

Sensory prediction errors, not performance errors, update memories in visuomotor adaptation

Kangwoo Lee¹, Youngmin Oh², Jun Izawa³§, and Nicolas Schweighofer⁴§*

¹Biomedical Engineering, University of Southern California, Los Angeles, USA

²Neuroscience, University of Southern California, Los Angeles, USA

³Empowerment Informatics, University of Tsukuba, Tokyo, Japan

⁴Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, USA

§ These authors have equally contributed to this work

*Correspondence to schweigh@usc.edu

Abstract

1 Sensory prediction errors are thought to update memories in motor adaptation, but the role of
2 performance errors is largely unknown. To dissociate these errors, we manipulated visual
3 feedback during fast shooting movements under visuomotor rotation. Participants were
4 instructed to strategically correct for performance errors by shooting to a neighboring target in
5 one of four conditions: following the movement onset, the main target, the neighboring target,
6 both targets, or none of the targets disappeared. Participants in all conditions experienced a drift
7 away from the main target following the strategy. In conditions where the main target was shown,
8 participants often tried to minimize performance errors caused by the drift by generating
9 corrective movements. However, despite differences in performance during adaptation between
10 conditions, memory decay in a delayed washout block was indistinguishable between conditions.
11 Our results thus suggest that, in visuomotor adaptation, sensory predictions errors, but not
12 performance errors, update the slow, temporally stable, component of motor memory.
13

14 Introduction

15 What is the mechanism that enables adaptation in response to a sensory perturbation? A long-
16 held theoretical view is that sensory-motor adaptation is due to the update of internal forward
17 models^{1,2}, which are neural processes that predict the sensory consequences of motor commands
18 ³⁻⁵. According to this view, when a sensory perturbation such as a visuomotor rotation alters the
19 sensory outcome, the forward model is updated to minimize the sensory prediction error (SPE),
20 that is, the error between the sensory outcome and its prediction⁶. Forward model update can
21 happen continuously during daily activities via the individual's own movements ("self-
22 supervised learning";^{3,7}). The output from the updated forward model can then be used to
23 compute the motor command needed to compensate for the perturbation when a task goal is
24 defined⁸.

25 Thus, in theory, SPEs alone in the absence of a task goal are sufficient for motor adaptation via
26 forward model update. Decisively, movements during adaptation do not need to be goal-directed
27 because only the difference between actual and predicted sensory consequences matters in the
28 update of the forward model^{9,10}. However, in most real-life activities and in most behavioural
29 experiments, performance errors or rewards, whether explicit (e.g., score, evaluation) or implicit
30 (e.g., self-evaluation), related to the goal are available. Because reward-related signals have been
31 shown to influence motor adaptation^{8,11-14}, both SPEs and performance errors could
32 simultaneously play a role in adaptation.

33 A seminal experiment by Mazzoni and Krakauer¹⁵ suggested that SPEs in the absence of initial
34 performance errors lead to a drift in hand direction. In this experiment, participants made
35 movements to one of eight targets around a circle, spaced 45 degrees apart. A 45-degree

36 visuomotor perturbation was then suddenly introduced, creating large performance errors
37 between the target and the cursor. After the second adaptation trial, participants were told that
38 shooting at the neighboring target placed clockwise of the main target would cancel the error.
39 Indeed, in the trials following the introduction of this strategy, the performance error between the
40 main target and the cursor was approximately zero. However, a drift appeared in the later trials,
41 with the cursor starting to rotate clockwise from the main target. After about 70 trials,
42 participants were told to stop using the strategy and aim directly at the main target again. The
43 following trials showed strong after-effects. These results suggest that the SPE, but not the
44 performance error between the cursor and the main target, is involved in adaptation via updates
45 of an internal model. This is because just after the strategy is introduced, the drift appears despite
46 zero performance error.

47 However, this experiment did not allow for a disambiguation of the roles of SPEs versus
48 performance errors on updating motor memories, because both types of errors were present in
49 the drift phase. An extension of this initial study by Taylor and Ivry ¹⁶ with a larger number of
50 adaptation trials showed that the performance error between the cursor and the main target that
51 appears during the drift phase influences performance during adaptation: when the number of
52 trials increased, participants started to generate corrective movements to cancel the drift. In
53 addition, a second performance error, the error between the cursor and the neighboring target,
54 which corresponds to the aiming error, could also influence adaptation. Note that this second
55 performance error would initially act on the drift in the same direction as the SPEs. We call the
56 first type of performance error, the error between the main target and the cursor, PE1 (See Figure
57 1A). We call the second type of performance error, the error between the neighboring target and
58 the cursor, PE2 (See Figure 1A).

59 Here, we extended the study by Taylor and Ivry ¹⁶ in two ways: First, we performed a two-by-
60 two design experiment to distinguish the possible influences of SPE, PE1, and PE2 on adaptation:
61 the main target, the neighboring target, both targets, or none disappear following the movement
62 onset (Figure 1A). When no targets disappear (Condition 1), the learner can rely on PE1, PE2,
63 and SPE. When the main target disappears (Condition 2), the learner can only reliably rely on
64 PE2 and SPE. When the neighboring target disappears (Condition 3), the learner can only
65 reliably rely on PE1 and SPE. When the both the main and the neighboring target disappear
66 (Condition 4), estimation of both PE1 and PE2 becomes unreliable, and if adaptation occurs, we
67 hypothesized that it is driven by SPE. Second, we tested after-effects in a delayed washout block,
68 given after a no-feedback movement block in all four conditions, to probe whether the slow
69 component of memory ^{17,18} is updated via performance errors or SPEs.

70 Our results show that participants in the two conditions with PE1 performance errors clearly
71 improved performance during adaptation by reducing the magnitude of the drift, and exhibited
72 smaller drifts than participants in the two conditions without PE1. However, in delayed washout,
73 both the amplitude and the decay were not distinguishable in the four different conditions,
74 despite differences in performance during adaptation. Thus, our results support the view that the
75 slow, temporally stable, component of visuomotor adaptation in arm movements is updated by
76 SPEs, not performance errors.

77

78

79

80 Materials and methods

81 Detailed Experimental methods

82 *Participants:* Fifty-two young and right-handed participants (23.4 ± 0.6 years old, 35 females; all
83 results are reported as mean \pm standard errors) with no history of neurological disorders
84 participated in this study. We randomly assigned the participants to one of four conditions (N=13
85 per condition). All participants signed an informed consent form and were right-handed based on
86 the Edinburgh handedness inventory. The study was approved by the Institutional Review Board
87 at the University of Southern California (HS-08-00461) and was performed in accordance with
88 the approved guidelines.

89 *Set-up:* Participants were asked to sit on a fixed chair in front of a horizontal double-layered
90 device (Figure 1B). The device has a layer with a reflected monitor (visual space) and a tablet
91 layer (hand space). Participants were instructed to move a digitizer pen (Wacom Intuos 7) on the
92 tablet. When the lights were turned off in the experimental room, the participants' view of their
93 forearm and hand was obscured by the mirror. Head and trunk movements were minimized by
94 using a chin-rest and a fixed chair. A cursor (0.1 cm radius) representing the tip of the pen was
95 displayed on the mirror.

96 *Timing of a single trial:* Before the start of each trial, a red circle was displayed on the reflected
97 screen with a radius equal to the distance between the cursor and a white home circle (2.6 mm
98 radius). Participants were instructed to move the digitizer pen to the white home circle by
99 minimizing the radius of the red circle. At the onset of the trial, a cursor (red dot with 1 mm
100 radius, whose position matched the tip of the digitizer pen) was displayed, and a main target

101 (bull's eye shape) appeared at one of eight possible locations on a circle of 5.3 cm radius. Target
102 locations were distributed evenly on the circle with 45 degrees between targets (except in the no-
103 feedback block where no target and no feedback were shown). At each trial, the location of the
104 main target was pseudo-random, with each target being presented once for each block of eight
105 targets. Upon presentation of the main target, shown as a bull's eye, participants were asked to
106 perform an outward shooting movement passing the target circle. The cursor disappeared when
107 the distance between the home circle and the cursor was greater than one-third of the circle
108 radius. A 4.2mm sized red square was displayed on the target circle to indicate where the cursor
109 has passed. Different types of visual feedback were given in different blocks and conditions (as
110 discussed below). After each shooting movement, participants were instructed to perform an
111 inward movement to the white home circle as before the start of each trial. When the duration of
112 the shooting movement was outside the 50 to 300ms range, the messages 'Too fast' or 'Too slow'
113 was displayed.

114 *Overall design for common to all conditions:* The experiment schedule consisted of a baseline
115 block, an adaptation block, a no feedback block, and a washout block (Figure 1F). Before the
116 experiment, participants participated in a familiarization block without visuomotor rotation of
117 110 trials. Following familiarization, they performed a baseline block of 40 trials with no
118 perturbation. Following baseline, a 45 degrees counter-clockwise adaptation was introduced (a
119 small amount of noise, $n_r \sim N(0, \sigma_r^2)$, $\sigma_r = 0.5$ degree was introduced; pilot data, showed this
120 noise slowed down adaptation slightly, possibly because it reduces the effectiveness of cognitive
121 strategies. Note, however, that this noise was small compared to the trial-by-trial standard
122 deviation of 6.1 degrees in average for all participants at baseline). During the adaptation block,
123 two targets were presented at each trial: a main (bull's eye) target and a neighboring target,

124 shown at 45 degrees clockwise of the main target. As in Mazzoni and Krakauer's work ¹⁵,
125 participants were told about the rotation and were then instructed to use the following strategy
126 after the second adaptation: "Counter the rotation by aiming at the clockwise neighboring target
127 rather than at bull's eye" (Figure 1C).

128 After 198 trials of adaptation trials with this strategy, participants performed a block of 10
129 shooting trials without feedback before performing a delayed washout block. The main goal of
130 this no-feedback block was to erase the fast component of adaptation ^{17,18}, and therefore to test in
131 the delayed washout block whether the slow component of adaptation had been updated via
132 performance errors, SPEs, or both. During this no-feedback block, participants were instructed to
133 shoot toward an arbitrary direction on a 180-degree arc displayed ahead of the home position,
134 with the same radius as the target circle in the other blocks, and to return to the home position.
135 No feedback was presented during and after the shooting movements.

136 We expected that the fast component of adaptation would be fully erased following these blocks
137 for two reasons. First, whereas the block lasted 154 s on average, the time constant of the decay
138 of the fast component of visuomotor adaptation has been estimated to be approximately 16.5s ¹⁹.
139 Second, because participants performed active movements, forgetting of the fast component is
140 faster than during an equivalent rest period ^{20,21}. Following this no-feedback block, participants
141 were then instructed to stop using the explicit strategy and to shoot directly at the main target.
142 The 80 trials following these new instructions formed the delayed washout block.

143 *Experimental conditions:* During the adaptation block, extending the method of Taylor and Ivry
144 ¹⁶, we manipulated the possible contributions of PE1 and PE2, by removing the bull's eye target,
145 the neighboring target, or both, as soon as the cursor passed 1/3rd of the distance between the

146 center of the home position and the target circle (corresponding to 1.77 cm away from the center
147 home position). When the cursor re-appeared to show where it crossed the circle, both PE1 and
148 PE2 were shown (Condition 1), only PE1 was shown (Condition 2), only PE2 was shown
149 (Condition 3), or neither was shown (Condition 4) - see Figure 1E.

150 *Statistical analysis:* The angular error was computed as the difference between the main target
151 angle and the shooting angle. The shooting angle was given by the line connecting the center
152 position to the point on the invisible target circle given by interpolation of the two closest data
153 points. To assess differences in adaptation and delayed retention among the four conditions, we
154 performed one-way ANOVAs on the mean adaptation angular error of the middle 10 adaptation
155 trials, last 10 adaptation trials, and first 10 washout trials in each condition.

156 To estimate the amplitude and rate of adaptation and washout, we then modeled the adaptation
157 data and washout data with single exponential models of the form, $Err(t) = A \exp(-t/\tau)$,
158 where A is an amplitude parameter and τ a time constant parameter. Estimates and confidence
159 intervals for A and τ and for the goodness of fit R^2 were obtained with a bootstrap procedure with
160 10000 samples by drawing participants with replacement.

161 Finally, to test whether the performance at the end of adaptation predicted performance at the
162 beginning of washout, we correlated the average performance in the last 10 trials of adaptation
163 and the first 10 trials of washout.

164

165

166

167 **Results**

168 *Adaptation block:* Figure 2 shows the performance error between the main target and the cursor
169 for representative participants in each condition. Figure 3 shows the average error across
170 participants. In all conditions, the strategy was effective at canceling the perturbation initially
171 during the adaptation phase but participants subsequently exhibited a drift, as shown previously
172^{15,16}. However, when PE1 was present, participants often attempted to compensate for the drift
173 by generating corrections to reduce the performance error between the main target and the cursor
174 (see Figure 2). Such corrections, which were highly variable both within and between
175 participants, resulted in smaller drifts overall (Figure 3; compare Conditions 1 and 3 to
176 Conditions 2 and 4). ANOVA and post-hoc t-tests confirmed this reduction in drifts during
177 adaptation in conditions with PE1 present (Figure 4(A); between-condition differences in error in
178 mid and last 10 trials: ANOVAs $p = 0.0001$ and $p = 0.003$, respectively). The drift in the 10
179 middle adaptation trials of Condition 1 (with PE1 and PE2) was smaller than that in Condition 2
180 (PE2 only) and Condition 4 (neither PE1 nor PE2) (all $p < 0.05$; Tukey test). The drifts in the last
181 10 adaptation trials of Conditions 1 and 3 were smaller than in Conditions 2 and 4 (all $p < 0.05$;
182 Tukey tests). However, the final level of adaptation was not different in Condition 4 (no
183 feedback) from that of Condition 2 (with PE2, difference in error in middle and end of adaptation
184 in Conditions 2 and 4, both $p > 0.5$). Thus, the presence of PE2 did not induce greater drift.
185 Exponential fits to mean adaptation data (Figure 5A) shows overall group similarities between
186 adaptation in Conditions 1 and 3, on one hand, and Conditions 2 and 4, on the other hand. We
187 note that the data of Condition 4 shows that neither PE1 nor PE2 was needed for the drift to be
188 induced. This result is consistent with the drift being induced by the SPE only.

189 We note that the exponential fit during the adaptation phase is relatively good in Conditions 2
190 and 4 (R^2 estimated from bootstrap = 0.44 ± 0.11 SD, and 0.29 ± 0.12 , respectively) was but
191 poor in Conditions 1 and 3 ($R^2 = 0.10 \pm 0.05$, and 0.16 ± 0.10). This suggests that performance
192 in Conditions 2 and 4, was overall decreasing with an exponential-like shape, with relatively low
193 noise. In contrast, in Conditions 1 and 3, high noise and corrections towards baseline, as seen in
194 Figures 2 and 3, created performance patterns that were not well fit by exponential functions.

195 *Delayed washout block:* As seen in Figure 3, the after-effects in the washout periods were
196 strikingly similar between conditions. Indeed, the mean of the first 10 trials of the washout was
197 not different across conditions (ANOVA $p > 0.5$). Exponential curves fitted of the average
198 washout data in each condition almost perfectly overlapped in all conditions (Figure 5A). This
199 similarity between decay during washout in the four conditions was verified by a bootstrap
200 analysis. In contrast to the adaptation phase were exponential fit was poor for Conditions 1 and 3,
201 performance during the washout phase was relatively well fit by exponential functions in all
202 conditions (R^2 estimated from bootstrap: Condition 1: $R^2 = 0.48 \pm 0.05$ SD, Condition 2: $R^2 = 0.$
203 44 ± 0.07 ; Condition 3: $R^2 = 0.54 \pm 0.07$, and Condition 4: $R^2 = 0.49 \pm 0.07$). Figure 5B and
204 5C shows that the 95% confidence intervals for the exponential amplitudes and time constants τ
205 derived from the bootstrap analysis largely overlapped in all conditions.

206 Performance at the end of adaptation predicted after-effects during washout in conditions without
207 PE1 (Conditions 2 and 4), but not in conditions with PE1 (Conditions 1 and 3). This is shown by
208 significant correlations between the average performance in the last 10 trials of adaptation and
209 the first 10 trials of washout in Conditions 2 and 4 ($p = 0.02$, and $p = 0.005$), but not in
210 Conditions 1 and 3 ($p = 0.14$ and $p = 0.32$), as shown in Figure 6.

211 In sum, conditions with PE1 (Conditions 1 and 3) showed a prominent difference between
212 performance during adaptation and performance in retention, as probed by the delayed washout
213 test. In contrast, in conditions without PE1 (Conditions 2 and 4), performance during adaptation
214 predicted washout. In washout, there was no between-subjects difference in both mean
215 performance and variability around this mean.

216

217 **Discussion**

218 In this study, we manipulated the availability of performance errors following fast shooting
219 movements in a visuomotor adaptation experiment in which participants were instructed to
220 correct the given perturbation by strategically shooting to a neighboring target. Our experimental
221 results show the followings. First, we replicated the drift following the introduction of the
222 strategy, as found previously in Mazzoni and Krakauer ¹⁵, and Taylor and Ivry ¹⁶. The drift
223 appears very robust and implicit, as it was shown in all conditions despite clear instructions to
224 minimize the error between the cursor and the target. Second, the drift was reduced by the
225 performance errors between the main target and the neighboring target when available following
226 the movement (PE1): Results from Conditions 1 and 3 show that, as the number of trials
227 increased, participants reduced the drift. Note that in Taylor and Ivry ¹⁶, in what is equivalent to
228 our Condition 1 but with 322 adaptation trials, the average drift became near zero as the number
229 of trials became large. In contrast, with 200 trials, we found that such reduction of drift is
230 incomplete in amplitude (participants did not completely cancel the drift, even at the end of
231 adaptation) and in consistency, as there was a large variability in drift reduction both within and
232 between participants. Third, comparing performance results of Conditions 2 and 4 shows that the

233 drift was not influenced by the second possible performance error, PE2, between the cursor and
234 the neighboring target. This is an important control to the determination of the role of SPEs in
235 adaptation with this paradigm, because PE2 could have initially generated the drift as it is in the
236 same direction as the SPEs. Thus, only the performance error PE1 had an effect on behavior
237 during the adaptation phase, by minimizing the drift via corrective movements towards the main
238 target. Fourth, our results of Condition 4 show that participants exhibited the drift without target
239 error feedback. This result is in line with previous studies showing visuomotor adaptation
240 without explicit targets ^{9,10}; but see Gaveau and Prablanc ²². Fifth, despite large differences in
241 performance during adaptation between conditions with and without PE1 available, there was no
242 difference between conditions in delayed washout, with a remarkable superimposition of the
243 decay in washout across conditions.

244 The most parsimonious explanation of these results is that SPEs update the motor memory, and
245 that such updates do not depend on the actual motor commands during adaptation. The drift can
246 be best explained by update of the memory from SPEs alone because initially, the amplitude of
247 SPE was near 45 degrees, but the amplitude of the performance error PE1 was near zero. As the
248 drift increased, so did the amplitude of PE1, however. Because after-effects in the delayed
249 washout blocks were highly consistent despite large difference in performance during adaptation
250 (see Figure 4A), the actual performance during adaptation had no, or little, role in updating the
251 temporally stable motor memories; this shows that the update of the internal estimate of the
252 perturbation does not depend on the motor commands. In contrast, performance during
253 adaptation was modulated by the strategy, the drift, and especially by the presence of PE1, via
254 corrections aimed at counteracting the drift. How can the update of the temporally stable
255 component of adaptation be independent of performance during training since the forward

256 models receive, by definition, the motor command as input? The SPE is the difference from
257 actual sensory feedback and predicted feedback, which both depend on the motor command; thus,
258 in this subtraction, the effect of the motor command on actual sensory feedback is canceled by
259 the effect of the motor command on predicted sensory feedback. As a result, internal model
260 update happens identically independently of the actual movements in the adaptation phase.

261 To better understand this argument, we present here a simple model of visuomotor-adaptation:
262 On trial t , the learner generates a motor command u_t to reach a target t_t . Here, we assume that
263 the target is located at 0 without loss of generality. Visual feedback of the hand h_t provided by
264 the cursor c_t is given by:

265 $c_t = h_t + p_t + n_t^p = u_t + p_t + n_t^p , \quad (1)$

266 where p_t is the perturbation at time t , and $n_t^p \sim N(0, \sigma_p^2)$ some possible perturbation noise. In
267 order to reach the target at location 0, we assume that a subject generates a motor command u_t to
268 compensate the estimated perturbation \hat{p}_t , on which a strategy and/or a correction term S_t can be
269 added:

270 $u_t = -\hat{p}_t + S_t + n_t^u , \quad (2)$

271 with $n_t^u \sim N(0, \sigma_p^2)$ some possible motor noise.

272 Receiving the efferent copy of the motor command, the internal forward model independently
273 predicts the hand position from its own perturbation estimate:

274 $\hat{h}_t = u_t + \hat{p}_t , \quad (3)$

275 where \hat{p}_t is the perturbation estimate. The SPE is given by:

276 $\varepsilon_t = c_t - \hat{h}_t = u_t + p_t + - u_t + \hat{p}_t = p_t - \hat{p}_t \quad (4)$

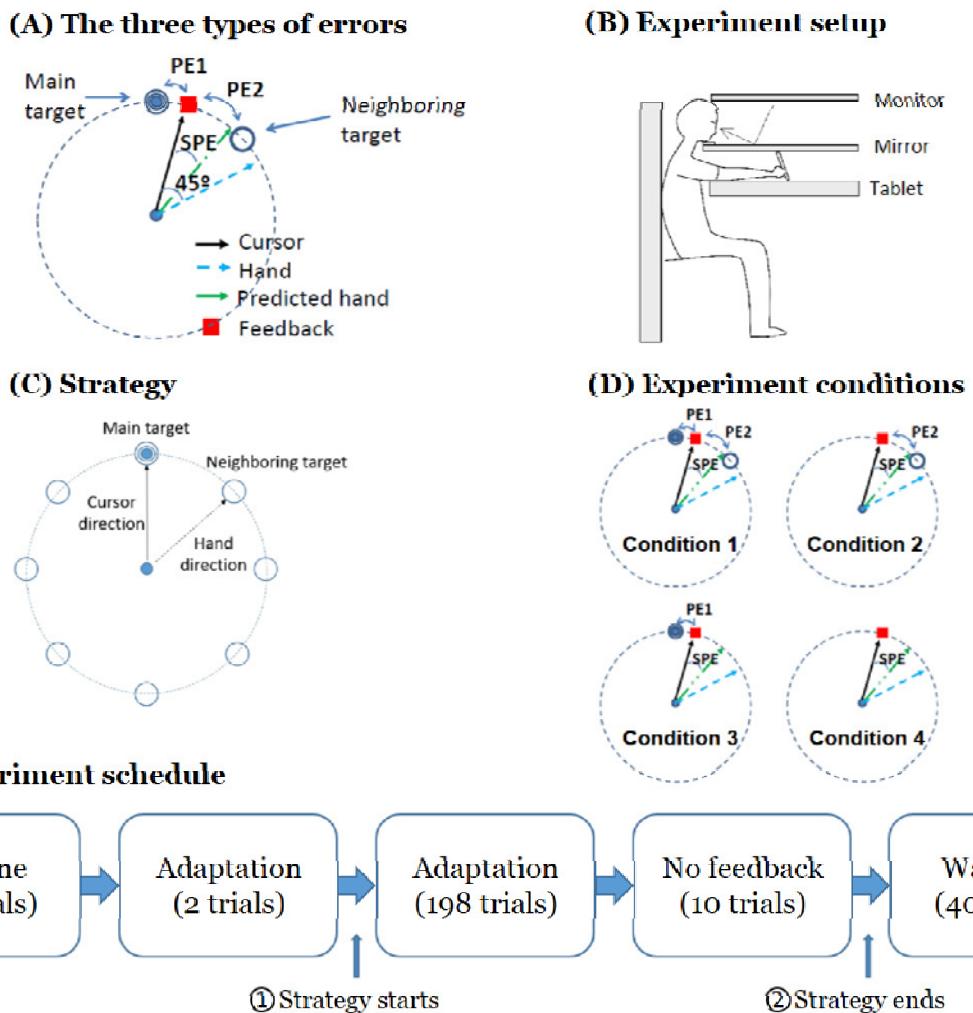
277 Such SPE can then update the estimate of the perturbation:

278 $\hat{p}_t = a \hat{p}_{t-1} + b \varepsilon_t$ (5)

279 where a is a forgetting rate and b a learning rate. As can be seen, according to this simple model,
280 the SPE, and memory update, are independent of the actual movements.

281 Such independence of internal model update from actual motor commands was partially
282 supported in a previous study that studied differences in adaptation in shooting vs. reaching
283 movements ²³. Whereas in the shooting condition, no motor correction was possible, participants
284 could correct for on-line errors in the reaching condition. No differences in the rate of adaptation
285 were found in healthy control participants, suggesting that neither actual motor movements nor
286 motor errors were responsible for internal model update. However, the effect of the performance
287 errors was unclear in this paradigm since the participants were always exposed to visual targets,
288 which afforded them to compute performance errors. Here, because we manipulated the potential
289 contribution of the targets by eliminating them after movement onset, we showed that SPEs, not
290 performance errors, were the major error signals that updated the forward models.

291 Despite important differences in experimental procedures, our results of identical washouts in the
292 four conditions, despite large differences in behavior during adaptation, are in line with the
293 results of two other types of arm visuomotor adaptation experiment. First, Miyamoto et al. ²⁴
294 performed a visuomotor adaptation experiment in which participants adapted to a visuomotor
295 perturbation to a single target. There was a remarkable convergence of the stable implicit
296 component of adaptation after a one-minute break across participants. Because there was no
297 relation between the stable component of adaptation and strategy (their figure Fig 3l), it was
298 concluded that the implicit stable component of adaptation is driven by SPEs. Note however the


299 difference between the Miyamoto ²⁴ and the current study. Whereas in their study the overall
300 performance during adaptation was highly stereotyped between participants, it was highly
301 variable in the present study. Second, in a type of experiment called “visual clamp”, participants
302 were instructed to perform straight ahead movements while the cursor was rotated to different
303 angles ²⁵. Remarkably, the amount of adaptation, as measured by a drift in hand directions was
304 highly similar across a number of cursor rotations. Note here however that it is unclear how
305 SPEs are involved in the drift in visual clamp experiments, since the drift is constant despite
306 largely variable SPEs across cursor rotation conditions.

307 How can we reconcile the view that reward-related signals play a role in motor adaptation ^{8,11-14?}
308 In the present study, no reward was given, thus performance error PE1 could have played the
309 role of an implicit (e.g., self-evaluation) reward. Unlike actual extrinsic rewards, our results
310 show that performance errors do not seem sufficient to influence the update of temporally stable
311 component of motor memories in adaptation, at least in the time scale of the delayed washout
312 period in our static arm reaching experiment. Note, however, that the effect of rewards on
313 adaptation may be more pronounced in dynamic environment than in our static environment ²⁶.
314 Another possibility is that performance errors act mostly as punishments in our study, since we
315 do not provide explicit rewards when the cursor is within the target (such as commonly given
316 “target explosions”). Unlike rewards which increase retention ^{13,14}, punishments appear to only
317 modulate short-term increase in performance ¹³ and not retention. This is in line with our data
318 because PE1 modulates performance during adaptation, but not performance during washout.
319 In summary, our results suggest that the temporally stable component of motor memory is
320 formed by SPEs alone, whereas the strategy and the fast process ²⁴ can be altered by performance

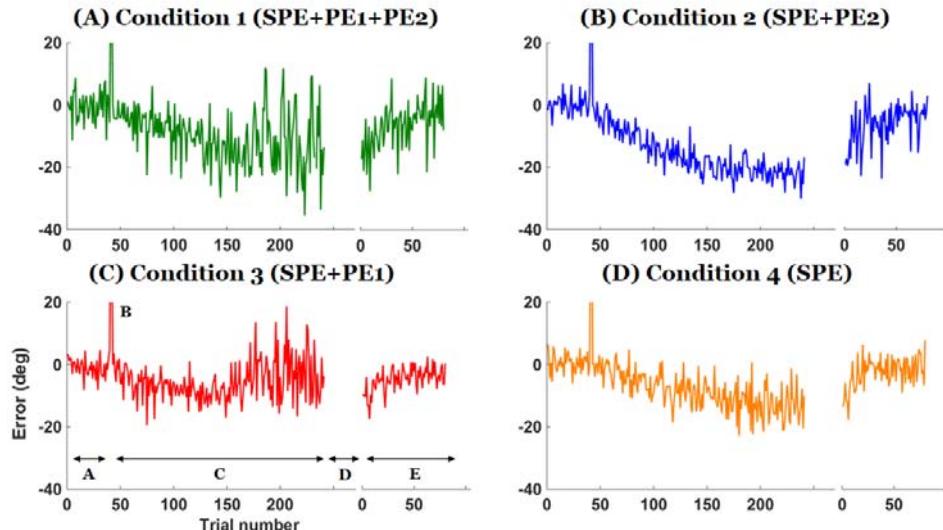
321 errors during the period of motor adaptation. This differential update of the components of
322 adaptation can account for the large “learning-performance distinction”²⁷, according to which
323 performance during training is a poor predictor of long-term performance. The results of the
324 current study shed further light on the mechanism underlying the learning-performance
325 distinction during learning of motor behaviors and can help with the development of algorithms
326 designed to enhance motor learning in rehabilitation and sports²⁸.

327

328

329

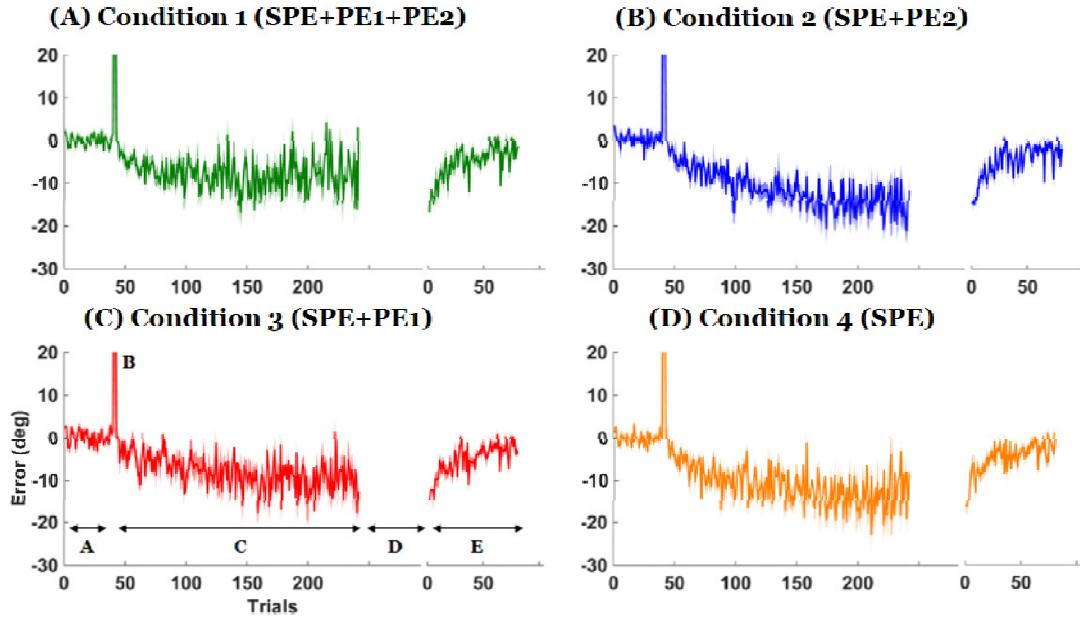
330 Figure 1. Experimental design to manipulate the influence of possible types of error on visual
331 motor adaptation. (A) The three possible types of error influencing performance and adaptation.
332 (B) The experimental set-up for visuomotor motor adaptation. We acknowledge Cheolhwan Sim
333 for drawing this figure. (C) Strategy given to the participants to counteract the perturbation:
334 participants were told to shoot to the neighboring target in order to reach the main target. (D) The
335 four experimental conditions. In Condition 1, both the main and the neighboring target remained
336 on the screen following the shooting movement. In Conditions 2 and 3, the main target or the


337 neighboring target disappears as the hand was at the 1/3rd distance between the home position
338 and the target circles, respectively. In Condition 4, both targets disappeared. (E) Experiment
339 schedule common to all conditions. The explicit strategy was given at time 2, and the
340 participants were asked to stop using the strategy from time 2.

341

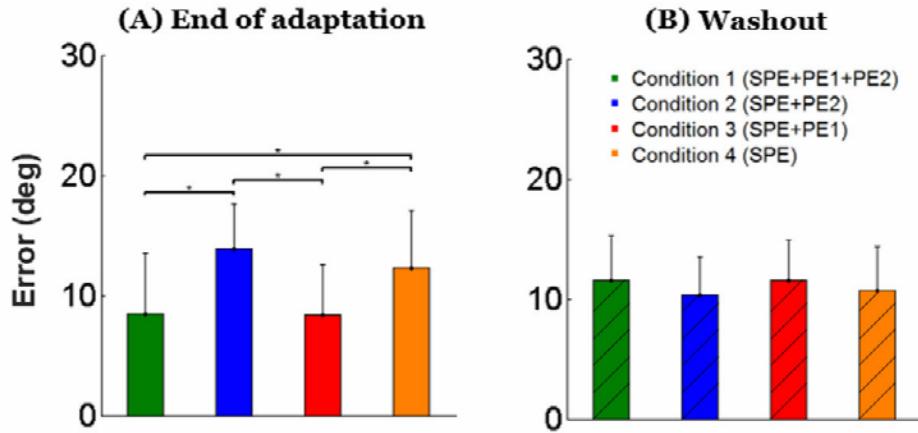
342

343


344

345

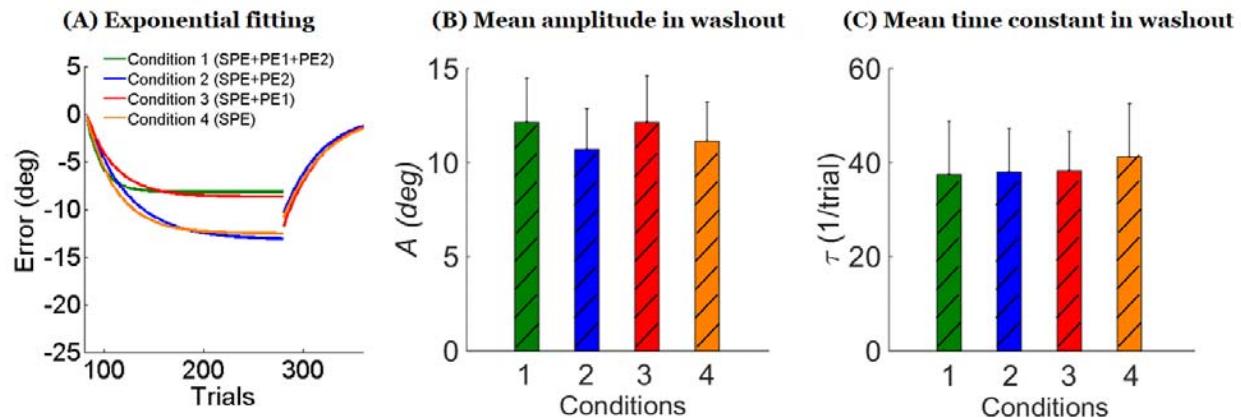
346 Figure 2. Representative individual data of the error between the main target and the cursor at the
347 end of the movements in the four experimental conditions. Phases of the experiments are shown
348 in bottom left panel. Phase A is the baseline block, B shows the two trials of perturbation without
349 strategy, C is the adaptation block with strategy, D is the no-feedback block, and E is the
350 washout block. Note how the strategy is effective in canceling the perturbation initially, how a
351 drift appears in all conditions, and how attempts to minimize the error between the main target
352 and the cursor in Conditions 1 and 3 reduce the drift overall; however, participants show strong
353 after-effects when the strategy is removed in all conditions.


354

355

356 Figure 3. Mean error between the main target and the cursor at the end of the movements. Each
357 phase represents the same blocks as in Figure 2. Shaded area represents the standard error across
358 participants at each trial. Note how attempts to minimize the drift in Conditions 1 and 3 reduce
359 the drift overall; however, participants exhibit similar washout in all conditions.

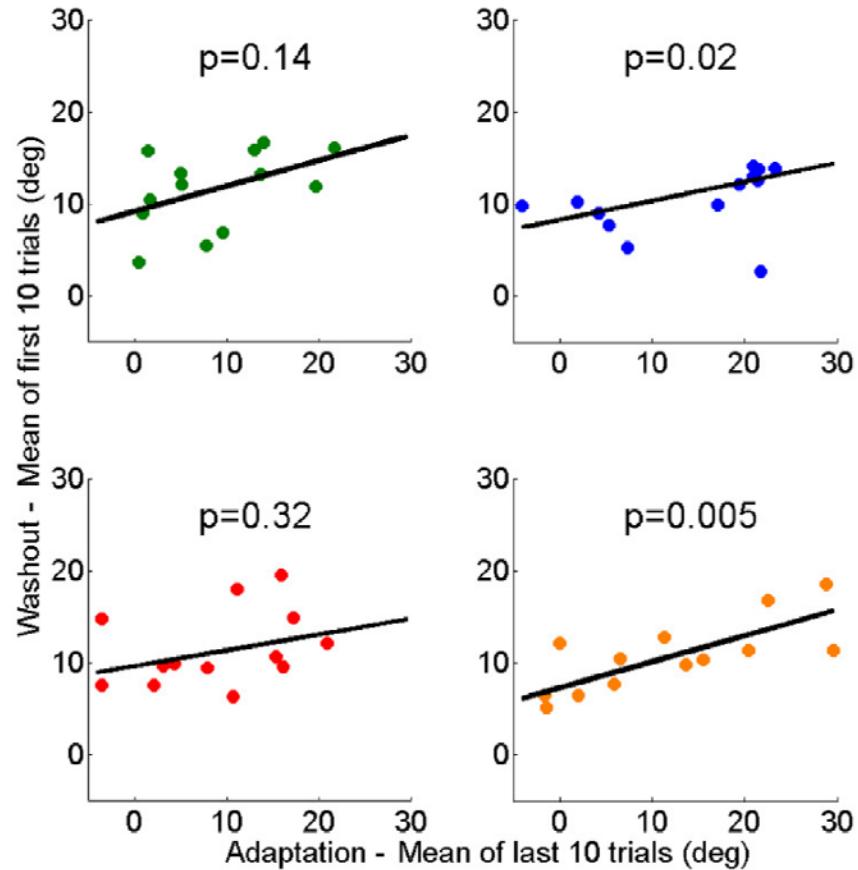
360



361

362 Figure 4. Mean angular error between main target and cursor in each block in the end of
363 adaptation (A), and in washout (B) in all conditions.

364


365

366

367 Figure 5. Exponential fits to adaptation and washout data. (A) Exponential fits for each group for
368 both the adaptation phase and the washout phase. Note how the exponential fits during
369 adaptation blocks are largely different between conditions with and without PE1, but the fits in
370 washout are strikingly similar in all conditions. (B) Amplitude parameter A of the exponential
371 decay in washout estimated via a bootstrap analysis shows no differences between conditions
372 (mean and 95% confidence interval, see text). (C) Time constant τ of exponential decay in
373 washout (mean and 95% confidence interval).

374

375

376 Figure 6. End of adaptation versus washout: regression of the first 10 trials of washout as a
377 function of the last 10 trials of adaptation. Performance at the end of adaptation predicted
378 performance in washout block in conditions without PE1 (Condition 2: $p = 0.02$ and Condition 4:
379 $p = 0.0005$), but not in conditions with PE1 (Condition 1: $p = 0.14$ and Condition 3: $p = 0.32$).

380

381

382

383 **Acknowledgements**

384 Research reported in this publication was supported by the National Institutes of Health under
385 Award Numbers R01 HD065438 and R56 NS100528. The content is solely the responsibility of
386 the authors and does not necessarily represent the official views of the National Institutes of
387 Health. We thank Cheolhwan Sim for illustrations on Figure 1B, and Annette Eom for comments
388 on our earlier version.

389

390 **Author contributions statement**

391 K. L., N. S., and J. I. conceived and designed the experiments. K. L. performed the experiments
392 and analyzed the data. Y. O. provided helps in the experiments. K. L., J. I., and N. S. co-wrote
393 the manuscript. All authors discussed the results and commented on the manuscript.

394

395 **Additional information**

396 Competing financial interests: The authors declare no competing interests.

397 **References**

- 398 1. Wolpert, D.M., Ghahramani, Z. & Jordan, M.I. An internal model for sensorimotor
399 integration. *Science* **269**, 1880-1882 (1995).
- 400 2. Imamizu, H., *et al.* Human cerebellar activity reflecting an acquired internal model of a
401 new tool. *Nature* **403**, 192-195 (2000).
- 402 3. Jordan, M.I. & Rumelhart, D. Forward models: Supervised learning with a distal teacher.
403 *Cog Sci* **16**, 307-354 (1992).
- 404 4. Miall, R.C. & Wolpert, D.M. Forward Models for Physiological Motor Control. *Neural
405 Netw* **9**, 1265-1279 (1996).
- 406 5. Mehta, B. & Schaal, S. Forward models in visuomotor control. *J Neurophysiol* **88**, 942-
407 953 (2002).
- 408 6. Wolpert, D.M. & Flanagan, J.R. Motor prediction. *Curr Biol* **11**, R729-732 (2001).
- 409 7. Gueugneau, N., Schweighofer, N. & Papaxanthis, C. Daily update of motor predictions
410 by physical activity. *Sci Rep* **5**, 17933 (2015).
- 411 8. Izawa, J. & Shadmehr, R. Learning from sensory and reward prediction errors during
412 motor adaptation. *PLoS Comput Biol* **7**, e1002012 (2011).
- 413 9. Synofzik, M., Lindner, A. & Thier, P. The cerebellum updates predictions about the
414 visual consequences of one's behavior. *Curr Biol* **18**, 814-818 (2008).
- 415 10. Schaefer, S.Y., Shelly, I.L. & Thoroughman, K.A. Beside the point: motor adaptation
416 without feedback-based error correction in task-irrelevant conditions. *J Neurophysiol* **107**,
417 1247-1256 (2012).
- 418 11. Huang, V.S., Haith, A., Mazzoni, P. & Krakauer, J.W. Rethinking motor learning and
419 savings in adaptation paradigms: model-free memory for successful actions combines
420 with internal models. *Neuron* **70**, 787-801 (2011).
- 421 12. Nikooyan, A.A. & Ahmed, A.A. Reward feedback accelerates motor learning. *J
422 Neurophysiol* **113**, 633-646 (2015).
- 423 13. Galea, J.M., Mallia, E., Rothwell, J. & Diedrichsen, J. The dissociable effects of
424 punishment and reward on motor learning. *Nat Neurosci* **18**, 597-602 (2015).
- 425 14. Abe, M., *et al.* Reward improves long-term retention of a motor memory through
426 induction of offline memory gains. *Curr Biol* **21**, 557-562 (2011).
- 427 15. Mazzoni, P. & Krakauer, J.W. An implicit plan overrides an explicit strategy during
428 visuomotor adaptation. *J Neurosci* **26**, 3642-3645 (2006).
- 429 16. Taylor, J.A. & Ivry, R.B. Flexible cognitive strategies during motor learning. *PLoS
430 Comput Biol* **7**, e1001096 (2011).
- 431 17. Smith, M.A., Ghazizadeh, A. & Shadmehr, R. Interacting adaptive processes with
432 different timescales underlie short-term motor learning. *PLoS biology* **4**, e179 (2006).
- 433 18. Lee, J.Y. & Schweighofer, N. Dual adaptation supports a parallel architecture of motor
434 memory. *J Neurosci* **29**, 10396-10404 (2009).
- 435 19. Hadjiosif, A. & Smith, M. Savings is restricted to the temporally labile component of
436 motor adaptation. in *Transl. Comput. Mot. Control.* (2013).
- 437 20. Criscimagna-Hemminger, S.E. & Shadmehr, R. Consolidation patterns of human motor
438 memory. *J Neurosci* **28**, 9610-9618 (2008).

439 21. Kim, S., Oh, Y. & Schweighofer, N. Between-Trial Forgetting Due to Interference and
440 Time in Motor Adaptation. *PLoS One* **10**, e0142963 (2015).

441 22. Gaveau, V., Prablanc, C., Laurent, D., Rossetti, Y. & Priot, A.E. Visuomotor adaptation
442 needs a validation of prediction error by feedback error. *Front Hum Neurosci* **8**, 880
443 (2014).

444 23. Tseng, Y.W., Diedrichsen, J., Krakauer, J.W., Shadmehr, R. & Bastian, A.J. Sensory
445 prediction errors drive cerebellum-dependent adaptation of reaching. *J Neurophysiol* **98**,
446 54-62 (2007).

447 24. Miyamoto, Y.R., Wang, S., Brennan, A.E. & Smith, M.A. Distinct forms of implicit
448 learning that respond differentially to performance errors and sensory prediction errors. in
449 *Transl. Comput. Mot. Control (TCMC)* (2014).

450 25. Morehead, J.R., Taylor, J.A., Parvin, D.E. & Ivry, R.B. Characteristics of Implicit
451 Sensorimotor Adaptation Revealed by Task-irrelevant Clamped Feedback. *Journal of*
452 *cognitive neuroscience* **29**, 1061-1074 (2017).

453 26. Shmuelof, L., Krakauer, J.W. & Mazzoni, P. How is a motor skill learned? Change and
454 invariance at the levels of task success and trajectory control. *J. neurophysiology* **108**,
455 578-594 (2012).

456 27. Kantak, S.S. & Winstein, C.J. Learning–performance distinction and memory processes
457 for motor skills: A focused review and perspective. *Behav. brain research* **228**, 219-231
458 (2012).

459 28. Lee, J.Y., Oh, Y., Kim, S.S., Scheidt, R.A. & Schweighofer, N. Optimal Schedules in
460 Multitask Motor Learning. *Neural computation* **28**, 667-685 (2016).

461