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Abstract 17 

 Bacteriocins are ribosomally produced antimicrobial peptides that represent an untapped 18 

source of promising antibiotic alternatives. However, inherent challenges in isolation and 19 

identification of natural bacteriocins in substantial yield have limited their potential use as 20 

viable antimicrobial compounds. In this study, we have developed an overall pipeline for 21 

bacteriocin-derived compound design and testing that combines sequence-free prediction of 22 

bacteriocins using a machine-learning algorithm and a simple biophysical trait filter to generate 23 

minimal 20 amino acid peptide candidates that can be readily synthesized and evaluated for 24 

activity.  We generated 28,895 total 20-mer peptides and scored them for charge, a-helicity, and 25 

hydrophobic moment, allowing us to identify putative peptide sequences with the highest 26 

potential for interaction and activity against bacterial membranes. Of those, we selected sixteen 27 

sequences for synthesis and further study, and evaluated their antimicrobial, cytotoxicity, and 28 

hemolytic activities. We show that bacteriocin-based peptides with the overall highest scores for 29 

our biophysical parameters exhibited significant antimicrobial activity against E. coli and P. 30 

aeruginosa.  Our combined method incorporates machine learning and biophysical-based 31 

minimal region determination, to create an original approach to rapidly discover novel 32 

bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.   33 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/314740doi: bioRxiv preprint 

https://doi.org/10.1101/314740
http://creativecommons.org/licenses/by/4.0/


Introduction 34 

 Many bacteria have become resistant to conventional antibiotics, necessitating the 35 

discovery of novel antimicrobial compounds1. However, pharmaceutical antibiotic development 36 

has  declined chiefly due to brief usability window of existing antibiotic scaffolds 2. To combat 37 

the lack of novel antimicrobial discovery, many bioinformatic approaches have been developed 38 

to mine the genomes of bacteria for natural products3. One promising class of natural products 39 

are bacteriocins, the ribosomally produced antimicrobial peptides of bacteria4,5. These 40 

chemically and functionally diverse peptides are divided into two main classes. The class I 41 

bacteriocins include extensive post-translational modifications in their final form; for example, 42 

nisin is a commonly studied bacteriocin whose features include post-translational modifications 43 

such as lanthionine and methyllanthionine6. Enterocin AS-48, another class I bacteriocin, 44 

undergoes head-to-tail circularization7. The class II bacteriocins primarily consist of peptides 45 

that do not undergo post-translational modification4. Bacteriocins are often located in genetic 46 

clusters containing the structural gene encoding the precursor peptide, as well as the context 47 

genes necessary for bacteriocin maturation, export, and immunity. The bacteriocin structural 48 

gene is often expressed as a prepropeptide, consisting of the unmodified bacteriocin functional 49 

domain and an N-terminal leader sequence. Upon installation of the post-translational 50 

modifications and cleavage of the leader peptide, the mature peptide is exported by an ABC-51 

cassette type transporter4,5,8.   52 

 Genome mining approaches have taken advantage of the bacteriocin operon-like structure 53 

to identify novel bacteriocin candidates through two approaches: identification of the 54 

bacteriocin precursor gene or identification of bacteriocin context genes3,8–10. Online genome 55 

mining tools, such as BAGEL, and bacteriocin databases, such as BACTIBASE, allow 56 
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investigators to identify and classify putative bacteriocins based on their homology to other 57 

known bacteriocin genes9,10. Similar tools, such as anti-SMASH, have been expanded to not 58 

only identify putative bacteriocins, but also secondary metabolites and other genetically 59 

identifiable antibiotics3,8,11,12.  60 

 Large sequence heterogeneity and a small number of experimentally determined  61 

bacteriocins, as well as the small size of most structural genes (30-150aa)  have presented 62 

challenges in identifying novel bacteriocins using BLAST and other sequence similarity 63 

approaches 8. To overcome these problems, some bacteriocin prediction software identify novel 64 

bacteriocins by searching for conserved context genes of the bacteriocin operon8,13. The 65 

bacteriocin operon and gene block associator (BOA) identifies context genes through 66 

homology-based genome searches8. BOA has identified 95% of BAGEL annotated bacteriocins 67 

in addition to 1,033 putative bacteriocins not identified by BAGEL. ClusterFinder, another 68 

context gene based approach, has been used to mine the genomes of human commensal 69 

organisms. This approach led to the identification of the novel thiopeptide bacteriocin 70 

lactocillin13. Another tool, MetaRiPPquest, connects genomic bacteriocin predictions to tandem 71 

mass spectrometry data. Peptidogenomic approaches attempt to bridge the gap between 72 

computational and in vitro identification14.  While context-based approaches seem to 73 

circumvent the need for sequence similarity, novel methods that move away from homology-74 

based mining tools are still needed. Recently,  k-mer based machine learning approaches have 75 

been used successfully to classify protein sequences without the need for homology15,16.   76 

 Regardless of the genome mining approach, in vitro verification of the antimicrobial 77 

activity of computationally identified putative bacteriocins also remains a major challenge due 78 

to several factors. First, bacteriocins have diverse mechanisms of action with most having 79 
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specific targets within or on host cells. This is especially true for the class I bacteriocins; for 80 

example, microcin B17 (MccB17) inhibits the activity of DNA gyrase while nisin inhibits 81 

peptidoglycan synthesis by binding to lipid II17–19. Even class II bacteriocins can have extremely 82 

specific targets; for example, lactococcin A targets the mannose phosphotransferase system to 83 

induce pore formation5,20. Secondly, bacteriocins may exhibit a very narrow spectrum of 84 

activity and be highly specific against a competitor strain. Many bacteriocins produced by lactic 85 

acid bacteria will only kill other closely related species such as Lactobacillus, Enterococcus, 86 

and Listeria5. Finally, some bacteriocins may not have bacterial targets. Streptolysin S (SLS) is 87 

structurally similar to MccB17 as both are thiazole-oxazole modified microcins; however, SLS 88 

is a virulence factor that promotes invasion upon Group A Streptococcus infection21,22. Other 89 

bacteriocin-like peptides may act as signaling molecules, as nisin and subtilosin have both been 90 

implicated as autoregulators acting as autocrine signaling peptides at distinct concentrations 91 

11,19. However, some  bacteriocins  target the bacterial membrane in a non-specific fashion 92 

through electrostatic and hydrophobic interactions, including enterocin AS-48 and sakacin5,7,23. 93 

 Recently, we have shown that membrane targeting bacteriocins can serve as templates for 94 

the efficient design of synthetic antimicrobial peptides24. Using the AS-48 homologue, safencin 95 

AS-48, we created a synthetic peptide corresponding to the membrane interacting region of 96 

enterocin AS-487,25. This region is a cationic, hydrophobic, alpha-helical peptide that abstracts 97 

the full-length 70 amino acid bacteriocin to a 25 amino acid peptide. Interestingly, these 98 

biophysical qualities are very similar to synthetic antimicrobial peptides derived from 99 

eukaryotic sources, whose activity relies on their overall positive charge, conformation, and 100 

amphipathicity26–29. To determine if these biophysical guidelines of antimicrobial peptide design 101 

could select for regions of putative membrane-targeting bacteriocins, we wrote a script to scan 102 
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for 20 amino acid stretches at a time along the length of a putative bacteriocin and score each 103 

20-mer for  charge, alpha-helical propensity, and hydrophobic moment. Upon chemical 104 

synthesis and antimicrobial testing of a set of these 20-mers, we observed that  peptide 105 

candidates with the highest scores in all three categories exhibited significant antimicrobial 106 

activity. This approach represents a method by which membrane-targeting regions of putative 107 

bacteriocins can be rapidly selected, synthesized, and verified in vitro. We propose that peptides 108 

discovered through this process could then serve as scaffolds for subsequent optimization and 109 

eventual therapeutic development.   110 

Materials and Methods 111 

 Initial selection of candidate bacteriocins 112 

 We selected an initial set of putative novel bacteriocins using a word embedding algorithm, 113 

Word2vec, as described previously16. Briefly, we created a vocabulary of all possible 8,000 114 

amino-acid trimers. Each trimer is then represented as a vector, which captures the probabilities 115 

of that trimer being in the neighborhood of other trimers, also known as the skip-gram model15. 116 

Each protein sequence was then represented as the sum of vectors representing the trimers 117 

comprising the protein.  We then trained several supervised learning models with a positive set 118 

of 346 known bacteriocins and a negative set of the same size.   The best performing method, 119 

and support vector machine (SVM) was then used to discover the set of 676 putative 120 

bacteriocins used in this study. In essence, the machine learning algorithm employed thus 121 

generates a list of new bacteriocin-like sequences that preserve key evolved features of natural 122 

bacteriocins products.  We eliminated from the list all known bacteriocins which were 123 

discovered using BLAST against GenBank with an e-value of 10-3 or less, and which were 124 
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annotated as bacteriocins. The result was a set of 676 putative bacteriocins, not obviously 125 

homologous, by sequence similarity, to existing bacteriocins.  126 

Biophysical selection of 20-mer peptides 127 

 Using a sliding window, we generated 28,895 20-mers from the 676 predicted peptides, 128 

and calculated the following biophysical parameters for each 20-mer candidate: (1)Charge, (2) 129 

Helicity, and (3) Hydrophobic moment (Figure 1)30–32.  Net charge was calculated as a sum of 130 

the charge for each amino acid at pH 7. Helicity was calculated as a sum of the Chou-Fasman 131 

probabilities of each amino acid. Finally, the hydrophobic moment was calculated using the 132 

hydrophobicity values for each residue assuming that the 20-mer peptides would adopt an alpha 133 

helical structure. For each of the biophysical parameters, the 20-mers were ranked as high, 134 

middle, or low based on the range of scores within that parameter (Figure 2A). 135 

Peptide Selection and Synthesis 136 

 To evaluate our biophysical parameter scores, we selected a total of sixteen 20-mer 137 

peptides  for synthesis and further experimentation. Peptides were synthesized by Genscript 138 

(Piscataway, NJ), to >95% purity and verified by HPLC and mass spectrometry. All peptides 139 

were dissolved in DMSO for subsequent experimentation (Thermo Fischer).  140 

Bacteria and Growth Conditions 141 

 E. coli BL-21 (Thermo Fischer) and P. aeruginosa PAO1 (gift from J. Shrout at the 142 

University of Notre Dame) were grown in LB broth Miller (EMD chemicals, Gibbstown NJ). 143 

Staphylococcus aureus USA300 was grown in Todd Hewitt broth (Neogen Corporation, 144 

Lansing, MI). All cultures were grown at 37 °C. 145 

Antimicrobial Activity Assays 146 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 4, 2018. ; https://doi.org/10.1101/314740doi: bioRxiv preprint 

https://doi.org/10.1101/314740
http://creativecommons.org/licenses/by/4.0/


 Minimal inhibitory concentrations (MICs) of the 20-mer peptides were determined via 147 

microtiter dilution assay33. Briefly, dilute bacterial cultures were added to a series of serial two-148 

fold dilutions of peptide in Mueller-Hinton broth (Thermo Fischer). The lowest concentration at 149 

which no bacterial growth was observed after overnight incubation at 37 °C was defined as the 150 

MIC. If an MIC could be determined, cultures from the MIC experiment were plated and 151 

incubated overnight at 37 °C. The concentration at which no colonies were visible after 152 

overnight incubation was defined as the minimal bactericidal concentration (MBC). 153 

Antibiofilm Formation Assays 154 

 Antibiofilm activity of the peptides were assessed using USA 300 and PAO1. For 155 

USA300 biofilms, overnight cultures grown in TSB (Sigma-Aldrich) were diluted 1:100 in TSB 156 

.1% glucose 1% NaCl with or without peptide34. For PAO1 biofilms, overnight cultures grown 157 

in LB were diluted 1:100 in M63 1mM MgSO4 and .4% arginine with or without peptide35. 158 

Samples were incubated for 24 hours in a microplate. Planktonic cells were removed from the 159 

wells and the biofilms were washed three times with ddH2O. Biofilms were then stained with 160 

.1% crystal violet, washed three times with ddH2O, and resuspended in 30% acetic acid36. These 161 

were then quantified by OD 550 reading on an Synergy Microplate Reader (Biotek).  162 

Peptide Cytotoxicity Assays 163 

Eukaryotic cytotoxicity was determined by ethidium homodimer and hemolysis assays. 164 

Ethidium homodimer assays were carried out with HaCaT cells in 24 well culture dishes grown 165 

to 90% confluency. Medium was aspirated, and cells were washed with PBS (Thermo Fischer). 166 

Peptide in fresh DMEM (Dibco) was added to the cells at the desired concentration. Cells were 167 

incubated with peptide for 16 hours. Medium was aspirated, and cells were washed with PBS. 168 

Cells were incubated in 4 µM ethidium homodimer (Molecular Probes) in PBS for 30 minutes. 169 
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Fluorescence was determined by 528 excitation and 617 nm emission and a cutoff value of 590 170 

nm. Saponin (.1%) was then added to each well and incubated for 20 minutes. The fluorescence 171 

was read again. Percent membrane permeabilization was determined by dividing the initial 172 

fluorescence by the second fluorescence reading. For hemolysis assays, 100 µL of sheep red 173 

blood cells (RBCs) were washed 3 times in cold PBS. Washed cells were resuspended in 25 ml 174 

of PBS. Triton, PBS, or peptide in 10% DMSO/PBS were added to 180 µL of resuspended 175 

RBCs and incubated at 37°C for 1 hour. Samples were read at 450 nm. Data was expressed as 176 

percent hemolysis by relativizing to the Triton and PBS controls. 177 

Results 178 

Design and biophysical selection of 20-mer minimal bacteriocins  179 

From the initial set of 676 putative novel bacteriocins using the word embedding algorithm, 180 

Word2vec, 28,895 total 20-mer bacteriocin peptide candidates were generated (Figure 1). Each 181 

peptide was then assigned a low, middle, or high ranking for each of the biophysical parameters 182 

based on the range of scores within that parameter (Figure 2A). For example, a peptide with a 183 

net charge of 5, a helical score of 17, and a µH of 900 would rank middle for charge, low for 184 

helicity, and high for µH (Figure 2A).  185 

80% of the 20-mers received a low ranking for charge (a net positive charge between +1 and 186 

+3) while only 1% ranked high (Figure 2B). For the hydrophobic moment values, a majority of 187 

the peptides also ranked low (any hydrophobic moment value below 333) with only 5% 188 

receiving a high score (Figure 2B). However, for the helicity score, a majority of the peptides, 189 

65%, fell into the middle range of scores between 19 and 22 with only 2% scoring high for 190 

helicity (Figure 2B). It is important to note that the hydrophobic moment and helicity scores 191 
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may not truly represent these parameters for the peptides as the propensity to form a beta sheet 192 

was not taken into consideration when calculating these values.  193 

Peptide Selection for Chemical Synthesis 194 

 Many cationic antimicrobial peptides will adopt an amphipathic alpha helical 195 

conformation. Therefore, we reasoned that of the peptides generated by our script those ranking 196 

high in all three biophysical categories would yield the most antimicrobial activity. Of the 197 

sixteen peptides selected for synthesis, peptides 1 and 2 ranked low for all three biophysical 198 

parameters while peptides 3 and 4 ranked high for the three parameters (Table 1). The 199 

remaining 12 peptides were randomly selected from all 20-mers ranking middle in at least one 200 

category and high for the remaining parameters (Table 1).   201 

PEP-FOLD prediction of secondary structure 202 

 To determine if our biophysical selection criteria were able to accurately predict an 203 

amphipathic alpha helical structure of the peptides selected for synthesis, we modeled their 204 

secondary structure using the PEP-FOLD online tool. For peptides 1 and 2, which received low 205 

scores for helicity and hydrophobic moment, their structures are predicted to exist as a majority 206 

random coil (Figure 3A). In contrast, peptides 3 and 4, having high scores for helicity and 207 

hydrophobic moment, are predicted to exist as fully extended alpha helices with clear clustering 208 

of the polar and charged amino acids to one side of the helix and the hydrophobic residues on 209 

the other, indicative of a strong hydrophobic moment (Figure 3B). Peptides 5 through 10 have a 210 

high helicity score; however, the modeling predictions expect unstructured regions owing to  211 

helix-breakering residues glycine and proline that occur within their sequences (Figure 3 and 212 

Table 1). All of these peptides also received middle scores for their hydrophobic moment which 213 

is visible as hydrophobic residues within the polar face of the helix, such as peptide 6, and 214 
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charged amino acids within the hydrophobic face, such as peptide 9. Interestingly, peptide 11 is 215 

predicted to exist as a beta sheet (Figure 3E). The biophysical calculator only takes into account 216 

the Chou-Fasman residue helical propensity score and does not calculate the individual 217 

likelihood of forming a beta sheet; therefore, peptides with a higher sheet propensity were not 218 

excluded from the list of peptides for synthesis. Finally, the rest of the peptides are predicted to 219 

adopt various helical structures with differing amphipathic characteristics (Figure 3).  220 

Antimicrobial Properties of Synthetic 20-mers 221 

 The peptides were assessed for their minimal inhibitory concentration (MIC) and 222 

minimal bactericidal concentration (MBC) on Escherichia coli, Staphylococcus aureus, and 223 

Pseudomonas aeruginosa (Table 2). As expected, peptides 1 and 2, which scored low in all 224 

three biophysical parameters, did not have activity against any of the organisms tested. Peptides 225 

3 and 4, which scored high in all three biophysical parameters, exhibited antimicrobial activity 226 

against both E. coli and P. aeruginosa (Table 2). Peptides 5, 6, and 7 scored high in charge and 227 

helicity and middle in hydrophobic moment (Table 1). Interestingly, these peptides showed a 228 

range of antimicrobial activities (Table 2). Peptide 6 was more efficient at inhibiting the growth 229 

of P. aeruginosa (MIC = 32 µM) than E. coli (MIC =128 µM). Peptides 5 and 7 were much less 230 

active than peptide 6 despite having similar values for their biophysical scores (Tables 1 and 2). 231 

Peptides 8, 9, and 10 scored high for helicity with middle scores for charge and hydrophobic 232 

moment. These peptides did not have any antimicrobial activity against the organisms tested. 233 

This overall trend continued for the rest of the peptides tested. Indeed, peptides scoring high in 234 

any one of the biophysical parameters with only middle scores for the others (peptides 8-16) did 235 

not have any antimicrobial activity. We did not test any of the peptide candidates at 236 
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concentrations above 128µM, so biological activities at higher concentrations cannot be ruled 237 

out.   238 

Inhibition of Biofilm Formation by the Synthetic 20-mers 239 

 Despite not having a true MIC, we observed that peptides 11 and 16 were able to 240 

significantly reduce the overnight growth of S. aureus cultures (Supplementary Figure 1A-B). 241 

To investigate if these peptides were exerting antibiofilm effects, we employed the biofilm 242 

formation assay. Upon incubation with peptide 11 for 24 hours in biofilm inducing media, we 243 

observed a significant decrease in USA 300 biofilm formation down to a concentration of 4 µM 244 

(Supplementary Figure 1C). This trend was also observed for peptide 16; however, this only 245 

inhibited biofilm formation down to 16 µM (Supplementary Figure 1D) Finally, to determine if 246 

these peptides could inhibit the biofilms of other bacteria we used P. aeruginosa. Peptides 11 247 

and 16 exhibited no bacteriostatic effects on PAO1 (Supplementary Figure 2A-B). However, 248 

these peptides exerted mild antibiofilm formation activity down to 16 µM (Supplementary 249 

Figure 2C-D). In addition to identifying peptides with potent antimicrobial activity, we have 250 

also identified peptides with antibiofilm activity.  251 

Peptide mammalian cell cytotoxicity 252 

 To determine if our biophysical parameters were able to select for peptides with affinity 253 

for bacterial membranes instead of mammalian membranes, we assessed their ability to 254 

compromise the membranes of erythrocytes and keratinocytes. Fourteen of the peptides 255 

exhibited no hemolytic activity even at high concentrations (Supplementary Table 1). However, 256 

peptides 2 and 10 exhibited increased levels of hemolysis at only the highest concentrations 257 

(128 µM). Cytotoxicity to keratinocytes was interrogated using the ethidium homodimer assay. 258 

We observed that all of the peptides were unable to cause cell death when incubated with 259 
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HaCaT cells for 16 hours at the highest concentrations.  Together, these data indicate that these 260 

peptides generally do not target mammalian membranes.  261 

Discussion 262 

 Bacteriocins are a barely-tapped source of highly diverse antimicrobials. However, 263 

verifying the antimicrobial activity of putative bacteriocins can be difficult due to the potentially 264 

narrow activity spectra and highly diverse mechanisms4,37. Additionally, traditional methods of 265 

natural bacteriocin isolation as well as heterologous expression strategies are complicated by 266 

purification limitations and low yield38–40. Here we describe a complete strategy by which de 267 

novo mining of bacteriocins can be parsed using a biophysical algorithm to identify minimally 268 

active bacteriocin peptide candidates. Biophysical selection was done by focusing on three 269 

parameters that have been implicated in the activity of membrane active antimicrobial peptides: 270 

helicity, charge, and amphipathicity30–32,41–43. Our strategy for employing predictive algorithms 271 

with biophysical selection and minimal domain candidate design allows for the development of 272 

completely novel, highly active, synthetic bacteriocins that have wide applicability as 273 

antimicrobial compounds. Previous studies have shown that synthetic peptide variants of full 274 

length bacteriocins can be used to approximate their antimicrobial function. For example, linear 275 

variants of enterocin AS-48, a circular bacteriocin consisting of five alpha helices, have been 276 

shown to retain some of the antimicrobial activity of the parent44,45. The antimicrobial action 277 

was shown to be dependent upon the cationic and hydrophobic residues present within helices 278 

four and five that are designated as the membrane-interacting region25. Recently, we published a 279 

strategy whereby the membrane-interacting region in an AS-48 homologue was used as a 280 

template to create a series of small, optimized antimicrobial peptides24. This establishes a 281 

precedent by which synthetic peptides can be used to approximate the activity of the full length 282 
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bacteriocin. We have built upon these previous studies by utilizing the biophysical parameters 283 

of synthetic antimicrobial peptide design to select for membrane interacting regions of putative 284 

bacteriocins25. We observed that peptides with the highest scores for the biophysical parameters 285 

of charge, helicity, and hydrophobic moment were the most active against the bacteria tested 286 

(Table 2). Interestingly, the only two peptides to meet these criteria were from the same putative 287 

bacteriocin. It is therefore highly likely that this putative bacteriocin works in a membrane 288 

active manner 29,42,43. The interpretation of these data becomes confounded for the peptides 289 

whose biophysical parameters begin to receive middle scores. For example, peptide 6, with a 290 

middle score for hydrophobic moment, is a more effective antimicrobial against P. aeruginosa, 291 

MIC = 32, than E. coli, MIC = 128. This observation is in contrast to the activities of the high 292 

scoring peptides, 3 and 4, whose antimicrobial activities were higher against E. coli. Therefore, 293 

it may be possible to tune antimicrobial specificity by modifying the biophysical scores46,47. 294 

While most research has focused on modification of these parameters and their effects on 295 

eukaryotic cytotoxicity and overall antimicrobial activity few have examined how these 296 

parameters tune the specificity of these compounds to specific bacteria48,49. 297 

There are some drawbacks to this approach. While it seems that our approach has selected for 298 

antimicrobial regions of putative bacteriocins, it is also possible that using a minimal synthetic 299 

peptide strategy has decoupled the function of the synthetic bacteriocin from the function of the 300 

full sequence. Enterocin AS-48 undergoes dimer formation and then subsequent tertiary 301 

structural changes before inserting itself into the membrane of target bacteria50. However, 302 

synthetic AS-48 peptides lose this ability to dimerize and work in a mechanism more akin to 303 

carpet or pore models of synthetic antimicrobial peptide activity25. Therefore, some of the 304 

antimicrobial function and specificity inherent in bacteriocins will be lost by utilizing synthetic 305 
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minimal versions. Finally, our approach cannot verify the activity of bacteriocins which do not 306 

target the bacterial membrane or whose biophysical characteristics change upon post-307 

translational modification4,5,11.  308 

Despite these drawbacks, the techniques described herein have potential for linking de novo 309 

computational bacteriocin discovery with immediate therapeutic development. With the 310 

increasing amount of computational work being done to predict novel antimicrobial compounds 311 

there is a mounting need to verify their antimicrobial activity in vitro8–10. Our method validates 312 

the use of machine learning algorithms to further mine genomic information for potential 313 

bacteriocins candidates that can be refined using biophysical scripting parameters and size 314 

optimization for rapid synthesis and testing. The lack of mammalian cell cytotoxicity in our 315 

synthesized peptide set indicates that selecting minimal bacteriocin candidates based on the 316 

specific set of biophysical parameters that we have established will select for candidates that 317 

specifically target bacterial membranes, a highly valuable outcome from our studies (Table 2 318 

and Supplementary Table 1). Many current synthetic antimicrobial peptides used to treat human 319 

disease have been built around an existing scaffold from eukaryotes51. Omiganan, derived from 320 

magainin of the African three-toed frog, is currently being developed as a topical antimicrobial 321 

for the treatment of diabetic foot ulcers52. In contrast, relatively few bacteriocins have been 322 

developed for the treatment of disease51,53,54. Our strategy to combine machine learning 323 

algorithms for de novo bacteriocin discovery along with biophysical refinement and minimal 324 

design represent a particularly robust workflow for the development of new antibiotic 325 

compounds. These synthetic bacteriocin scaffolds could be further refined via iterative testing 326 

and data collection for efficacy and selectivity.  327 

 328 
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Figure and Table Legends 334 

Figure 1: Overall strategy for selection of bacteriocins for synthesis. Machine learning set of 335 

676 putative bacteriocins was used to generate overlapping 20-mer peptide candidates. 28,895 336 

20-mers were scored and ranked for charge, helicity, and hydrophobic moment. A 337 

representative sample of 16 peptides were selected for synthesis and in vitro characterization in 338 

this study. 339 

Figure 2: Scoring breakdown of biophysical computational parameters of the candidate 340 

peptides. A. Peptides were divided into high (grey), middle (orange), and low (blue) groups 341 

based on their charge, helicity, and hydrophobic moment scores. B. Most of the peptides scored 342 

low to middle with only a small percentage scoring high for each of the biophysical parameters.  343 

Figure 3: PEP-FOLD models of the peptides selected for synthesis A. peptides 1 and 2, B. 3 344 

and 4, C. 5,6, and 7, D. 8, 9, and 10, E. 11, 12, and 13, and F. 14, 15, and 16. Basic, acidic, and 345 

hydrophobic residues are in blue, red, and orange respectively.  346 

Table 1: 20-mers selected for synthesis and their corresponding biophysical scores.  347 

Table 2: MICs and MBCs of the synthetic 20-mer bacteriocins against S. aureus, E. coli, and P. 348 

aeruginosa.   349 
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Machine learning discovery of 676 putative 
bacteriocin candidates
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NYLSHKDLAVVVGGRNNWQT

Set of 20-mer peptides

28,895 total 20-mer peptide candidates 
scored 

In vitro characterization of candidate
peptides

Biophysical Computation

Charge at pH 7

Chou-Fasman ⍺-helix

Hydrophobic moment (µH) 

Fig 1

Figure 1: Overall strategy for selection of bacteriocins for synthesis. 
Machine learning set of 676 putative bacteriocins was used to 
generate overlapping 20-mer peptide candidates. 28,895 20-mers 
were scored for charge, helicity, and hydrophobic moment. A 
representative sample of 16 peptides were selected for synthesis 
and in vitro characterization in this study. 

Use sliding window of 20-mer regions to 
generate test set
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Fig 2

80%

19%
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65%
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62%

36%
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Figure 2: Scoring breakdown of biophysical computational 
parameters of the candidate peptides. A. Peptides were divided 
into high (grey), middle (orange), and low (blue) groups based on 
their charge, helicity, and hydrophobic moment scores. B. Most 
of the peptides scored low to middle with only a small 
percentage scoring high for each of the biophysical parameters.

A.

B.

Biophysical scoring of peptide candidates

Charge a-helix µH

Charge ⍺⍺ - helix µH
LOW 1-3 16-19 1-333

MIDDLE 4-6 19.01-22 333.01-667
HIGH 7-10 22.01-25 667.01-1000
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Fig 3

Figure 3: PEP-FOLD models of the peptides selected for synthesis 
A. peptides 1 and 2, B. 3 and 4, C. 5,6, and 7, D. 8, 9, and 10, E. 
11, 12, and 13, and F. 14, 15, and 16. Basic, acidic, and 
hydrophobic residues are in blue, red, and orange respectively. 

A. B.
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E.

F.
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Table 1: 20-mers selected for synthesis and their corresponding 
biophysical scores. 
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Table 2

Table 2: MICs and MBCs of the synthetic 20-mer bacteriocins 
against S. aureus, E. coli, and P. aeruginosa.
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Supplemental Material  487 

Supplemental Figure 1: Antibiofilm activities of peptides 11 and 16 on S. aureus. A. Peptide 488 

11 exhibits a bacteriostatic effect and B. peptide 16 exhibits a bacteriostatic effect C. Peptide 11 489 

inhibits biofilm formation at all concentrations tested. D. Peptide 16 inhibits biofilm formation 490 

to 16 µM. Data is representative of 3 biological replicates. P-values were determined via one-491 

way ANOVA. A * indicates a significant difference determined via Tukey HSD compared to 492 

the vehicle control. 493 

Supplemental Figure 2: Antibiofilm activities of peptides 11 and 16 on P. aeruginosa. A. 494 

Peptide 11  and B. peptide 16 exhibit no bacteriostatic activity. C. Peptide 11 exhibits mild 495 

antibiofilm activities D. Peptide 16 exhibits mild antibiofilm activity. Data is representative of 3 496 

biological replicates. A * represents a p-value < .05 as determined via one-way ANOVA (A,B). 497 

A * represents a significant difference as determined via Tukey HSD compared to the vehicle 498 

control (C,D). 499 

Supplemental Table 1: Cytotoxicity of 20-mer bacteriocins at 128 µM. Y indicates an increase 500 

in hemolysis or cytotoxicity at 128 µM. N indicates no increase in hemolysis or cytotoxicity at 501 

128 µM.  502 

  503 
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Supplemental Figure 1: Antibiofilm activities of peptides 11 and 16 on 
S. aureus. A. Peptide 11 exhibits a bacteriostatic effect and B. peptide 
16 exhibits a bacteriostatic effect C. Peptide 11 inhibits biofilm 
formation at all concentrations tested. D. Peptide 16 inhibits biofilm 
formation to 16 µM. Data is representative of 3 biological replicates. P-
values were determined via one-way ANOVA. A * indicates a significant 
difference determined via Tukey HSD compared to the vehicle control.

A. B.

C. D.

Supp Fig 1
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Supp Fig 2

A. B.

C. D.

Supplemental Figure 2: Antibiofilm activities of peptides 11 and 16 on 
P. aeruginosa. A. Peptide 11  and B. peptide 16 exhibit no bacteriostatic 
activity. C. Peptide 11 exhibits mild antibiofilm activities D. Peptide 16
exhibits mild antibiofilm activity. Data is representative of 3 biological 
replicates. A * represents a p-value < .05 as determined via one-way 
ANOVA (A,B). A * represents a significant difference as determined via 
Tukey HSD compared to the vehicle control (C,D).
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 506 

Supplemental Table 1: Cytotoxicity of 20-mer bacteriocins at 128 µM. Y 
indicates an increase in hemolysis or cytotoxicity at 128 µM. N indicates 
no increase in hemolysis or cytotoxicity at 128 µM. 
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