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ABSTRACT

Fecal pollution at coastal beaches in the Northeast, USA requires management efforts to address
public health and economic concerns. Concentrations of fecal-borne bacteria are influenced by
different fecal sources, environmental conditions, and ecosystem reservoirs, making their public
health significance convoluted. In this study, we sought to delineate the influences of these
factors on enterococci concentrations in southern Maine coastal recreational waters. Weekly
water samples and water quality measurements were conducted at freshwater, estuarine, and
marine beach sites from June through September 2016. Samples were analyzed for total and
particle-associated enterococci concentrations, total suspended solids, and microbial source
tracking markers for multiple sources. Water, soil, sediment, and marine sediment samples were
also subjected to 16S rRNA sequencing and SourceTracker analysis to determine the influence
from these environmental reservoirs on water sample microbial communities. Enterococci and
particle-associated enterococci concentrations were elevated in freshwater, but suspended solids
concentrations were relatively similar. Mammal fecal contamination was significantly elevated
in the estuary, with human and bird fecal contaminant levels similar between sites. A partial least
squares regression model indicated particle-associated enterococci and mammal marker
concentrations had the most significant positive relationships with enterococci concentrations
across marine, estuary, and freshwater environments. Freshwater microbial communities were
significantly influenced by underlying sediment while estuarine/marine beach communities were
influenced by freshwater, high tide height, and estuarine sediment. We found elevated

enterococci levels are reflective of a combination of increased fecal source input, environmental
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sources, and environmental conditions, highlighting the need for encompassing MST approaches

for managing water quality issues.

IMPORTANCE

Enterococci have long been the federal standard in determining water quality at estuarine and
marine environments. Although enterococci are highly abundant in the fecal tracts of many
animals they are not exclusive to that environment and can persist and grow outside of fecal
tracts. This presents a management problem for areas that are largely impaired by non-point
source contamination, as fecal sources might not be the root cause of contamination. This study
employed different microbial source tracking methods to delineate influences from fecal source
input, environmental sources, and environmental conditions to determine which combination of
variables are influencing enterococci concentrations in recreational waters at a historically
impaired coastal town. Results showed that fecal source input, environmental sources and
conditions all play a role in influencing enterococci concentrations. This highlights the need to
include an encompassing microbial source tracking approach to assess the effects of all

important variables on enterococci concentrations.

INTRODUCTION

Fecal contamination of coastal recreational waters is a significant public health concern, as fecal
material, often from nonpoint sources, can harbor an array of different pathogens. The US EPA
has established regulations based on enterococci bacteria as the indicator of fecal-borne pollution
to help manage water quality at estuarine and marine beaches (1). These organisms correlated

well with predicted public health outcomes in several epidemiological studies that served as the
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basis for their adoption as the regulatory water quality indicator (2-5). The presence of human
feces can present an elevated public health risk in recreational waters compared to non-human
sources due to the lack of an “inter-species barrier” for diseases and the higher density of human
pathogens that humans can carry (6-8). Although human pollution represents the greatest public
health risk, other fecal sources that contain enterococci and possibly human pathogens can be
chronic or intermittent sources of both, making beach water quality management and

remediation efforts more complex.

The need to differentiate fecal sources in recreational waters led to the emergence of microbial
source tracking (MST) methods in the early 2000s, most notably the PCR-based assays that
target the 16S rRNA gene in Bacteroides spp. (9, 10). There are a wide range of species-specific
genetic markers designed to identify human fecal sources and various domestic and wildlife fecal
sources. These assays have been in use for well over a decade and are supported by numerous
and rigorous laboratory evaluations and field applications (11-17). Initial field studies
investigated the relationship between MST markers and FIB concentrations in recreational
waters to better elucidate potential sources of fecal pollution. Some studies have found strong
relationships between the MST markers and enterococci (12, 18) while other studies have found
either weak or no relationships (19-21), many of which are discussed in a review by Harwood et
al. (22). One main factor affecting the relationship between enterococci and the relative strength
of different sources of fecal contamination is that enterococci can persist and grow in the

environment, which can significantly influence their concentrations in recreational water (23).
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86  Due to the pervasiveness of enterococci in natural ecosystems, recent studies have been
87  conducted to not only elucidate environmental parameters controlling their growth, but also to
88 identify naturalized niches that can act as reservoirs for enterococci and the associated influence
89  on water quality measurements. Specifically, enterococci have been shown to persist in fresh
90  water sediments (24-26) and marine sediments (24, 27), and in some cases their relative
91  concentrations in sediments are several orders of magnitude higher than the overlying water (24,
92  28-30). In addition, enterococci persist in soils affected by anthropogenic activities (31) as well
93  as more natural soil environments (32—34). Thus, soil can act as a significant reservoir of
94  enterococci that can, if eroded, confound concentrations observed in recreational waters.
95  Evaluating the influence of sediment and or soil on water quality has, in some studies, been
96  conducted by measuring total suspended solids as a surrogate for sediment-associated
97  enterococci (27, 35, 36), however this non-specific approach does not indicate the specific type
98  of source(s) of the suspended solids. With the advent of next generation sequencing, sources of
99  sediment or soil bacteria can be fingerprinted via 16S rRNA sequencing, and programs like

100  SourceTracker can then determine relative fractions of source-specific 16S fingerprints within a

101 water sample (37).

102

103 This study examined the coastal and estuarine beaches of Wells, ME where there has been

104 historically elevated enterococci levels, as reported by the Maine Healthy Beaches Program (38).
105  Prior to this study, only a ribotyping-based MST study (39) that also involved other indicator
106  tracking work had been conducted in this area. In that study, the two major freshwater inputs,
107  the Webhannet River and Depot Brook were found to be the major influences on water quality

108 related to an array of fecal contamination sources. To investigate potential sources of enterococci
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109  we measured three major categories of variables (fecal source input, environmental conditions,
110  and environmental sources) and then used a partial least squares regression model approach to

111  determine the most significant influences on the enterococci concentrations in water samples.

112

113 RESULTS

114  Total and particle-associated enterococci concentrations and total suspended solids in

115  water. During this study, total enterococci concentrations were highest in freshwater sites, with
116  concentrations significantly decreasing from there to the estuary and then the marine beach areas
117  (Figure 2). The geometric mean enterococci concentrations were 197 and 40 CFU/100 ml at the
118  Depot and Webhannet sites, respectively, with 71% of samples exceeding 104 CFU/100 ml at the
119  Depot site compared to 21% at the Webhannet site. In contrast, the geometric mean enterococci
120  concentrations at the other sites were all <15 CFU/100 ml and samples exceeded 104 CFU/100
121 ml 0% (at Wells Beach) to 25% of the time. In addition to measuring enterococci concentrations
122 in water samples, particle-associated enterococci and suspended solid concentrations were

123 measured to better understand the potential mode of transport of these bacteria within this coastal
124  watershed. Throughout the study period (June-September 2016), levels of total and particle-

125  associated enterococci varied by site. Concentrations were lowest at the marine beach (Wells

126 Beach) compared to other sites, with levels significantly higher in all estuary sites (W11-W15)

127  and freshwater sites (Depot & Webhannet; Figure 2).

128

129  Both total and particle-associated enterococci geometric mean concentrations were statistically

130  similar at the estuary beach (W11, W12, W13) and estuary (W14, W15) sites. Freshwater sites


https://doi.org/10.1101/311928
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/311928; this version posted May 1, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

131 (Webhannet and Depot) however, had statistically higher enterococci concentrations than other
132 sites (Figure 2; p < 0.05). The ratio of total to particle-associated enterococci varied throughout
133 the season, with an average of 36.3% (SD + 30) across all sites. Sites within the estuary beach
134  showed the highest ratio (41%, SD + 32), however there were no significant differences observed
135  Dbetween sites or types of sites. Average TSS concentrations were relatively low and similar for
136  most sites, with an overall average of 2.9 mg TSS/L (SDz 1.2). The Webhannet freshwater site,
137  however, had a significantly lower average TSS concentration (1.2 mg/L + 1.0SD, p < 0.05)
138  (Figure 2), despite, as previously mentioned, having higher enterococci concentrations. The

139 relationship between particle-associated enterococci and TSS was not significant (r* = 0.0011),
140  and significant rainfall events were seldom and sparse with only one greater than 1 in 48 h prior
141 to sampling. Overall, this study showed enterococci concentrations were significantly different
142 Dby site and were ubiquitously associated with particles, which was independent of suspended

143  solids concentrations.
144

145  Presence of fecal sources in fresh, estuarine, and marine waters. The concentration of fecal
146  pollution in this study area was determined using both PCR and quantitative PCR MST assays to
147  identify and quantify predominant sources of fecal contamination present in the water. The

148 mammal fecal marker (Bac32) was detected via PCR at all sites 100% of the time throughout the
149  study period. (Supplementary Material 1E). The human fecal marker (HF183) was detected in
150  51% of all water samples, with the highest detection rate in fresh water (56%) and the lowest

151  detection rate in marine beach water (46%). Differences in the percent detection of the gull fecal
152  marker (Gull2) were most pronounced between freshwater (10%) and all other sites (>77%). The

153 dog fecal marker (DF475) detection rate was highest in the estuary beach water (10/44 = 23%),
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however 8 of the 10 positive samples were detected in July (8/13 = 61%). For all other sites, an
increase in the detection of dog fecal marker also occurred during July, with 44% (16/36)
detection, compared to 0% for August and September and <1% for June. Thus, most of the dog

contamination at all sites was associated with unknown dog-related conditions during July.

Concentrations of mammal, human, and bird fecal sources. We used qPCR to provide
relative quantitative measures of mammal, human and bird fecal contamination levels. Water at
estuary and estuary beach sites contained significantly higher levels of mammal (AllBac) fecal
marker copies, with an average of 1.54 x 10" compared to 2.62 x 10°in freshwater and 3.9 x 10°
copies/100 ml in marine beach (p < 0.05). Average concentrations of human (HF183) and bird
(GFD) fecal markers were not statistically different between sites, however, concentrations of the
human marker in individual samples varied from 0 - 2.04 x 10* copies/100 ml (Figure 3), while
bird fecal marker concentrations were relatively stable across all sites. No significant temporal
trends were observed for any of the quantitative fecal marker levels. Compared with
presence/absence detection of fecal sources, quantitative measurements also did not show strong
spatial patterns, except mammal marker levels showed significant increases at estuary and

estuary beach sites compared to marine and freshwater sites.

Differences between water, soil, and sediment bacterial community compositions. 16S
amplicon sequencing was used to characterize the microbial community present in water and
other sample matrices (soil, sediment, and marine sediment), which was the nexus for ensuing

SourceTracker analysis. A total of 3,276,196 reads and 7,706 unique OTUs were obtained from
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the 177 samples of fresh, estuary, estuary beach and marine beach water and soil, sediment, and
marine sediment. The number of OTUs assigned and the Shannon diversity index were
significantly higher for soil, sediment, and marine sediment when compared to water samples
(Figure 4, p < 0.05). Most taxa in the estuary and marine beach water samples were identified as
Flavobacteriia, Alphaproteobacteria, and Gammaproteobacteria classes, which together
accounted for 84% of the total assigned taxa. Cyanobacteria accounted for 34% of the taxa in
marine sediment, and Betaproteobacteria was one of the top three most abundant taxa in fresh
water, soil and sediment (Figure 4). A Non-Metric Multi-Dimensional Scaling (NMDS)
ordination was used to determine if the bacterial communities from water and other matrices
(soil and sediments) differed based on their taxonomic composition. Bacterial communities from
the marine beach and estuary (All Estuary) waters were similar, but were statistically different
from fresh water (Figure 5, p < 0.05). The bacterial communities associated with soil, sediment
and marine sediment were all distinct when compared to each other and water samples,
indicating unique groups of OTUs (Figure 5, p < 0.05). Samples taken from different areas
within the watershed (soil, estuarine water, freshwater, etc.) contained unique bacterial
compositions, allowing for downstream analysis with the SourceTracker software to discern
relative contributions of these different communities to the make-up of microbial communities in

the different types of water samples.

Environmental source contribution to water samples. The fraction of freshwater, sediment,
soil, estuarine sediment, and marine beach water source bacterial communities within estuary
and estuary beaches water samples were calculated using the Bayesian mixing model

SourceTracker. Freshwater sample analysis showed a high probability of taxa originating from
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199  underlying sediment (74%) and much lower probability of taxa originating from soil (2.6%).

200 |Initial results for the estuary and estuary beach indicated that marine beach water was the

201  dominant source of bacteria (Table 1). However, given that likely fecal sources are coming from
202  the watershed, we excluded marine beach water as a potential source and included it as a sink
203  then re-analyzed the data. These second results showed that freshwater taxa had a high

204  probability of being a significant fraction of estuary (73%), estuary beach (66%) and marine

205  beach (35%) water communities, with a significantly higher percentage for the estuary locations
206  compared to the marine beach (Table 1, p < 0.05), which is more influenced by ocean microbial
207  taxa. Despite the significant percentage of freshwater taxa assignments in the estuary, estuary
208  beach, and marine beach waters there were no freshwater sediment or soil taxa assignments for
209 these sites. The data for the percent of unidentifiable taxa showed the opposite trend compared
210  to percent of assigned freshwater taxa. Unidentifiable taxa in the marine beach were significantly
211 higher (46%; p < 0.05), which is not surprising given that marine beach water community would
212 likely be most influenced by non-terrestrial sources. Estuarine sediment was the highest likely
213 identified source in the water from the marine beach site (19%), and it was significantly higher
214  than percentages calculated for all estuary sites (p < 0.05). Overall results showed that freshwater
215  source-related taxa were a pervasive source throughout the estuary and marine beach, and while
216  sediment source-related taxa were highly abundant in the freshwater they were not observed

217  within the estuary or marine beach.

218

219  Relationships between environmental conditions, fecal source concentrations,
220 environmental sources and enterococci concentrations. Two PLSR models were created to

221  determine relationships between enterococci and fecal source concentrations, environmental

10
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222 sources, and environmental conditions (outlined in the Methods). The first ‘freshwater’ PLSR
223 model indicated particle-associated enterococci concentration, concentration of mammal fecal
224  marker, TSS concentration, percent of sediment source, percent of unknown source, and salinity
225  were important variables (VIP > 0.8) in resolving variation in enterococci concentrations (Table
226 1). A one-factor (single PLSR regression) model was deemed optimal (root mean PRESS =

227 0.735), and showed that all variables (except salinity) had positive associations with enterococci
228  concentrations. VValues for model performance (R?Y = 0.6, R*X = 0.5, and Q%= 0.4) indicated
229  that the model fit the data moderately well (R%X > 0.5) but had poor predictive capability of

230  enterococci concentrations (Q% < 0.5; Supplementary Material 3). Out of all the important

231  variables, particle-associated enterococci (Particle ENT) concentrations showed the strongest
232 relationship to total enterococci concentrations (Table 2). The second PLSR model, a two-

233 factor/two PLSR regressions model, was the best fit (root mean PRESS = 0.744) from the PLSR
234  constructed for the estuary, estuary beach, and marine beach sites. The analysis identified

235  particle-associated enterococci concentration, mammal fecal source concentration, percent of
236  freshwater, unidentified and estuarine sediment sources, water temperature, and high tide height
237  assignificantly related to enterococci concentrations. Factor one showed that all variables were
238  positively associated, except for the percent unidentified and marine sediment sources. The

239  second factor showed mammal fecal sources, freshwater sources, and water temperatures were
240  negatively related to enterococci concentrations, which was the opposite of their associations for
241  factor one. The high tide height and marine sediment were positively related to enterococci

242  concentrations for factor 2 of the PLSR (Table 2). Together both factors explained 61.8% in the
243 variation observed in enterococci concentrations, and model performance (R%Y = 0.6, R®X = 0.5,

244  and Q= 0.6) indicated better predictive ability with a similar fit to the data compared to the

11
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245  freshwater model (Supplementary Table 3). Out of all the potential variables measured (19 total)
246  across three categories (fecal source input, environmental source contribution, and environmental
247  conditions), particle-associated enterococci and mammal fecal marker concentrations had the
248  most significant relationships to enterococci concentrations. The relationships between other

249  variables and enterococci concentrations were specific to freshwater and estuary/marine beach
250  models, indicating ecosystem specific relationships. However, the joint relationship of particle-
251  associated and mammal fecal marker across freshwater and estuary/marine environments

252 indicate their overarching importance in determining enterococci concentrations.
253
254 4 Discussion:

255  Geometric mean enterococci concentrations at the marine beach, estuary, and estuary beach

256  sampling sites were all less than the State of Maine water quality standard of 35 CFU/100 ml and
257  the majority of concentrations were less than the 104 CFU/100 ml single sample standard,

258 indicating the water quality was typically considered acceptable for recreational use. Previous
259  monitoring by the Maine Healthy Beaches Program in 2014 had shown the Wells Beach area
260  was one of 7 beaches in Maine that had a greater than 20% exceedance rate, with suspicion that
261  freshwater inputs are a significant source of contamination (38). Our findings confirmed that
262  enterococci concentrations were statistically higher at both major freshwater tributaries to the
263  estuary, especially at the Depot Brook site where levels were regularly above the 104 CFU/100
264  ml single sample standard. The Depot Brook site is located in a watershed with a higher fraction
265  of developed land (0.27-0.50) and more people per km? (325-2,650 people) compared to the

266  Webhannet site watershed that has a lower developed fraction (0.13-0.25) and 150-325 people

267 per km? 40). This could help explain the difference in enterococci concentrations between

12


https://doi.org/10.1101/311928
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/311928; this version posted May 1, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

268  freshwater sites as a more urbanized watershed can increase transport of more pollution from the
269  watershed to the freshwater tributary. However, the summer of 2016 was especially dry in this
270  region (41) with just one event with >1 inch of rain (1.73 in., 6/28/16) 48 h prior to the sampling
271 time. This overall dry condition likely contributed to less fecal contamination transport (via

272 freshwater discharge) from the watershed to the estuary and marine beach. This suggests that
273 more typical rainfall conditions would probably have resulted in more freshwater discharge and

274 higher enterococci concentrations than what we observed.
275

276  Enterococci were significantly associated with suspended particles of >3.0 um diameter (R?=
277 0.96, p <0.05). On average, 36% (SD + 30) of the total enterococci concentrations were

278  associated with particles, which suggests particles as a potentially important transport

279  mechanism. Other studies conducted in estuary and storm waters have found similar fractions of
280  particle associated enterococci, but they noted enterococci demonstrated a preference for a larger
281  particle size of >30 um (42-44). The large standard deviation for particle-associated enterococci
282  could be attributed to the complex nature of particle interactions (sedimentation rate,

283  electrostatic, hydrophobic, and other surface-surface interactions) and hydrogeological dynamics
284  (salinity-driven turbidity maximum) (45). The mechanisms underlying enterococci-particle

285 interactions may also be related to ionic strength in surface waters, as Enterococcus faecalis is
286  negatively charged over a broad pH range (2-8 pH units) and in the presence of different ion

287  concentrations (46). Results for this study indicate that TSS and particle-associated enterococci
288  had no linear relationship, indicating particle-associated enterococci were not dependent on the
289  total amount of suspended material and thus the association is likely due to other factors

290 influencing cell-particle interactions.

13
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Quantitative PCR assessment of several fecal sources is a potentially useful strategy to determine
the relative significance of the different sources in a single sample and over time at sites of
interest. PCR detection showed a chronic presence of mammalian fecal source(s) (100% of
samples) with human fecal source(s) detected in approximately half of all samples, so g°PCR
analysis is useful for bringing context to the significance of these findings. For example, Mayer
et al. (47) showed that wastewater effluent contains about 10° copies/100 ml of the AllBac
mammal fecal marker, Sowah et al. (48) found that streams impacted by septic systems could
contain 10° — 10 copies/100 ml depending on the season, and Bushon et al. (49) determined that
under storm flow conditions in an urban watershed mammal marker copy numbers could exceed
10® copies/100 ml. Results for this study ranged from 10° to 8.6 x 10’ copies/100 ml, values that
are within previously reported ranges and likely a concentration reflective of a predominantly
non-urbanized watershed and intermediate mammal source loading. The estuary and estuary
beach area showed a statistically higher concentration of the mammal marker, however, there
was no responsive increase in the concentrations of the human associated fecal marker (HF183),
which may indicate that humans are not the primary mammalian source for the increased fecal

contamination.

The average concentration of the human marker was 1,500 copies/100 ml across all sites
(geometric mean 167 copies/100 ml), with the highest concentration being 20,364 copies/100ml
(Webhannet 6/22/16). Boehm et al. (50) showed that 4,200 copies/100 ml of HF183 is the cutoff
for where Gl illnesses exceed the EPA acceptable risk level of approximately 30/1000 for

swimmers (1). On average, sites in this study did not exceed this benchmark level, however,

14
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314  there were 10 occasions when sites were above the 4,200/100ml threshold (7 different sites

315  across 4 sampling dates), indicating that sporadic events or conditions can cause elevated human
316  fecal contamination and potential public health concerns (Supplementary 4). Boehm et al. also
317  showed that at the LOQ for most assays, 500 copies/100ml or 1000 copies/100ml, there is still a
318  predicted Gl illness of 4 or 8 cases per 1000 swimmers, suggesting positive detection at the LOQ
319 isindicative of low level health risk (50). For this study, the LOQ was 250 copies/100ml for the
320 HF183 assay and 67 of 117 samples (57%) tested positive at or above this limit, suggesting that
321 over half of collected water samples indicated the presence of a low-level health risk. Although
322 there were no statistical differences between sites for human fecal contamination, W11 did

323 contain the highest geometric mean (493 copies/100 ml; Supplementary 4). This could be

324  reflective of the location of the site as it’s where drainage from the Webhannet and Depot

325  watershed meets and is also directly downstream from a boat marina with the harbor sewage

326 pump station, which could be a possible point source of contamination. Nonetheless, even

327  though sites on average were below published thresholds, detection of human contamination

328 even at low concentrations is a concern.

329

330  Although human fecal sources are the greatest public health concern (6, 7, 22, 51) we did not
331  observe any relationship between human fecal contamination and enterococci concentrations,
332 suggesting other mammalian fecal sources are more influential in explaining the variation

333  observed in this study. Interestingly gull fecal sources were detected in 77% or more of the
334  samples in the estuary and marine beach area, however only 10% of the samples were positive
335  within the fresh water (Supplementary Material 1), despite there being no decrease in the bird

336  fecal marker concentration, suggesting the presence of different bird sources in these areas.
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Anecdotally, Canada geese were observed upstream of both the Webhannet and Depot
freshwater sites periodically throughout the season, which could be a significant source of bird

fecal contamination in the fresh water locations (52).

One of the unique findings of this study was the relative contribution of different sources to the
bacterial community in the estuarine water. The bacterial community in estuarine water primarily
originated (>90%) from marine beach water, which is not surprising for a well-flushed estuary
like the study site. Because the study period was minimally influenced by rainfall and associated
runoff of freshwater, we expected that the influence of freshwater sources would be low. In
ensuing analyses, we chose not to include marine beach water as a potential source for a variety
of reasons. First, the samples were always collected during low tide before the ebb when the
estuary water was draining and water was moving from the watershed towards the marine beach.
Secondly, we had already shown that the OTU compositions for the marine beach and estuary
samples were very similar, increasing the possibility of a type I error (false positive) for
identifying marine beach as the likely source of enterococci. Lastly, fecal pollution sources most
likely come from the watersheds and not from marine water, so excluding marine beach water
helps to enhance the determination of watershed influences. Our second analysis (marine beach
source excluded) showed that freshwater was a significant source of bacteria to the estuary
(>65% assignment) compared to soil, sediment, and estuarine sediment. This implicates
freshwater as a major conduit for bacterial transport, as well as the major source of enterococci
to the estuary. Overall this finding highlights the importance of freshwater discharge as a

controlling factor in transporting contamination from the watershed to the coast. The specific
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359  percent assignment of freshwater source could be an over-estimate, however the trend observed

360 s a likely scenario given the rational discussed.

361

362  Analysis of environmental reservoirs of enterococci (soil, sediment, etc.) and their presence

363  within water samples using SourceTracker revealed a variety of source contributions to

364  freshwater, estuary and marine waters. To date there have been limited studies using

365  SourceTracker to identify soil and sediment-associated taxa within water samples, and none of
366  these studies have focused on a coastal watershed with the potential for freshwater, estuarine and
367  marine sources. One study conducted in the upper Mississippi River identified up to 14% of
368  sediment and 1.4% of soil sources of the taxa within the river water (53). This study, however
369  showed that the sediment source was much more abundant in freshwater (74%), indicating a
370  greater degree of mixing between the freshwater and underlying sediment communities. The
371 amount of sediment and soil sources within water samples may be related to site specific

372  characteristics such as relief or soil texture, which has been shown with TSS fluxes on a global
373  scale (54). Thus, the degree to which the underlying sediment community mixes with the

374  overlaying water is likely site specific. Interestingly, even though freshwater contained a

375  significant amount of sediment source taxa, no sediment source was observed at the estuary and
376  marine beach sites through the SourceTracker analysis. This difference could indicate that rapid
377  sedimentation happens during transit to and within the estuary and at the estuarine turbidity

378  maximum zone (55). TSS concentrations and the ratio of particle-associated to total enterococci
379  concentrations, however, showed no differences between freshwater and estuary/marine sites.
380  This could be related to the separate and quite different hydrodynamics within these different

381  water systems. The percent of sediment source in the freshwater samples observed here might
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also be an over-estimate/over fit from SourceTracker given the limited number of potential
sources used, but results consistently showed an elevated presence of sediment in all freshwater
samples in this study. SourceTracker analysis also revealed that the freshwater source was
significant (35% or more) in estuary and marine beach water samples, suggesting that fresh
water is a significant conduit for microbial, and fecal contamination, transport from the

watershed to the estuary and marine beach.

The use of predictive models for water quality has been a focus in the field in parallel with the
adoption of bacterial indicator organisms as the gold standard for water quality determination.
The goal of this research was to identify significant influences on enterococci concentrations by
measuring a wide variety of variables. To distill this information, we used a PSLR model, which
has been shown to out-perform similar multiple linear regression and principle components
regression analyses (56) and has gained popularity in the water quality field (57, 58). Results
from the PLSR analysis in this study showed that particle-associated enterococci and
concentrations of mammal fecal sources were the driving force behind variation in enterococci
concentrations, as described by both PLSR models constructed. Other factors were found to
influence enterococci concentrations, however, these differed between the freshwater and
estuary/marine beach models. For example, TSS concentration as well as the percent of both
freshwater sediment and unknown sources positively influenced enterococci concentrations at
freshwater sites. This indicates that sediment is a likely source of enterococci that influences
concentrations measured in the water. Positive influences from the unidentified source taxa
suggests that there is either an alternative source (not measured in this study) within the

watershed that also influences enterococci concentrations or that SourceTracker could simply not
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405  resolve all the potential sources we used. This finding is not surprising given the vast number of
406  potential sources of fecal pollution within a watershed and that fecal sources were not a part of
407  the SourceTracker analysis. Results from the estuary and marine beach model returned a two-
408  factor regression, with each factor essentially being the inverse of each other. Specifically, it
409  highlighted freshwater being a major conduit for microbial transport to and through the estuary.
410  Negative influences from the unknown source reaffirms this finding, along with positive

411  influences from the previous high tide height. The second factor explained approximately 15% of
412  the variation in enterococci concentration, therefore its importance must be weighed

413  proportionately to factor one, which explained almost 50% of the variation. However, positive
414  loadings from previous high tide height and percent of estuarine sediment indicate estuarine

415  sediment could be a source of enterococci whose influence is dependent on tide height. The

416  negative loadings from mammal fecal source(s) may indicate that enterococci originating from

417  the estuarine sediment are not from mammal fecal sources.

418

419  Overall, the results from this study demonstrated that concentrations of enterococci in the coastal
420  estuarine/marine beach study area were largely controlled by particle-associated enterococci and
421 mammal fecal source input. The influence of these factors is likely universal across freshwater
422  and estuarine environments, however other ecosystem factors likely play a role as well. For

423  freshwater portions of the coastal watershed, sediment may act as a significant enterococci

424  reservoir that is frequently re-suspended within the water column. Freshwater itself could act as a
425  major conduit for bacterial transport to an estuary and marine beach area where other

426  environmental factors (water temperature and high tide height) can influence enterococci

427  concentrations as well. These findings highlight the dynamic nature of enterococci in natural
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428  aquatic ecosystems outside of the mammalian fecal tract, and that concentrations within fresh

429  water and estuary/marine beach water are influenced by a variety of factors.

430

431  Materials and Methods:

432  Site description. This study was conducted in Wells, Maine, USA (Figure 1). Eight different
433 sites were used to monitor water quality (n = 2 freshwater, n = 2 estuary, n = 3 estuary beaches, n
434 =1 marine beach) as well as twelve soil, twelve fresh-water sediment and four estuarine

435  sediment sampling sites. Data for air temperature and rainfall amount for the 48 h prior to

436 sampling were obtained from Weather Underground

437  (https://www.wunderground.com/cgibin/findweather/getForecast?query=Wells,%20ME) and
438  characteristics of tides during sampling were obtained from US Harbors

439  (www.meusharbors.com).

440

441  Water sampling. Surface water samples were collected weekly from June to September 2017 (n
442  =117). Sampling started two hours before low tide to maximize the potential impacts of

443  freshwater pollution sources, and samples from all estuary and marine beach sites were collected
444  before the slack tide. Water samples were collected in autoclaved 1L Nalgene™ Wide-Mouth
445  Lab Quality PPCO bottles (Thermo Fisher Scientific, Waltham, MA, USA), and environmental
446  parameters were measured with a YSI Pro2030® dissolved oxygen, conductivity, and salinity
447  Instrument (YSI Incorporated, Yellow Springs, Ohio, USA). A field replicate was collected at a

448  different site for each sampling event.

449
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Soil, sediment, and marine sediment collection. Environmental sources were collected twice
throughout the sampling season to build source libraries that were “finger-printed” with 16S
sequencing and SourceTracker analysis. Six soil and sediment samples were collected upstream
of both freshwater sites (Webhannet and Depot; Figure 1). Soil samples were collected at the
crest of the stream embankment, where a 10 x 10 cm a plastic square template was placed down
and all soil (O-horizon) within the template at a 2 cm depth was collected. Samples were sieved
(USA Standard No. 5) to remove any loose-leaf litter and roots to only sample smaller soil
particles and their microbes. Underlying stream sediments were collected using a Van Veen
sediment sampler from depositional sites chosen based on the presence of fine grain sediments.
One grab sample was collected for each site and then the top 2 cm of sediment was subsampled
for analysis. Sediments were sieved (USA Standard No. 45) to remove coarse grain and gravel
size particles. Estuarine sediments were collected during low tide when intertidal sediments were

exposed using the Van Veen sampler, and the top 2 cm were again collected for analysis.

Enterococci and total suspended solids quantification. Total and particle-associated
enterococci were enumerated using the EPA Method 1600 membrane filtration protocol (59) and
particle-associated enterococci were determined via filtration through a 0.47 mm diameter 3.0
um pore size polycarbonate filter (Millipore™, Darmstadt, Germany) as first reported by Crump
et al. (60). The filters were rolled onto plates containing mEIl agar and incubated at 41°C +
0.5°C; representative colonies were counted in 24 £ 2 hours. Total suspended solids (TSS) were
measured using EPA method 160-2, where 500 ml of the water sample was used to determine

TSS concentrations (61).
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472 DNA extractions. DNA extraction from all matrices was performed with the PowerSoils® DNA
473  Extraction Kits (MO BIO Laboratories, Carlsbad, CA, USA), with modifications to the

474  manufacture’s protocol needed to optimize the extraction from water sample filters. For water
475  samples, 500 ml collected water sample was filtered through 0.47 mm diameter 0.45 um pore
476  size polycarbonate filter (Millipore™, Darmstadt, Germany), which was stored in a sterile 2 mi
477  cryotube at -80°C for at least 24 h. Prior to DNA extraction, frozen filters were crushed into

478  small pieces with an ethanol sterilized razor blade, a practice commonly used to maximize DNA
479  recovery (62—64). To minimize additional DNA loss during the extraction process solutions C2
480 and C3 (from manufacturer’s protocol) were halved in volume and combined into a single step.
481  DNA extraction from soil, freshwater sediment, and marine sediment were conducted per the

482  manufacture’s protocol.
483

484  Microbial source tracking (MST) PCR and gPCR assays. MST PCR assays that target

485  Mammals (Bac32; 65), Humans (HF183; 9), Gulls (Gull2; 66), Dogs (DF475; 10) and

486  Ruminants (CF128; 9) were used to determine the presence of fecal sources in water samples.
487  Positive control plasmids were created for each PCR assay from fresh fecal samples that came
488  from each target organism (Human, Gull, Dog, and Cow). The TOPO™ TA™ Cloning Kit was
489  used (Invitrogen, Carlsbad, CA, USA), with a blue/white screen of E. coli transformants on

490  kanamycin (50 pg/mL) selective TSA plates. Positive E. coli colonies were screened with their
491  respective PCR assay, and PCR positive colonies were then grown in TSB and extracted with the
492 PureLink® Quick Plasmid Miniprep Kit (Invitrogen, Carlsbad, CA, USA). PCR assays were run
493 onaT100™ Thermal Cycler (BioRad, Hercules, CA, USA) with the GoTaq® Green MasterMix

494  (Promega, Madison, WI, USA). Cycling conditions and amplification protocols for each assay
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495  targeted the different source specific markers and followed protocols delineated by different

496  studies: Bac32 (67) and HF183 (67), CF128 (68), DF475 (69), and Gull2 (66). Quantitative PCR
497  assays were also run to determine fecal source strength for Mammals (AllBac; 70), Humans

498  (HF183; 71), and Birds (GFD; 72). All gPCR assays were run on a Mx3000P cycler (Agilent

499  Technologies, Santa Clara, CA, USA), TagMan assays used the PerfecCTa® FastMix® 11

500 (QuantaBio, Beverly, MA, USA) master mix and the SYBR green assay used the FastSYBR
501  Green Master Mix (Applied Biosystems, Foster City, CA, USA). A standard curve ranging from
502 10°-10% copies (Mammal assay) or 10°-10" copies (Human & Bird assay) was also run for each
503  experimental run with the limit of quantification (LOQ) being 100 copies (Mammal) or 10 copies
504 (Human & Bird) per PCR. The Ct values, amplification efficiency, slope, and R? values for each
505  standard curve were compared to previously run standard curves, to ensure satisfactory

506  performance before being used to calculate copy numbers for that run. Each environmental

507  sample was diluted 1:10 and run in triplicate and the reaction volume (25 pl) contained a final
508 concentration of 0.2 mg/ml BSA. Amplification/cycling conditions were preformed per

509  published protocols for AllBac (73), HF183 (73), and GFD (16). TagMan assays were run with
510 an internal amplification control (74) with a down-shift of 1 cycle considered inhibition. Samples
511  spiked with a plasmid containing 10* copies of GFD amplicon were used as inhibition controls
512 for the SYBR assay, with a recovery of less than 10* copies (100%) considered inhibition. For a

513 list of primers, probes, and standard curve performance, see Supplementary Material 1.
514

515  16S library preparation. The V4 region of the 16S rRNA gene, using the 515F-806R primer-
516  barcode pairs, was used for amplicon sequencing (75). The Earth Microbiome Project protocol

517  was used for amplification and pooling of samples, with minor modifications (76). The Qubit®
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dsDNA HS assay was used to quantify sample concentrations, and 500 ng of DNA was pooled
per sample. The pool was then run on a 1.2 % low-melt agarose gel to separate primer-dimers
from acceptable product, and bands between 300-350 bps were cut and extracted as described
above. The final DNA sample was then run on the Agilent Technologies 2200 TapeStation
system (Santa Clara, CA, USA) to determine final size, quality, and purity of sample. Each
library was sent to the Hubbard Center for Genome Studies at the University of New Hampshire

to be sequenced (2 x 250 bp) on the Illumina HiSeq 2500 (San Diego, CA, USA).

Quality filtering and Operational Taxonomic Unit (OTU) picking. QIIME 1.9.1 was used to
perform all major quality filtering, and OTU picking (77). Forward and reversed reads were
quality trimmed (1 P25) and removed of Illumina adapters via Trimmomatic (78). Any reads that
were less than 200 bps were discarded, and reads were merged with the QIIME
joined_paired_ends.py, using a minimum overlap of 10 bps and a maximum percent difference
of 10%. Paired-end data were analyzed using the QIIME open-reference OTU picking strategy
with UCLUST for de novo picking and the Greengenes 13 8 database (79) for taxonomic
assignment. Alternative OTU picking strategies were also tested to determine best workflow, for
performance of difference strategies refer to Supplementary Material 2. Data for all sequenced
samples are publicly available through NCBI BioProject

(http://www.ncbi.nlm.nih.gov/bioproject/431501).

SourceTracker analysis. Samples from 4 source types (fresh water, soil, sediment, and marine

sediment) and 4 sink types (fresh water, estuary water, estuary beach water, and marine beach
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water) were analyzed by the open-source software SourceTracker v1.0 (37). Default parameters
were used (rarefaction depth 1000, burn-in 100, restart 10, alpha (0.001) and beta (0.01) dirichlet
hyperparameters) in accordance with previously published literature (53, 80). A ‘leave one out’
cross validation was performed to assess the general performance of the model and source
samples were iteratively assigned as sinks to assess how well a known sink would be assigned
(i.e. source = soil and sink = soil). The percent assignments from SourceTracker are the result of
the Gibbs Sampler assigning OTUs from an unknown sample to sources in a random and
iterative fashion, and then calculating likelihood of that OTU originating from said source. The
final output can be interpreted as the percent (or likelihood) of OTUs present in an unknown

sample originating from the sources used in the analysis

Partial least squares regression model. A partial least squares regression (PLSR) model was
used to determine the most important and significant variables affecting enterococci
concentrations (81). Two models were created, one for the estuary, estuary beach, and marine
beach sites, and one for the freshwater sites. Particle-associated enterococci, environment
variables (water temperature, air temperature, dissolved oxygen, salinity, height of previous high
tide, rainfall in previous 48 h), fecal source strength (mammal, human, and bird), and percent of
environmental source (fresh water, soil, sediment, and marine sediment) were used as
explanatory variables for the non-freshwater model. The same parameters, except height of
previous high tide and percent of freshwater source, were used for the freshwater model. All data
except the percent assignments from SourceTracker were log (x+1) transformed before
performing the analysis. A KFold cross validation (K=7) with the NIPALS method was used to

determine optimal factors and variable importance (VIP > 0.8) for each model. Models were then

25


https://doi.org/10.1101/311928
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/311928; this version posted May 1, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

563  re-run with only explanatory variables that were determined to be significant. To see model

564  validation and diagnostic plots, refer to Supplementary Material 3.

565  Routine statistical analysis and data visualizations. All routine statistical analyses were

566  performed in R v3.4.0, Python 3.6.1, or JMP Prol3, while multivariate analyses were performed
567  with PC-ORD v6. Graphing was performed in IPython notebook with matplotlib, seaborn,

568  pandas, and numpy packages. All pairwise comparisons were done using the Kruskal-Wallis
569  nonparametric method, with Dunn’s nonparametric multiple comparisons run post hoc using a

570 Bonferroni correction.
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858  Tables

Environmental Microbial Community Source (Including Marine Beach Source)

Water Sample Type Marine Beach  Freshwater Estuarine  Sediment Soil

Sediment
Estuary Beach 97% <0.01% 0.4% <0.01%  <0.01%
Estuary 94% 2.9% 0.2% 0.02% <0.01%
Freshwater <0.01% N/A <0.01% 74% 2.6%

Environmental Microbial Community Source (Excluding Marine Beach Source)

Water Sample Type Marine Beach  Freshwater Estuarine  Sediment Soil

Sediment
Estuary Beach N/A 66% 12% <0.01%  <0.01%
Estuary N/A 74% 7.6% 0.02% <0.01%
Marine Beach N/A 35% 19% <0.01% <0.01%
Freshwater N/A N/A 0% 74% 2.6%

859

860  Table 1. The relative contribution of different sources to the microbial communities in
861  estuarine and marine water. SourceTracker was run with two different configurations, one
862  where Marine Beach water was included as a potential source (top) and a second run where

863  Marine Beach water was excluded as a potential source (bottom).
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Freshwater Estuary, Estuary Beach & Marine Beach
PLSR 1 PLSR 1 PLSR 2
X Variable Loading X Variable Loading X Variable Loading
Particle ENT 0.501 Particle ENT 0.456 Particle ENT 0.420
gPCR Mammal | 0.352 gPCR Mammal 0.438 gPCR Mammal | -0.337
TSS 0.408 % Freshwater 0.408 % Freshwater -0.418
% Sediment 0.336 %Unknown -0.457 % Unknown 0.389
% Unknown 0.476 Water Temp 0.302 Water Temp -0.123
© (©)
Salinity -0.344 Hightide (ft) 0.170 Hightide (ft) 0.456
% Estuarine -0.294 % Estuarine 0.401
Sediment Sediment
Total Y 60.1% Total Y 47.2% Cumulative Y 61.8%
Variance Variance Variance

Table 2. Most Significant Relationships/Contributions for All Factors to Enterococci
Concentrations. Shown is the output from a partial least squares regression for a
freshwater and estuary/marine model. All variables shown have significant relationships for
each model (VIP > 0.8), and loadings are derived from re-running models with only variables
deemed significant. Model loadings are specific weights on a multivariate regression axis,
positive and negative loadings refer to positive or negative relationships to enterococci

concentrations. Negative loadings in the model are designated with a — before the number.
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Figure Legends

Figure 1: Wells Maine Study area and sampling sites. All water collection sites are marked
with a dark grey circle. Sites that correspond to fresh water are indicated with a (1), estuary (2),

estuary beach (3), and marine beach (4).

Figure 2: Geometric Mean Concentrations of Total and Particle Associated Enterococci
and Average Total Suspended Solids Concentrations at the Eight Study Sites. (A) Total
enterococci concentrations are represented with the blue bar, and particle associated enterococci
concentrations correspond to the green bar. Error bars are derived from variation from each site
across the entire study. (B) Violin plots were used to represent TSS concentrations, and the color
corresponds to the type of site including marine beach (red), estuary beach (purple), estuary

(green), or fresh water (blue). Horizontal lines go through the median of each violin plot.

Figure 3: Relative Levels of Mammal, Human, and Bird Fecal Source at the Different
Types of Study Sites. Box plots represent levels of microbial source tracking markers at marine
beach (Wells Beach), estuary beach (W11, W12, W13), estuary (W14 & W15), and fresh water

(Webhannet & Depot). Outlier data are represented with a black diamond.

Figure 4: 16S Taxa Profiles and the Top Three Most Abundant Bacterial Classes in All
Source and Sink Samples. Stacked bar plots represent percentages of the class level

composition of the microbial communities. Source corresponds to environmental sources that
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900  were finger-printed with the SourceTracker program, and then used to determine their presence
901  within water (sink) samples. The table represents the top three classes for each group of samples
902 and * corresponds to phylum level. For a complete list of all taxa assignments refer to

903  Supplementary material 4.

904

905  Figure 5. Differences Between Microbial Communities from Different Source Materials.
906  Samples are color-coded based on sample matrix (i.e. soil, fresh water, etc.). Percent of variation
907  explained are displayed on the x and y axis and the minimum stress of the ordination is shown in

908 the top left corner.

909
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Figure 1: Wells Maine Study area and sampling sites. All water collection sites are marked with
a dark grey circle. Sites that correspond to fresh water are indicated with a (1), estuary (2),
estuary beach (3), and marine beach (4).
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Figure 2: Geometric Mean Concentrations of Total and Particle Associated Enterococci and Average Total Suspended Solids Concentrations at the
Eight Study Sites. (A) Total enterococci concentrations are represented with the blue bar, and particle associated enterococci concentrations
correspond to the green bar. Error bars are derived from variation from each site across the entire study. (B) Violin plots were used to represent
TSS concentrations, and the color corresponds to the type of site including marine beach (red), estuary beach (purple), estuary (green), or fresh
water (blue). Horizontal lines go through the median of each violin plot.
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Figure 5. Differences Between Microbial Communities from Different Source Materials. Sam-
ples are color-coded based on sample matrix (i.e. soil, fresh water, etc.). Percent of variation
explained are displayed on the x and y axis and the minimum stress of the ordination is shown in
the top left corner.
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