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ABSTRACT

The ability to predict local structural features of a protein from the primary sequence
is of paramount importance for unravelling its function in absence of experimental
structural information. Two main factors affect the utility of potential prediction tools:
their accuracy must enable extraction of reliable structural information on the
proteins of interest, and their runtime must be low to keep pace with sequencing data
being generated at a constantly increasing speed.

Here, we present an updated and extended version of the NetSurfP tool
(http://www.cbs.dtu.dk/services/NetSurfP-2.0/), that can predict the most important
local structural features with unprecedented accuracy and runtime. NetSurfP-2.0 is
sequence-based and uses an architecture composed of convolutional and long
short-term memory neural networks trained on solved protein structures. Using a
single integrated model, NetSurfP-2.0 predicts solvent accessibility, secondary
structure, structural disorder, and backbone dihedral angles for each residue of the
input sequences.

We assessed the accuracy of NetSurfP-2.0 on several independent test datasets
and found it to consistently produce state-of-the-art predictions for each of its output
features. We observe a correlation of 80% between predictions and experimental
data for solvent accessibility, and a precision of 85% on secondary structure 3-class
predictions. In addition to improved accuracy, the processing time has been
optimized to allow predicting more than 1,000 proteins in less than 2 hours, and
complete proteomes in less than 1 day.

INTRODUCTION

The Anfinsen experiment, showing that the structural characteristics of a protein are
encoded in its primary sequence alone, is more than 50 years old (1). As a practical
application of it, several methods have been developed over the last decades to
predict from sequence only several protein structural features, including solvent
accessibility, secondary structure, backbone geometry, and disorder (2-7). These
tools have tremendously impacted biology and chemistry, and some are among the
most cited works in the field. They have been extensively used to annotate novel
sequences, thus facilitating their characterisation. The accuracy of said methods
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plays a central role here: the rate of errors in many computationally-generated
annotations is a well-known and unresolved problem affecting public databases (8).
2009). Such errors often propagate through databases and sequence annotations,
and the availability of high-quality predictions is hence of primary importance to limit
their occurrence.

On the other hand, the amount of novel sequences has been steadily increasing
over the last years (9), and not only experimental methods, but also computational
predictions of structural and functional features have a hard time keeping up with it.
This creates a conflict between the need for accurate predictions, and the pace at
which we can generate them.

NetSurfP-1.0 (10) is a tool published in 2009 for prediction of solvent accessibility
and secondary structure using a feed-forward neural network architecture. Since
then, deep learning techniques have affected the application of machine learning in
biology expanding the ability of prediction tools to produce more accurate results on
complex datasets (11-18). Here, we present NetSurfP-2.0, a new extended version
of NetSurfP, that uses a deep neural network approach to accurately predict
absolute and relative solvent accessibility, secondary structure using both 3- and 8-
class definitions (19), @ and y dihedral angles, and structural disorder (20), of any
given protein from its primary sequence only. By having an integrated deep model
with several outputs, NetSurfP-2.0 can not only significantly reduce the
computational time, but also achieve an improved accuracy that could not be
reached by having separate models for each feature. In fact, when assessed on
various test sets with less than 25% sequence identity to any protein used in the
training, its accuracy was consistently on par with or better than that of other state-
of-the-art tools (3,4,17,21,22). In particular, we observed a significant increase in the
accuracy of solvent accessibility, secondary structure, and disorder over all the other
tested methods.

NetSurfP-2.0 uses different approaches to make predictions for small and large sets
of sequences, thus improving its time efficiency without compromising its accuracy. It
has a user-friendly interface allowing non-expert users to obtain and analyse their
results via a browser, thanks to its graphical output, or to download them in several
common formats for further analysis.

MATERIALS AND METHODS
We describe briefly the dataset and method used for training NetSurfP-2.0, and the
validations performed.

Structural dataset

A structural dataset consisting of 12,185 crystal structures was obtained from the
Protein Data Bank (PDB) (23), culled and selected by the PISCES server (24) with
25% sequence similarity clustering threshold and a resolution of 2.5 A or better. To
avoid overfitting, any sequence that had more than 25% identity to any sequences in
the test datasets (see “Evaluation” section for details) was removed, as well as
peptide chains with less than 20 residues, leaving 10,837 sequences. Finally, we
randomly selected 500 sequences (validation set) left out for early stopping and
parameter optimization, leaving 10,337 sequences for training.

Structural Features


https://doi.org/10.1101/311209
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/311209; this version posted September 10, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

For all residues in each chain in the training dataset, we calculated its absolute and
relative solvent accessibility (ASA and RSA, respectively), 3- and 8-class secondary
structure classification (SS3 and SS8, respectively), and the backbone dihedral
angles ¢ and y using the DSSP software (19). Finally, each residue that was present
in the chain refseq sequence, but not in the solved structure, was defined as
disordered. It is important to mention that disordered residues cannot be annotated
with any of the other features, since no atomic coordinates are available for these
residues.

Protein sequence profiles

NetSurfP-2.0, like its predecessor, exploits sequence profiles of the target protein for
its prediction. We used two different ways of generating such profiles. The first
exploits the HH-suite software (25), that runs quickly on individual sequences, while
the second uses the MMseqs2 software (26), that is optimized for searches on large
data sets. In both cases, the profile-generation tools were run with default
parameters, except MMseqgs2 which used 2 iterations with the "--max-seqs’
parameter set to 2,000.

Deep Network architecture

The model was implemented using the Keras library. The input layer of the model
consists of the one-hot (sparse) encoded sequences (20 features) plus the full HMM
profiles from HH-suite (30 features in total, comprising 20 features for the amino acid
profile, 7 features for state transition probabilities, and 3 features for local alignment
diversity), giving a total of 50 input features. This input is then connected to two
Convolutional Neural Network (CNN) layers, consisting of 32 filters each with size
129 and 257, respectively. The CNN output is concatenated with the initial 50 input
features and connected to two bidirectional long short-term memory (LSTM) layers
with 1024 nodes (Figure 1, panel A).

Each output (RSA, SS8, SS3, ¢, g, and disorder) is calculated with a Fully
Connected (FC) layer using the outputs from the final LSTM layer. RSA is encoded
as a single output between 0 and 1. ASA output is not directly predicted, but
calculated by multiplying RSA and ASAmax (27). SS8, SS3, and disorder, are
encoded as 8, 3, or 2 outputs with the target encoded as a sparse vector (target is
set to 1, while rest of the elements are 0). ¢ and y are each encoded as a vector of
length 2, where the first element is the sine of the angle and the second element is
the cosine. This encoding reduces the effect of the periodicity of the angles (28), and
the predicted angle can be calculated with the arctan2 function.

Training

The training was performed using mini-batches of size 15. The individual learning
rate of each neuron was optimized using the Adam function (29). Early stopping was
performed on the validation set. Since the different target values for each output
have different distributions, a weighted sum of different loss functions was used:
SS8, SS3 and disorder use cross entropy loss, while RSA, ¢ and y use mean
squared error loss. Weights were adjusted so each loss contribution was
approximately equal and then fine-tuned for maximum overall performance. When
the target value for a feature of a given residue was missing, e.g. for secondary
structure of disordered residues, or @ angles of N-terminal residues, the loss for that
output was set to 0.
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Evaluation

The final two models one trained with the HH-suite and one with MMseqs2 profiles
were tested on 3 independent datasets: the TS115 dataset (115 proteins)(Yang et al.
2016), the CB513 datasets (513 protein regions from 434 proteins) (31), and a
dataset consisting of all the free-modeling targets (21 proteins) at the CASP 12
experiment (32). No protein with more than 25% sequence identity to the proteins in
these datasets was present in the training. Disorder prediction was not performed on
the CB513 dataset since it contains very few disordered regions.

We used different metrics to evaluate each feature: Pearson’s correlation coefficient
(PCC) for solvent accessibilities, Q3 and Q8 accuracy for SS3 and SS8 respectively
(17), mean absolute error in degrees for ¢ and y angles (MAE), Matthew’s
correlation coefficient (MCC) and False Positive Rate (FPR) for disorder. In each
dataset, the performance was calculated both as the average over all the residues in
the dataset (per residue) and as the average of the performances per structure, the
latter being defined as the average of the metric on all the residue of each given
structure. The p-values between the top-scoring method and all the other methods
on a given feature in a dataset were calculated using a 2-tailed paired Student’s t-
test on the corresponding performances per structure.

DISPROT dataset

We retrieved all the entries in DisProt, a database containing proteins annotated with
several experimentally validated disorder types. All proteins with an available solved
structure were removed to avoid overlaps with the training set. For each residue of
each protein, we compare its experimental disorder annotation to the disorder
prediction from NetSurfP-2.0. We classified proteins with more than 75% of their
residues being disordered as completely disordered proteins.

RESULTS

We have compared the performance of NetSurfP-2.0 to other state-of-the-art tools
with similar functionality: NetSurfP-1.0 (10), Spider3 (4), SPOT-Disorder (3), RaptorX
(17,22), and JPred4 (21). In order to check whether the results of the methods were
significantly different, we calculated a p-value for each feature by using a pairwise
Student’s t-test on the results of the two methods. Results on the independent test
sets CASP12, TS115, and CB513 are presented in Table 1, and in an extended
version in Supplementary table S1. They match to a very high degree with the
results obtained by using a 4-fold cross validation on the training set (Supplementary
table S2).

We give here the results for each individual feature, and a benchmark of the time
performance of the tool. An example of the ASA and SS3 predictions for the human
Orotate phosphoribosyltransferase (OPRTase) domain, displayed on its solved
structure (PDB id 2WNS) is illustrated in Figure 2.

Solvent accessibility

The main focus of the original NetSurfP-1.0 and of its updated version is to predict
solvent accessibility for individual residues. Both tools predict RSA, and also
calculate the corresponding ASA as described in the Methods section. We have
compared the performance of the old and updated version of our tool, and compared
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to that of Spider3, a recent tool with a similar architecture that only predicts the ASA.
The results are shown in Table 1 and demonstrate a consistently improved
performance of NetSurfP-2.0, compared to the other methods, with a PCC of
approximately 0.8 on the test datasets TS115 and CB513 and on the validation set.
The PCC of NetSurfP-2.0 on the CASP12 dataset, though still being significantly
better than all other methods, is around 0.72. It has to be noted that many of the
structures in the CASP12 dataset are not obtained through X-ray crystallography,
and they contain a number of disordered regions (as defined in the Methods)
substantially larger than both the other external dataset and the training data. We
see in general (Supplementary table S3) that all the predictions are less accurate in
the few residues before and after a disordered region. We will further discuss this
later.

Secondary structure

Many tools for secondary structure prediction have been published over the last 20
years, with their reported accuracy improving over time (Yang et al. 2016). In many
cases, these tools have been subject of independent validation studies (32) to get an
independent assessment of their actual capabilities. We have decided to compare
our tool with Spider3, RaptorX, and Jpred4, as these are among the most commonly
used and accurate tools available. All the aforementioned tools perform 3-class
prediction of secondary structure, while only NetSurfP-2.0 and RaptorX also provide
an 8-class prediction. The results of the benchmark are given in Table 1. In all cases,
NetSurfP-2.0 produce significantly more accurate predictions than all the other tools,
with an average Q3 accuracy of approximately 85%, and a Q8 accuracy between
72% and 75% (Supplementary table S1, Supplementary figure S1). As for solvent
accessibility prediction, the results on the CASP12 dataset are less accurate for all
tested tools. A difference between the old version of the tool and it successor is that
the latter is trained including disordered regions. We have also tested whether this
affects the accuracy of the prediction of features other than disorder in the proximity
of the disordered regions. This is actually the case for Q3 and Q8, which are
significantly higher for our tool when compared to a modified version of it in which
the disordered regions have been completely removed from the training sequences
(Supplementary table S4). This effect is more pronounced for the datasets that have
more disordered regions (CASP12 and TS115) and less so for the CB513 dataset.
Even though such residues constitute a very small portion of the total amount, these
results suggest that including the disordered regions in general help our model to
achieve a better internal representation of the protein sequences.

Disorder

There is nowadays a general support that disorder plays a fundamental role in the
function and dynamics of proteins, and several different types of disorder have been
described and annotated. Our tool is focused on protein regions with missing atomic
coordinates in their solved structures, corresponding to the REMARK-465 regions in
the DisEMBL annotation (20). We have compared our prediction to both RaptorX
and SPOT-disorder, a method developed by the same group that developed Spider-
3. As customary in cases where the amount of negative data points greatly
outnumbers the amount of positive data points (33), we have decided to use the
Matthew’s correlation coefficient (MCC) to compare the tools. In all cases, NetSurfP-
2.0 produces the most accurate results, with an average MCC of 0.65 (see Table 1).
It has to be noted that this difference, though large, is not statistically significant. This
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might be partially due to the limited number of proteins that contain disordered
regions among all the datasets, and on which the MCC and the corresponding
statistical tests could be calculated. On the other hand, if we extend our evaluation of
the disorder prediction by including the FPR, we see that our tool produces far less
false positives than all the other tools, and in this case the difference is statistically
significant.

This improved performance could be due to the specific training method we used,
that includes many non-disordered proteins. We will show in the following that this
however does not reflect in a general underprediction tendency of the tool, as
exemplified in disorder-enriched proteins.

As we mentioned above, we focus on one particular definition of disorder, while
many more are available. To check if our tool can produce meaningful predictions on
different types of protein disorder (e.g. intrinsically disordered proteins, functional
disorder), we conducted a benchmark against the proteins in the DisProt database, a
resource containing experimentally annotated disordered regions of different types.
The results of this benchmark are reported in Table 2 and demonstrate that our tool
performs well also on other types of disorder, and that it can also be used to identify
completely disordered proteins, which were not used in its training. By comparing the
recall on the TS115, the whole DisProt data set, and the subset of completely
disordered protein, we see that the tool not only performs well also on proteins
enriched in disordered regions, but that the low level of false positives noticed before
is not linked to a general underprediction effect.

Another way to define disordered regions is by the so called “hot loops” (20), i.e. loop
regions that present high temperature factors (B factor) for their Ca atoms. We
tested if our prediction captures this definition by analysing its correlation to the B
factor of backbone atoms for the TS115 dataset. To compare B factors from different
structures, each B factor was normalised by the average B factor of the protein chain
it belongs to. We see a Spearman correlation of 0.43 (Supplementary figure S2),
confirming the ability of our model to produce a meaningful and consistent internal
representation of the protein characteristics.

Backbone dihedral angles

To complete the evaluation of our tool, we report its performance on the prediction of
the backbone dihedral angles ¢ and y. We compared the results of NetSurfP-2.0
and Spider3. In this case, the two tools performed almost identically, with NetSurfP
producing only marginally better predictions, with no statistically significant
difference. Both tools produced more accurate prediction of the ¢ angle compared to
Y. This is expected, given the much broader distribution of the g angle in the
Ramachandran plot compared to the ¢ angle, that is almost always confined to
values between -180 and -40 degrees.

We also observed a very poor prediction accuracy for both angles in the proximity of
disordered regions (Supplementary table S3), and, to a lower extent, in loop and coil
regions (Table 3, Supplementary figure S3).

Individual vs integrated model

Thanks to the specific architecture and training strategy used, it is possible to predict
all the features concurrently using a single model. Though this architecture improves
the time optimization of our tool, this could potentially be sub-optimal with respect to
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accuracy. In order to test this, we trained single-output models for RSA, Secondary
Structure (3- and 8-class), and disorder. We see (Supplementary Table S4) that the
performance of the integrated model is comparable if not better than that of the
individual models.

It is also interesting to notice that the hyperparameter optimisation described in
Methods plays an important role in the training of the integrated model: if no relative
weight is assigned to the different output, we observe a small degradation of the
performance of the RSA with respect to both the integrated model and the individual
ones.

Time performance

We have shown that NetSurfP-2.0 outperforms all other methods in all the tests.
This is the case for both the NetSurfP-2.0 models trained using different profile
generation tools, namely HH-suite and MMsegs2. Moreover, both the HH-suite and
MMseqgs2 models perform similarly on all datasets tested. However, they have very
different running time: the runtime on a single protein sequence for the HH-suite
model is approximately 2 minutes, but it scales linearly with the number of
sequences. MMseqs2, conversely, is slower for small datasets, but on large datasets
it provides a speed-up of up to 50 times and the ability to parallelise on multiple
processors (Figure 1, panel B). Given this, NetSurfP-2.0 is implemented to use the
HH-suite model for searches of less than 100 sequences, and the MMseqs2 model
otherwise, thus offering a good trade-off between computation time and resource
demand, without sacrificing the method’s accuracy.

DISCUSSION

The NetSurfP-2.0 web server provides state-of-the-art sequence-based predictions
for solvent accessibility, secondary structure, disorder, and backbone geometry. By
training a weight-sharing integrated model with several structural features, we
improve the accuracy of disorder with respect to models trained on individual
features. This improvement likely results from a more robust and informative internal
state of the system, which is extremely valuable for features where only a few
positives are present on average.

This integration was enabled by using improved representations of the structural
data. The previous version of NetSurfP, as well as other tools, are trained only on
the residues that are observed in the solved structure. In this way, the models are
presented with cases that are neither physically nor biologically meaningful, such as
residues divided by a disordered region, that are far apart in primary and tertiary
structure but presented to the model as consecutive. In contrast, by using a recent
training procedure strategy (14), we can train the model on all residues, including the
disordered ones, thus increasing the accuracy of annotated features in the data and
reduce the frustration during training.

The NetSurfP-2.0 framework is extremely flexible and allows to include many more
structural features. We have shown that the disorder prediction of our model has a
fair correlation with the residues’ B factor. Given this result, we believe that including
the latter as an additional output for the system might actually improve the disorder
prediction itself. Other possible features to be added are proline cis/trans
conformation, metal binding sites, phosphorylation, glycosylation, and many others.
Having an integrated model has an effect on the accuracy of the tool, but most
importantly makes it much more time-efficient. On top of that, our software uses two


https://doi.org/10.1101/311209
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/311209; this version posted September 10, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

different profile creation strategies in order to achieve an even better efficiency both
for small sets of sequences, and for large batches of thousands of proteins. This
allows the tool to annotate a single proteome in less than a day, a very important
feature in present day biology.

Thanks to its accuracy, its fast computation time, and its easy and intuitive interface,
we believe that NetSurfP-2.0 will become a valuable resource that will aid
researchers both with and without extensive computational knowledge to analyse
and understand protein structure and function.

TOOL AVAILABILITY

NetSurfP-2.0 is available both as a web-server, and as an independent software
(http://www.cbs.dtu.dk/services/NetSurfP-2.0/). The web-server version accepts up
to 4,000 sequences or 4,000,000 residues per job.
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TABLE AND FIGURES

RSA | ASA S83 | SS8 Disorder | Disorder | Phi Psi
CASP12 [PCC] | [PCC] | [Q3] | [Q8] | [MCC] [FPR] [MAE] | [MAE]
NetSurfP-2.0 (mmsegs) 0.726 | 0.735| 0.820 | 0.703 0.660 0.015 20.3 31.8
NetSurfP-2.0 (hhblits) 0.604 0.011
NetSurfP-1.0
Spider3 0.582

RaptorX 0.786 | 0.661 0.621

Jpreda |

Disorder | Disorder
TS115 [PCC] | [PCC] | [Q3] [Q8] [MCC] [FPR] [MAE] | [MAE]
NetSurfP-2.0 (mmseqs) 0.778 0.797 | 0.857 | 0.750 0.656 0.006 17.2 25.8
NetSurfP-2.0 (hhblits) 0.663 0.008

NetSurfP-1.0 ‘

Spider3 0.575 | 0.027
RaptorX 0.822 | 0.716 0.567 0.044

Jpred4 0.767

Disorder | Disorder

CB513
NetSurfP-2.0 (mmseqs)
NetSurfP-2.0 (hhblits)
NetSurfP-1.0
Spider3

RaptorX |

Jpreda |

Table 1. Results of the method’s validation on independent test datasets. The performance of
NetSurfP-2.0 (using HH-suite and MMSeqs2 profiles), NetSurfP-1.0, Spider3, SPOT-disorder,
RaptorX, and JPred4, is displayed for the CASP12, TS115, and CB513 datasets. SPOT-disorder and
Spider3 predictions are reported as a single row. The following performance metrics are used:
Pearson Correlation Coefficient (PCC), Q3 and Q8 accuracy, Matthew’s Correlation Coefficient
(MCC), False Positive Rate (FPR), and mean absolute error (MAE) in degrees. The different predicted
features are reported in the column header, together with the corresponding performance metric. For
each feature and each dataset, the best score is reported in bold. Scores in italics are the ones for
which no significant difference with respect to the top scoring method is observed (p-value>.05).
Greyed-out cells represent predictions that were not performed, either because not part of a method’s

output, or because the feature was not present in the corresponding dataset.
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Dataset #Proteins | %disordered | Recall
TS115 115 7.4% 51.7%
DisProt Proteins 803 24.2% 54.7%
Completely Disordered Proteins | 138 95.0% 58.0%

Table 2. Comparison of the disorder prediction on TS115, Disprot, and completely disordered
proteins. The #Proteins, %disordered, and Recall column report the number of proteins, the average
content of disorder, and the recall per dataset. The recall is calculated on all the disordered residues
using the default 0.5 threshold.

Helices Strands Coils
G H [ B E S T C
Phi 17.35 | 8.75 15.72 29.39 18.43 34.59 27.65 | 28.67
AN
—
o 9.69 18.89 29.91
o)
S Psi 30.18 | 15.51 16.11 33.73 20.95 60.73 33.54 52.54
16.93 21.49 50.13
Phi 17.74 | 6.85 15.49 23.69 17.60 31.85 23.33 27.72
0
~ 7.94 17.94 27.38
—
(05}
= Psi 32.39 | 11.15 17.27 40.83 19.16 54.73 33.83 |42.87
13.13 20.35 42.89
Phi 19.35 | 7.88 16.78 26.14 17.98 35.67 27.20 28.66
9.24 18.46 29.89
o
<
'E‘-? Psi 32.66 | 10.90 18.14 40.22 20.18 56.00 36.35 |41.87
@)
13.32 21.36 43.64

Table 3: Accuracy of phi and psi prediction according to the secondary structure for the CASP12,
TS115, and CB513 datasets. In each cell we report the MAE for all residues with a specific secondary
structure, either based on the 3-class (grey cells) or 8-class (white cells) definition. For the 8 class
definition: G= 3-10 helix, H= [ helix, I= (1 helix, B= [ bridge, E= extended strand, S= bend, T= h-

bonded turn, C= coil.
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A) Deep model architecture overview B) Computational time per sequence
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Figure 1. Network architecture and computation time plot. In panel the Network architecture is shown.
N is the number of amino acids in the target protein sequence. Each box represents a different layer
of the network, from the input (bottom) to the output (top), and the corresponding number of
neurons/filters. The arrows represent the features that are passed between consecutive layers. The
computation time per sequence of NetSurfP-2.0 is reported in Panel B. The x-axis represents the
number of input sequences (logarithmic scale), the y-axis the average computation time in seconds
per sequence. The method implementation using HH-suite profiles is reported as a grey dashed line,

and the one using MMSeqgs2 profiles is reported as a solid black line.
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Figure 2. NetSurfP-2.0 predictions mapped on the OPRTase domain structure. Panel A represents
the predicted ASA in a color gradient from blue (low) to red (high). Panel B represents SS3 Helix,
Strand, and Coil classes in orange, purple, and pink, respectively. The actual secondary structure of
the protein is displayed in the carton representation of the structure. Both color codings are consistent

with the web server graphical output.
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