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Abstract: Respiratory viruses are highly infectious; however, the variation of individuals'
physiologic responses to viral exposure is poorly understood. Most studies examining molecular
predictors of response focus on late stage predictors, typically near the time of peak symptoms.
To determine whether pre- or early post-exposure factors could predict response, we conducted a
community-based analysis to identify predictors of resilience or susceptibility to several
respiratory viruses (HLN1, H3N2, Rhinovirus, and RSV) using peripheral blood gene expression
profiles collected from healthy subjects prior to viral exposure, as well as up to 24 hours
following exposure. This analysis revealed that it is possible to construct models predictive of
symptoms using profiles even prior to viral exposure. Analysis of predictive gene features
revealed little overlap among models; however, in aggregate, these genes were enriched for
common pathways. Heme Metabolism, the most significantly enriched pathway, was associated

with higher risk of developing symptoms following viral exposure.
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Acute respiratory viral infections are among the most common reasons for outpatient clinical
encounters (1). Symptoms of viral infection may range from mild (e.g. sneezing, runny nose) to
life-threatening (dehydration, seizures, death), though many individuals exposed to respiratory
viruses remain entirely asymptomatic (2). Variability in individuals' responses to exposure has
been observed both in natural infections (3) and controlled human viral exposure studies.
Specifically, some individuals remained asymptomatic despite exposure to respiratory viruses,
including human rhinovirus (HRV) (4-6), respiratory syncytial virus (RSV) (4-6), influenza
H3N2 (4-9) and influenza HIN1 (4, 5, 9). Factors responsible for mediating response to
respiratory viral exposure are poorly understood. These individual responses are likely
influenced by multiple processes, including the host genetics (10), the basal state of the host
upon exposure (11), and the dynamics of host immune response in the early hours immediately
following exposure and throughout the infection (12). Many of these processes occur in the
peripheral blood through activation and recruitment of circulating immune cells (13). However,
it remains unknown whether host factors conferring resilience or susceptibility to symptomatic
infectious disease can be detected in peripheral blood before infection or whether they are only

apparent in response to pathogen exposure.

In order to identify such gene expression markers of resilience and susceptibility to acute
respiratory viral infection, we utilized gene expression data from seven human viral exposure
experiments (6, 7, 9). These exposure studies have shown that global gene expression patterns
measured in peripheral blood around the time of symptom onset (as early as 36 hours after viral
exposure) are highly correlated with symptomatic manifestations of illness (6, 9). However,
these later-stage observations do not necessarily reflect the spectrum of early time point immune

processes that might predict eventual infection. Since transcriptomic signals are weak at these
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early time points, the detection of early predictors of viral response has not yet been possible in
any individual study. By combining data collected across these seven studies and leveraging the
community to implement state-of-the-art analytical algorithms, the Respiratory Viral DREAM

Challenge (www.synapse.org/ViralChallenge) aimed to develop early predictors of resilience or

susceptibility to symptomatic manifestation based on expression profiles that were collected

prior to and at early time points following viral exposure.

Results
Human Viral Exposure Experiments

In order to determine whether viral susceptibility could be predicted prior to viral exposure, we
collated 7 human viral exposure experiments: one RSV, two influenza HIN1, two influenza
H3N2 and two human rhinovirus studies, in which a combined total of 148 healthy volunteers
were exposed to virus (Fig. 1A-B) or sham (n=7) (6, 7, 9). Subjects were excluded if pre-existing
neutralizing antibodies were detected, except for the RSV study in which neutralizing antibodies
were not an exclusion criteria. Each subject in the study was followed for up to 12 days after
exposure and serially sampled for peripheral blood gene expression by Affymetrix Human
U133A 2.0 GeneChips. Throughout the trial, subjects self-reported clinical symptom scores
across 8-10 symptoms (Fig. S1); these data were used to stratify subjects as either symptomatic
or asymptomatic and to quantify symptom severity. Additionally, nasopharyngeal swabs
measured viral shedding; these data were used to stratify subjects as either shedders or non-
shedders (Fig. 1C). Clinical symptoms were summarized based on a modified Jackson score (14)
and viral shedding was determined to be present if two or more measurable titers or one elevated

titer was observed within 24 hours following viral exposure (15). Viral shedding and clinical
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symptoms were provided to Respiratory Viral DREAM Challenge teams only for the training
data set (Fig. 1C). An additional, but not previously available, human exposure experiment to the
RSV virus (n = 21) was used as an independent test data set (Fig. 1A). The study design for this

data set was similar to those of the 7 original data sets.

Data Analysis Challenge

Using these data, an open data analysis challenge, the Respiratory Viral DREAM Challenge, was
formulated. Teams were asked to predict viral shedding and clinical symptoms based on
peripheral blood gene-expression from up to two timepoints: prior to viral exposure (To) or up to
24 hours post viral exposure (T4). Based on gene expression data from the two timepoints,
teams were asked to predict at least one of three outcomes: presence of viral shedding
(subchallenge 1 (SC1)), presence of symptoms, defined as a modified Jackson score > 6
(subchallenge 2 (SC2)), or symptom severity, defined as the logarithm of the modified Jackson
score (subchallenge 3 (SC3)). Teams were asked to submit predictions based on gene-expression
and basic demographic (age and gender) data from both timepoints to enable cross-timepoint
comparison. The 7 collated data sets served as a training dataset on which teams could build their
predictive models. For a subset of subjects (n = 23), phenotypic data were withheld to serve as a

leaderboard test set for evaluation with real-time feedback to teams.

Teams were asked to submit at least one leaderboard submission at each timepoint to be
evaluated on the leaderboard test set. Performance metrics for these models were returned in
real-time, and teams could update their submissions accordingly up to a maximum of 6

combined submissions per subchallenge. At the end of this exercise, teams were asked to provide
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leave-one-out cross-validation-based predictions on the training set (LOOCVs) and predictor

lists for each of their best models.

Submitted models were ultimately assessed on the held-out human RSV exposure data set
that had not been publicly available, previously. Predictions for the binary outcomes (shedding
and symptoms) were assessed using Area Under the Precision-Recall (AUPR) and Receiver
Operating Characteristic (AUROC) curves, and ranked using the mean rank of these two
measures. The predictions for the continuous outcome (symptom severity) were assessed using
Pearson’s correlation with the observed values. In each case, permutation-based p-values were

used to identify submissions that performed significantly better than those expected at random.

Challenge Results

For presence of symptoms (SC2), 27 models were assessed; 13 models were developed using Ty
predictors, and 14 models using T4 predictors. Four of the To models and three of the T,4, models
achieved a nominal p-value of 0.05 for AUPR or AUROC, with the best scoring models at each
timepoint achieving similar scores (AUPR(T)=0.958, AUROC(T()=0.863, AUPR(T24)=0.953,
AUROC(T,4)=0.863). Team Schrodinger’s Cat was the only team that achieved significance for
all measures and timepoints. Despite the few teams achieving statistical significance, the models
submitted were overall more predictive than expected at random (enrichment p-values 0.008,
0.002, 0.021, and 0.05 for AUPR(T,), AUROC(To), AUPR(T2z), and AUROC(T24), respectively;

Fig. 2A).

For symptom severity (SC3), 23 models were assessed; 11 models were developed using

Ty predictors and 12 models using T4 predictors. Four of the To models and two of the T,


https://doi.org/10.1101/311696
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/311696; this version posted April 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

models achieved a nominal p-value of 0.05 for correlation with the observed log-symptom score,
and as above, the best performing models scored similarly at both timepoints (r=0.490 and 0.495
for To and Ta4, respectively). Teams cwruPatho and Schrodinger’s Cat achieved significant
scores at both timepoints. Consistent with SC2, we also saw that the models submitted were
overall more predictive than expected at random (enrichment p-values 0.005 and 0.035 for Ty
and T.a, respectively; Fig. 2B). For both SC2 and SC3, enrichment was more pronounced at Ty
compared to T,4. Correlation between final scores and leaderboard scores was higher at To,

suggesting T4 predictions may have been subject to a greater degree of overfitting.

For viral shedding (SC1), 30 models were assessed from 16 different teams; 15 models
were developed using Ty predictors and 15 models using T4 predictors. No submissions were
statistically better than expected by random. In aggregate, these submissions showed no
enrichment (enrichment p-values 0.94, 0.95, 0.82, and 0.95, for AUPR(T,), AUROC(Ty),
AUPR(T4), and AUROC(T,4), respectively). In contrast, final scores were negatively correlated
with leaderboard scores (correlation -0.22, -0.19, -0.65, and -0.54 for AUPR(Ty), AUROC(Ty),
AUPR(T,4), and AUROC(T24), respectively) suggesting strong overfitting to the training data or
a lack of correspondence to viral shedding as assessed in the independent test data set, relative to
the training data sets. The negative correlation was strongest at T4 (Fig. S2). Accordingly,

results based on this subchallenge were excluded from further analysis.

Best performing approaches

The two overall best performing teams were Schrodinger’s Cat and cwruPatho. Team
Schrodinger’s Cat used the provided gene expression profiles before the viral exposure to predict

shedding and log symptom scores (binary and continuous outcomes, respectively). For the Ty
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models, arithmetic means over measurements prior to exposure were calculated, whereas for the
T,4 models, only the latest measurements before viral exposure were used. Epsilon support
vector regression (epsilon-SVR) (16) with radial kernel and 10-fold cross-validation were used to
develop the predictive models. Their work demonstrated that predictive models of symptoms

following viral exposure can be built using pre-exposure gene-expression.

Team cwruPatho constructed models of infection based on pathway modulation, rather
than gene expression, to predict infection outcomes. To do so, they used a sample-level
enrichment analysis (17) approach to summarize the expression of genes implicated in the
Hallmark gene sets (18) of the Molecular Signature DataBase (MSigDB) (19). They then fitted
LASSO regularized regression models, which integrate feature selection with a regression fit
(20), on the pathways to predict shedding, presence of symptoms and symptom severity
following viral exposure. Their work demonstrated that including multiple genes sharing the

same biological function results in more robust prediction than using any single surrogate gene.

Teams Schrodinger’s Cat and cwruPatho used different feature transformation methods
and machine learning approaches, suggesting that methods can successfully identify pre- or early
post-exposure transcriptomic markers of viral infection susceptibility or resilience. To gauge the
range of approaches taken, we extended this comparison to all Respiratory Viral DREAM
Challenge teams who reported details on the methods they used to develop their submissions.
We assessed the range of data preprocessing, feature selection and predictive modeling
approaches employed for the submissions, to determine whether any of these methods were
associated with prediction accuracy. Details of these three analysis steps (preprocessing, feature
selection and predictive modeling) were manually extracted from reports of 24 teams (35

separate reports) who submitted predictions either for the leaderboard test set or the independent
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test set. To more precisely reflect the conceptual variations across employed methodologies, each
of these three analysis tasks was broken down into 4 data preprocessing categories, 7 feature
selection categories and 9 predictive modeling categories (Table S1). Twenty of 24 (83.3%)
teams employed some version of data preprocessing, the task most significantly associated with
predictive ability (Fig. S3A). Specifically, exclusion of sham-exposed subjects and data

normalization associated best with predictive performance (Fig. 3).

Feature selection and predictive modeling approaches positively associated with
predictive ability differed depending on whether the task was classification (presence of
symptoms) or regression (symptom severity). Random forest-based predictive models performed
slightly better than SVM/SVR methods at predicting symptom status (SC2) (Fig. S3B).
However, there was no discernible pattern relating feature selection and improved performance
in SC2. Feature selection using machine learning approaches such as cross-validation was
associated with improved performance in predicting symptom severity (SC3) (Fig. 3), as were
SVM/SVR approaches when compared to linear regression model-based methods (e.g. logistic
regression; Fig. S3C). Of note, SVM/SVR approaches were the most popular among the

submissions.

We also sought to compare cross-timepoint predictions to determine the stability of
predictions by timepoint. Significant correlation was observed between predictions using T, and
T4 gene expression for symptomatic classification (SC2) (Leaderboard: p=0.608, p=1.04e-61,;
Independent test set: p=0.451, p=2.05e-25). Interestingly, we observed that approximately 25%
of subjects were difficult to predict based on T, gene expression profile (inherently difficult; Fig.
S4); similarly, approximately 25% of subjects were correctly predicted by the majority of teams

(inherently easy; Fig. S4). Inherently difficult subjects were also misclassified when T4 gene
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expression data was used for the predictions. Inherently easy subjects were also consistently easy
to classify using T4 gene expression data. This suggests ab initio characteristics allow some
subjects to be more susceptible or resilient to symptomatic disease and that, within 24 hours,
those characteristics are not substantially altered in post-exposure peripheral blood expression

profiles.

Biological Interpretation of Predictors

In addition to predictions, each team was asked to submit lists of gene expression features used
in their predictive models. Six teams submitted separate models for each virus and reported
virus-specific predictors. The remaining 28 teams reported predictors independent of virus,
submitting a single model for all viruses. With the exception of the list from cwruPatho, which
used pathway information in the selection of features, pathway analysis of individual predictor
lists showed no enrichment of pathways from MSigDB (19), possibly due to the tendency of

most feature selection algorithms to choose one or few features from within correlated sets.

We then assessed whether models showing predictive ability (leaderboard test set
AUROC > 0.5 for SC2 or r > 0 for SC3) tended to pick the same gene features, or whether the
different gene sets may provide complementary information. Within each subchallenge and
timepoint, significance of the overlap among predictor lists was calculated for every combination
of two or more predictor lists across teams. All two-way, three-way, four-way, etc. overlaps were
considered. This analysis revealed that there was no gene shared among all teams for any

timepoint or subchallenge (Fig. 4A).
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Despite the paucity of overlap among predictor lists, we sought to identify whether genes
used in the predictive models were part of the same biological processes or pathways. In other
words, we examined if different teams might have chosen different surrogate genes to represent
the same pathway. To test this hypothesis, we performed pathway enrichment analysis of the
union of predictors across predictor lists within timepoint and subchallenge. We observed
significant enrichments in each case (Fig. 4B), suggesting that predictive gene features are
indeed complementary across models. More pathways were enriched among predictors from T4
models (SC2=17 pathways and SC3=20 pathways) than from T, models (SC2=15 pathways and
SC3=17 pathways). At Ty, genes involved in the metabolism of heme and erythroblast
differentiation (HEME METABOLISM), genes specifically up-regulated by KRAS activation
(KRAS_SIGNALING_UP), genes defining an inflammatory response (INFLAMMATORY
RESPONSE) and genes mediating cell death by activation of caspases (APOPTOSIS) were
associated with presence of symptoms in both SC2 and SC3 (Fig. 4B). At T4, along with HEME
METABOLISM, the expression of several inflammatory response pathways like KRAS
SIGNALING, INFLAMMATORY RESPONSE, genes up-regulated in response to the gamma
cytokine IFNg (INTERFERON GAMMA RESPONSE), genes upregulated by IL6 via STAT3
(1L6 JAK STAT3 SIGNALING), genes regulated by NFKB in response to TNF (TNFA
SIGNALING VIA NFKB) and genes encoding components of the complement system
(COMPLEMENT) were associated with symptoms in both SC2 and SC3 (Fig. 4B). Additionally,
there was a significant overlap in genes across timepoints and subchallenges in each of these

enriched pathways (Fisher’s exact test p-value < 0.05) (Table S2).

A meta-analysis across subchallenges (SC2 and SC3) and timepoints (Toand T,4) was

performed in order to identify the most significant pathways associated with outcome. HEME
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METABOLISM was the most significantly associated with developing symptoms
(susceptibility), while OXIDATIVE PHOSPHORYLATION and MYC TARGETS were the
most significantly associated with a lack of symptoms (resilience) (Fig. S5). This indicates that
heme, known to generate inflammatory mediators through the activation of selective
inflammatory pathways (21) is the best predictor of becoming symptomatic both pre- and early
post-exposure to respiratory viruses. Genes in HEME METABOLISM associated with
symptoms include genes coding for the hemoglobin subunits (HBB, HBD, HBQ1 and HBZ), the
heme binding protein (HEBP1) and genes coding for enzymes important for the synthesis of
heme (ALAS2, FECH, HMBS, UROD). It also includes glycophorins, which are the major
erythrocyte membrane proteins (GYPA, GYPB, GYPC and GYPE), which are known receptors
for the influenza virus (Fig. 4C) (22, 23). Genes essential for erythroid maturation and
differentiation (NEF2, TAL1, EPOR and GATAL), including the transcription factor GATAL
and its targets, the hemoglobin subunit genes HBB and HBG1/2, were also part of HEME

METABOLISM associated with an increase in symptom frequencies and severity.

Discussion

Using an open data analysis challenge framework, this study showed that models based on
transcriptomic profiles, even prior to viral exposure, were predictive of infectious symptoms and
symptom severity. The best scoring individual models for predicting symptoms and log-
symptom score, though statistically significant, fall short of practical clinical significance.
However, these outcomes suggest that there is potential to develop clinically relevant tests based

on the knowledge gained from these results, though this would necessitate further efforts to
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generate more data or identify different biomarker assays which more accurately assess the

mechanisms observed in the transcriptomic models.

A generally useful exercise in crowdsourcing-based challenges is to construct ensembles
from the submissions to assimilate the knowledge contained in them, and boost the overall
predictive power of the challenge (24). This exercise has yielded useful results in earlier
benchmark studies (25, 26) and the DREAM Rheumatoid Arthritis Challenge (27). However, the
ensembles constructed for the Respiratory Viral DREAM Challenge did not perform better than
the respective best performers among all the individual submissions for the various
subchallenges and time points. We attribute this shortcoming partly to the relatively small
training set (118 subjects), which may incline the ensemble methods to overfit these data, and the
assumption of class-conditioned independence of the submissions inherent in SUMMA may not
have been appropriate in this challenge (28). The relative homogeneity, or lack of diversity,
among the submissions for the various subchallenges and timepoints may have been another

potential factor behind the diminished performance of the ensembles (29).

The relative homogeneity of submissions and observation that the same subjects are
misclassified by almost all participating teams suggests there may be a plateau in predictive
ability when using gene expression to predict the presence of symptoms or symptom severity. It
is possible that an integrative analysis supplementing or replacing the gene expression data with
post-transcriptional (such as metabolomic or proteomic) data could further improve accuracy.
For example, metabolomic data have been used to differentiate patients with influenza HIN1
from others with bacterial pneumonia or non-infectious conditions as well as differentiate
influenza survivors from non-survivors (30). With respect to proteomics, Burke et al. used four

of the viral exposure studies described here to derive and validate a proteomic signature from
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nasal lavage samples which distinguish, with high accuracy, symptomatic from asymptomatic
subjects at time of maximal symptoms (31). Cytokines are a special class of proteins that has
been investigated in a variety of infectious disease conditions. Of particular relevance, cytokine
profiling has been performed for one of the influenza H3N2 studies used in this Challenge. In
that work, McClain et al. demonstrated that several cytokines were upregulated early after viral
exposure (within 24 hours in some cases) and differentiated symptomatic from asymptomatic
cases (32). Baseline differences in cytokine expression were not observed, however, suggesting
that cytokine expression is useful for predicting response to viral exposure but not baseline
susceptibility. To our knowledge, no study has identified baseline metabolomic or proteomic
predictors of resilience or susceptibility to respiratory viral infection. In addition, the
combination of these data with transcriptomic predictors has not yet been investigated and may

yield robust predictors of susceptibility or resistance to infection.

Our analyses revealed a significant concordance between predictions at To and To4 (Fig.
S4), as well as a significant overlap between predictors at each of these timepoints (Table S2).
Given the stability of predictions and predictors between T, and T4, it appears that the pre-
exposure biological mechanisms conferring susceptibility or resilience to respiratory viral
infection may be observable up to one day post-exposure. We also observed significant overlap
between gene signatures at both Ty and T4 and late stage signatures of viral infection, reported
in the literature, and derived from gene-expression 48 hours or later after viral exposure (Table
S3) (59, 15, 33-38). The overlap between the predictors identified in this study and the later
stage signatures was more significant at T,4 than Ty, suggesting that pre-exposure signatures of

susceptibility differ somewhat from post-exposure signatures of active infection, and T4
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predictors may reflect some aspects of both. The Ty gene signatures may encompass novel

insight into ab initio factors that confer resilience or susceptibility.

Pathway enrichment analysis in our study revealed that the most significantly enriched
pathway associated with symptomatic infection was HEME METABOLISM, known to have a
direct role in immunity through activation of innate immune receptors on macrophages and
neutrophils (21). Of note, genes part of HEME METABOLISM were also enriched among late
stage signatures of viral infection (ex. Hemoglobin gene HBZ and the iron containing
glycoprotein ACPS5 in (33)). Iron (obtained from heme) homeostasis is an important aspect of
human health and disease. Viruses require an iron-rich host to survive and grow, and iron
accumulation in macrophages has been shown to favor replication and colonization of several
viruses (e.g. HIV-1, HCV) and other pathogenic microorganisms (39). Furthermore, iron-replete
cells have been shown to be better hosts for viral proliferation (39). Increased iron loading in
macrophages positively correlates with mortality (39) and it has been shown that viral infection
can cause iron overload which could further exacerbate disease. Additionally, previous evidence
suggests counteracting iron accumulation may limit infection (21, 39). Studies have shown that
limiting iron availability to infected cells (by the use of iron chelators) curbed the growth of
several infectious viruses and ameliorated disease (21, 39-41). This important role of iron in the
susceptibility and response to infection may be the mechanism by which HEME METABOLISM
genes conferred susceptibility to respiratory viral infection. As such, it represents an important
biological pathway potentially offering a means by which an individual’s susceptibility or
response to infection can be optimized. Such a relationship should be investigated in future
studies of infection susceptibility. In addition, Heme-oxygenase (HMOX1), a heme-degrading

enzyme that antagonizes heme induced inflammation and is essential for the clearance of heme
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from circulation (42), was among the predictors from the To models. Interestingly, the expression
of this gene at baseline was associated with lack of symptoms (for both SC2 and SC3), in
concordance with its reported antiviral role during influenza infection (43, 44). Augmentation of
HMOX1 expression by gene transfer had provided cellular resistance against heme toxicity (45).
Hence enhancing HMOX1 activity could be an alternative to antagonize heme induced effects

and thereby controlling infection and inflammation.

In addition to HEME METABOLISM, pro-inflammatory pathways such as
INFLAMMATORY RESPONSE, KRAS SIGNALING, and APOPTOSIS were also associated
with susceptibility to viral infection in our study, while homeostatic pathways, such as
OXIDATIVE PHOSPHORYLATION and MYC TARGETS, were associated with resilience,
both prior to and post-viral exposure (Fig. 4). Enrichment of these pathways among T4
predictors was more significant than among the Ty predictors, suggesting these mechanisms are
not only emblematic of baseline system health, but also response to viral invasion. Additional
pathways enriched among T4 predictors include INTERFERON GAMMA RESPONSE and
COMPLEMENT, which are involved in innate and acquired immunity. Several genes among Ty
and T4 predictors overlapped with genes positively associated with flu vaccination response
(46). Among them, FCER1G and STAB1, members of the inflammatory response pathway
positively associated with symptoms in this study and were elevated prior to vaccination in
young adults who showed good response to vaccination (46) (Fisher exact test: p=0.0338 for Ty
and p=0.000673 for T,4). This suggest that individuals predicted at a higher risk of presenting

symptoms following influenza exposure may also be the most likely to benefit from vaccination.

The Respiratory Viral DREAM Challenge is to date the largest and most comprehensive

analysis of early stage prediction of viral susceptibility. The open data analysis challenge


https://doi.org/10.1101/311696
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/311696; this version posted April 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

framework is useful for comparing approaches and identifying the most scientifically or
clinically relevant model or method in an unbiased fashion (24). In this case, we observed few
commonalities among the best performing models of symptomatic susceptibility to respiratory
viral exposure. Indeed, the overall best performing teams in the challenge used different machine
learning techniques to build their models. Interestingly, data preprocessing was the analysis task
most significantly associated with model accuracy, suggesting what has often been speculated,

that adequate attention to data processing prior to predictive modeling is a crucial first step (47).

The open data challenge framework is also useful in arriving at consensus regarding
research outcomes that may guide future efforts within a field (24). Through this challenge, we
have identified ab initio transcriptomic signatures predictive of response to viral exposure, which
has provided valuable insight into the biological mechanisms conferring susceptibility to
infection. This insight was not evident from any individual model, but became apparent with the
meta-analysis of the individual signatures. While development of a diagnostic test of baseline
susceptibility in not yet feasible based on these findings, they suggest potential for development

in this area.
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Methods
Training Data

Training data came from seven related viral exposure trials, representing four different
respiratory viruses. The datasets are DEE1 RSV, DEE2 H3N2, DEE3 HIN1, DEE4X H1N1,
DEES H3N2, Rhinovirus Duke, and Rhinovirus UVA (6, 7, 9). In each of these human viral
exposure trials, healthy volunteers were followed for seven to nine days following controlled
nasal exposure to the specified respiratory virus. Subjects enrolled into these viral exposure
experiments had to meet several inclusion and exclusion criteria. Among them was an evaluation
of pre-existing neutralizing antibodies to the viral strain. In the case of influenza H3N2 and
influenza H1N1, all subjects were screened for such antibodies. Any subject with pre-existing
antibodies to the viral strain was excluded. For the rhinovirus studies, subjects with a serum
neutralizing antibody titer to RV39 > 1:4 at pre-screening were excluded. For the RSV study,
subjects were pre-screened for neutralizing antibodies, although the presence of such antibodies

was not an exclusion criterion.

Symptom data and nasal lavage samples were collected from each subject on a repeated basis
over the course of 7-9 days. Viral infection was quantified by measuring release of viral particles
from nasal passages (“viral shedding™), as assessed from nasal lavage samples via qualitative
viral culture and/or quantitative influenza RT-PCR. Symptom data were collected through self-
report on a repeated basis. Symptoms were quantified using a modified Jackson score (14),
which assessed the severity of eight upper respiratory symptoms (runny nose, cough, headache,
malaise, myalgia, sneeze, sore throat, and stuffy nose) rated 0-4, with 4 being most severe.

Scores were integrated daily over 5-day windows.
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Blood was collected and gene expression of peripheral blood was performed 1 day (24 to 30
hours) prior to exposure, immediately prior to exposure, and at regular intervals following
exposure. These peripheral blood samples were gene expression profiled on the Affy Human

Genome U133A 2.0 array.

All subjects exposed to influenza (HLN1 or H3N2) received oseltamivir 5 days post-exposure.
However, 14 (of 21) subjects in the DEE5 H3N2 cohort received early treatment (24 hours post-
exposure) regardless of symptoms or shedding. Rhinovirus Duke additionally included 7

volunteers who were exposed to sham rather than active virus.

All subjects provided written consents, and each of the seven trials was reviewed and approved

by the appropriate governing IRB.

RSV Test Data

Healthy non-smoking adults aged 18-45 were eligible for inclusion after screening to exclude
underlying immunodeficiencies. A total of 21 subjects (10 female) were inoculated with 10*
plaque-forming units of RSV A Memphis 37 (RSV M37) by intranasal drops and quarantined
from 1 day before inoculation to the 12th day after. Peripheral blood samples were taken
immediately before inoculation and regularly for the next 7 days and profiled on the Affy Human
Genome U133A 2.0 array. Subjects were discharged after study day 12, provided no or mild
respiratory symptoms and a negative RSV antigen respiratory secretions test. Shedding was
determined by polymerase chain reaction (PCR) in nasal lavage and defined as detectable virus
for >2 days between Day +2 and Day +10 to avoid false-positives from the viral inoculum and to

align case definitions with the other 7 studies. Subjects filled a diary of upper respiratory tract
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symptoms from Day -1 to Day +12, which was summarized using a modified Jackson score. All
subjects returned for further nasal and blood sampling on Day +28 for safety purposes. All
subjects provided written informed consent and the study was approved by the UK National

Research Ethics Service (London-Fulham Research Ethics Committee ref. 11/L0O/1826).

Analysis Challenge Design

The training data were split into training and leaderboard sets, where the leaderboard subjects
were chosen randomly from 3 of the trials: DEE4X HIN1, DEE5 H3N2, and Rhinovirus Duke,
which were not publicly available at the time of challenge launch. Outcome data for the
leaderboard set were not provided to the teams, but instead, teams were able to test predictions in
these individuals using the leaderboard, with a maximum of 6 submissions per subchallenge. Of
these, at least one submission was required to use only data prior to viral exposure and at least

one using data up to 24 hours post-exposure.

For the training data, teams had access to clinical and demographic variables: age, sex, whether
the subject received early oseltamivir treatment (DEE5 H3N2 only) and whether the subject
received sham exposure rather than virus (Rhinovirus Duke only), as well as gene expression
data for the entire time-course of the studies. They also received data for the three outcomes used

in the data analysis challenge:

e Subchallenge 1: SHEDDING_SC1, a binary variable indicating presence of virus in nasal

swab following exposure

e Subchallenge 2: SYMPTOMATIC_SC2, a binary variable indicating post-exposure

maximum 5-day integrated symptom score >= 6
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e Subchallenge 3: LOGSYMPTSCORE_SC3, a continuous variable indicating the log of

the maximum 5-day integrated symptom score+1

as well as the granular symptom data by day and symptom category. For the leaderboard test
data, they were supplied with the clinical and demographic variables and gene expression data up

to 24 hours post-exposure.

Final assessment was performed in the RSV Test Data (i.e. independent test set), and outcomes
for these subjects were withheld from teams. In order to assure that predictions were limited to
data from the appropriate time window, the gene-expression data were released in two phases
corresponding to data prior to viral exposure, and data up to 24 hours post exposure. Teams were

also supplied with age and sex information for these subjects.

Both raw (CEL files) and normalized versions of the gene-expression data were made available
to teams. Both versions contained only profiles that pass QC metrics including those for RNA
Degradation, scale factors, percent genes present, B-actin 3’ to 5’ ratio and GAPDH 3’ to 5’ ratio
in the Affy Bioconductor package. Normalization via RMA was performed on all expression data
across all timepoints for the training and leaderboard data sets. The RSV data were later

normalized together with the training and leaderboard data.

Submission Scoring

Team predictions were compared to true values using AUPR and AUROC for subchallenges 1
and 2, and Pearson correlation for subchallenge 3. For each submission, a p-value, estimating the
probability of observing the score under the null hypothesis that the predicted labels are random,

was computed by 10,000 permutations of the predictions relative to the true values.
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We also had access to leaderboard predictions from 10,000 models build on data with randomly
permuted labels for 3 teams for SC2 and 2 teams for SC3. This second test estimates the
probability of observing the score under the null hypothesis that the independent variables does
not contain information about the target variable within the model structure used in the predictor.
Comparisons between permutation p-values and scores from models built on the permuted data
showed that the latter approach to p-value computation was slightly more conservative (data not
shown), and presumably more robust to overfitting the training data. Albeit theoretically

preferable, the computational demands of this approach makes it infeasible for most challenges.

Heterogeneity of the Predictions

To and T4 predictions for each outcome and team were collected to assess whether they were
correlated to each other. Three teams provided predictions as binary values while 12 teams
provided predictions as continuous values on different scales. In order to compare binary and
continuous predictions, we first transformed them into ranks (with ties given the same average
rank) and then ordered subjects increasingly by their mean rank across outcomes (mean-rank).
The lower the mean-rank, the more likely a subject was predicted by the teams as not showing
shedding/symptoms, whereas a higher mean-rank means a subject was predicted by most of the
teams as showing shedding/symptoms. Distribution of the mean-rank (Fig. S4) revealed three
groups of subjects: (1) ~25% of subjects correctly predicted by most of the teams (i.e. inherently
easy), (2) ~25% of subjects incorrectly predicted by most of the teams (i.e. inherently difficult)

and (3) ~50% of subjects who were predicted differently by the teams.
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Ensemble Prediction

We constructed a variety of ensembles from the teams’ submissions to the various subchallenges
as a part of the collaborative phase of the Respiratory Viral DREAM Challenge. To enable a
comparative analysis between individual and ensemble models in the collaborative phase, the
teams were requested to submit leave-one-out cross-validation (LOOCV)-derived predictions on
the training examples using the same methods used to generate leaderboard and/or test set
predictions in the competitive phase. The LOOCV setup, which doesn’t involve random
subsetting of the training data, was chosen to avoid potential overfitting that can otherwise occur
from training and testing on predictions made on the same set of examples (25). We used three
types of approaches for learning ensembles, namely stacking and its clustering-based variants
(25), Reinforcement Learning-based ensemble selection (26) methods, as well as SUMMA, an
unsupervised method for the aggregation of predictions (28). Consistent with the process
followed by the individual teams, we learnt all the ensembles using the training set LOOCV-
derived predictions described above, and used the leaderboard data to select the final models to

be evaluated on the test data.

Combined Gene Sets

Statistical significance of the overlap among predictor lists was calculated using the multi-set
intersection probability method implemented in the SuperExactTest R package (48). A first set of
analysis was performed with teams whose leaderboard AUROC > 0.5. A second set of analysis
aimed at identifying genes that overlap virus-specific, subchallenge-specific and timepoint-
specific predictive models, was restricted to teams that provided virus-specific (Nautilus, aydin,

SSN _Dream Team, Txsolo, cwruPatho and Aganita), subchallenge-specific (aydin,
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SSN_Dream_Team, cwruPatho, jhou) and timepoint-specific predictors (aydin,
SSN_Dream_Team, cwruPatho, Espoir, jdn, jhou, burkhajo) and participated in the leaderboard
phase of the challenge, respectively. For both analyses, overlapping predictors associated with p-

values less than or equal to 0.05 were considered significant.

Pathway enrichment analysis

To assess pathway enrichment among predictors of infection, we considered predictors from
teams with leaderboard AUROC > 0.5 (SC2) or Pearson correlation, r > 0 (SC3). Affymetrix
Human U133A 2.0 GeneChip probe identifiers were mapped to gene symbols. We removed
probes matching multiple genes, and when multiple probes matched a single gene, we retained

the probe with the maximum median intensity across subjects.

For the list of predictors of presence of symptoms (SC2), we calculated the log2 fold-change of
features (symptomatic(1)/asymptomatic(0)) at T and To4, and for prediction of the symptom
scores (SC3), we calculated the Spearman’s correlation coefficient of the features, at To and Toa,
with the outcome. Pathway enrichment was then performed on the union of all predictors (across
the teams) that were associated with presence/increase severity of symptoms (SC2: log2 fold-
change > 0 and SC3: Spearman’s correlation > 0), as well as, for the union of all predictors
(across teams) that were associated with lack of symptoms/lower symptoms severity (SC2: log2
fold-change < 0 and SC3: Spearman’s correlation < 0), separately by timepoint and
subchallenge. We used the Hallmark gene sets (version 6.0) (18) of the Molecular Signature
DataBase (MSigDB) (19) for the enrichment, and calculated the significance of enrichment using
Fisher’s exact test. The resulting p-values were corrected for multiple comparisons using the

Benjamini and Hochberg algorithm. Only significantly enriched pathways (corrected p-value <


https://doi.org/10.1101/311696
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/311696; this version posted April 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

0.05) were reported. Meta-analyses across subchallenges and timepoints were performed using

the maxP test statistic (49).
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Fig. 1. Respiratory Viral DREAM Challenge. (A) Schematic representation of the Respiratory
Viral DREAM Challenge. (B) Challenge data come from seven viral exposure trials with sham or
one of 4 different respiratory viruses (HIN1, H3N2, Rhinovirus, and RSV). In each of these
trials, healthy volunteers were followed for seven to nine days following controlled nasal
exposure to one respiratory virus. Blood was collected and gene expression of peripheral blood
was performed 1 day (24 to 30 hours) prior to exposure, immediately prior to exposure and at
regular intervals following exposure. Data were split into a training, leaderboard, and
independent test set. Outcome data for the leaderboard and independent test set were not
provided to the teams, but instead teams were asked to predict them based on gene-expression
pre-exposure (To) or up to 24 hours post-exposure (T24). (C) Symptom data and nasal lavage
samples were collected from each subject on a repeated basis over the course of 7-9 days. Viral
infection was quantified by measuring release of viral particles from viral culture or by gRT-
PCR ("viral shedding™). Symptomatic data were collected through self-report on a repeated basis.
Symptoms were quantified using a modified Jackson score, which assessed the severity of 8
upper respiratory symptoms (runny nose, cough, headache, malaise, myalgia, sneeze, sore throat
and stuffy nose).
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Fig. 2. Models predict presence of symptoms and symptom severity better than expected at
random. Observed -logio(p-value) versus the null expectation for submitted predictions for
predicting (A) presence of symptoms (SC2) and (B) log symptom score (SC3). For both
subchallenges significant enrichment of p-values (enrichment p-value 0.008, 0.002, 0.021, and
0.05 for AUPR(T,), AUROC(To), AUPR(T24), and AUROC(T24), respectively, for presence of
symptoms, and enrichment p-value 0.005 and 0.035 for T, and T4, respectively, for log
symptom score) across submissions demonstrates that pre- and early post-exposure
transcriptomic data can predict susceptibility to respiratory viruses.
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Fig. 3. Adequate preprocessing leads to more accurate predictors of symptoms presence
and severity. (A) Schematic representation of the analysis of the participating teams' writeups to
identify methodological steps associated with more accurate prediction of symptoms. First, the
writeups were manually inspected to identify the preprocessing, feature selection and predictive
modeling method used by each team. Second, the methods were regrouped into general
categories across teams. Third, each general method was assessed for its association with
predictive model accuracies on the leaderboard test set and the independent test set. (B) Heatmap
showing the association of each general method with prediction ability (i.e. AUROC for
subchallenge 2 (prediction of symptom presence; SC2) and Pearson’s correlation coefficient for
subchallenge 3 (prediction of symptom severity; SC3)). For each general method, a Wilcoxon
rank-sum test was used to assess the association between using the method (coded as a binary
variable) and prediction ability.
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Fig. 4. Overlap and pathway enrichment among predictors of symptoms. (A) Percent of
team combinations showing statistically significant intersections of predictors at To and Tas.
Only teams whose with AUROC > 0.5 or r > 0 for subchallenge 2 and 3, respectively, were used
for this analysis. The x-axis indicates the number of teams included in the combination. For
example, the value 2 corresponds to pairwise overlaps, 3 corresponds to 3-way overlaps, etc. The
y-axis indicates the percentage of team combinations with a statistically significant (p-value <
0.05) predictor intersection. Point size indicates median intersection size of predictors among
team combinations with significant predictor intersection; ‘X’ indicates no significant predictor
intersection. (B) Pathway enrichment among predictors of infection for each subchallenge (SC2
and SC3) at Tp and T»4. The x-axis indicates subchallenge and each grid indicates timepoint. The
y-axis indicates pathways enriched among predictors with a Benjamini-Hochberg corrected p-
value < 0.05. Point size represents the fisher’s exact test enrichment -logio(p-value). Point colors
indicate whether the pathway was associated with symptoms (red) or lack thereof (blue).
Pathways shared between both SC2 and SC3 at each timepoint are highlighted in grey. Pathways
are ordered by the decreasing maxP test statistic as determined in Fig S5 (C) GeneMANIA
network of the union of predictors involved in the Heme metabolism pathway across time points
(To and T4) and subchallenges (SC2 and SC3). Edges are inferred by GeneMANIA (50)
corresponding to co-expression (purple), physical interactions (orange) and genetic interactions
(green) among genes. Node size corresponds to the number of teams that selected the predictor.
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