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ABSTRACT 
The ability to predict local structural features of a protein from the primary sequence 
is of paramount importance for unravelling its function in absence of experimental 
structural information. Two main factors affect the utility of potential prediction tools: 
their accuracy must enable extraction of reliable structural information on the 
proteins of interest, and their runtime must be low to keep pace with sequencing data 
being generated at a constantly increasing speed. 
Here, we present an updated and extended version of the NetSurfP tool 
(http://www.cbs.dtu.dk/services/NetSurfP-2.0/), that can predict the most important 
local structural features with unprecedented accuracy and runtime. NetSurfP-2.0 is 
sequence-based and uses an architecture composed of convolutional and long 
short-term memory neural networks trained on solved protein structures. Using a 
single integrated model, NetSurfP-2.0 predicts solvent accessibility, secondary 
structure, structural disorder, and backbone dihedral angles for each residue of the 
input sequences. 
We assessed the accuracy of NetSurfP-2.0 on several independent test datasets 
and found it to consistently produce state-of-the-art predictions for each of its output 
features. We observe a correlation of 80% between predictions and experimental 
data for solvent accessibility, and a precision of 85% on secondary structure 3-class 
predictions. In addition to improved accuracy, the processing time has been 
optimized to allow predicting more than 1,000 proteins in less than 2 hours, and 
complete proteomes in less than 1 day.  
 
INTRODUCTION 
The Anfinsen experiment, showing that the structural characteristics of a protein are 
encoded in its primary sequence alone, is more than 50 years old (1). As a practical 
application of it, several methods have been developed over the last decades to 
predict from sequence only several protein structural features, including solvent 
accessibility, secondary structure, backbone geometry, and disorder (2-7). These 
tools have tremendously impacted biology and chemistry, and some are among the 
most cited works in the field. They have been extensively used to annotate novel 
sequences, thus facilitating their characterisation. The accuracy of said methods 
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plays a central role here: the rate of errors in many computationally-generated 
annotations is a well-known and unresolved problem affecting public databases (8). 
2009). Such errors often propagate through databases and sequence annotations, 
and the availability of high-quality predictions is hence of primary importance to limit 
their occurrence. 
On the other hand, the amount of novel sequences has been steadily increasing 
over the last years (9), and not only experimental methods, but also computational 
predictions of structural and functional features have a hard time keeping up with it. 
This creates a conflict between the need for accurate predictions, and the pace at 
which we can generate them. 
 
NetSurfP-1.0 (10) is a tool published in 2009 for prediction of solvent accessibility 
and secondary structure using a feed-forward neural network architecture. Since 
then, deep learning techniques have affected the application of machine learning in 
biology expanding the ability of prediction tools to produce more accurate results on 
complex datasets (11-18). Here, we present NetSurfP-2.0, a new extended version 
of NetSurfP, that uses a deep neural network approach to accurately predict 
absolute and relative solvent accessibility, secondary structure using both 3- and 8-
class definitions (19), φ and ψ dihedral angles, and structural disorder (20), of any 
given protein from its primary sequence only. By having an integrated deep model 
with several outputs, NetSurfP-2.0 can not only significantly reduce the 
computational time, but also achieve an improved accuracy that could not be 
reached by having separate models for each feature. In fact, when assessed on 
various test sets with less than 25% sequence identity to any protein used in the 
training, its accuracy was consistently on par with or better than that of other state-
of-the-art tools (3,4,17,21,22). In particular, we observed a significant increase in the 
accuracy of solvent accessibility, secondary structure, and disorder over all the other 
tested methods.  
NetSurfP-2.0 uses different approaches to make predictions for small and large sets 
of sequences, thus improving its time efficiency without compromising its accuracy. It 
has a user-friendly interface allowing non-expert users to obtain and analyse their 
results via a browser, thanks to its graphical output, or to download them in several 
common formats for further analysis.  
 
 
MATERIALS AND METHODS 
We describe briefly the dataset and method used for training NetSurfP-2.0, and the 
validations performed.  
  
Structural dataset 
A structural dataset consisting of 12,185 crystal structures was obtained from the 
Protein Data Bank (PDB) (23), culled and selected by the PISCES server (24) with 
25% sequence similarity clustering threshold and a resolution of 2.5 Å or better. To 
avoid overfitting, any sequence that had more than 25% identity to any sequences in 
the test datasets (see “Evaluation” section for details) was removed, as well as 
peptide chains with less than 20 residues, leaving 10,837 sequences. Finally, we 
randomly selected 500 sequences (validation set) left out for early stopping and 
parameter optimization, leaving 10,337 sequences for training. 
  
Structural Features 
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For all residues in each chain in the training dataset, we calculated its absolute and 
relative solvent accessibility (ASA and RSA, respectively), 3- and 8-class secondary 
structure classification (SS3 and SS8, respectively), and the backbone dihedral 
angles φ and ψ using the DSSP software (19). Finally, each residue that was present 
in the chain refseq sequence, but not in the solved structure, was defined as 
disordered. It is important to mention that disordered residues cannot be annotated 
with any of the other features, since no atomic coordinates are available for these 
residues. 
  
Protein sequence profiles 
NetSurfP-2.0, like its predecessor, exploits sequence profiles of the target protein for 
its prediction. We used two different ways of generating such profiles. The first 
exploits the HH-suite software (25), that runs quickly on individual sequences, while 
the second uses the MMseqs2 software (26), that is optimized for searches on large 
data sets. In both cases, the profile-generation tools were run with default 
parameters, except MMseqs2 which used 2 iterations with the `--max-seqs` 
parameter set to 2,000. 
  
Deep Network architecture 
The model was implemented using the Keras library. The input layer of the model 
consists of the one-hot (sparse) encoded sequences (20 features) plus the full HMM 
profiles from HH-suite (30 features in total, comprising 20 features for the amino acid 
profile, 7 features for state transition probabilities, and 3 features for local alignment 
diversity), giving a total of 50 input features. This input is then connected to two 
Convolutional Neural Network (CNN) layers, consisting of 32 filters each with size 
129 and 257, respectively. The CNN output is concatenated with the initial 50 input 
features and connected to two bidirectional long short-term memory (LSTM) layers 
with 1024 nodes (Figure 1, panel A). 
 
Each output (RSA, SS8, SS3, φ, ψ, and disorder) is calculated with a Fully 
Connected (FC) layer using the outputs from the final LSTM layer. RSA is encoded 
as a single output between 0 and 1. ASA output is not directly predicted, but 
calculated by multiplying RSA and ASAmax (27). SS8, SS3, and disorder, are 
encoded as 8, 3, or 2 outputs with the target encoded as a sparse vector (target is 
set to 1, while rest of the elements are 0). φ and ψ are each encoded as a vector of 
length 2, where the first element is the sine of the angle and the second element is 
the cosine. This encoding reduces the effect of the periodicity of the angles (28), and 
the predicted angle can be calculated with the arctan2 function. 
  
Training 
The training was performed using mini-batches of size 15. The individual learning 
rate of each neuron was optimized using the Adam function (29). Early stopping was 
performed on the validation set. Since the different target values for each output 
have different distributions, a weighted sum of different loss functions was used: 
SS8, SS3 and disorder use cross entropy loss, while RSA, φ and ψ use mean 
squared error loss. Weights were adjusted so each loss contribution was 
approximately equal and then fine-tuned for maximum overall performance. When 
the target value for a feature of a given residue was missing, e.g. for secondary 
structure of disordered residues, or φ angles of N-terminal residues, the loss for that 
output was set to 0. 
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Evaluation  
The final two models one trained with the HH-suite and one with MMseqs2 profiles 
were tested on 3 independent datasets: the TS115 dataset (115 proteins)(Yang et al. 
2016), the CB513 datasets (513 protein regions from 434 proteins) (31), and a 
dataset consisting of all the free-modeling targets (21 proteins) at the CASP 12 
experiment (32). No protein with more than 25% sequence identity to the proteins in 
these datasets was present in the training. Disorder prediction was not performed on 
the CB513 dataset since it contains very few disordered regions. 
We used different metrics to evaluate each feature: Pearson’s correlation coefficient 
(PCC) for solvent accessibilities, Q3 and Q8 accuracy for SS3 and SS8 respectively 
(17), mean absolute error in degrees for φ and ψ angles (MAE), Matthew’s 
correlation coefficient (MCC) and False Positive Rate (FPR) for disorder. In each 
dataset, the performance was calculated both as the average over all the residues in 
the dataset (per residue) and as the average of the performances per structure, the 
latter being defined as the average of the metric on all the residue of each given 
structure. The p-values between the top-scoring method and all the other methods 
on a given feature in a dataset were calculated using a 2-tailed paired Student’s t-
test on the corresponding performances per structure. 
 
DISPROT dataset 
We retrieved all the entries in DisProt, a database containing proteins annotated with 
several experimentally validated disorder types. All proteins with an available solved 
structure were removed to avoid overlaps with the training set. For each residue of 
each protein, we compare its experimental disorder annotation to the disorder 
prediction from NetSurfP-2.0. We classified proteins with more than 75% of their 
residues being disordered as completely disordered proteins. 
 
 
RESULTS 
We have compared the performance of NetSurfP-2.0 to other state-of-the-art tools 
with similar functionality: NetSurfP-1.0 (10), Spider3 (4), SPOT-Disorder (3), RaptorX 
(17,22), and JPred4 (21). In order to check whether the results of the methods were 
significantly different, we calculated a p-value for each feature by using a pairwise 
Student’s t-test on the results of the two methods. Results on the independent test 
sets CASP12, TS115, and CB513 are presented in Table 1, and in an extended 
version in Supplementary table S1. They match to a very high degree with the 
results obtained by using a 4-fold cross validation on the training set (Supplementary 
table S2). 
 
We give here the results for each individual feature, and a benchmark of the time 
performance of the tool. An example of the ASA and SS3 predictions for the human 
Orotate phosphoribosyltransferase (OPRTase) domain, displayed on its solved 
structure (PDB id 2WNS) is illustrated in Figure 2. 
 
Solvent accessibility 
The main focus of the original NetSurfP-1.0 and of its updated version is to predict 
solvent accessibility for individual residues. Both tools predict RSA, and also 
calculate the corresponding ASA as described in the Methods section. We have 
compared the performance of the old and updated version of our tool, and compared 
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to that of Spider3, a recent tool with a similar architecture that only predicts the ASA. 
The results are shown in Table 1 and demonstrate a consistently improved 
performance of NetSurfP-2.0, compared to the other methods, with a PCC of 
approximately 0.8 on the test datasets TS115 and CB513 and on the validation set. 
The PCC of NetSurfP-2.0 on the CASP12 dataset, though still being significantly 
better than all other methods, is around 0.72. It has to be noted that many of the 
structures in the CASP12 dataset are not obtained through X-ray crystallography, 
and they contain a number of disordered regions (as defined in the Methods) 
substantially larger than both the other external dataset and the training data. We 
see in general (Supplementary table S3) that all the predictions are less accurate in 
the few residues before and after a disordered region. We will further discuss this 
later.  
 
Secondary structure 
Many tools for secondary structure prediction have been published over the last 20 
years, with their reported accuracy improving over time (Yang et al. 2016). In many 
cases, these tools have been subject of independent validation studies (32) to get an 
independent assessment of their actual capabilities. We have decided to compare 
our tool with Spider3, RaptorX, and Jpred4, as these are among the most commonly 
used and accurate tools available. All the aforementioned tools perform 3-class 
prediction of secondary structure, while only NetSurfP-2.0 and RaptorX also provide 
an 8-class prediction. The results of the benchmark are given in Table 1. In all cases, 
NetSurfP-2.0 produce significantly more accurate predictions than all the other tools, 
with an average Q3 accuracy of approximately 85%, and a Q8 accuracy between 
72% and 75% (Supplementary table S1, Supplementary figure S1). As for solvent 
accessibility prediction, the results on the CASP12 dataset are less accurate for all 
tested tools. A difference between the old version of the tool and it successor is that 
the latter is trained including disordered regions. We have also tested whether this 
affects the accuracy of the prediction of features other than disorder in the proximity 
of the disordered regions. This is actually the case for Q3 and Q8, which are 
significantly higher for our tool when compared to a modified version of it in which 
the disordered regions have been completely removed from the training sequences 
(Supplementary table S4). This effect is more pronounced for the datasets that have 
more disordered regions (CASP12 and TS115) and less so for the CB513 dataset. 
Even though such residues constitute a very small portion of the total amount, these 
results suggest that including the disordered regions in general help our model to 
achieve a better internal representation of the protein sequences. 
 
Disorder 
There is nowadays a general support that disorder plays a fundamental role in the 
function and dynamics of proteins, and several different types of disorder have been 
described and annotated. Our tool is focused on protein regions with missing atomic 
coordinates in their solved structures, corresponding to the REMARK-465 regions in 
the DisEMBL annotation (20). We have compared our prediction to both RaptorX 
and SPOT-disorder, a method developed by the same group that developed Spider-
3. As customary in cases where the amount of negative data points greatly 
outnumbers the amount of positive data points (33), we have decided to use the 
Matthew’s correlation coefficient (MCC) to compare the tools. In all cases, NetSurfP-
2.0 produces the most accurate results, with an average MCC of 0.65 (see Table 1). 
It has to be noted that this difference, though large, is not statistically significant. This 
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might be partially due to the limited number of proteins that contain disordered 
regions among all the datasets, and on which the MCC and the corresponding 
statistical tests could be calculated. On the other hand, if we extend our evaluation of 
the disorder prediction by including the FPR, we see that our tool produces far less 
false positives than all the other tools, and in this case the difference is statistically 
significant. 
 
This improved performance could be due to the specific training method we used, 
that includes many non-disordered proteins. We will show in the following that this 
however does not reflect in a general underprediction tendency of the tool, as 
exemplified in disorder-enriched proteins. 
 
As we mentioned above, we focus on one particular definition of disorder, while 
many more are available. To check if our tool can produce meaningful predictions on 
different types of protein disorder (e.g. intrinsically disordered proteins, functional 
disorder), we conducted a benchmark against the proteins in the DisProt database, a 
resource containing experimentally annotated disordered regions of different types. 
The results of this benchmark are reported in Table 2 and demonstrate that our tool 
performs well also on other types of disorder, and that it can also be used to identify 
completely disordered proteins, which were not used in its training. By comparing the 
recall on the TS115, the whole DisProt data set, and the subset of completely 
disordered protein, we see that the tool not only performs well also on proteins 
enriched in disordered regions, but that the low level of false positives noticed before 
is not linked to a general underprediction effect. 
Another way to define disordered regions is by the so called “hot loops” (20), i.e. loop 
regions that present high temperature factors (B factor) for their Cα atoms. We 
tested if our prediction captures this definition by analysing its correlation to the B 
factor of backbone atoms for the TS115 dataset. To compare B factors from different 
structures, each B factor was normalised by the average B factor of the protein chain 
it belongs to. We see a Spearman correlation of 0.43 (Supplementary figure S2), 
confirming the ability of our model to produce a meaningful and consistent internal 
representation of the protein characteristics. 
 
Backbone dihedral angles 
To complete the evaluation of our tool, we report its performance on the prediction of 
the backbone dihedral angles φ and ψ. We compared the results of NetSurfP-2.0 
and Spider3. In this case, the two tools performed almost identically, with NetSurfP 
producing only marginally better predictions, with no statistically significant 
difference. Both tools produced more accurate prediction of the φ angle compared to 
ψ. This is expected, given the much broader distribution of the ψ angle in the 
Ramachandran plot compared to the φ angle, that is almost always confined to 
values between -180 and -40 degrees.  
We also observed a very poor prediction accuracy for both angles in the proximity of 
disordered regions (Supplementary table S3), and, to a lower extent, in loop and coil 
regions (Table 3, Supplementary figure S3). 
  
Individual vs integrated model 
Thanks to the specific architecture and training strategy used, it is possible to predict 
all the features concurrently using a single model. Though this architecture improves 
the time optimization of our tool, this could potentially be sub-optimal with respect to 
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accuracy. In order to test this, we trained single-output models for RSA, Secondary 
Structure (3- and 8-class), and disorder. We see (Supplementary Table S4) that the 
performance of the integrated model is comparable if not better than that of the 
individual models. 
It is also interesting to notice that the hyperparameter optimisation described in 
Methods plays an important role in the training of the integrated model: if no relative 
weight is assigned to the different output, we observe a small degradation of the 
performance of the RSA with respect to both the integrated model and the individual 
ones.  
 
Time performance 
We have shown that NetSurfP-2.0 outperforms all other methods in all the tests. 
This is the case for both the NetSurfP-2.0 models trained using different profile 
generation tools, namely HH-suite and MMseqs2. Moreover, both the HH-suite and 
MMseqs2 models perform similarly on all datasets tested. However, they have very 
different running time: the runtime on a single protein sequence for the HH-suite 
model is approximately 2 minutes, but it scales linearly with the number of 
sequences. MMseqs2, conversely, is slower for small datasets, but on large datasets 
it provides a speed-up of up to 50 times and the ability to parallelise on multiple 
processors (Figure 1, panel B). Given this, NetSurfP-2.0 is implemented to use the 
HH-suite model for searches of less than 100 sequences, and the MMseqs2 model 
otherwise, thus offering a good trade-off between computation time and resource 
demand, without sacrificing the method’s accuracy. 
 
DISCUSSION 
The NetSurfP-2.0 web server provides state-of-the-art sequence-based predictions 
for solvent accessibility, secondary structure, disorder, and backbone geometry. By 
training a weight-sharing integrated model with several structural features, we 
improve the accuracy of disorder with respect to models trained on individual 
features. This improvement likely results from a more robust and informative internal 
state of the system, which is extremely valuable for features where only a few 
positives are present on average.  
This integration was enabled by using improved representations of the structural 
data. The previous version of NetSurfP, as well as other tools, are trained only on 
the residues that are observed in the solved structure. In this way, the models are 
presented with cases that are neither physically nor biologically meaningful, such as 
residues divided by a disordered region, that are far apart in primary and tertiary 
structure but presented to the model as consecutive. In contrast, by using a recent 
training procedure strategy (14), we can train the model on all residues, including the 
disordered ones, thus increasing the accuracy of annotated features in the data and 
reduce the frustration during training. 
 
The NetSurfP-2.0 framework is extremely flexible and allows to include many more 
structural features. We have shown that the disorder prediction of our model has a 
fair correlation with the residues’ B factor. Given this result, we believe that including 
the latter as an additional output for the system might actually improve the disorder 
prediction itself. Other possible features to be added are proline cis/trans 
conformation, metal binding sites, phosphorylation, glycosylation, and many others. 
Having an integrated model has an effect on the accuracy of the tool, but most 
importantly makes it much more time-efficient. On top of that, our software uses two 
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different profile creation strategies in order to achieve an even better efficiency both 
for small sets of sequences, and for large batches of thousands of proteins. This 
allows the tool to annotate a single proteome in less than a day, a very important 
feature in present day biology.  
 
Thanks to its accuracy, its fast computation time, and its easy and intuitive interface, 
we believe that NetSurfP-2.0 will become a valuable resource that will aid 
researchers both with and without extensive computational knowledge to analyse 
and understand protein structure and function. 
  
TOOL AVAILABILITY 
NetSurfP-2.0 is available both as a web-server, and as an independent software 
(http://www.cbs.dtu.dk/services/NetSurfP-2.0/). The web-server version accepts up 
to 4,000 sequences or 4,000,000 residues per job.  
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TABLE AND FIGURES 
 
 

CASP12 
RSA 
[PCC] 

ASA 
[PCC] 

SS3 
[Q3] 

SS8 
[Q8] 

Disorder 
[MCC] 

Disorder 
[FPR] 

Phi 
[MAE] 

Psi 
[MAE] 

NetSurfP-2.0 (mmseqs) 0.726 0.735 0.820 0.703 0.660 0.015 20.3 31.8 

NetSurfP-2.0 (hhblits) 0.725 0.737 0.824 0.711 0.604 0.011 20.0 31.2 
NetSurfP-1.0 0.617 0.641 0.709          
Spider3   0.688 0.791   0.582 0.026 21.6 33.2 

RaptorX     0.786 0.661 0.621 0.045     
Jpred4     0.760          

TS115 
RSA 
[PCC] 

ASA 
[PCC] 

SS3 
[Q3] 

SS8 
[Q8] 

Disorder 
[MCC] 

Disorder 
[FPR] 

Phi 
[MAE] 

Psi 
[MAE] 

NetSurfP-2.0 (mmseqs) 0.778 0.797 0.857 0.750 0.656 0.006 17.2 25.8 
NetSurfP-2.0 (hhblits) 0.775 0.795 0.853 0.744 0.663 0.008 17.5 26.5 

NetSurfP-1.0 0.661 0.691 0.779          
Spider3   0.769 0.839   0.575 0.027 18.5 27.3 

RaptorX     0.822 0.716 0.567 0.044     
Jpred4     0.767          

CB513 
RSA 
[PCC] 

ASA 
[PCC] 

SS3 
[Q3] 

SS8 
[Q8] 

Disorder 
[MCC] 

Disorder 
[FPR] 

Phi 
[MAE] 

Psi 
[MAE] 

NetSurfP-2.0 (mmseqs) 0.794 0.807 0.854 0.723    20.1 28.0 
NetSurfP-2.0 (hhblits) 0.788 0.803 0.853 0.720    20.2 28.6 

NetSurfP-1.0 0.700 0.723 0.788          
Spider3   0.797 0.845      20.4 28.2 

RaptorX     0.827 0.706        
Jpred4     0.779          

 

 
Table 1. Results of the method’s validation on independent test datasets. The performance of 

NetSurfP-2.0 (using HH-suite and MMSeqs2 profiles), NetSurfP-1.0, Spider3, SPOT-disorder, 

RaptorX, and JPred4, is displayed for the CASP12, TS115, and CB513 datasets. SPOT-disorder and 

Spider3 predictions are reported as a single row. The following performance metrics are used: 

Pearson Correlation Coefficient (PCC), Q3 and Q8 accuracy, Matthew’s Correlation Coefficient 

(MCC), False Positive Rate (FPR), and mean absolute error (MAE) in degrees. The different predicted 

features are reported in the column header, together with the corresponding performance metric. For 

each feature and each dataset, the best score is reported in bold. Scores in italics are the ones for 
which no significant difference with respect to the top scoring method is observed (p-value>.05). 

Greyed-out cells represent predictions that were not performed, either because not part of a method’s 

output, or because the feature was not present in the corresponding dataset. 
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Dataset #Proteins %disordered Recall 

TS115 115 7.4% 51.7% 

DisProt Proteins 803 24.2% 54.7% 

Completely Disordered Proteins  138 95.0% 58.0% 
Table 2. Comparison of the disorder prediction on TS115, Disprot, and completely disordered 

proteins. The #Proteins, %disordered, and Recall column report the number of proteins, the average 

content of disorder, and the recall per dataset. The recall is calculated on all the disordered residues 

using the default 0.5 threshold. 
 

 

  Helices Strands Coils 

  G H I B E S T C 

 

Phi 17.35 8.75 15.72 29.39 18.43 34.59 27.65 28.67 

9.69 18.89 29.91 

Psi 30.18 15.51 16.11 33.73 20.95 60.73 33.54 52.54 

16.93 21.49 50.13 

 

Phi 17.74 6.85 15.49 23.69 17.60 31.85 23.33 27.72 

7.94 17.94 27.38 

Psi 32.39 11.15 17.27 40.83 19.16 54.73 33.83 42.87 

13.13 20.35 42.89 

 

Phi 19.35 7.88 16.78 26.14 17.98 35.67 27.20 28.66 

9.24 18.46 29.89 

Psi 32.66 10.90 18.14 40.22 20.18 56.00 36.35 41.87 

13.32 21.36 43.64 

Table 3: Accuracy of phi and psi prediction according to the secondary structure for the CASP12, 

TS115, and CB513 datasets. In each cell we report the MAE for all residues with a specific secondary 

structure, either based on the 3-class (grey cells) or 8-class (white cells) definition. For the 8 class 

definition: G= 3-10 helix, H= � helix, I= � helix, B= � bridge, E= extended strand, S= bend, T= h-

bonded turn, C= coil.  
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Figure 1. Network architecture and computation time plot. In panel the Network architecture is shown. 

N is the number of amino acids in the target protein sequence. Each box represents a different layer 

of the network, from the input (bottom) to the output (top), and the corresponding number of 

neurons/filters. The arrows represent the features that are passed between consecutive layers. The 

computation time per sequence of NetSurfP-2.0 is reported in Panel B. The x-axis represents the 

number of input sequences (logarithmic scale), the y-axis the average computation time in seconds 
per sequence. The method implementation using HH-suite profiles is reported as a grey dashed line, 

and the one using MMSeqs2 profiles is reported as a solid black line. 
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Figure 2. NetSurfP-2.0 predictions mapped on the OPRTase domain structure. Panel A represents 
the predicted ASA in a color gradient from blue (low) to red (high). Panel B represents SS3 Helix, 
Strand, and Coil classes in orange, purple, and pink, respectively. The actual secondary structure of 
the protein is displayed in the carton representation of the structure. Both color codings are consistent 
with the web server graphical output. 
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