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Abstract

Measurements of DNA methylation at the single cell level are promising to revolutionise
our understanding of epigenetic control of gene expression. Yet, intrinsic limitations of the
technology result in very sparse coverage of CpG sites (around 5% to 20% coverage), effec-
tively limiting the analysis repertoire to a semi-quantitative level. Here we introduce Melissa
(MEthyLation Inference for Single cell Analysis), a Bayesian hierarchical method to quantify
spatially-varying methylation profiles across genomic regions from single-cell bisulfite sequencing
data (scBS-seq). Melissa clusters individual cells based on local methylation patterns, enabling
the discovery of epigenetic differences and similarities among individual cells. The clustering
also acts as an effective regularisation method for imputation of methylation on unassayed CpG
sites, enabling transfer of information between individual cells. We show both on simulated
and real data sets that Melissa provides accurate and biologically meaningful clusterings, and
state-of-the-art imputation performance. An R implementation of Melissa is publicly available
at https://github.com/andreaskapou/Melissa.

1 Introduction

DNA methylation is probably the best studied epigenomic mark, due to its well established heri-
tability and widespread association with diseases and a broad range of biological processes, including
X-chromosome inactivation, cell differentiation and cancer progression (Baylin and Jones, 2011; Bird,
2002; Jones, 2012). Yet its role in gene regulation, and the molecular mechanisms underpinning its
association with diseases, are still imperfectly understood.

Bisulfite treatment of DNA followed by sequencing (BS-seq) has provided a powerful tool for
measuring the methylation level of cytosines on a genome-wide scale with single nucleotide resolu-
tion (Krueger et al., 2012). BS-seq protocols have been vastly improved over the last decade, with
BS-seq rapidly becoming a widespread tool in biomedical investigation. Nevertheless, until very re-
cently BS-seq could only be used to measure methylation in bulk populations of cells (Shapiro et al.,
2013), preventing effective investigations of the role of DNA methylation in shaping transcriptional
variability and early development (Kelsey et al., 2017; Schwartzman and Tanay, 2015).

This shortcoming has been addressed within the last five years through the development of pro-
tocols to measure DNA methylation at single-cell resolution using either scBS-seq (Smallwood et al.,
2014) or scRRBS (Guo et al., 2013) making it possible to uncover the heterogeneity and dynamics
of DNA methylation (Farlik et al., 2015). Even more recently, methods have been developed that
can sequence both the methylome and the transcriptome or other features in parallel, potentially
enabling a quantification of the role of DNA methylation in explaining transcriptional heterogene-
ity (Angermueller et al., 2016; Clark et al., 2018; Hou et al., 2016). However, due to the small
amounts of genomic DNA per cell, these protocols usually result in very sparse genome-wide CpG
coverage, ranging from 5% in high throughput studies (Luo et al., 2017; Mulqueen et al., 2018)
to 20% in low throughput ones (Angermueller et al., 2016; Smallwood et al., 2014). The sparsity

1

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/312025doi: bioRxiv preprint 

C.A.Kapourani@ed.ac.uk
G.Sanguinetti@ed.ac.uk
https://github.com/andreaskapou/Melissa
https://doi.org/10.1101/312025
http://creativecommons.org/licenses/by-nc-nd/4.0/


of the data represents a major hurdle to effectively use single-cell methylation data to inform our
understanding of epigenetic control of transcriptomic variability, or to distinguish individual cells
based on their epigenomic state.

In this paper, we address these problems by using a two-pronged strategy. First, we note that
several recent studies have highlighted the importance of local methylation profiles, as opposed
to individual CpG methylation, in determining the epigenetic state of a locus (Kapourani and
Sanguinetti, 2016; Mayo et al., 2015; Vanderkraats et al., 2013). This implies that local spatial
correlations may be effectively leveraged to ameliorate the issue of data sparsity. Secondly, single-cell
BS-seq protocols, as all single-cell high-throughput protocols, simultaneously assay a large number
of cells, ranging from several tens (Smallwood et al., 2014) to a few thousands in the most recent
studies (Luo et al., 2017). Such abundance of data could be exploited to our advantage to transfer
information across similar cells.

We implement both of these strategies within Melissa (MEthyLation Inference for Single cell
Analysis), a Bayesian hierarchical model that jointly learns the methylation profiles of genomic
regions of interest and clusters cells based on their genome-wide methylation patterns. In this way,
Melissa can effectively use both the information of neighbouring CpGs and of other cells with similar
methylation patterns in order to predict CpG methylation states. As an additional benefit, Melissa
also provides a Bayesian clustering approach capable of identifying subsets of cells based solely on
epigenetic state, to our knowledge the first clustering method tailored specifically to this rapidly
expanding technology. We benchmark Melissa on both simulated and real single-cell BS-seq data,
demonstrating that Melissa provides both state of the art imputation performance, and accurate
clustering of cells. Furthermore, thanks to a fast variational Bayes estimation strategy, Melissa has
good scalability and can provide an effective modelling tool for the increasingly large single-cell
methylation studies which will become prevalent in coming years.

2 Results

Melissa addresses the data sparsity issue by leveraging local correlations and similarity between
individual cells (see Fig. 1). The starting point is the definition of a set of genomic loci or regions
(e.g. genes or enhancers). Within each locus, Melissa postulates a latent profile of methylation, a
function mapping each CpG within the locus to a number in [0, 1] which defines the probability of
that CpG being methylated. To ensure spatial smoothness of the profile, Melissa uses a generalised
linear model of basis function regression along the lines of Kapourani and Sanguinetti (2016) (with
modified likelihood to account for single cell data). Local correlations are however often insufficient
for loci with extremely sparse coverage, and these are quite common in scBS-seq data. Therefore,
we share information across different cells by coupling the local GLM regressions through a shared
prior distribution. In order to respect the (generally unknown) population structure that may be
present within the cells assayed, we choose a (finite) Dirichlet mixture model prior.

The output of Melissa is therefore twofold: at each locus in each cell, we get a predicted profile
of methylation, which can be used to impute missing data. For each cell, we also get a discrete
cluster membership probability, providing a methylome-based clustering of cells.

2.1 Benchmarking Melissa on simulated data

We benchmark the ability of our model to cluster and impute CpG methylation states at the
single cell level both on simulated and mouse embryonic stem cell (ESC) data sets. To assess
test prediction performance we consider different metrics, including F-measure, the area under the
receiver operating characteristics curve (AUC) and precision recall curves (Powers, 2011).

To benchmark the performance of Melissa in predicting CpG methylation states, we compare
it against five different imputation strategies. As a baseline approach, we compute the average
methylation rate separately for each cell and region (Indep Rate). We also use the BPRMeth
model (Kapourani and Sanguinetti, 2016), where we account for the binary nature of the observa-
tions, which we train independently across cells and regions (Indep Profile). To share information
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Figure 1: Melissa model overview. Melissa combines a likelihood computed from single cell methylation pro-
files (bottom left) and a Bayesian clustering prior (top left). The posterior distribution provides a methylome-
based clustering (top right) and imputation (bottom right) of single cells.

across cells, but not across neighbouring CpGs, we constrain Melissa to infer constant functions,
i.e. learn average methylation rate (Melissa rate). Additionally, as a fully independent baseline, we
use a Random Forest classifier trained on individual cells and regions using the methylation state
of covered CpGs as input features (RF); this is essentially the method of Zhang et al. (2015), but
without using additional annotation data or DNA sequence patterns. We delay comparisons with
the deep learning method DeepCpG (Angermueller et al., 2017) to the next section, as DeepCpG is
not applicable in the settings of our simulation (see later Section 2.3).

In order to generate realistic simulated single-cell DNA methylation data, we extracted methyla-
tion profiles from real (bulk) BS-seq data using the BPRMeth package (Kapourani and Sanguinetti,
2018), subsequently downsampling to simulate the low coverage of scBS-seq . In total we simulated
N = 200 cells from K = 4 sub-populations, where each cell consisted of M = 100 genomic regions.
Additionally, to account for different levels of similarity between cell sub-populations, we simulated
11 different datasets by varying the proportion of similar genomic regions between clusters (see
“Methods” section).

Applying the competing methods to synthetic data we observe that Melissa yields a substantial
improvement in prediction accuracy compared to all other models (Fig. 2, Additional file 1: Fig.
S1). Notably, Melissa is robust across different settings of the data, such as variable CpG coverage in
each region (Fig. 2a), or different levels of dissimilarity across clusters (Fig. 2b). Due to its ability to
transfer information across cells and neighbouring CpGs, our model robustly maintains its prediction
accuracy even at a very sparse coverage level of 10%. The Indep Profile and RF models perform
poorly at low CpG coverage settings, becoming comparable to Melissa when using the majority
of the CpGs for training set. Importantly, Melissa still performs better at 90% CpG coverage,
demonstrating that the clustering acts as an effective regularisation for imputing unassayed CpG
sites. As expected, Indep Rate and Melissa Rate methods had a poor performance, since they are
not expressive enough to capture spatial correlations between CpGs. The imputation performance
of all methods is relatively insensitive to the degree of cluster dissimilarity (Fig. 2b).

Next we consider the clustering performance of Melissa. Since most of the rival methods do
not have a notion of clustering, we compare Melissa to clustering using methylation rates (Melissa
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Figure 2: Melissa robustly imputes CpG methylation states. (a) Imputation performance in terms of AUC
as we vary the proportion of covered CpGs used for training. Higher values correspond to better imputation
performance. For each CpG coverage setting a total of 10 random splits of the data to training and test sets
was performed. Each coloured circle corresponds to a different simulation. The plot shows also the LOESS
curve for each method as we increase CpG coverage. (b) Imputation performance measured by AUC for
varying proportions of similar genomic regions between clusters. Values closer to zero correspond to highly
similar cell sub-populations, whereas values closer to one correspond to well separated cell sub-populations.
In (a) cluster dissimilarity was set to 0.5 and in (b) CpG coverage was set to 0.4.

Rate). As a performance metric, we use the Adjusted Rand Index (ARI) (Hubert and Arabie,
1985) between the true cluster assignment and the predicted cluster membership returned from
the model. Fig. 3a shows ARI values comparing the two models for varying CpG coverage (with
cluster dissimilarity level at 0.5). Melissa performs perfectly in all settings, demonstrating its power
and sensitivity in identifying robustly the cell sub-population structure. When varying the level of
cluster dissimilarity (see Fig. 3b), the model is still able to retain its high clustering performance.
As expected, for settings with low variability between clusters (i.e. cell sub-populations are difficult
to distinguish), the performance drops; however, Melissa is consistently superior to the Melissa Rate
model, and rapidly reaches near-perfect clustering accuracy.

Subsequently, we test Melissa’s ability to perform model selection, that is to identify the appro-
priate number of cell sub-populations. To do so, we run the model on simulated data, setting the
initial number of clusters to K = 10 and letting the variational optimisation prune away inactive
clusters (Corduneanu and Bishop, 2001). We used both broad (red line) and shrinkage (blue line)
priors. Fig. 3c shows that the variational optimisation automatically recovered the correct number
of mixture components for almost all parameter settings. As expected, in settings with high between
cluster similarity, the model with shrinkage prior returned fewer clusters, since the data complex-
ity term in Eq. (13) (see “Methods” section) was penalizing more the variational approximation
compared to the gain in likelihood from explaining the data.

Finally, we assess the scalability of Melissa with respect to the number of single cells. Fig. 3d
compares the variational Bayes (red line) with the Gibbs sampling (blue line) algorithm; which
demonstrates the good scalability of VB where we can analyse thousands of single cells in accept-
able running times. The maximum number of iterations for the VB algorithm was set to 400
and the Gibbs algorithm was run for 3000 iterations. Both algorithms are implemented in the R
programming language and were run on a machine utilising at most 16 CPU cores.

2.2 Melissa accurately predicts methylation states on real data

To assess Melissa’s performance on real scBS-seq data we considered two mouse embryonic stem
cell (ESC) data sets from Angermueller et al. (2016) and Smallwood et al. (2014). The mouse
ESCs were cultured either in 2i medium (2i ESCs) or serum conditions (serum ESCs), hence we
expect methylation heterogeneity between cell sub-populations. In addition, in serum ESCs there is
evidence of additional CpG methylation heterogeneity (Ficz et al., 2013) making these data suitable
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Figure 3: Melissa efficiently and accurately clusters cell sub-populations. (a) Clustering performance mea-
sured by ARI as we vary CpG coverage. Higher values correspond to better agreement between predicted and
true cluster assignments. For each CpG coverage setting a total of 10 random splits of the data to training
and test sets was performed. Each coloured circle corresponds to a different simulation. The plot shows
also the LOESS curve for each method as we increase CpG coverage. (b) Clustering performance (ARI) for
varying proportions of similar genomic regions between clusters. (c) Predicted number of clusters using two
different prior settings: a broad and a strict prior as we vary cluster dissimilarity. Initial number of clusters
was set to K = 10. Melissa identifies the correct number of clusters in most parameter settings (K = 4);
notably when there is no dissimilarity across clusters (i.e. we have one global cell sub-population), Melissa
prunes away all components and keeps only one cluster (K = 1). (d) Running times for varying number of
cells for the variational Bayes (VB) and Gibbs sampling implementations for the Melissa model, where each
cell consists of M = 200 genomic regions.

for the model selection task to infer cell sub-population numbers. The analysis on both data sets
was performed on six different genomic contexts: protein coding promoters with varying genomic
windows: ±1.5kb, ±2.5kb and ±5kb around transcription start sites (TSS), active enhancers, super
enhancers and Nanog regulatory regions (see “Methods” section for details on data preprocessing).
In this section, we additionally compare Melissa to the deep learning model DeepCpG (Angermueller
et al., 2017) that uses the information of neighbouring CpGs to predict the methylation state of
each target CpG site. It should be noted that DeepCpG is designed to predict individual missing
CpGs, rather than missing regions, and requires always information about neighbouring CpGs. This
means that, during prediction, DeepCpG always has access to more data than competing methods,
potentially providing it with an unfair advantage; to partly address this problem, we also present
results when DeepCpG had access to subsampled data (labelled DeepCpG Sub in our figures). In
general, DeepCpG should be thought as complementary to Melissa, and comparisons should be
evaluated cautiously (see below Section 2.3).

We first applied Melissa on the Angermueller et al. (2016) data set which consists of 75 single cells
(14 2i ESCs and 61 serum ESCs). Fig. 4a shows a direct comparison of the imputation performance
of all the methods across a variety of genomic contexts. Melissa is better or comparable to rival
methods in terms of AUC (see Fig. 4a), and substantially more accurate in terms of F-measure
(Additional file 1: Fig. S2), demonstrating its ability to capture local CpG methylation patterns.
DeepCpG also performs strongly on most genomic regions, indicating that a flexible deep learning
method is effective in capturing patterns of methylation. Similar results were obtained by considering
different metrics (Additional file 1: Fig. S2 - S4). Boxplots show performance distributions across
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10 independent training / test splits of the data, except for DeepCpG, where the high computational
costs prevented such investigation. Interestingly, methods based on methylation rates performed
poorly at promoters, underlining the importance of methylation profiles in distinguishing epigenetic
state near transcription start sites and identifying meaningful cell sub-populations. For all models,
the imputation performance (in terms of AUC) at active enhancers was lower, indicating high
methylation variability across cells and nearby CpG sites as shown in Smallwood et al. (2014).
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Figure 4: Imputation performance and clustering of mouse ESCs (Angermueller et al., 2016) based on genome
wide methylation profiles. (a) Prediction performance on test set for imputing CpG methylation states in
terms of AUC. Higher values correspond to better imputation performance. Each coloured boxplot indicates
the performance using 10 random splits of the data in training and test sets; due to high computational costs,
DeepCpG was trained only once and the boxplots denote the variability across ten random subsamplings of
the test set. (b) Three example promoter regions with the predicted methylation profiles for the the Efhd1,
Uqcrb and Fstl3 genes. Each coloured profile corresponds to the average methylation pattern of the cells
assigned to each sub-population, in our case Melissa identified K = 3 clusters.

In terms of clustering performance, Melissa confirms that the data supports the existence of a
sub-population of serum cells as suggested in Ficz et al. (2013), by returning three clusters in most
contexts. However, for larger regions around promoters (±5kb and ±10kb) the model identified only
two clusters, suggesting that the epigenetic differences between serum cell populations are subtle and
that regulatory regions have higher epigenetic heterogeneity compared to promoters. Fig. 4b shows
example promoter regions for three genes with their corresponding inferred methylation profiles for
each cell sub-population. Each colour corresponds to a different cell sub-population, where orange-
like profiles clearly correspond to 2i ESCs which are globally hypo-methylated. Interestingly, 2i
cells can be easily separated from serum cells based on methylation rate alone, due to the global
hypo-methylation of 2i cells, however the sub-population structure within serum cells appears to be
determined by changes in profiles.
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As a second real data set, we analysed the smaller Smallwood et al. (2014) data set which
consists of only 32 cells (12 2i ESCs and 20 serum ESCs). The imputation performance in terms of
AUC across genomic contexts is shown in Fig. 5. Melissa retains its high prediction accuracy and is
comparable with DeepCpG across most contexts (see Additional file 1: Fig. S5 - S7 for performance
on different metrics), even though the full DeepCpG model has slightly better performance on this
data set. This suggests that the small number of cells in this data set did not allow an effective
sharing of information. In terms of clustering performance, when considering promoter regions
Melissa confidently detected the expected clusters, easily separating 2i and serum cells. On the
remaining genomic contexts the model identifies three clusters, mostly due to higher heterogeneity
of these regions compared to promoters and once again underlying the emergence of epigenomically
distinct populations within serum cells (see Additional file 1: Fig. S8, S9 for example methylation
profiles across genomic contexts).
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Figure 5: Imputation performance of mouse ESCs (Smallwood et al., 2014) based on genome wide methyla-
tion profiles. Shown is the prediction performance, in terms of AUC, for imputing CpG methylation states.
Each coloured boxplot indicates the performance using 10 random splits of the data in training and test sets;
due to high computational costs, DeepCpG was trained only once and the boxplots denote the variability
across ten random subsamplings of the test set.

2.3 A note on the comparison with DeepCpG

Melissa and DeepCpG models reported substantially better imputation performance compared to
the rival methods and show comparable performance when analysed on real datasets, demonstrating
their flexibility in capturing complex patterns of methylation. However, the two methods have
significantly different computational performances. In our experiments, Melissa’s runtime was less
than seven hours for most genomic contexts running on a small server machine utilising at most
ten CPU cores. By contrast, DeepCpG required around four days to analyse each dataset on a
GPU cluster equipped with high end NVIDIA Tesla K40ms GPUs, and had very high memory
requirements. These computational overheads effectively make DeepCpG out of reach for smaller
research groups. On the other hand, Melissa operates on a set of genomic contexts of interest (e.g.
promoters), while DeepCpG is designed for genome-wide imputation; computational performance
of both methods will therefore depend on specific choices, such as the size/ number of the regions
of interest for Melissa, or the number of training chromosomes for DeepCpG.

In addition to the differences in scope between the two methods, one should also be cautious
when directly comparing prediction performances due to the different design of the DeepCpG model.
DeepCpG is trained on a specific set of chromosomes and considers each CpG site independently;
hence it does not have a notion of genomic region to be trained on, and will in any case utilize
information from neighbouring CpGs within or outside the region, information that Melissa and the
rival methods do not have access to.
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3 Discussion

Single cell DNA methylation measurements are rapidly becoming a major tool to understand epi-
genetic gene regulation in individual cells. Newer platforms are rapidly expanding the scope of the
technology in terms of assaying large numbers of cells (Luo et al., 2017), however all technologies
are plagued by intrinsically low coverage in terms of numbers of CpGs assayed.

In this paper, we have proposed Melissa as a way of addressing the low coverage issue by sharing
information between CpGs with a local smoothing and between cells with a Bayesian clustering
prior. On both synthetic and real data, Melissa achieved state of the art imputation performance
over a panel of competing methods, including DeepCpG (Angermueller et al., 2017) and random
forests. While achieving comparable or superior performance to black-box methods such as neural
networks and random forests, Melissa is more transparent and needs minimal tuning: all the results
shown, on both synthetic and real data, were obtained with the same settings of the algorithm. Ad-
ditionally, as all Bayesian methods, Melissa outputs are probability distributions that fully quantify
the uncertainty on the model’s prediction, and which are more easily usable for further experimen-
tal design compared to the point-estimates provided by black-box approaches. Melissa does not
require additional annotation data as in Zhang et al. (2015) or Ernst and Kellis (2015), and does
not exploit sequence information like DeepCpG, but an extension leveraging side data would be
easily accomplished within the Bayesian framework and would represent an interesting extension
for future research. By using a Bayesian clustering prior, Melissa has the added benefit of simulta-
neously uncovering the population structure within the assay, as we demonstrated in the real data
examples; Melissa can therefore be a useful tool in uncovering epigenetic diversity among cells.

While Melissa accounts for heterogeneity in the cell population structure, it does not allow for
heterogeneity at the single gene level: each cluster has a single methylation profile within each
region, and all variability at the single locus level is attributed to noise. This rigidity limits the
usefulness of Melissa as a tool to investigate intrinsic stochasticity in methylation at the single locus
level. Relaxing the modelling assumptions to accommodate methylation variability in Melissa is an
interesting topic for future research.

Another area where Melissa could be fruitfully applied is the integrative study of multiple high-
throughput features in single cells. Kapourani and Sanguinetti (2016) showed that features extracted
from methylation profiles could be effectively used to predict gene expression in bulk experiments.
With the advent of novel technologies measuring gene expression and multiple epigenomic features
in individual cells (Clark et al., 2018), interpretable Bayesian models like Melissa are likely to play
an important role in furthering our understanding of epigenetic control of gene expression in single
cells.

4 Methods

4.1 Modelling DNA methylation profiles

In order to provide spatial smoothing of the methylation profiles at specific loci, we adapt a gen-
eralised linear model of basis function regression proposed recently in Kapourani and Sanguinetti
(2016). The basic idea is as follows: the methylation profile associated to a genomic region M is
defined as a (latent) function f : M → (0, 1) which takes as input the genomic coordinate along
the region and returns the propensity for that locus to be methylated. In order to enforce spa-
tial smoothness, and to obtain a compact representation for this function in terms of interpretable
features, we represent the profile function as a linear combination of basis functions

f(x) = Φ
(
wTh(x)

)
, (1)

where x ≡ h(x) are the basis functions (here we consider radial basis functions (RBFs)), w ∈ RD
represent the regression coefficients, and Φ is the inverse probit function (Gaussian cumulative
distribution function) needed in order to map the function output to the (0, 1) interval. The latent
function is observed at specific loci through a noise model which encapsulates the experimental
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technology; in Kapourani and Sanguinetti (2016), a Binomial observation model was proposed to
handle bulk bisulfite sequencing data, and an efficient maximum likelihood strategy was proposed.

For single-cell methylation data, methylation of individual CpG sites can be naturally modelled
using a Bernoulli observation model, since for the majority of covered sites we have binary CpG
methylation states. To account for the inherent noise measurements and the limited CpG coverage,
we also reformulate the model in a Bayesian framework. The Bayesian probit regression model for
a single CpG site then becomes

yi ∼ Bernoulli
(
yi|Φ

(
wTxi

))
,

w ∼ p(w|H),
(2)

where yi denotes the CpG methylation state and H are (hyper)-parameters of the prior. Performing
inference for this model in the Bayesian framework is complicated by the fact that no conjugate prior
p(w|H) exists for the parameters of the probit regression model. The model can be made amenable to
Bayesian estimation thanks to a data augmentation strategy originally proposed by Albert and Chib
(1993). This strategy consists of introducing an additional auxiliary latent variable zi, which has a
Gaussian distribution conditioned on the input wTxi. The augmented model has the hierarchical
structure shown in Fig. 6, where yi is now deterministic conditional on the sign of the latent variable
zi. Hence, our original problem becomes a missing data problem where we have a linear regression
model on the latent variables zi and the observations yi are incomplete since we only observe
whether zi > 0 or zi ≤ 0. Now we introduce a conjugate Gaussian prior over the parameters
w ∼ N (w|0, τ−1I), where the hyper-parameter τ controlling the precision of the Gaussian prior is
assumed to follow a Gamma distribution. This reduces the necessary conditional distributions to a
tractable form as either Gaussian, Gamma or one-dimensional truncated Gaussian distributions.

yi

zi

xi w

τ

I CpGs

τ ∼ Gamma(τ |α0, β0)

w|τ ∼ N (w|0, τ−1I)

zi|w,xi ∼ N (zi|wTxi, 1)

yi|zi =

{
1 if zi > 0

0 if zi ≤ 0

Figure 6: Probabilistic graphical representation of the Bayesian probit regression model.

4.2 Melissa model

Local smoothing certainly helps in dealing with data sparsity, however in our experience the coverage
in scBS-seq data is insufficient to infer informative methylation profiles at many genomic regions.
We therefore exploit the population structure of the experimental design to share and transfer
information across cells.

Assume that we have N(n = 1, ..., N) cells and for each cell we have a common set of M(m =
1, ...,M) genomic regions, for example promoters, and we are interested in both partitioning the
cells in K clusters and inferring the methylation profiles for each genomic region. To do so, we
use a finite Dirichlet mixture model (FDMM) (McLachlan and Peel, 2004), where we assume that
the methylation profile of the mth region for each cell n is drawn from a mixture distribution with
K components (where K < N). This way cells belonging to the same cluster will share the same
methylation profile, although profiles will still differ across genomic regions. Let cn be a latent
variable comprising a 1-of-K binary vector with elements cnk representing the component that is
responsible for cell n, and πk be the probability that a cell belongs to cluster k, i.e. πk = p(cn = k).
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The conditional distribution of C given π is

p(C|π) =
N∏
n=1

K∏
k=1

πcnk
k . (3)

Considering the FDMM as a generative model, the latent variables cn will generate the latent
observations Zn ∈ RM×Im , which in turn will generate the binary observations Yn ∈ RM×Im

depending on the sign of Zn, as explained in the previous section. The conditional distribution of
the data (Z,Y), given the latent variables C and the component parameters W becomes

p(Y,Z|C,W,X) = p(Y|Z)p(Z|C,W,X)

=

N∏
n=1

K∏
k=1

[
M∏
m=1

p(ynm|znm) p(znm|wmk,Xnm)

]cnk
(4)

where
p(ynm|znm) = 1(znm > 0)ynm1(znm ≤ 0)(111−ynm).

To complete the model we introduce priors over the parameters. We choose a Dirichlet distribution
over the mixing proportions π

p(π) = Dir(π|δ0), (5)

where for symmetry we choose the same parameter δ0k for each of the mixture components. We
introduce an independent Gaussian prior over the coefficients W as we did in the Bayesian probit
regression model

p(W|τ ) =
M∏
m=1

K∏
k=1

N (wmk|0, τ−1
k I). (6)

Finally, we introduce a prior distribution for the (hyper)-parameter τ , and assume that each cluster
has its own precision parameter

p(τ ) =

K∏
k=1

Gamma(τk|α0, β0). (7)

Having defined our model, we can now write the joint distribution over the observed and latent
variables

p(Y,Z,C,W,π, τ |X) =p(Y|Z) p(Z|C,W,X) p(C|π)p(π) p(W|τ ) p(τ ), (8)

where the factorisation corresponds to the probabilistic graphical model shown in Fig. 7.
The standard approach now would be to compute the posterior distribution of the latent vari-

ables given the observed data p(Z,C,W,π, τ |Y,X) . However, exact computation of the posterior
distribution is not analytically tractable and we have to resort to approximate techniques. We use
mean-field variational inference (Blei et al., 2017) that exploits a factorisation assumption to achieve
an efficient deterministic approximation to the posterior distribution.

Variational Inference

The most common method for performing approximate Bayesian inference for models with many
parameters is Markov Chain Monte Carlo (MCMC) (Gelfand and Smith, 1990). However, frequently
sampling methods require considerable computational resources and do not scale to perform genome-
wide analysis on hundreds or thousands of single cells; variational methods can provide an efficient,
approximate solution with better scalability in this case (see “Results” section for a comparison
between Gibbs sampling and variational inference for this model). Besides the computational ad-
vantages, the deterministic nature of the variational inference machinery makes it easier to assess
convergence compared to MCMC methods (Beal, 2003).
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ynmi

znmi

xnmi

cn

π

wmk

τk

I CpGs

M regions

N cells

K

Figure 7: Probabilistic graphical representation of the Melissa model.

Briefly, in mean-field variational inference the intractable posterior distribution of the latent
variables p(θ|X) is approximated by a factorized distribution q(θ) =

∏
i qi(θi), where θ denotes

the latent variables and X the observed variables. Then we search over the space of approximating
distributions to find the distribution with the minimum Kullback-Leibler (KL) divergence with the
actual posterior

KL(q(θ) || p(θ|X)) = −
∫
q(θ) ln

p(θ|X)

q(θ)
dθ. (9)

The KL divergence can then be minimised by performing a free form minimisation over the
qi(θi) leading to the following update equation

qi(θi) =
exp 〈ln p(X,θ)〉qj 6=i∫

exp 〈ln p(X,θ)〉qj 6=i
dθi

(10)

where 〈·〉qj 6=i
denotes an expectation with respect to the distributions qj(θj) for all j 6= i. We can

apply this approach to our probabilistic model and take the approximating distribution to factorise
over the latent variables

q(Z,C,W,π, τ ) = q(Z) q(C) q(W) q(π) q(τ ). (11)

Applying Eq. (10) to our model, we obtain the following solutions for the optimised factors of the
variational posterior

q(C) =
N∏
n=1

K∏
k=1

rcnk
nk where rnk =

ρnk∑K
j=1 ρnj

,

q(π) = Dir(π|δ) where δk = δ0k +
N∑
n=1

rnk,

q(τ ) =

K∏
k=1

Gamma(τk|αk, βk),

q(W) =
M∏
m=1

K∏
k=1

N (wmk|λmk,Smk),

q(Z) =
N∏
n=1

M∏
m=1

Inm∏
i=1

{
T N+ (znmi|µnmi, 1) if ynmi = 1

T N− (znmi|µnmi, 1) if ynmi = 0
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where

ln ρnk = 〈lnπk〉q(πk) +
M∑
m=1

〈
−1

2
γTnmkγnmk

〉
q(znm,wmk)

,

γnmk = (znm −Xnmwmk) ,

αk = α0 +
MD

2
and βk = β0 +

1

2

M∑
m=1

〈
wT
mkwmk

〉
q(wmk)

,

λmk = Smk

N∑
n=1

rnkX
T
nm 〈znm〉q(znm) ,

Smk =

(
〈τk〉q(τk) I +

N∑
n=1

rnkX
T
nmXnm

)−1

,

µnmi =
K∑
k=1

rnk
〈
wT
mkxnmi

〉
q(wmk)

,

and T N+(·) denotes the normal distribution truncated on the left tail to zero to contain only
positive values, and T N−(·) denotes the normal distribution truncated on the right tail to zero to
contain only negative values. Detailed derivations are available in Additional file 1: Section 1.

Predictive density and model selection

Given an approximate posterior distribution, we are in the position to predict the methylation level
at unobserved CpG sites. The predictive density of a new observation y∗, which is associated with
latent variables c∗, z∗ and covariates X∗, is given by

p(y∗|X∗,Y) =
∑
c∗

∫ ∫
p(y∗, c∗, z∗,θ|X∗,Y)dθdz∗

'
∑
c∗

∫
p(y∗|c∗,θ)q(θ)dθ

=
K∑
k=1

δk∑
j δj
Bern

y∗

∣∣∣Φ
 X∗λk√

I + diag
(
X∗SkXT

∗
)


(12)

where we collectively denote as θ the relevant parameters being marginalised.
One of the most appealing aspects of variational approximations within mixture models is the

possibility of directly performing model selection, i.e. determining the number of clusters, within
the optimisation procedure. It has been repeatedly observed (Corduneanu and Bishop, 2001) that,
when fitting variationally a mixture model with a large number of components, the variational
procedure will prune away components with no support in the data, hence effectively determining
an appropriate number of clusters in an automatic fashion. We can gain some intuition as to why
this happens in the following way. We can rewrite the KL divergence as

KL(q(θ) || p(θ|X)) = ln p(X)− 〈ln p(X|θ)〉q(θ) +KL(q(θ) || p(θ)) (13)

where ln p(X) can be ignored since is constant with respect to q(θ). To minimize this objective func-
tion the variational approximation will both try to increase the expected log likelihood of the data
ln p(X|θ) while minimizing its KL divergence with the prior distribution p(θ). Hence, using varia-
tional Bayes we have an automatic trade-off between fitting the data and model complexity (Bishop,
2006); giving the possibility to automatically determine the number of clusters without resorting to
cross-validation techniques.
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4.3 Assessing Melissa via a simulation study

To generate realistic simulated single-cell methylation data, we first used the BPRMeth pack-
age (Kapourani and Sanguinetti, 2018) to infer five prototypical methylation profiles from the
GM12878 lymphoblastoid cell line. The bulk BS-seq data for the GM12878 cell line are publicly
available from the ENCODE project (Dunham et al., 2012). Based on these profiles we simulated
single cell methylation data (i.e. binary CpG methylation states) for M = 100 genomic regions, where
each CpG was generated by sampling from a Bernoulli distribution with probability of success given
by the latent function evaluation at the specific site. This process can be thought of as generat-
ing methylation data for a specific single cell. Next, we generated K = 4 cell sub-populations by
randomly shuffling the genomic regions across clusters, so now each cell sub-population has its own
methylome landscape. In total we generated N = 200 cells, with the following cell sub-population
proportions: 40%, 25%, 20% and 15%. Finally, to account for different levels of similarity between
cell sub-populations, we simulated 11 different datasets by varying the proportion of similar ge-
nomic regions between clusters. The R scripts for this simulation study are publicly available on
the Melissa repository.

4.4 scBS-seq data and preprocessing

Two mouse embryonic stem cells (ESCs) datasets were used to validate the performance of the
Melissa model. The first dataset presented in Angermueller et al. (2016), after quality assessment,
consisted of 75 single cells out of which 14 cells were cultured in 2i medium (2i ESCs) and the remain-
ing 61 cells were cultured in serum conditions (serum ESCs). The Bismark (Krueger and Andrews,
2011) processed data, with reads mapped to the GRCm38 mouse genome, were downloaded from
the Gene Expression Omnibus under accession GSE74535. The second dataset (Smallwood et al.,
2014) contained 32 cells out of which 12 cells were 2i ESCs and the remaining 20 cells were serum
ESCs and the Bismark processed data, with reads mapped to the GRCm38 mouse genome, are pub-
licly available under accession number GSE56879. For both datasets, binary single-base-pair CpG
methylation states were obtained from the ratio of methylated read counts to total read counts.

The BPRMeth package (Kapourani and Sanguinetti, 2018) was then used to read single cell
methylation data and for each cell create genomic methylation regions that would be used as input
to Melissa. We considered six different genomic contexts where we applied Melissa: protein coding
promoters with varying genomic windows: ±1.5kb, ±2.5kb and ±5kb around transcription start
sites (TSS), active enhancers, super enhancers and Nanog regulatory regions. Due to the sparse
CpG coverage, for the three genomic contexts except promoters we filtered loci with smaller than
1kb annotation length and specifically for Nanog regions we took a window of ±2.5kb around the
centre of the genomic annotation. In addition, we only considered regions that were covered in
at least 50% of the cells with a minimum coverage of 10 CpGs and had between cell variability;
the rationale being that homogeneous regions across cells do not provide additional information
for identifying cell sub-populations. We run the model with K = 6 and K = 5 clusters for the
Angermueller et al. (2016) and Smallwood et al. (2014) datasets, respectively, and we use a broad
prior over the model parameters.

4.5 Performance evaluation

To assess model performance across all genomic contexts, we partition the data and use 50% of the
CpGs in each cell and region for training set and the remaining 50% as test set (except DeepCpG,
see below). The prediction performance of all competing models, except DeepCpG, was evaluated
on imputing all missing CpG states in a given region at once. For computing binary evaluation
metrics, such as F-measure, predicted probabilities above 0.5 were set to one and rounded to zero
otherwise.

13

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/312025doi: bioRxiv preprint 

https://doi.org/10.1101/312025
http://creativecommons.org/licenses/by-nc-nd/4.0/


F-measure The F-measure or F1-score is the harmonic mean of precision and recall:

F -measure = 2 · precision · recall

precision + recall
(14)

DeepCpG

The DeepCpG method takes a different imputation approach: it is trained on a specific set of
chromosomes and predicts methylation states on the remaining chromosomes where it imputes each
CpG site sequentially by using as input a set of neighbouring CpG sites. This approach makes
it difficult to equally compare with the rival methods, since for each CpG the input features to
DeepCpG are all the neighbouring sites, whereas the competing models have access to a subset of
the data and they make predictions in one pass for the whole region. Since we only had access
to CpG methylation data and to make it comparable with the considered methods, we trained the
CpG module of DeepCpG (termed DeepCpG CpG in Angermueller et al. (2017)).

For the Angermueller et al. (2016) dataset, chromosomes 3 and 17 were used as training set,
chromosomes 12 and 14 as validation set and the remaining chromosomes as test set. For the
Smallwood et al. (2014) dataset, chromosomes 3, 17 and 19 were used as training set, chromosomes
12 and 14 as validation set and the remaining chromosomes as test set. The chosen chromosomes
had at least 3 million CpGs used as training set; a sensible size for the DeepCpG model as suggested
by the authors. A neighbourhood of K = 20 CpG sites to the left and the right for each target
CpG was used as input to the model. During testing time, even if a given genomic region did
not contain at least 40 CpGs, the DeepCpG model used additional CpGs outside this window to
predict methylation states; hence using more information compared to the rival models. In total
the DeepCpG model took around four days per dataset for training and prediction on a cluster
equipped with NVIDIA Tesla K40ms GPUs.

Adjusted Rand Index The Adjusted Rand Index (ARI) is a measure of the similarity between
two data clusterings:

ARI =

∑
ij

(nij

2

)
−
[∑

i

(
αi
2

)∑
j

(βj
2

)]
/
(
n
2

)
1
2

[∑
i

(
αi
2

)
+
∑

j

(βj
2

)]
−
[∑

i

(
αi
2

)∑
j

(βj
2

)]
/
(
n
2

) (15)
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