobial peptide
403 derived from the circular bacteriocin safencin AS-48. *J. Antibiot. (Tokyo)*. (2018).
404 doi:10.1038/s41429-018-0032-4

405 25. Angeles Jiménez, M., Barrachi-Saccilotto, A. C., Valdivia, E., Maqueda, M. & Rico, M.
406 Design, NMR characterization and activity of a 21-residue peptide fragment of bacteriocin AS-
407 48 containing its putative membrane interacting region. *J. Pept. Sci.* **11**, 29–36 (2005).

408 26. Thaker, H. D., Cankaya, A., Scott, R. W. & Tew, G. N. Role of amphiphilicity in the
409 design of synthetic mimics of antimicrobial peptides with gram-negative activity. *ACS Med.
410 Chem. Lett.* **4**, 481–485 (2013).

411 27. Jiang, Z. *et al.* Effects of net charge and the number of positively charged residues on the
412 biological activity of amphipathic α -helical cationic antimicrobial peptides. *Biopolym. - Pept.
413 Sci. Sect.* **90**, 369–383 (2008).

414 28. Ong, Z. Y., Wiradharma, N. & Yang, Y. Y. Strategies employed in the design and
415 optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic
416 potentials. *Advanced Drug Delivery Reviews* **78**, 28–45 (2014).

417 29. Fjell, C. D., Hiss, J. A., Hancock, R. E. W. & Schneider, G. Designing antimicrobial
418 peptides: form follows function. *Nat. Rev. Drug Discov.* **11**, 37–51 (2012).

419 30. Monera, O. D., Sereda, T. J., Zhou, N. E., Kay, C. M. & Hodges, R. S. Relationship of
420 sidechain hydrophobicity and α - helical propensity on the stability of the single- stranded
421 amphipathic α - helix. *J. Pept. Sci.* **1**, 319–329 (1995).

422 31. Eisenberg, D., Weiss, R. M. & Terwilliger, T. C. The hydrophobic moment detects
423 periodicity in protein hydrophobicity. *Proc. Natl. Acad. Sci.* **81**, 140–144 (1984).

424 32. Chou, P. Y. & Fasman, G. D. Prediction of Protein Conformation. *Biochemistry* **13**, 222–
425 245 (1974).

426 33. Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to
427 determine the minimal inhibitory concentration (MIC) of antimicrobial substances. *Nat. Protoc.*
428 **3**, 163–75 (2008).

429 34. Cue, D. *et al.* SaeRS-dependent inhibition of biofilm formation in *Staphylococcus aureus*
430 Newman. *PLoS One* **10**, (2015).

431 35. Beaudoin, T., Zhang, L., Hinz, A. J., Parr, C. J. & Mah, T. F. The biofilm-specific
432 antibiotic resistance gene *ndvB* is important for expression of ethanol oxidation genes in
433 *Pseudomonas aeruginosa* biofilms. *J. Bacteriol.* **194**, 3128–3136 (2012).

434 36. O'Toole, G. A. Microtiter Dish Biofilm Formation Assay. *JoVE* **47**, (2011).

435 37. Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocins - a viable alternative to antibiotics? *Nat.*
436 *Rev. Microbiol.* **11**, 95–105 (2013).

437 38. Chen, H. *et al.* Cloning, expression, and identification of a novel class IIa bacteriocin in
438 the *Escherichia coli* cell-free protein expression system. *Biotechnol. Lett.* **34**, 359–364 (2012).

439 39. Pal, A., Ramana, K. V. & Bawa, A. S. Simplification and optimization of deMan Rogosa
440 Sharpe (MRS) medium for enhanced production of bacteriocin by *Weissella paramesenteroides*
441 DFR-8. *J. Food Sci. Technol.* **47**, 258–265 (2010).

442 40. Borrero, J. *et al.* Cloning, production, and functional expression of the bacteriocin
443 enterocin A, produced by *Enterococcus faecium* T136, by the yeasts *Pichia pastoris*,
444 *Kluyveromyces lactis*, *Hansenula polymorpha*, and *Arxula adeninivorans*. *Appl. Environ.*
445 *Microbiol.* **78**, 5956–5961 (2012).

446 41. Uggerhøj, L. E. *et al.* Rational Design of Alpha-Helical Antimicrobial Peptides: Do's and
447 Don'ts. *ChemBioChem* **16**, 242–253 (2015).

448 42. Yeaman, M. R. Mechanisms of Antimicrobial Peptide Action and Resistance.
449 *Pharmacol. Rev.* **55**, 27–55 (2003).

450 43. Lee, T., Hall, K. N. & Aguilar, M. Antimicrobial Peptide Structure and Mechanism of
451 Action : A Focus on the Role of Membrane Structure. *Curr. Top. Med. Chem.* **16**, 25–39 (2016).

452 44. Montalbán-López, M. *et al.* Characterization of linear forms of the circular enterocin AS-
453 48 obtained by limited proteolysis. *FEBS Lett.* **582**, 3237–3242 (2008).

454 45. Montalbán-López, M., Martínez-Bueno, M., Valdivia, E. & Maqueda, M. Expression of
455 linear permuted variants from circular enterocin AS-48. *Biochimie* **93**, 549–555 (2011).

456 46. Bagheri, M., Keller, S. & Dathe, M. Interaction of W-substituted analogs of cyclo-
457 RRRWFW with bacterial lipopolysaccharides: The role of the aromatic cluster in antimicrobial
458 activity. *Antimicrob. Agents Chemother.* **55**, 788–797 (2011).

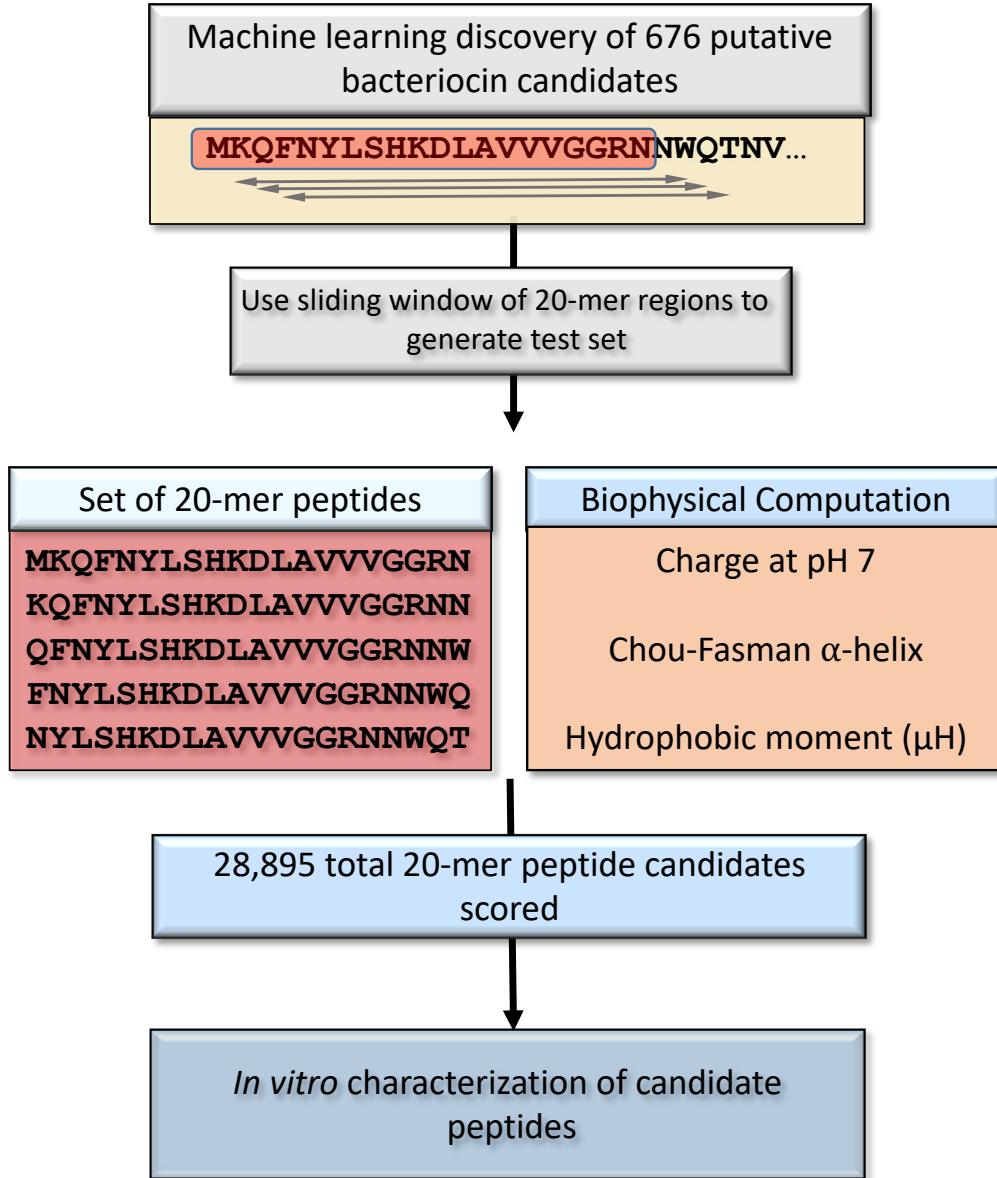
459 47. Datta, A. *et al.* Role of aromatic amino acids in lipopolysaccharide and membrane
460 interactions of antimicrobial peptides for use in plant disease control. *J. Biol. Chem.* **291**,
461 13301–13317 (2016).

462 48. Maher, S. & McClean, S. N. Investigation of the cytotoxicity of eukaryotic and
463 prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. *Biochem. Pharmacol.* **71**,
464 1289–1298 (2006).

465 49. Fimland, G., Eijsink, V. G. H. & Nissen-Meyer, J. Mutational analysis of the role of
466 tryptophan residues in an antimicrobial peptide. *Biochemistry* **41**, 9508–9515 (2002).

467 50. Cebrian, R. *et al.* The bacteriocin AS-48 requires dimer dissociation followed by
468 hydrophobic interactions with the membrane for antibacterial activity. *J. Struct. Biol.* **190**, 162–
469 172 (2015).

470 51. Ashby, M., Petkova, A. & Hilpert, K. Cationic antimicrobial peptides as potential new
471 therapeutic agents in neonates and children: a review. *Curr. Opin. Infect. Dis.* **27**, 258–67
472 (2014).


473 52. Rubinchik, E., Dugourd, D., Algara, T., Pasetka, C. & Friedland, H. D. Antimicrobial and
474 antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin
475 colonisation models. *Int. J. Antimicrob. Agents* **34**, 457–461 (2009).

476 53. Lamarche, M. J. *et al.* Discovery of LFF571: An investigational agent for Clostridium
477 difficile infection. *Journal of Medicinal Chemistry* **55**, 2376–2387 (2012).

478 54. Burgos, M. J. G., Aguayo, M. C. L., Pulido, R. P., Gálvez, A. & López, R. L. Inactivation
479 of *Staphylococcus aureus* in Oat and Soya Drinks by Enterocin AS-48 in Combination with
480 Other Antimicrobials. *J. Food Sci.* **80**, 2030–2034 (2015).

481

Fig 1

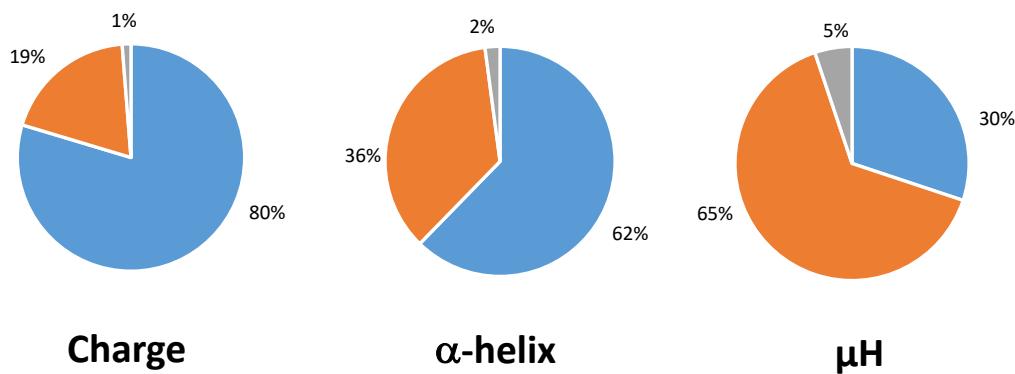
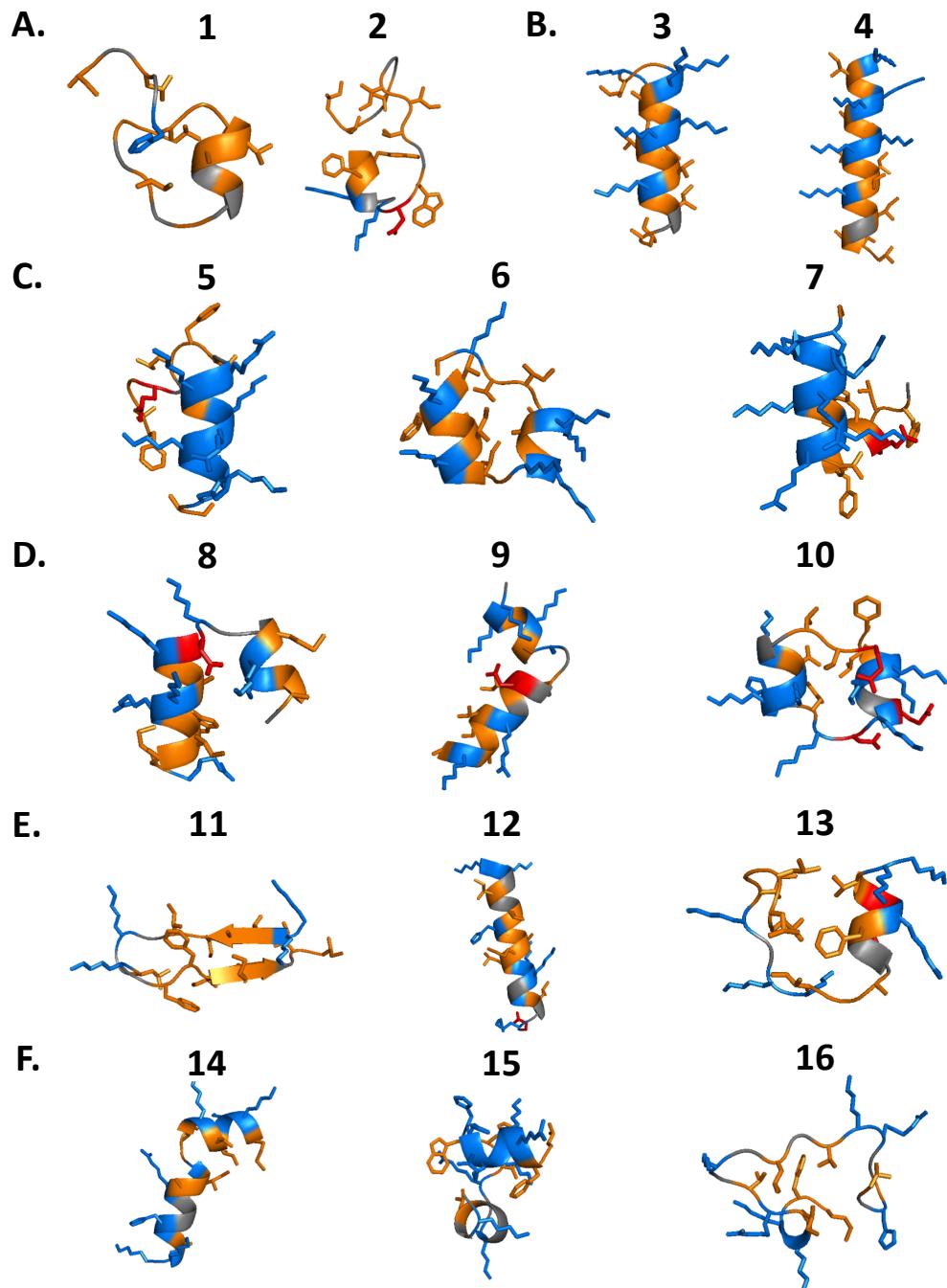

Figure 1: Overall strategy for selection of bacteriocins for synthesis. Machine learning set of 676 putative bacteriocins was used to generate overlapping 20-mer peptide candidates. 28,895 20-mers were scored for charge, helicity, and hydrophobic moment. A representative sample of 16 peptides were selected for synthesis and *in vitro* characterization in this study.

Fig 2

A.


Biophysical scoring of peptide candidates			
	Charge	α - helix	μ H
LOW	1-3	16-19	1-333
MIDDLE	4-6	19.01-22	333.01-667
HIGH	7-10	22.01-25	667.01-1000

B.

Figure 2: Scoring breakdown of biophysical computational parameters of the candidate peptides. **A.** Peptides were divided into high (grey), middle (orange), and low (blue) groups based on their charge, helicity, and hydrophobic moment scores. **B.** Most of the peptides scored low to middle with only a small percentage scoring high for each of the biophysical parameters.

Fig 3

Figure 3: PEP-FOLD models of the peptides selected for synthesis
A. peptides 1 and 2, B. 3 and 4, C. 5,6, and 7, D. 8, 9, and 10, E. 11, 12, and 13, and F. 14, 15, and 16. Basic, acidic, and hydrophobic residues are in blue, red, and orange respectively.

Table 1

Bacteriocin Accession #	Peptide sequence	Peptide #	Charge	Helicity	Hydrophobic Moment
REF_PRINA222774:T285_02970	VGGTICGPACAVAGAAHYLPI	1	1	18.93	322.53
YP_003061758.1	GW/FKTYKDWPVIISVPGVI	2	1	18.13	222.87
YP_004033496.1	IKKIGKKAAKKIVVKAHQAI	3	7	22.27	835.73
YP_004033496.1	KHGKKAAKKIVVKAHQAI	4	7	22.41	758.92
YP_008203399.1	FLGEWLFVTRIKAKRKHHKAA	5	7	22.7	599.8
YP_004033496.1	VHFAIKKIGKKKAAKKIVVKA	6	8	22.43	503.81
YP_003175051.1	SEIGEWLFVTRAKRKHHKHA	7	7	22.11	566.58
YP_001578036.1	QAAKKMSNKEAAKRWIAAMR	8	6	22.94	611.8
YP_005852336.1	AKAVVRTIEQAPKTTAKAKS	9	5	22.25	467.52
YP_005854059.1	EVPKVKKHFIDKENKKLF	10	6	22.16	466.17
YP_007937902.1	KKIAITKNLKNFFIMLII	11	4	20.86	912.76
YP_007988223.1	KKISNSLHLAMLKKQQLNRD	12	6	21.3	673.77
YP_003602376.1	LLLGKYYKKIGANNFREV/KK	13	5	20.53	680.63
YP_004034256.1	FMKKIVKIGKARYSHKAKK	14	9	20.81	567.158
YP_004840669.1	LFFKKKRHHWVFRTKNSLSKN	15	9	20.19	357.31
YP_004032450.1	VNHGYRKVTLTKTVRIKKFM	16	7	19.51	471.63

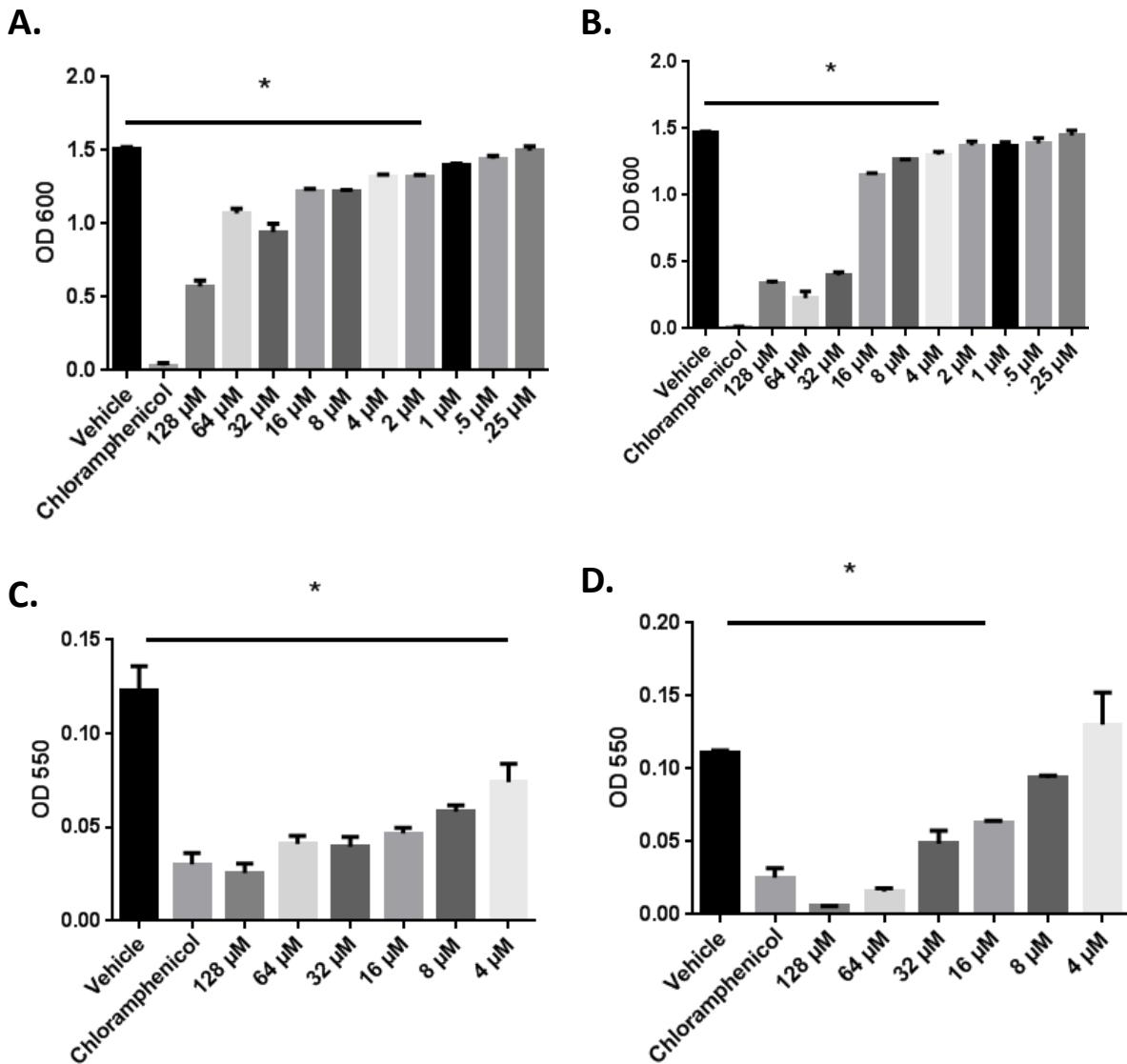
Table 1: 20-mers selected for synthesis and their corresponding biophysical scores.

Table 2

Peptide #	<i>Pseudomonas aeruginosa</i>			<i>Escherichia coli</i>			<i>Staphylococcus aureus</i>		
	MIC (µM)	MIC (µM)	MBC (µM)	MIC (µM)	MBC (µM)	MBC (µM)	MIC (µM)	MBC (µM)	MBC (µM)
1	>128	>128	>128	>128	>128	>128	>128	>128	>128
2	>128	>128	>128	>128	>128	>128	>128	>128	>128
3	64	>128	32	32	32	64	>128	>128	>128
4	16	32	2	2	4	>128	>128	>128	>128
5	>128	>128	128	128	>128	>128	>128	>128	>128
6	32	128	128	128	>128	>128	>128	>128	>128
7	128	>128	128	128	>128	>128	>128	>128	>128
8	>128	>128	>128	>128	>128	>128	>128	>128	>128
9	>128	>128	>128	>128	>128	>128	>128	>128	>128
10	>128	>128	>128	>128	>128	>128	>128	>128	>128
11	>128	>128	>128	>128	>128	>128	>128	>128	>128
12	>128	>128	>128	>128	>128	>128	>128	>128	>128
13	>128	>128	>128	>128	>128	>128	>128	>128	>128
14	>128	>128	>128	>128	>128	>128	>128	>128	>128
15	>128	>128	>128	>128	>128	>128	>128	>128	>128
16	>128	>128	>128	>128	>128	>128	>128	>128	>128

Table 2: MICs and MBCs of the synthetic 20-mer bacteriocins against *S. aureus*, *E. coli*, and *P. aeruginosa*.

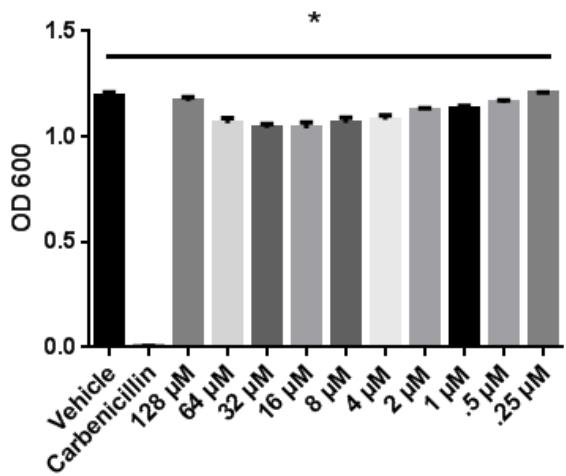
487 **Supplemental Material**

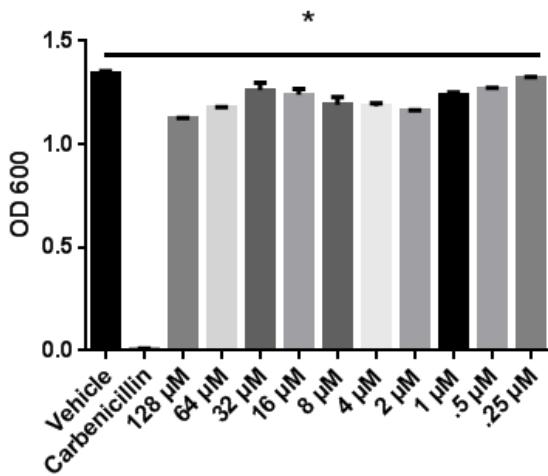

488 **Supplemental Figure 1:** Antibiofilm activities of peptides 11 and 16 on *S. aureus*. A. Peptide
489 11 exhibits a bacteriostatic effect and B. peptide 16 exhibits a bacteriostatic effect C. Peptide 11
490 inhibits biofilm formation at all concentrations tested. D. Peptide 16 inhibits biofilm formation
491 to 16 μ M. Data is representative of 3 biological replicates. P-values were determined via one-
492 way ANOVA. A * indicates a significant difference determined via Tukey HSD compared to
493 the vehicle control.

494 **Supplemental Figure 2:** Antibiofilm activities of peptides 11 and 16 on *P. aeruginosa*. A.
495 Peptide 11 and B. peptide 16 exhibit no bacteriostatic activity. C. Peptide 11 exhibits mild
496 antibiofilm activities D. Peptide 16 exhibits mild antibiofilm activity. Data is representative of 3
497 biological replicates. A * represents a p-value < .05 as determined via one-way ANOVA (A,B).
498 A * represents a significant difference as determined via Tukey HSD compared to the vehicle
499 control (C,D).

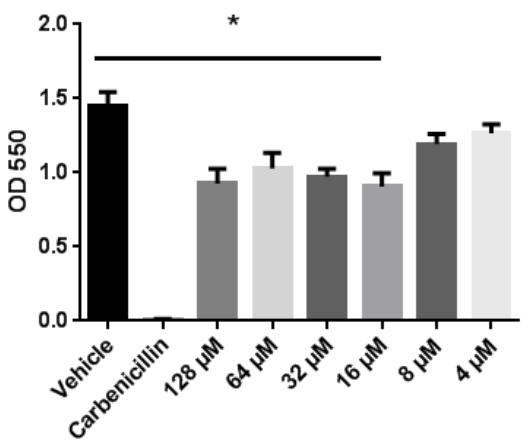
500 **Supplemental Table 1:** Cytotoxicity of 20-mer bacteriocins at 128 μ M. Y indicates an increase
501 in hemolysis or cytotoxicity at 128 μ M. N indicates no increase in hemolysis or cytotoxicity at
502 128 μ M.

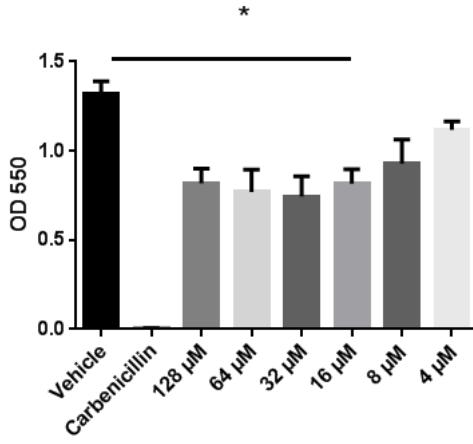
503


Supp Fig 1


Supplemental Figure 1: Antibiofilm activities of peptides 11 and 16 on *S. aureus*. A. Peptide 11 exhibits a bacteriostatic effect and B. peptide 16 exhibits a bacteriostatic effect C. Peptide 11 inhibits biofilm formation at all concentrations tested. D. Peptide 16 inhibits biofilm formation to 16 μM. Data is representative of 3 biological replicates. P-values were determined via one-way ANOVA. A * indicates a significant difference determined via Tukey HSD compared to the vehicle control.

Supp Fig 2


A.


B.

C.

D.

Supplemental Figure 2: Antibiofilm activities of peptides 11 and 16 on *P. aeruginosa*. A. Peptide 11 and B. peptide 16 exhibit no bacteriostatic activity. C. Peptide 11 exhibits mild antibiofilm activities D. Peptide 16 exhibits mild antibiofilm activity. Data is representative of 3 biological replicates. A * represents a p-value < .05 as determined via one-way ANOVA (A,B). A * represents a significant difference as determined via Tukey HSD compared to the vehicle control (C,D).

Supp Table 1

Peptide #	Charge	Helicity	Hydrophobic Moment	Cytotoxic?	Hemolytic?
1	1	18.93	322.53	N	N
2	1	18.13	222.87	Y	Y
3	7	22.27	835.73	N	N
4	7	22.41	758.92	N	N
5	7	22.7	599.8	N	N
6	8	22.43	503.81	Z	Z
7	7	22.11	566.58	Z	Z
8	6	22.94	611.8	Z	Z
9	5	22.25	467.52	Z	Z
10	6	22.16	466.17	Z	Z
11	4	20.86	912.76	Z	Z
12	6	21.3	673.77	Z	Z
13	5	20.53	680.63	Z	Z
14	9	20.81	567.158	Z	Z
15	9	20.19	357.31	Z	Z
16	7	19.51	471.63	Z	Z

Supplemental Table 1: Cytotoxicity of 20-mer bacteriocins at 128 μ M. Y indicates an increase in hemolysis or cytotoxicity at 128 μ M. N indicates no increase in hemolysis or cytotoxicity at 128 μ M.