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Abstract

Motivation: The data generation capabilities of High Throughput Sequencing (HTS) instruments
have exponentially increased over the last few years, while the cost of sequencing has dramatically
decreased allowing this technology to become widely used in biomedical studies. For small labs and
individual researchers, however, storage and transfer of large amounts of HTS data present a signifi-
cant challenge. The recent trends in increased sequencing quality and genome coverage can be

used to reconsider HTS data storage strategies.

Results: We present Broom, a stand-alone application designed to select and store only high-quality
sequencing reads at extremely high compression rates. Written in C++, the application accepts single
and paired-end reads in FASTQ and FASTA formats and decompresses data in FASTA format.
Availability: C++ code available at https://scsb.utmb.edu/labgroups/fofanov/broom.asp

Contact: lealbayr@utmb.edu

1 Introduction

Recent progress in HTS technology dramatically improved quality and
volume of the data generated by seguencing instruments. This opens
opportunities to use this technology in studies requiring high coverage of
target genomes including detection of rare-variants, quasispecies analy-
sis, and meta-barcoding. Such studies routinely produced datasets con-
taining significant numbers of repeated and/or highly similar sequences
(such as 16S rRNA produced in microbiome metabarcoding studies).
The presented software application (Broom) is an attempt to employ
these changes in the statistical properties and improved quality of se-
quencing, to refine HTS data storage strategy.

The basic principles utilized in the presented data storage/compression
application include: (a) filtering and not storing low-quality data, which
alows exclusion of quality scores of individual nucleotides; (b) exclud-
ing read headers and storing only a single copy of repeated sequences.
Broom's data compression approach includes storing only suffix differ-
ences between consecutive reads sorted alphabetically (similar to delta
encoding techniques used in various technologies such as MPEG (Le
Gall, 1992) and transforming data into binary format using bit-packing
approaches specifically designed to take advantage of the limited alpha-
bet of sequencing data.

2 Implementation

Broom's quality control step (only applicable to FASTQ files) utilizes a
user-defined minimum quality score threshold to replace all low quality
bases by the unknown nuclectide symbol (“N”). Sequences which con-
tain a high proportion of unknown nucleotides can be also excluded
using a user defined threshold.

To transform data into compressed binary format, all sequences are
sorted alphabetically using the linear time complexity Most Significant
Digit Radix Sort (Knuth, 1998) algorithm which has been customized to
take advantage of the limited 5 (A/T/C/G/N) |etter alphabet. Sorting also
places all repeated sequences together and makes it possible to calculate
their copy numbers in linear time. To optimize the number of bytes re-
quired to store the copy numbers of repeated sequences, Broom catego-
rizes alphabetically sorted sequences into four partitions: singletons
(single copy) and replicated sequences with copy number values that fit
into 1, 2 or 4 bytes.

In each partition Broom identifies and excludes common prefixes
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Figure 1. Performance comparison of Broom, pigz, and quip for SRR027520 (Illumina
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so that only the suffix subsequences are stored in conjunction with copy
numbers, and the length of the prefix and (for paired-end and flexible
length sequences) sequence lengths. Unlike the copy numbers which can
be stored as contiguous blocks due to partitioning, storing other infor-
mation which may vary frequently between consecutive sequences (such
as prefix length, sequence length and read lengths of pairs) requires extra
processing. Broom uses the most significant bit of a byte to decide
whether to utilize another byte to store sequence length related infor-
mation. As aresult, Broom stores only one byte for length values that are
up to 127 bp (7-bits) and two bytes to store length values up to 32,767 bp
(15-bits). Since a de-replication step is performed prior to calculation of
prefix lengths, depending on the data, the majority of the prefix values
are expected to only use one byte per sequence which resultsin a large
savings in the resulting compressed file size.

To compress suffix sequences, they are concatenated into a single
string of bytes in which each nuclectide is represented as an integer
value from 0 to 5. The main advantage of using a contiguous block of
bytes, rather than individually allocated suffix sequences, is that it max-
imizes utilization of the CPU cache for further processing on the suffix-
es.

In the final step of the algorithm, the frequency and length span of
unknown nucleotides in the suffix byte string, are analyzed to choose
between two alternative compression strategies. If the unknown nucleo-
tides appear sparsely and form islands, Broom converts unknown nucleo-
tides into “A”s in place and performs a base 4 transformation (for the 4
letter alphabet of A, T, C and G) of the suffix bytes by converting 32
nucleotides at a time into 8-byte integer values while the location and
span of the unknown nuclectides are stored separately. Alternatively, it
performs a base 5 transformation of the suffix bytes. Base 5 transfor-
mation of the suffix bytes allows the storage of 27 nucleotides per 8-byte
integer. Transforming sequences into base 5 in 8-byte blocks, utilizes
2.37 bits per nucleotide which is preferred over a simple 3 bit per nucleo-
tide transformation (21 nucleotides per 8-byte block) to represent 5 pos-
sible nucleotide values. The choice of 8-byte blocks is due to the effi-
cient processing of 64-bit integers by the CPU without the need for ex-
cessive operations required for bit packing.

Even though the design principals of Broom make it effective in com-
pressing HTS data, it also supports compression of genome files in
FASTA format, albeit less effectively than HTS datasets. The genome
module performs lossless compression of FASTA files retaining se-
quence headers. The nuclectide sequences are compressed using base 4
or base 5 transformations while none of the sorting and prefix identifica-
tion steps are performed as these steps only take advantage of properties
of HTS data.

It is important to mention that if no quality filtering is applied,
Broom's memory footprint is roughly twice the size of the origina file.
Additionally, the presented version of Broom is strictly single-threaded
and it can berun in parallel using the operating system provided utilities.
All characters in the nucleotide sequences are capitalized and any nucle-
otide character outside of the set of A, T, C, G, and N are replaced with
“N”s.

3 Results and Performance

The performance comparison between Broom and the latest versions of
quip (Jones et al., 2012) (version 1.18) and pigz (Adler, 2007) (version
2.34) were made using 5 FASTQ files (ranging from 300 megabytes to
10 gigabytes), downloaded from the Sequence Read Archive (Leinonen
et al., 2011). Three different filtration parameters were used for Broom:
without discarding any reads containing unknown or low quality nucleo-

tides, discarding reads with unknown or low quality (minimum quality
score 15) nucleotides more than 25% of the read length, and discarding
reads with one or more unknown or low quality nucleotides ). pigz was
tested using fast (fastest compression method) and best (slowest but the
best compression method) options. All calculations were performed on a
1400 MHz AMD Opteron(tm) computer with 6386 SE processor, 2048
Kb cache, and 512 GB RAM running CentOS Linux. The timing meas-
urements were made using the Linux “time” command and CPU time
was calculated by adding user and sys fields.

In al the tested cases, files generated by Broom are dramatically (up
to 150 fold) smaller, especially when filtration parameters were set to
exclude reads containing low quality nucleotides (Figure 1 and Supple-
mentary documents). It is also important to emphasize that in al the
tested cases Broom achieved significantly better compres-
sion/decompression times.
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