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Abstract

The traditional drug discovery paradigm has shaped around the idea of “one target, one
disease”. Recently, it has become clear that not only it is hard to achieve single target speci-
ficity but also it is often more desirable to tinker the complex cellular network by targeting
multiple proteins, causing a paradigm shift towards polypharmacology (multiple targets,
one disease). Given the lack of clear-cut boundaries across disease (endo)phenotypes and
genetic heterogeneity across patients, a natural extension to the current polypharmacol-
ogy paradigm is targeting common biological pathways involved in diseases, giving rise to
“endopharmacology” (multiple targets, multiple diseases). In this study, leveraging pow-
erful network medicine tools, we describe a recipe for first, identifying common pathways
pertaining to diseases and then, prioritizing drugs that target these pathways towards en-
dopharmacology. We present proximal pathway enrichment analysis (PxEA) that uses the
topology information of the network of interactions between disease genes, pathway genes,
drug targets and other proteins to rank drugs for their interactome-based proximity to
pathways shared across multiple diseases, providing unprecedented drug repurposing op-
portunities. As a proof of principle, we focus on nine autoimmune disorders and using
PxEA, we show that many drugs indicated for these conditions are not necessarily specific
to the condition of interest, but rather target the common biological pathways across these
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diseases. Finally, we provide the high scoring drug repurposing candidates that can target
common mechanisms involved in type 2 diabetes and Alzheimer’s disease, two phenotypes
that have recently gained attention due to the increased comorbidity among patients.

1 Introduction

Following Paul Ehrlich’s more-than-a-century-old proposition on magic bullets (one drug,
one target, one disease), the drug discovery pipeline traditionally pursues a handful of
leads identified in vitro based on their potential to bind to target(s) known to modulate
the disease [I]. The success of the selected lead in the consequent clinical validation process
relies on the prediction of a drug’s effect in vivo. Yet, in practice, due to the interactions of
the compound and its targets with other proteins and metabolites in the cellular network,
the characterization of drug effect has been a daunting task, yielding high pre-clinical
attrition rates for novel compounds [2] [3].

The high attrition rates can be attributed to the immense response heterogeneity across
patients, likely to stem from polygenic nature of most complex diseases. Consequently,
researchers have turned their attention to polypharmacology, where novel therapies aim to
alter multiple targets involved in the pathway cross-talk pertinent to the disease pathology,
rather than single proteins [4, 5]. This has given rise to network-based approaches that
predict effect of individual drugs [6] as well as drug combinations [7], allowing to reposition
compounds for novel indications.

Over the past years, reusing existing drugs for conditions different than their intended
indications has emerged as a cost effective alternative to the traditional drug discovery, giv-
ing rise to various drug repurposing methods that aim to mimic the most likely therapeutic
and safety outcome of candidate compounds based on the similarities between compounds
and diseases characterized by high-throughput omics data [8, [0 [10]. Most studies so far,
however, have focused on repurposing drugs for a single condition of interest, failing to rec-
ognize the cellular, genetic and ontological complexity inherent to human diseases [11], 12].
Indeed, pathway cross-talk plays an important role in modulating pathophysiology of dis-
eases [13] and most comorbid diseases are interconnected to each other in the interactome
through proteins belonging to similar pathways [14], [15] 16, I7]. Recent evidence suggests
that endophenotypes [18] —shared intermediate pathophenotypes— such as inflammasome,
thrombosome, and fibrosome play essential roles in the progression of many diseases [19].

Here, we propose a novel drug repurposing approach, Proximal pathway Enrichment
Analysis (PxEA), to specifically target intertangled biological pathways involved in the
common pathology of complex diseases. We first identify pathways proximal to disease
genes across various autoimmune disorders and use PxEA to investigate whether the drugs
promiscuously used in these disorders target specifically the pathways associated to one
disease or the pathways shared across the diseases. We find several examples of anti-
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inflammatory drugs where the pathways proximal to the drug targets in the interactome
correspond to the pathways that are in common between two autoimmune disorders, point-
ing to the existence of immune system related endophenotypes. We demonstrate that PxEA
is a powerful computational strategy for targeting multiple pathologies involving common
biological pathways such as Alzheimer’s disease and type 2 diabetes. Based on these find-
ings, we argue that PxEA paves the way for targeting multiple disease endophenotypes
simultaneously, a concept which we refer as endopharmacology.

2 Results

2.1 Pathway proximity captures the similarities between autoimmune
disorders

Conventionally, functional enrichment analysis relies on the significance of the overlap
between a set of genes belonging to a condition of interest and a set of genes involved
in known biological processes (pathways). Using known pathway genes, one can identify
pathways associated to the disease via a statistical test (e.g., P-value from Fisher’s exact
test for the overlap between genes or z-score comparing the observed number of common
genes to the number of genes one would have in common if genes were randomly sampled
from the data set). We start with the observation that such approach often misses key
biological process involved in the disease due to the limited overlap between the disease and
pathway genes. To show that this is the case, we focus on nine autoimmune disorders for
which we obtain genes associated to the disease in the literature and we calculate P-values
based on the overlap of these genes to the pathway genes for each of the 674 pathways in
Reactome database (Fisher’s exact test, P < 0.05). The choice of autoimmune disorders
is motivated by the fact that these diseases tend to share key biological functions involved
in immune and inflammatory response, for which the current annotation is fairly accurate
and complete. Intriguingly, Table[l|demonstrates that the overlap between the disease and
pathway genes yields less than ten pathways that are significantly enriched in five out of
nine diseases, underestimating extensively the pathology of these disease.

Alternatively, shortest path distance of genes in the interactome can be used to find
pathways closer than random expectation to a given set of genes [20] 6], augmenting sub-
stantially the number of pathways relevant to the disease pathology. Using network-based
proximity [6], we define the pathway span of a disease as the set of pathways significantly
proximal to the disease (z < —2, see Methods). We show that the number of pathways
involved in diseases increases substantially when proximity is used (Table .

To show the biological relevance of the identified pathways using interactome-based
proximity, we check how well these pathways can highlight genetic and phenotypic rela-
tionships between nine autoimmune disorders. First, to serve as a background model, we
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Table 1: Number of pathways enriched across nine autoimmune disorders based on overlap
of pathway and disease genes (P < 0.05, assessed by a hypergeometric test) and the
proximity of pathway genes to disease genes in the interactome (z < —2, see Methods for

details).
Disease # of pathways
overlap proximity

psoriasis 9 50
ulcerative colitis 6 138
lupus erythematosus, systemic 17 98
rheumatoid arthritis 55 17
diabetes mellitus, insulin-dependent | 16 121
celiac disease 7 143
graves disease 3 92
multiple sclerosis 12 138
crohn disease 5 116

build a disease network for the autoimmune disorders (diseasome) using the genes and
symptoms shared between these diseases as well as the comorbidity information extracted
from medical claim records (see Methods). The autoimmune diseasome (Figure is ex-
tremely connected covering 33 out of 36 potential links between nine diseases (with average
degree < k >= 7.3 and clustering coefficient CC' = 0.93). The three missing links are those
in between ulcerative colitis — rheumatoid arthritis, ulcerative colitis — graves disease, and
graves disease — type 1 diabetes. On the other hand, several diseases such as celiac disease,
crohn disease, systemic lupus erythematosus, and multiple sclerosis are connected to each
other with multiple evidence types based on genetic (shared genes) and phenotypic (shared
symptoms and comorbidity) similarities, emphasizing the shared pathological components
underlying these diseases.

We compare the autoimmune diseasome generated using shared genes, common symp-
toms and comorbidity, to the disease network in which the disease-disease connections are
identified using the pathways they share. We identify the pathways enriched in the dis-
eases using both the overlap and proximity approaches mentioned above and check whether
the number of common pathways between two diseases is significant (Fisher’s exact test
P < 0.05). The diseasome based on pathways shared across diseases using overlap between
pathway and disease genes is markedly sparser than the original diseasome, containing 17
links (Figure . None of the diseases shares pathways with psoriasis and among the con-
nections supported by multiple evidence in the original diseasome the links between crohn
disease and celiac disease as well as crohn disease and systemic lupus erythematosus are
missing. On the contrary, the diseasome based on shared pathways using proximity of the
pathway and disease genes consists of 34 links, where the only unconnected disease pairs are
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Figure 1: Genetic, phenotypic and functional overlap across autoimmune dis-
orders. Disease relationships (links) based on (a) shared genes (gray solid lines), shared
symptoms (orange dashed lines) and comorbidity (blue sinusoidal lines), (b) shared path-
ways (gray solid lines) using common disease and pathway genes, (c) shared pathways
(gray solid lines) using proximity of pathway genes to diseases genes in the interactome.

crohn disease — graves disease and type 1 diabetes — psoriasis, suggesting that it captures
the connectedness of the original diseasome better than the overlap-based approach.

We next turn our attention to the shared pathways across diseases identified by both
overlap and proximity based approaches and observe that most common pathways in-
volve biological processes relevant to the immune system response through signaling of
cytokines (interferon gamma, interleukins such as IL6, IL7) and lymphocytes (ZAP70,
PD1, TCR, among others). While overlap based enrichment finds most of these path-
ways are shared among only 4-5 diseases, proximity based enrichment points to the com-
monality of these pathways among almost all the diseases. Furthermore, the proximity
based enrichment hints involvement of additional interleukin (IL2, IL3, IL5) and lympho-
cyte (BCR) molecules ubiquitously in autoimmune disorders. These findings suggest that
proximity-based pathway enrichment identifies biological processes relevant to the diseases,
highlighting the common etiology across autoimmune disorders.

2.2 Diseases targeted by the same drugs exhibit functional similarities

Having observed that pathway proximity to diseases in the interactome captures the un-
derlying biological mechanisms across diseases, we seek to investigate the potential impli-
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cations of the connections between diseases in regards to drug discovery. We hypothesize
that a drug indicated for a number of autoimmune diseases would exert its effect by tar-
geting the shared biological pathways across these diseases. To test this, we use 25 drugs
that are indicated for two or more of the diseases in Hetionet [2I] and split disease pairs
into two groups: (i) diseases for which a common drug exists and (i) diseases for which
no drugs are shared. We then count the number of pathways in common between two
diseases for each pair in the two groups using pathway enrichment based on overlap and
proximity. We find that the diseases targeted by same drugs tend to involve an elevated
number of common pathways compared to the disease pairs that do not have any drug
in common (Figure . The average number of pathways shared among diseases that are
targeted by the same drug is 3.4 and 38 using overlap and proximity based enrichment,
respectively, whereas, the remaining disease pairs share 2 and 31 pathways on average us-
ing the two enrichment approaches. Though significant only for overlap based approach
(P = 0.043 and P = 0.066 for overlap and proximity, respectively), the difference in the
number of pathways is remarkable. We note that due to the relatively small sample size
and potentially incomplete drug indication information, we interpret the elevated number
of pathways as a trend rather than a general rule across all diseases. Nevertheless, taken
together with the high overall pathway-level commonalities observed in the autoimmune
disorders mentioned in the previous section, this result suggests that the drugs used for
multiple indications are likely to target common pathways involved in these diseases.
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Figure 2: Number of shared pathways across disease pairs that are targeted
by the same drug compared to the rest of the pairs. The pathway enrichment
is calculated using (a) gene overlap and (b) proximity of genes in the interactome. The
number of disease pairs in each group is given in the parenthesis b below the group label
in the x-axis.

=
S}


https://doi.org/10.1101/313809
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/313809; this version posted May 4, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

2.3 Proximal pathway enrichment analysis highlights lack of specificity
for drugs used in autoimmune disorders

The observation on the drugs indicated across multiple autoimmune disorders potentially
target common pathways triggers us to ask the following question: “Can we leverage
pathway-level commonalities between diseases to quantify the impact of a given drug on
these diseases?”. To this end, we propose PxEA, a novel method for Proximal pathway
Enrichment Analysis that scores the likelihood of a set of pathways (e.g., targeted by a
drug) to be represented among another set of pathways (e.g., common disease pathways)
based on the proximity of the pathway genes in the interactome. As opposed Gene Set
Enrichment Analysis (GSEA)[22] which uses gene sets and the ranking of genes based on
differential expression, PxEA uses pathway sets and the ranking of pathways based on
proximity in the interactome. PxEA scores a drug that involves (i.e. proximal to) multiple
pathways in terms of their enrichment among other sets of pathways, such as pathways
shared across different diseases. For a given drug and a pair of diseases, we first identify
the pathways in the pathway span of both of the diseases, then we rank the pathways with
respect to the proximity of the drug targets to the pathway genes and finally we calculate
a running sum based statistics corresponding to the enrichment score between the drug
and the disease pair (Figure |3, see Methods).

We employ PxEA to score 25 drugs indicated for at least two of the seven autoimmune
disorders (there were no common drugs for celiac and graves diseases). For each disease,
we first run PxEA using the pathways proximal to the disease and pathways proximal to
the drugs that are used for that disease. We then run PxEA for each disease pair, using
the pathways proximal to both of the diseases in the pair and the drugs commonly used
for the two diseases. We notice that several drugs indicated for multiple conditions score
higher using common pathways between two diseases than using pathways of the disease
it is indicated for (Figure . This is not surprising considering that many of the drugs
used for autoimmune disorders target common immune and inflammatory processes. For
instance, sildenafil a drug used for the treatment of erectile dysfunction and to relieve
symptoms of pulmonary arterial hypertension is reported by Hetionet to show palliative
effect on type 1 diabetes and multiple sclerosis. Indeed, sildenafil instead of being specific
to any of these two conditions, it targets some of the 57 pathways in common between
type 1 diabetes and multiple sclerosis including but not limited to pathways mentioned in
Table |2, such as “IL-3, 5 and GM CSF signaling” (z = —1.6), “regulation of signaling by
CBL” (z = —1.1), “regulation of KIT signaling” (z = —1.0), “IL receptor SHC signaling”
(z = —1.0), and “growth hormone receptor signaling” (z = —1.0).

Similarly, prednisone, a synthetic anti-inflammatory glucocorticoid agent that is indi-
cated for six of the autoimmune disorders, is assigned a higher PxEA score using pathways
shared by crohn disease and systemic lupus erythematosus compared to pathways involved
only in ulcerative colitis or in multiple sclerosis, suggesting that this drug does not specif-
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Figure 3: Schematic overview of proximal pathway enrichment analysis (PxEA).
PxEA scores a drug with respect to its potential to target the pathways shared between
two diseases. For a given drug and two diseases of interest, PxEA first identifies the
common pathways between the two disease and then uses the proximity-based ranking
of the pathways (i.e. average distance in the interactome to the nearest pathway gene,
normalized with respect to a background distribution of expected scores) to assign a score
to the drug and the disease pair.

ically target any of the autoimmune disorders but rather acts on the common pathology
of these diseases. Another example, where we observe a similar trend is meloxicam. While
meloxicam is originally indicated for rheumatoid arthritis and systemic lupus erythemato-
sus, the higher PxEA score when common pathways are used suggests that it targets
underlying inflammatory processes.

2.4 Targeting the common pathology of type 2 diabetes and Alzheimer’s
disease

Type 2 diabetes (T2D) and Alzheimer’s disease (AD), two diseases highly prevalent to an
ageing society, are known to exhibit increased comorbidity [23], 24]. Recently, repurposing
anti-diabetic agents to prevent insulin resistance in AD has gained substantial attention
due to the therapeutic potential it offers [25]. Indeed, the pathway spans of T2D and AD
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Figure 4: PXEA scores of drugs used in autoimmune disorders. (a) Disease-disease
heatmap, in which for each disease pair, the common pathways proximal to the two diseases
are used to run PxEA. Note that the diagonal contains the PxEA scores obtained when the
proximal pathways for only that disease are used. The hue of the color scales with the PxEA
score. (b) Drug-disease heatmap, in which the PxEA is run using the pathways proximal
to the pathways of the disease in the column for the drugs in the rows (25 drugs that are
used at least in two diseases). The last two columns show the median and maximum values
of the PxEA scores obtained for the drug among all disease pairs the drug is indicated for.

covers 170 and 82 Reactome pathways, respectively and 35 pathways are shared among the
pathway spans, suggesting a highly significant link between these two diseases in terms of
shared pathways (Fisher’s exact test, P = 1.3 x 107%).

We use PxEA to score 1,466 drugs from DrugBank using the pathways involved in the
common pathways of T2D-AD. When we look at the drugs ranked on the top (Table |3)),
we spot orlistat, a drug indicated for obesity and T2D in Hetionet. Interestingly, existing
studies also suggest a role for this drug in the treatment of AD ([26]). Orlistat targets extra-
cellular communication (Ras-Raf-MEK-ERK, NOTCH, and GM-CSF /IL-3/IL-5 signaling)
and lipid metabolism pathways (Figure . Several of the proteins in these pathways such
as APOA1, PSEN2, PNLIP, LPL, and IGHGI are either themselves Orlistat’s targets or
in the close vicinity of the targets that are important for the pathology of the T2D and
AD. The second and third top scoring drugs are chenodeoxycholic and obeticholic acid,
biliar acids that are in clinical trials for T2D (NCT01666223) and are argued to modulate
cognitive changes in AD [27]. We calculate the significance of the PxEA scores by per-
muting the ranking of the pathways. We find that the adjusted P-values (corrected for
multiple hypothesis testing using Benjamini-Hochberg procedure) for the top 10 drugs are
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Figure 5: Orlistat from PxEA perspective. The subnetwork shows how the targets
of Orlistat are connected to the nearest pathway protein for the pathways shared between
T2D and AD. For clarity, only the pathways that are proximal to the drug are shown.
Blue rectangles represent pathways, circles represent drug targets (orange) or proteins on
the shortest path to the nearest pathway gene (gray). Blue dashed lines denote pathway
membership, solid lines are protein interactions. The interactions between the drug and
its targets are shown in dashed orange lines and the interactions between the drug targets
and their neighbors are highlighted with solid orange lines.

all below 0.001, the minimum possible value (due to the 10,000 permutations used in the
calculation).

3 Discussion

The past decades have witnessed a substantial increase in human life expectancy owing
to major breakthroughs in translational medicine. Yet, the increase on average age and
changes in life style, have given rise to a spectra of problems challenging human health
like cancer, Alzheimer’s disease and diabetes. These diseases do not only limit the life
expectancy but also induce a high burden on public healthcare costs. In the US alone,
more than 20 and 5 million people have been effected by type 2 diabetes and Alzheimer’s
disease, respectively, ranking these diseases among most prevalent health problems [23].

Mainly characterized by hyperglycemia due to resistance to insulin, the disease mecha-
nism of T2D involves a combination of multiple genetic and dietary factors. On the other

10
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hand, AD is relatively less understood and several hypothesis have been proposed for its
cause: reduced synthesis of neurotransmitter acetylcholine, accumulation of amyloid beta
plaques and/or tau protein abnormalities, giving rise to neurofibrillary tangles. Accord-
ingly, most available treatments in AD are palliative (treating symptoms rather than the
cause). Given the comorbidity between T2D and AD several studies have recently sug-
gested repurposing diabetes drugs for AD [25]. However, to our knowledge, currently there
is no systematic method that can pinpoint drugs that could be useful to target common
disease pathology such as the one between T2D and AD.

In this study, we first show that diseases that share drugs also tend to share biological
pathways and hypothesize that these pathways can be targeted to exploit novel drug re-
purposing opportunities. We introduce PxEA, a method based on (i) pathways that are
proximal to diseases and (ii) the ranking of the pathways targeted by a drug using the
topology information encoded in the human interactome. We show that PxEA picks up
whether drugs target specifically the pathways associated to a disease or common path-
ways shared across various conditions. We use PxEA to rank drugs for their therapeutic
potential in targeting the common disease pathology between T2D and AD. Despite the
limitations of PXxEA, such as the incompleteness in the drug target, disease and pathway
genes, we believe PxEA is the first step towards achieving endopharmacology, that is,
targeting common pathways across endophenotypes.

4 Methods

4.1 Protein interaction data and interactome-based proximity

To define a global map of interactions between human proteins, we obtained the physical
protein interaction data from a previous study that integrated various publicly available
resources [14]. We downloaded the supplementary data accompanying the article to gener-
ate the human protein interaction network (interactome) containing data from MINT[2§],
BioGRID[29], HPRD[30], KEGGI31], BIGG[32], CORUM]33], PhosphoSitePlus[34]. We
used the largest connected component of the interactome in our analyses, which covered
141,150 interactions between 13,329 proteins (represented by ENTREZ gene ids).

Network-based proximity is a graph theoretic approach that incorporates the interac-
tions of a set of genes (i.e. disease genes or drug targets) with other proteins in the human
interactome and contextual information as to where the genes involved in pathways reside
with respect to the original set of genes [6]. To quantify interactome-based proximity be-
tween two gene sets (such as drug targets, pathway genes or disease genes), we used the
average shortest path length from the first set to the nearest protein in the second set
following the definition in the original study [6]. Accordingly, the proximity from nodes S
to nodes T in a network G(V, E), is defined as

11
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where d(u, v) is the shortest path length between nodes v and v in G. We then calculated
a z-score based on the distribution of the average shortest path lengths across random gene
sets Smmdom and Trandom (drcmdom(sa T) = d(Srandom7 Trcmdom)) as follows:

d(s’ T) B Mdrandom(sz)

O-drandom (SvT)

2(S,T) =

where pg, g7y and og, . (7 g) are the mean and the standard deviation of the
drandom (S, T), respectively obtained using 1,000 realizations of random sampling of gene
sets that match the original sets in size and degree. We refer to the pathways that are
significantly proximal (z < —2) to a disease as the pathway span of the disease throughout
text.

Note that, instead of average shortest path distances, one can also use random-walk
based distances to calculate proximity between gene sets [20]. However, random walks in
the networks are inherently biased towards high-degree nodes [35]36] and require additional
statistical adjustment [36, 20]. Sampling based on size and degree matched gene sets has
been shown to be robust against data-incompleteness in the interactome and in the known
pathway annotations [36), [6]

4.2 Disease-gene, drug and pathway information

We compiled genes associated to nine autoimmune disorders listed in Table [ using disease-
gene annotations from DisGeNET [37]. We downloaded curated disease-gene associations
from DisGeNET that contained infromation from UniProt [38], ClinVar [39], Orphanet
[40], GWAS Catalog [41] and CTD [42]. To ensure that the disease-gene associations were
of high confidence, we kept only the associations that were also provided in a previous
large-scale analysis of human diseases [14].

We retrieved drug target information from DrugBank for 1,489 drugs in the version 5.0.6
of the database [43], 1,466 of which had at least a target in the interactome. Uniprot ids
from DrugBank were mapped to ENTREZ gene ids using Uniprot id mapping file (retrieved
on October 2017). We used drug indication information from Hetionet (compound treats
or palliates disease edges) that compiled data from publicly available resources [21I]. We
focused on 78 drugs that were indicated for nine autoimmune disorders above. We created
a subset of drugs used for two or more of the autoimmune disorders, yielding 25 drugs
across seven conditions (there were no indications for celiac disease, and the two drugs
used for graves disease were not used in any other disease).
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The ENTREZ gene ids of the proteins involved in biological pathways were taken from
the version 5.0 of MSigDB curated gene sets [44]. In our analysis, we used 674 Reactome
pathways and the genes associated to these pathways [45].

4.3 Genetic, phenotypic and functional relationships across diseases

To identify relationships across disease pairs (autoimmune diseasome), we used the sim-
ilarities between diseases in terms of genes and symptoms they share. We assessed the
significance of the overlap between genes (or symptoms) associated to two diseases using
Fisher’s exact test. An alpha value of 0.05 was set to deem the connections significant
(P < 0.05). The disease symptom information was taken from a previous study based on
text mining of PubMed abstracts (only associations with TF-IDF score higher than 3.5
are considered) [46]. We also used the relative risk calculated based on medical insurance
claims [47], where we mapped the ICD9 codes to MeSH identifiers using the annotations
provided by Disease Ontology [48]. We considered the disease pairs with relative risk higher
than 1 as potential commorbidity link.

To identify pathways enriched in diseases, we used the significance (i) of the overlap
between the pathway and disease genes assessed by a hypergeometic test (i.e. one-sided
Fisher’s exact test) and (ii) of the proximity between pathway and disease genes in the
interactome. We considered the pathways that had P < 0.05 and z < —2, respectively as
the pathways that were enriched in a given disease using the two approaches. The pathway
information was taken from Reactome and the proximity was calculated as explained above.

4.4 PxEA: Proximal pathway enrichment analysis

Toward the goal of pathway-level characterization of the common pathology of diseases
and to evaluate the therapeutic potential of drugs based on their impact on the common
pathways, we developed Proximal pathway Enrichment Analysis (PxEA), a novel method
that scores drugs based on the proximity of drug targets to pathway genes in the inter-
actome. PxEA uses a GSEA-like running sum score [22], where the pathways are ranked
with respect to the proximity of drug targets to the pathways and each pathway is checked
whether it appears among the pathways of interest (e.g., common pathways between two
diseases). Given D, the pathways ranked with respect their proximity to drug targets, p;,
the pathway in consideration within D and C, the set of pathways of interest, the running
score is defined as follows [49]:

ES(D,C)=)_X;

p;EP
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where,

D|—|C .
DL, ifpiec

otherwise

To calculate P-values for the case study, we repeat the procedure above 10,000 times,
shuffling randomly D to calculate the expected enrichment score ES(D™4™ (). We then
calculate the P-value for the enrichment using

_|ES(D,C) < ES(Drendom C)|
N 10,000

P

The P-values were corrected for multiple hypothesis testing using Benjamini-Hochberg
procedure [50].

4.5 Implementation details and code availability

We used toolbox and pxea Python packages for running PxEA, available at http://
github.com/emreg00. The proximity was calculated using networkx package [51] that
implements Dijkstra’s shortest path algorithm. The statistical tests were conducted in R
(http://www.R-project.org) and Python (http://www.python.org). The network vi-
sualizations were generated using Cytoscape [52] and the plots were drawn using Seaborn
python package [53].
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Table 2: Pathways shared by at least two autoimmune disorders based on gene overlap
(hypergeometric P < 0.05), pathways shared by at least eight two autoimmune disorders
based on proximity of genes and the number of diseases they appear commonly based on
both overlap and proximity approaches.

Pathway # of shared diseases
overlap proximity

interferon gamma signaling

costimulation by the CD28 family

cytokine signaling in immune system
translocation of ZAP-70 to immunological synapse
phosphorylation of CD3 and TCR zeta chains
PD1 signaling

IL-6 signaling

generation of second messenger molecules

TCR signaling

signaling by ILs

immune system

downstream TCR signaling

interferon signaling

adaptive immune system

regulation of KIT signaling

IL-7 signaling

CTLA4 inhibitory signaling

chemokine receptors bind chemokines

extrinsic pathway for apoptosis

MHC class IT antigen presentation

IL receptor SHC signaling

IL-3, 5 and GM CSF signaling -
signaling by the B cell receptor BCR -
regulation of IFNG signaling -
growth hormone receptor signaling -
IL-2 signaling -
regulation of signaling by CBL -
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Table 3: Top 10 drug repurposing opportunities to target common type 2 diabetes and
Alzheimer’s disease pathology.

Drug | Hetionet indication PxEA score | Adjusted
P-value
orlistat | obesity, type 2 diabetes 94.07 < 0.001
chenodeoxycholic acid | primary biliary cirrhosis 74.06 < 0.001
obeticholic acid | - 74.06 < 0.001
practolol | - 70.55 < 0.001
esmolol | hypertension 70.55 < 0.001
clenbuterol | - 70.44 < 0.001
erythrityl tetranitrate | - 70.32 < 0.001
bupranolol | - 68.97 < 0.001
arbutamine | - 68.97 < 0.001
fenoterol | - 68.97 < 0.001

Table 4: Disease-gene associations for the nine autoimmune disorders used in this study.

Disease # of | Genes
genes
celiac disease 11 IL21 CCR4 HLA-DQA1 BACH2 RUNX3 ICOSLG SH2B3 CTLA4 MYO9B ZMIZ1 ETS1
graves disease 4 RNASET2 CTLA4 FCRL3 TSHR
diabetes mellitus, 18 IL10 GLIS3 HLA-DQA1 HLA-DRB1 PTPN22 SLC29A3 INS BACH2 CLEC16A
insulin-dependent PAX4 HLA-DQBI1 IL2RA CD69 IL27 HNF1A CTSH SH2B3 C1QTNF6
crohn disease 19 DNMT3A IL12B IRGM IL10 CCL2 FUT2 SMAD3 TYK2 ATG16L1 BACH2
IL2RA NKX2-3 PTPN2 NOD2 TAGAP MST1 DENNDI1B IL23R ERAP2
rheumatoid arthritis | 23 MIF CD40 ANKRD55 HLA-DRB1 PTPN22 RBPJ IL2RA AFF3 CCL21 REL SLC22A4 CCR6
IRF5 SPRED2 CTLA4 PADI4 TNFAIP3 NFKBIL1 HLA-DQA2 STAT4 IL6 BLK TRAF1
multiple sclerosis 15 CD58 CD6 IRF8 HLA-DQB1 CBLB HLA-DRA KIF1B IL2RA
TNFSF14 VCAM1 IL7R HLA-DRB1 CD24 TNFRSF1A PTPRC
psoriasis 15 IL12B TNIP1 LCE3D IL13 IL23R TYK2 HLA-DQB1 HLA-C FBXL19
ERAP1 TRAF3IP2 TNFAIP3 TNF REL NOS2
lupus erythematosus, | 29 IKZF1 CFB RASGRP3 PDCD1 RASGRP1 DNASE1 HLA-DRB1 PTPN22 ETS1 TNIP1
systemic FCGR2B TNFSF4 IRF5 C2 PRDM1 PXK TLR5 TREX1 TNFAIP3 SLC15A4 PHRF1
HLA-DQA1 STAT4 ITGAX ITGAM BLK C4A BANKI1 CR2
ulcerative colitis 24 IL12B JAK2 ICOSLG IL1R2 LSP1 CXCR2 IL10 IL7R CXCR1 DAP NKX2-3 CARD9 GNA12

IRF5 PRDM1 HNF4A CCNY SLC26A3 FCGR2A IL23R IL17REL MST1 TNFSF15 CDH3
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