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Abstract 
 
Identifying gene expression programs underlying both cell-type identity and cellular 
activities (e.g. life-cycle processes, responses to environmental cues) is crucial for 
understanding the organization of cells and tissues. Although single-cell RNA-Seq 
(scRNA-Seq) can quantify transcripts in individual cells, each cell’s expression profile 
may be a mixture of both types of programs, making them difficult to disentangle. Here 
we illustrate and enhance the use of matrix factorization as a solution to this problem. 
We show with simulations that a method that we call consensus non-negative matrix 
factorization (cNMF) accurately infers identity and activity programs, including the 
relative contribution of programs in each cell. Applied to published brain organoid and 
visual cortex scRNA-Seq datasets, cNMF refines the hierarchy of cell types and 
identifies both expected (e.g. cell cycle and hypoxia) and intriguing novel activity 
programs. We propose that one of the novel programs may reflect a neurosecretory 
phenotype and a second may underlie the formation of neuronal synapses. We make 
cNMF available to the community and illustrate how this approach can provide key 
insights into gene expression variation within and between cell types. 
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Introduction 

Genes act in concert to maintain a cell’s identity as a specific cell type, to respond to 
external signals, and to carry out complex cellular activities such as replication and 
metabolism. Coordinating the necessary genes for these functions is frequently 
achieved through transcriptional co-regulation, where genes are induced together as a 
gene expression program (GEP) in response to the appropriate internal or external 
signal1,2. By enabling unbiased measurement of the whole transcriptome, profiling 
technologies such as RNA-Seq are paving the way for systematically discovering GEPs 
and shedding light on the biological mechanisms that they govern3.  

Single-cell RNA-Seq (scRNA-Seq) has greatly enhanced our potential to resolve GEPs 
by making it possible to observe variation in gene expression over many individual cells. 
Even so, inferring GEPs remains challenging as scRNA-Seq data is noisy and high-
dimensional, requiring computational approaches to uncover the underlying patterns. In 
addition, technical artifacts such as doublets (where two or more distinct cells are 
mistakenly collapsed into one) can confound analysis. Methodological advances in 
dimensionality reduction, clustering, lineage trajectory tracing, and differential 
expression analysis have helped overcome some of these issues4–7. 

Here, we focus on a key challenge of inferring expression programs from scRNA-Seq 
data: the fact that individual cells may express multiple GEPs but we only detect cellular 
expression profiles that reflect their combination, rather than the GEPs themselves. A 
cell’s gene expression is shaped by many factors including its cell type, its state in time-
dependent processes such as the cell cycle, and its response to varied environmental 
stimuli8. We group these into two broad classes of expression programs that can be 
detectable in scRNA-Seq data: (1) GEPs that correspond to the identity of a specific cell 
type such as hepatocyte or melanocyte (identity programs) and (2) GEPs that are 
expressed independently of cell type, in any cell that is carrying out a specific activity 
such as cell division or immune cell activation (activity programs). In this formulation, 
identity programs are expressed uniquely in cells of a specific cell type, while activity 
programs may vary dynamically in cells of one or multiple types and may be continuous 
or discrete. 

Thus far, the vast majority of scRNA-Seq studies have focused on systematically 
identifying and characterizing the expression programs of cell types composing a given 
tissue, i.e. identity GEPs. Substantially less progress has been made in identifying 
activity GEPs, primarily through direct manipulation of cells in controlled experiments, 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 20, 2018. ; https://doi.org/10.1101/310599doi: bioRxiv preprint 

https://doi.org/10.1101/310599
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

for example comparing stimulated and unstimulated neurons9 or cells pre- and post-viral 
infection10. 

If a subset of cells profiled by scRNA-Seq expresses a given activity GEP, there is a 
potential to directly infer the program from the data without the need for controlled 
experiments. However, this can be significantly more challenging than ascertaining 
identity GEPs; while some cells may have expression profiles that are predominantly 
the output of an identity program, activity programs will always be expressed alongside 
the identity programs of one or frequently many cell types. Thus, while finding the 
average expression of clusters of similar cells may often be sufficient for finding 
reasonably accurate identity GEPs, it will often fail for activity GEPs. 

We hypothesized that we could infer activity GEPs directly from variation in single cell 
expression profiles using matrix factorization. In this context, matrix factorization would 
model the gene expression data matrix as the product of two lower rank matrices, one 
encoding the relative contribution of each gene to each program, and a second 
specifying the proportions in which the programs are combined for each cell. We refer to 
the second matrix as a ‘usage’ matrix as it specifies how much each GEP is ‘used’ by 
each cell in the dataset. Unlike hard clustering, which reduces all cells in a cluster to a 
single shared GEP, matrix factorization allows cells to express multiple GEPs. Thus, 
this computational approach would allow cells to express one or more activity GEPs in 
addition to their expected cell-type GEP, and could correctly model doublets as a 
combination of the identity GEPs for the combined cell types. To the best of our 
knowledge, no previously reported studies have benchmarked the ability of matrix 
factorization methods to accurately learn identity and activity GEPs from scRNA-Seq 
profiles.  

We see three primary motivations for jointly inferring identity and activity GEPs in 
scRNA-Seq data. First, systematic discovery of GEPs could reveal unexpected or novel 
activity programs reflecting important biological processes (e.g. immune activation or 
hypoxia) in the context of the native biological tissue. Second, it could enable 
characterization of the prevalence of each activity GEP across cell types in the tissue. 
Finally, accounting for activity programs could improve inference of identity programs by 
avoiding spurious inclusion of activity program genes in the latter. GEPs corresponding 
to different phases of the cell cycle are examples of widespread activity programs and 
are well-known to confound identity (cell type) program inference in scRNA-Seq 
data11,12. However, cell-cycle is just one instance of the broader problem of confounding 
of identity and activity programs. 
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While matrix factorization is widely used as a preprocessing step in scRNA-Seq 
analysis, a priori it is unclear which, if any, factorization approaches would be most 
appropriate for inferring biologically meaningful GEPs. In particular, Principal 
Component Analysis (PCA), Independent Component Analysis (ICA), Latent Dirichlet 
Allocation (LDA)13 and Non-Negative Matrix Factorization (NMF)14 have been used for 
dimensionality reduction of data prior to downstream analysis or as an approach to cell 
clustering. However, while PCA10,15, NMF16 and ICA17 components have been 
interpreted as activity programs, the dimensions inferred by these or other matrix 
factorization algorithms may not necessarily align with biologically meaningful gene 
expression programs and are frequently ignored in practice. This is because each 
method makes different simplifying assumptions that are potentially inappropriate for 
gene expression data. For example, NMF and LDA are non-negative and so cannot 
directly model repression. ICA components are statistically independent, PCA 
components are mutually orthogonal, and both allow gene expression to be negative. 
Furthermore, none of these methods, except LDA, explicitly accounts for the count 
distribution of expression data in their error models.  

In this study, we motivate, validate, and enhance the use of matrix factorization for GEP 
inference. Using simulations, we show that despite their simplifying assumptions, ICA, 
LDA, and NMF--but not PCA--can accurately discover both activity and identity GEPs. 
However, due to inherent randomness in their algorithms, they give substantially varying 
results when repeated multiple times, which hinders their interpretability. We therefore 
implemented a meta-analysis approach (Fig. 1a), which demonstrably increased 
robustness and accuracy. Overall, the meta-analysis of NMF, which we call Consensus 
NMF (cNMF), gave the best performance in these simulations. 

Applied to three real datasets generated by 3 different scRNA-Seq platforms, cNMF 
inferred expected activity programs (cell-cycle programs in a brain organoid dataset and 
depolarization induced programs in visual cortex neurons), an unanticipated hypoxia 
program, and intriguing novel activity programs. It also enhanced cell type 
characterization and enabled estimation of rates of activity across cell types. These 
findings on real datasets further validate our approach as a useful analysis tool to 
understand complex signals within scRNA-Seq data. 

Results 

Evaluation of matrix factorization for GEP inference in simulated data 
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We sought to establish whether components inferred by simple matrix factorizations 
would align with GEPs in scRNA-seq data. We evaluated this in simulated data of 
15,000 cells composed of 13 cell types, one cellular activity program that is active to 
varying extents in a subset of cells of four cell types, and a 6% doublet rate (Fig. 1b). 
We generated 20 replicates of this simulation, each at three different ‘signal to noise’ 
ratios, in order to determine how matrix factorization accuracy varies with noise level 
(Online methods).  

We first analyzed the performance of ICA, LDA, and NMF and noticed that they yielded 
different solutions when run several times on the same input simulated data. We ran 
each method 200 times and assigned the components in each run to their most 
correlated ground-truth program. We saw that there was significant variability among 
the components assigned to the same program -- particularly for NMF and LDA 
(Supplementary Fig. 1). Unlike PCA, which has an exact solution, these factorizations 
use stochastic optimization algorithms to obtain approximate solutions in a solution 
space including many local optima. We observed that such local optima frequently 
corresponded to solutions where a simulated GEP was split into multiple inferred 
components and/or multiple GEPs were merged into a single component 
(Supplementary Fig. 2a). This variability reduces the interpretability of the solutions and 
may decrease the accuracy as well. 

To overcome the issue of variability of solutions, we employed a meta-analysis 
approach, which we call consensus matrix factorization, that averages over multiple 
replicates to increase the robustness of the solution. The method which is adapted from 
a similar procedure in mutational signature discovery18 proceeds as follows: we run the 
factorization multiple times, filter outlier components (which tended to represent noise or 
merges/splits of GEPs), cluster the components over all replicates combined, and take 
the cluster medians as our consensus estimates. With these estimates fixed, we are 
able to compute a final usage matrix specifying the contribution of each GEP in each 
cell and to transform our GEP estimates from normalized units to biologically 
meaningful ones such as transcripts per million (TPM). This approach also provides us 
with a guide for choosing the number of components by selecting a value that provides 
a good trade-off between error and stability (Supplementary Fig. 3, Online methods). 
We refer to this approach as consensus matrix factorization based on its analogy with 
consensus clustering19 and to its application to LDA, NMF and ICA, as cLDA, cNMF, 
and cICA respectively (See materials and methods for details).  

We found that the consensus matrix factorization approach inferred components 
underlying the GEPs as well as which cells expressed each GEP (Fig. 1c-d, 
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Supplementary Figure 2, 4a). By contrast, principal components reflected linear 
combinations of the true GEPs. In addition to increasing the robustness, the consensus 
approach also increased the  ability of factorization to deconvolute the true GEPs - most 
dramatically for LDA and NMF which had the most stochastic variability. cNMF 
successfully deconvoluted the activity and identity GEPs more frequently than the other 
matrix factorizations considered (Fig. 1e, Supplementary Fig. 3).  

We next sought to benchmark the sensitivity and specificity of each matrix factorization 
method for inferring genes that are associated with each GEP. We also evaluated the 
performance of discrete clustering for this task because clustering is the most common 
way GEPs are identified in practice. We evaluated the commonly used Louvain 
community detection clustering algorithm20,21 but also considered an upper bound on 
how well any discrete clustering could perform by using ground-truth to assign cells to a 
cluster of its cell type or to an activity cluster if it had >=40% simulated contribution from 
the activity GEP (Supplementary Fig. 4b). We evaluated the association between genes 
and GEPs using linear regression and measured accuracy using a receiver operator 
characteristic (Online methods). 

We found that cNMF was most accurate at inferring genes in the activity program, with 
a sensitivity of 61% at a false discovery rate (FDR) of 5% (Fig. 1f). cICA and the 
ground-truth clustering were the next most accurate with 57% and 56% sensitivity at a 
5% FDR respectively. cNMF also performed the best at inferring identity GEPs of the 4 
cell types that expressed the activity (Supplementary Fig. 5). As expected, the 
clustering approaches performed worse as they inappropriately assigned activity GEP 
genes to these identity programs, resulting in an elevated FDR. This illustrates how 
matrix factorization can outperform clustering for inference of the genes associated with 
activity and identity GEPs. 

We decided to proceed with cNMF to analyze the real datasets due its accuracy, 
processing speed, and interpretability. First, it yielded the most accurate inferences in 
our simulated data. Second, NMF was the fastest of the basic factorization algorithms 
considered, which is especially useful given the need to run multiple replicates and 
given the growing sizes of scRNA-Seq datasets (Supplementary Fig. 6). Third, the non-
negativity assumption of NMF naturally results in usage and component matrices that 
can be normalized and interpreted as probability distributions--I.e. where the usage 
matrix reflects the probability of each GEP being used in each cell, and the component 
matrix reflects the probability of a specific transcript expressed in a GEP being a 
specific gene. The other high performing factorization method, cICA, produced negative 
values in the components and usages which precludes this interpretation. 
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Figure 1: cNMF infers identity and activity expression programs in simulated data. 
(a) Schematic of the consensus matrix factorization pipeline. (b) t-distributed stochastic neigbour 
embedding (tSNE) plot of an example simulation showing different cell types with marker colors, 
doublets as gray Xs, and cells expressing the activity gene expression program (GEP) with a black 
edge. (c) Pearson correlation between the true GEPs and the GEPs inferred by cNMF for the 
simulation in (b). (d) Same tSNE plot as (b) but colored by the simulated or the cNMF inferred 
usage of an example identity program (left) or the activity program (right).  (e) Percentage of 20 
simulation replicates where an inferred GEP had Pearson correlation greater than 0.80 with the 
true activity program for each signal to noise ratio (parameterized by the mean log2 fold-change 
for a differentially expressed gene). (f) Receiver Operator Characteristic (except with false discov-
ery rate rather than false positive rate) showing prediction accuracy of genes associated with the 
activity GEP. (g) Scatter plot comparing the simulated activity GEP usage and the usage inferred 
by cNMF for the simulation in (b). For cells with a simulated usage of 0, the inferred usage is 
shown as a box and whisker plot with the box corresponding to interquartile range and the 
whiskers corresponding to 5th and 95th percentiles. (h) Contour plot of the true GEP usage on 
the Y-axis and the second true GEP usage for doublets or the second highest GEP usage inferred 
by cNMF for singletons for the simulation in (b). 1000 randomly selected cells are overlayed as a 
scatter plot for each group.
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Beyond identifying the activity program itself, we found that cNMF could also accurately 
infer which cells expressed the activity program and what proportion of their expression 
was derived from the activity program (Fig. 1g). With an expression usage threshold of 
10%, cNMF accurately classified 91% of cells expressing the activity program and 94% 
of cells that did not express the program. Moreover, we observed a high Pearson 
correlation between the inferred and simulated usages in cells that expressed the 
program (R=0.74 for all simulations combined, R=0.68 for the example simulation in Fig. 
1g). Thus, cNMF can be used both to infer which cells express the activity program, as 
well as what proportion of their transcripts derive from that program. 

Finally, we demonstrated that cNMF was robust to the presence of doublets--instances 
where two cells are mistakenly labeled as a single cell. Due to limitations in the current 
tissue dissociation and single-cell sequencing technologies, some number of “cells” in 
an scRNA-Seq dataset will actually correspond to doublets. Several computational 
methods have been developed to identify cells that correspond to doublets but this is 
still an important artifact in scRNA-Seq data22,23. We found that cNMF correctly modeled 
doublets as a combination of the GEPs for the two combined cell types (Fig. 1h). 
Moreover, we found that cNMF could accurately infer the GEPs even in a simulated 
dataset composed of 50% doublets (Supplementary Fig. 7). This illustrates another 
benefit of representing cells in scRNA-Seq data as a mixture of GEPs rather than 
classifying them into discrete clusters. 

cNMF deconvolutes hypoxia and cell-cycle activity GEPs from identity GEPs in 
brain organoid data 

Having demonstrated its performance and utility on simulated data, we then used cNMF 
to re-analyze a published scRNA-Seq dataset of 52,600 single cells isolated from 
human brain organoids24. The initial report of this data confirmed that organoids contain 
excitatory cell types homologous to those in the cerebral cortex and retina as well as 
unexpected cells of mesodermal lineage, but further resolution can be gained on the 
precise cell types and how they differentiate over time. As organoids contain many 
proliferating cell types, we sought to use this data to confirm that cNMF could detect 
activity programs -- in this case, cell cycles programs -- in real data, and to explore what 
biological insights could be gained from their identification. 

We identified 31 distinct programs in this dataset that could be further parsed into 
identity and activity programs (Supplementary Fig. 8). We distinguished between 
identity and activity programs by using the fact that activity programs can occur in 
multiple diverse cell types while identity programs represent a single cell-type. Most 
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cells had high usage of just a single GEP, which is consistent with expressing just an 
identity program (Fig. 2a). When cells expressed multiple GEPs, those typically had 
correlated expression profiles, suggesting that they correspond to identity programs of 
closely related cell types or cells transitioning between two developmental states, rather 
than activity programs (Supplementary Fig. 9). By contrast, 3 GEPs were co-expressed 
with many distinct and uncorrelated programs, suggesting that they represent activity 
programs that occur across diverse cell types (Fig. 2a-b). Consistent with this, the 28 
suspected identity programs were well separated by the cell-type clusters reported in 
Quadrato et. al., while the three suspected activity programs were expressed by cells 
across multiple clusters (Supplementary Fig. 10-11). Except for a few specific cases 
discussed below, we used these published cluster labels to annotate our identity GEPs. 

Our 28 identity programs further refined the 10 primary cell-type clusters originally 
reported for this dataset. For example, we noticed that cells previously annotated as 
mesodermal predominantly expressed one of three GEPs that were significantly 
enriched for genes in the ‘Muscle Contraction’ Gene Ontology (GO) set (P<1x10-10 vs. 
P>.19 for all other GEPs). They therefore likely represent muscle cells. Inspecting the 
genes associated with these 3 GEPs (Supplementary Table 1), we noticed that they 
include genes characteristic of different classes of skeletal muscle: (1) immature 
skeletal muscle (e.g. MYOG, TNNT2, NES), (2) fast-twitch muscle (e.g. TNNT3, 
TNNC2, MYOZ1), and (3) slow-twitch muscle (e.g. TNNT1, TNNC1, TPM3) (Fig. 2d). 
This unexpected finding suggests that distinct populations of skeletal muscle cells -- 
excitatory cell types with many similarities to neurons -- are differentiating in these brain 
organoids. 

Of the three activity programs identified, we found that two were strongly enriched for 
cell cycle Gene Ontology (GO) sets, suggesting that they correspond to separate 
phases of the cell cycle (Fig. 2c). One showed stronger enrichment for genesets 
involved in DNA replication (e.g. DNA Replication P=3x10-52 compared to  P=2x10-3) 
while the other showed stronger enrichment for genesets involved in mitosis (e.g. 
Mitotic Nuclear Division, P=4x10-61 compared to P=2x10-46). These enrichments and 
inspection of the genes most associated with these programs implied that one 
represents a G1/S checkpoint program and the other represents a G2/M checkpoint 
program (Fig. 2e). Thus, cNMF discovered two activity programs corresponding to 
separate phases of the cell cycle directly from the data. 

The third activity program is characterized by high levels of hypoxia related genes (e.g. 
VEGFA, PGK1, CA9, P4HA1, HILPDA) suggesting it represents a hypoxia program 
(Fig. 2e). This is consistent with the lack of vasculature in organoids which makes 
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hypoxia an important growth constraint25. This GEP is most significantly enriched for 
genesets related to protein localization to the endoplasmic reticulum and nonsense 
mediated decay (P=3x10-37, P=5x10-31) (Fig. 2c), consistent with reports that hypoxia 
post-transcriptionally increases expression of genes that are translated in the ER26 and 
modulates nonsense mediated decay activity27. In the initial report of this data, staining 
for a single hypoxia gene, HIF1A, failed to detect significant levels of hypoxia. Indeed, 
HIF1A is not strongly associated with this GEP, at least not at the transcriptional level. 
This highlights the ability of our unbiased approach to detect unanticipated activity 
programs in scRNA-Seq data. 

Having identified proliferation and hypoxia activity programs, we sought to quantify their 
relative rates across cell types in the data. We found that 3079 cells (5.9%) expressed 
the G1/S program and 2043 cells (3.9%) expressed the G2/M program (with 
usage>=10%). Classifying cells into cell types according to their most used identity 
program, we found that many distinct populations were replicating. For example, cNMF 
detected a rare population, included with the forebrain cluster in the original report, that 
we label as “stem-like” based on high expression of pluripotency markers (e.g. LIN28A, 
L1TD1, MIR302B, DNMT3B) (Supplementary table 1). These cells showed the highest 
rates of proliferation with over 38% of them expressing a cell-cycle program in addition 
to the “stem-like” identity GEP (Fig. 2f).  

cNMF was further able to refine cell types by disentangling the contributions of identity 
and activity programs to the gene expression of cells. For example, we found that a cell 
cluster labeled in Quadrato et al., 2017 as “proliferative precursors”, based on high 
expression of cell-cycle genes, is composed of multiple cell types including immature 
muscle and dopaminergic neurons (Supplementary Fig. 11). The predominant identity 
GEP of cells in this cluster is most strongly associated with the gene PAX7, a marker of 
self-renewing muscle stem cells28 (Supplementary table 1). Indeed, this GEP has high 
(>10%) usage in 41% of cells who’s most used GEP is the immature muscle program, 
suggesting it may be a precursor of muscle cells. This relationship was not readily 
identifiable by clustering because the majority of genes associated with the cluster were 
cell cycle related.  

We also saw a wide range of cell types expressing the hypoxia program, with the 
highest rates in C6-1, neuroepithelial-1, type 2 muscle, and dopaminergic-2 cell types. 
The lowest levels of hypoxia program usage occurred in forebrain, astroglial, retinal, 
and type 1 muscle cell types (Fig. 2g). The hypoxia response program is widespread in 
this dataset with 5,788 cells (11%) of all cells expressing it (usage > 10%). This 
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Figure 2: Deconvolution of activity programs from cell identity in brain organoid data. (a) Heat-
map showing percent usage of all GEPs (rows) in all cells (columns). Identity GEPs are shown on top and 
activity GEPs are shown below. Cells are grouped by their maximum identity GEP and fit into columns 
of a fixed width for each identity GEP. (b) tSNE plot of the brain organoid dataset with cells colored by 
their maximally used identity GEP, and with a black edge for cells with >10% usage of the G1/S or G2/M 
activity GEP or a maroon edge for cells with >10% usage of the hypoxia GEP. (c)Table of P-values for the 
top six Gene Ontology geneset enrichments for the three activity GEPs. (d) Heatmap of Z-scores of top 
genes associated with three mesodermal programs, in those programs (top), and in all other programs 
(bottom). (e) Heatmap of Z-scores of top genes associated with three activity GEPs, in those programs 
(top), and in all other programs (bottom). (f) Proportion of cells assigned to each identity GEP that 
express the G1/S or G2/M program with a percent usage greater than 10%. (g) Proportion of cells 
assigned to each identity GEP that express the hypoxia program with a percent usage greater than 
10%.
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illustrates how inferring activity programs in scRNA-Seq data using cNMF makes it 
possible to compare the rates of cellular activities across cell types. 

cNMF identifies depolarization induced and novel activity programs in scRNA-
Seq of mouse visual cortex neurons 

Next we turned to another published dataset to further validate cNMF and to illustrate 
how it can be combined with scRNA-Seq of experimentally manipulated cells to uncover 
more subtle activity programs. We re-analyzed scRNA-Seq data from 15,011 excitatory 
pyramidal neurons or inhibitory interneurons from the visual cortex of dark-reared mice 
that were suddenly exposed to 0 hours, 1 hours, or 4 hours of light9. This allowed the 
authors to identify transcriptional changes induced by repeated depolarization, a 
phenomenon believed to be critical for proper cortical function. We sought to determine 
whether cNMF would identify the relatively modest activity programs (~60 genes with 
fold-change >=2 and FDR<0.05) elicited by the experiment without knowledge of the 
experimental design labels. Furthermore, since the authors identified heterogeneity in 
stimulus-responsive genes between neuronal subtypes, we wondered if cNMF would 
identify a common activity program and whether it could tease out patterns in what is 
shared or divergent across neuron subtypes. 

We ran cNMF on neurons combined from all three exposure conditions and identified 20 
GEPs, interpreting 14 as identity and 6 as activity programs (Supplementary Fig. 12). 
As we saw in the organoid data, the activity programs were co-expressed with many 
distinct and uncorrelated GEPs while the identity programs only overlapped in related 
cell types (Fig. 3a-b). In addition, the identity programs were well separated by the 
published clusters while the activity programs were spread across multiple clusters 
(Supplementary Fig. 13). We thus used the published cluster annotations to label the 
identity GEPs. 

Three activity programs were correlated with the stimulus, which indicates that they are 
induced by repeated depolarization (Fig. 3c). One of these was induced at 1H and thus 
corresponds to an early response program (ERP). The others were primarily induced at 
4H and thus correspond to late response programs (LRPs). These programs 
overlapped significantly with the sets of differentially expressed genes reported in 
Hrvatin et. al. 2017 (P=8x10-34 for the ERP and genes induced at 1H;  P=4x10-22, 
P=4x10-14 for the LRPs and genes induced at 4Hs, one-sided Mann Whitney test). 

Intriguingly, one LRP was more induced in superficial cortical layers, while the other 
was more induced in deeper layers. This supports a recently proposed model where the 
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ERP is predominantly shared across excitatory neurons, while LRPs vary more 
substantially across neuron subtypes9. It also illustrates cNMF’s sensitivity: in the initial 
report, only 64 and 53 genes were identified as differentially expressed in at least one 
excitatory cell type at 1H and 4Hs (FC≥2, FDR<.05). Nevertheless, cNMF was able to 
find this program in an unsupervised manner, without knowledge of the experimental 
design.  

cNMF was also able to identify a depolarization induced program in visual cortex 
neurons that were not experimentally manipulated to elicit them. We analyzed an 
additional scRNA-Seq dataset of 1,573 neurons from the visual cortex of adult mice 
that, unlike in the primary dataset, were not reared in darkness or treated with a specific 
light stimulus29. In this dataset, cNMF identified a matching GEP for all visual cortex cell 
types found in the primary dataset except for a single subtype of excitatory layer 5 
(Supplementary Fig. 14a). Moreover, it identified a GEP that showed striking 
concordance with the superficial LRP found in the primary dataset (Fisher Exact Test of 
genes with association Z-score>.0015, OR=127, P=1x10-118, Pearson Correlation=.645) 
(Fig. 3d). This program was predominantly expressed in excitatory cells of the more 
superficial layers of the cortex as would be expected based on the results in the primary 
dataset. For example, over 40% of the excitatory layer 2 (Exc. L2) type neurons 
expressed this activity program (Supplementary Fig. 14b). This demonstrates that 
cNMF could also find the depolarization induced activity program in scRNA-Seq of cells 
that had not been experimentally manipulated to elicit it. 

Finally, cNMF identified three additional activity programs in the primary visual cortex 
dataset that were not well correlated with the light stimulus but were expressed broadly 
across multiple neuronal cell types (Fig. 3b-c). We labeled one of these, that was 
specific to excitatory neurons, as Neurosecretory (NS) because it is characterized by 
high expression of several secreted neuropeptides including Vgf, Adcyap1, Scg2, Cck, 
Scg3, and Dkk3, and has high expression of genes that facilitate protein secretion such 
as Cpe, Cadps2, and Scamp5 (Supplementary table 2). The top expressed gene--Vgf 
(VGF nerve growth factor inducible) is induced by nerve growth factor30, suggesting that 
this program may be regulated by external growth factor signals. Notably, we found a 
matching program in the Tasic Et, Al. dataset  (Fisher Exact Test of genes with 
association Z-score>.0015, OR=53.8, P=8x10-21, Pearson Correlation=.356) (Fig. 3e). 
Thus, this neurosecretory activity program is reproducible across multiple single-cell 
datasets. 

An additional activity program which we labeled Synaptogenesis (Syn) was 
characterized by expression of genes that play a crucial role in synapse formation, 
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a

d

Figure 3: Identification of activity programs in neurons of the visual cortex. (a) Heatmap showing 
percent usage of all GEPs (rows) in all cells (columns). Identity GEPs are shown on top and activity GEPs 
are shown below. Cells are grouped by their maximum identity GEP and fit into columns of a fixed 
width for each identity GEP. (b) t-SNE plots of cells colored by maximum identity GEP usage (left) or by 
absolute usage of each activity GEP (right). (c) Box and whisker plot showing the percent usage of 
activity programs (rows) in cells classified according to their maximum identity GEP (columns) and 
stratified by the stimulus condition of the cells (hue). The central line represents the median, boxes 
represent the interquartile range, and whiskers represent the 5th and 95th quantile. (d) Scatter plot of 
Z-scores of the superficial late response GEP in the primary dataset against the corresponding GEP in 
the Tasic et. al., 2016 dataset. (e) Same as (d) but for the neurosecretory activity program.
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including the transcriptional regulator Mef2c31–33, synaptic adhesion molecules Ncam134 
and Cadm135,36, membrane vesicle traffickers Syt1 and Syt4, Actb which constitutes the 
predominant synapse cytoskeletal protein, and others with a strong connection to 
synapse biology such as Ywhaz37–39, Bicd140,41. It was also significantly enriched for 
relevant Gene Ontology sets including postsynapse, glutamatergic synapse, 
postsynaptic density, and dendrite morphogenesis (P<=3.25x10-6 Supplementary Table 
3) which further suggests its interpretation as a program involved in the formation or 
regulation of synapses. The last activity program (labeled Other) was characterized by 
high expression of the maternally expressed long non-coding RNA Meg342 and other 
genes that are associated with cerebral ischemic injury (e.g. Glg143, Rtn144). Our 
functional interpretations of the novel activity programs are speculative, but they 
highlight the ability of cNMF to identify intriguing GEPs in an unbiased fashion. 

Discussion 

scRNA-Seq is enabling discovery of the repertoire of GEPs that underlie the behaviors 
of cells in complex organisms. Here, we distinguish between cell type (identity) and cell 
type independent (activity) expression programs to describe the types of GEPs that can 
be inferred with the resolution of current scRNA-Seq datasets. More subtle GEPs, such 
as those that vary based on stochastic fluctuations in individual transcription factors, 
may eventually become discernible from scRNA-Seq data but currently remain outside 
the reach of current datasets. We note that some biological programs might blur the line 
between identity and activity GEPs, including programs reflecting oncogenic 
transformation, or a cell’s position along a morphological gradient. These examples 
represent continuums of transcriptional states that blur the line between cell type and 
cellular activity. Nevertheless, matrix factorization should, in theory, be able to capture 
these biological phenomena as long as the transitions between expression states can 
be modeled as linear combinations of the contributing GEPs. This may be a reasonable 
approximation for many biological transitions. 

In this work, we have provided an empirical foundation for the use of matrix factorization 
to simultaneously infer identity and activity programs from scRNA-Seq data. We first 
show with simulations that despite their simplifying assumptions, ICA, LDA, and NMF 
(but not PCA) can infer components that align well with GEPs. However, due to the 
stochastic nature of these algorithms, the interpretability and accuracy of individual 
solutions can be low. This led us to develop a consensus approach that empirically 
increased the accuracy and robustness of the solutions. cNMF inferred the most 
accurate identity and activity programs of all the methods we tested. Moreover, it 
yielded results in interpretable units of gene expression (transcripts per million) and 
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could accurately infer the percentage of each cell’s expression that was derived from 
each GEP. These properties made it the most promising  approach for GEP inference 
on real datasets. 

We explored the utility of cNMF on real data, recapitulating known GEPs, identifying 
novel ones, and further characterizing their usage. We first validated cNMF with several 
expected activity programs serving as positive controls. We then identified several 
unexpected but highly plausible programs, a hypoxia program in brain organoids and a 
depolarization induced activity program in untreated neurons. Finally, we identified three 
novel programs in visual cortex neurons that we speculate may correspond to a 
neurosecratory phenotype, new synapse formation, and a stress response program. 
Beyond simply discovering activity programs, cNMF clarified the underlying cell types in 
these datasets by disentangling activity and identity programs from the mixed single-cell 
profiles. For example, we found that a brain organoid subpopulation that was initially 
annotated as proliferative precursors actually includes replicating cells of several cell 
types, including an immature skeletal muscle cell that is differentiating into slow-twitch 
and fast twitch muscle populations. Furthermore, joint analysis of identity and activity 
GEPs allowed us to quantify the relative prevalence of activities across cell types. For 
example, we found in the visual cortex data that one depolarization-induced late 
response program was predominantly expressed in neurons of superficial cortical 
layers, while the other was mainly expressed in deeper layers. This suggests that an 
anatomical or developmental factor may underlie variability in the response. While 
commonly used approaches based on clustering or pseudotemporal ordering of cells 
are poorly suited to achieve such insights from single-cell data, these findings emerge 
naturally from our matrix factorization approach. 

We have made our tools and analyses readily accessible so that researchers can 
readily use cNMF and further develop on the approach. We have deposited all of the 
cNMF code on Github https://github.com/dylkot/cNMF/ and have made available all of 
the analysis scripts for figures contained in this manuscript on Code Ocean 
(https://doi.org/10.24433/CO.9044782e-cb96-4733-8a4f-bf42c21399e6) for easy 
exploration and re-execution.  

As others apply this approach, one key consideration will be the choice of the 3 input 
parameters required by cNMF: the number of components to be found (K), the 
percentage of replicates to use as nearest neighbors for outlier-detection, and a 
distance threshold for defining outliers. While the choice of K must ultimately reflect the 
resolution desired by the analyst, we propose a simple decision aid of considering the 
trade-off between factorization stability and reconstruction error (Supplementary figures 
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3, 7, 8, 12). In addition, we noticed that choosing consecutive values of K primarily 
influenced individual components at the margin, suggesting that cNMF may be robust to 
this choice within a range of several options. The additional parameters allow users to 
optionally identify outlier replicates to filter before averaging across replicates. This 
improves overall accuracy by removing infrequent solutions that often represent merges 
or splits of the true GEPs. Using 30-35% of replicates as nearest neighbors worked well 
for all datasets we analyzed, and an appropriate outlier distance threshold was clear in 
our applications based on the long tail in the distance distribution (Supplementary 
figures 3, 7, 8, 12). 

Our approach is an initial step forward towards disentangling identity and activity GEPs, 
and will benefit from subsequent development. For example, cNMF does not specifically 
address the count nature of gene expression nor the possibility of dropout events in its 
error model. Recently developed statistical frameworks that address these aspects of 
scRNA-Seq data such as Zero-inflated Factor Analysis45 and Hierarchical Poisson 
Factorization46 may therefore increase the accuracy of GEP inference. In addition, NMF 
often yields low but non-zero usages for many GEPs even though we expect most cells 
to express a small number of identity and activity GEPs. This lack of sparsity is likely 
due to over-fitting and could be addressed by adding regularization to the model47. Such 
refinements and any new matrix factorization that relies on stochastic optimization can 
be readily combined with our consensus approach to potentially improve accuracy and 
interpretability. 

A more fundamental limitation of matrix factorizations, including cNMF, is the built-in 
assumption that cells can be modeled as linear combinations of GEPs. Notably, this 
precludes modeling of transcriptional repression, where one or more genes that would 
be induced by one GEP are significantly reduced in expression when a second 
repressing GEP is active in the same cell. To our knowledge such relationships have 
not been represented in a matrix factorization framework, but they may be easier to 
incorporate in new classes of latent variable models such as variational auto-encoders 
(VAEs)48,49. VAEs represent cells in a highly flexible latent space that can capture non-
linearities and interactions between latent variables. However, while the latent variables 
are designed to facilitate accurate reconstruction of the input gene expression data, it 
remains to be shown whether they can be directly or indirectly interpreted as distinct 
GEPs and GEP usages. For the foreseeable future, there may be a trade-off between 
the flexibility of these models and the difficulty in training them and interpreting their 
output. 
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With ongoing technological progress in RNA capture efficiency and throughput, scRNA-
Seq data is likely to become richer and more expansive. This will make it possible to 
detect increasingly subtle GEPs, reflecting biological variability in cell types, cell states, 
and activities. Here, we have demonstrated a computational framework that can be 
used to infer such GEPs directly from the scRNA-Seq data without the need for 
experimental manipulations, providing key insights into the behavior of cells and tissues. 

Acknowledgements 

We thank Allon Klein, Samuel Wolock, Aubrey Faust, Chris Edwards, Stephen 
Schaffner, the CGTA discussion group, and members of the Sabeti Laboratory for 
useful discussions and feedback on the manuscript. We thank the Arlotta, Greenberg, 
and Zeng laboratories for generating the primary datasets we analyze in this 
manuscript. The project described was supported by award Number R01AI099210 from 
the National Institute of Allergy and Infectious Disease and T32GM007753 from the 
National Institute of General Medical Sciences. The content is solely the responsibility of 
the authors and does not necessarily represent the official views of the National Institute 
of General Medical Sciences or the National Institutes of Health. 

Author contributions 

DK and AV conceived of the project, developed the method, analyzed the data, and 
wrote the manuscript with input from the other authors. 

MAN provided crucial guidance in analyzing the visual cortex data. 

ST helped with implementing early versions of the method. 

EH, DAM, and PCS provided guidance on the project. 

Materials and methods 

Simulations 

Our simulation framework is based on Splatter50 but is re-implemented in Python and 
adapted to allow simulation of doublets and activity programs. Gene-expression 
programs were simulated as in Splatter. Cells were then randomly assigned an identity 
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program with uniform proportions. 30% of cells of 4 cell types were randomly selected to 
express the shared activity program at a usage that was uniformly distributed between 
10% and 70%. Each cell’s mean gene-expression profile was computed as the 
weighted sum of their cell-identity program and the activity program. Doublets were 
constructed by randomly sampling pairs of cells, summing their gene counts, and then 
randomly down-sampling the counts to the maximum of the two cells. We simulated 
25,000 genes, 1,000 of which were associated with the activity program. The probability 
of a gene being differentially expressed in a cell identity program was set to 2.5%. The 
differential expression scale parameter was 1.0 for all simulations and the location 
parameter was either 1.0, 0.75, or 0.5 to simulate different signal to noise levels. Other 
splatter parameters were: lib.loc=7.64, libscale=0.78, mean_rate=7.68, 
mean_shape=0.34, expoutprob=0.00286, expoutloc=6.15, expoutscale=0.49, 
diffexpdownprob=0, bcv_dispersion=0.448, bcv_dof=22.087. These values were 
inferred from 8000 randomly sampled cells of the Quadrato et al., 2017 organoid 
dataset using Splatter. The same parameters and a differential expression location 
parameter of 1.0 were used for the 50% doublet simulation (Supplementary Figure 7). 

Data preprocessing 

For each dataset, we removed cells with fewer than 1000 unique molecular identifiers 
(UMIs) detected. We also filtered out genes that were not detected in at least 1 out of 
500 cells. We then selected the 2000 genes with the most over-dispersion as 
determined by the v-score51 for input to cNMF. Each high-variance gene was scaled to 
unit variance before running cNMF. This is similar to the log transformation that is 
commonly applied to scRNA-Seq data in that it ensures genes on different expression 
scales contribute comparable amounts of information to the programs. However, this 
avoids the need for addition of a pseudocount or modulation of the shape of a gene’s 
distribution. We do not mean center the genes so as to preserve the non-negativity of 
the expression data, which is a requirement for NMF.  

Note, we do not perform any cell count normalization prior to cNMF. This is because 
cells with more counts can contribute more information to the model. Technical variation 
in transcript abundances across cells are captured in the Usage matrix rather than the 
component matrix. However, for the Tasic Et. Al. dataset, which is based on full-
transcript sequencing rather than digital UMI counting, we variance-normalized high-
variance genes from the TPM matrix directly rather than from the raw count matrix as in 
the other datasets. 
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As a final step in cNMF, the consensus programs can be re-fit including all genes and 
scaled to meaningful biological units of the user’s choice, such as transcripts per million 
(TPM) (see below). 

 Consensus Non-negative Matrix Factorization (cNMF) 

We use non-negative matrix factorization implemented in scikit-learn (version 20.0) with 
the default parameters except for random initialization, tolerance for the stopping 
condition of 10-4, and a maximum number of iterations of 400.  

Each replicate of cNMF is run with a randomly selected seed and the same normalized 
dataset consisting of high-variance genes. The component matrices from each replicate 
are concatenated into a single matrix where each row is an NMF component from one 
replicate. Each of these components is normalized to have L2 norm of 1. Then 
components with high average euclidean distance from their K nearest neighbors are 
filtered out. We set the number of nearest neighbors, K, to be .3 times the number of 
bootstraps for the organoid and visual cortex datasets and .35 times the number of 
bootstraps for the simulated datasets. The threshold on average euclidean distance to 
nearest neighbors was set by inspecting the histogram and truncating the long tail 
(Supplementary Figs. 3, 7, 8, 12). Then, the replicate components were clustered using 
KMeans with the Euclidean distance metric and the same number of clusters as the 
number of components for the NMF runs. Each cluster is then collapsed down to a 
single component by taking the median value for each gene across components in a 
cluster. These merged GEP components are then normalized to sum to 1 and a final 
usage matrix is fit by running one last iteration of NMF with the component matrix fixed 
to this value. With this usage matrix fixed, final program estimates can be computed in 
desired units, and for all genes--including ones that were not initially included among 
the over-dispersed set. This is done by running a last iteration of NMF with the usage 
matrix fixed and the input data reflecting the desired final units. To convert the 
estimated programs to TPM scale, we refit against the TPM matrix. 

We guide the selection of the number of cNMF components using the approach 
described in Alexandrov et al, 201318 with a few modifications. We run NMF on 
normalized data matrices rather than count matrices and therefore do not resample 
counts but simply repeat NMF with different randomly selected seeds. We still guide 
determination of the number of components by considering the trade-off between 
Frobenius error and silhouette score of the clustering. However, we used the Frobenius 
error of the consensus NMF solution but without any outlier filtering. As in Alexandrov et 
al, 2013, stability is computed as the Silhouette score of the KMeans clustering on the 
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NMF components (prior to filtering outliers). However we use Euclidean distance on L2 
normalized components as the metric rather than Cosine distance. Silhouette score is 
calculated using the Scikit-learn version 20.0 silhouette_score function. 

We parallelized the individual factorization steps over cores on a multi-core virtual 
machine using GNU Parallel52. 

Finding genes associated with programs 

We identify genes that have specifically higher or lower expression in a GEP relative to 
background using Ordinary Least Squares Regression. We use the consensus usage 
matrix (cells x programs) for each cell as the predictor. For discrete clustering methods, 
used in the comparison, the usage matrix is a binary indicator matrix containing a 1 for 
the cluster (column) each cell is assigned to, and a 0 for all other columns. We regress 
this usage matrix against the TPM profile for each gene, normalized to mean 0 and 
variance 1. Thus, a positive coefficient for a GEP indicates that cells with a higher 
usage of the GEP will have higher expression of the gene than average, all else equal. 
The regression coefficient can be interpreted as signifying by how many standard 
deviations a cell’s expression would be expected to change from an additional count 
attributed to a GEP. 

Comparison of cNMF with other methods 

We compared cNMF with consensus and standard versions of LDA and ICA as well as 
with PCA, Louvain clustering and a clustering based on assignment of cells to their 
ground-truth labels. We used the implementations of LDA, ICA, and PCA in scikit-learn 
and the implementation of Louvain clustering in scanpy53. For ICA, we used the FastICA 
implementation with default options for all the parameters. For LDA, we used the batch 
algorithm and all other parameters as defaults. We defined the consensus estimates 
across 200 replicates in the same way as for cNMF but with a slight modification for 
ICA. Because elements of the ICA components can either be positive or negative, some 
iterations would produce a components pointed in one direction while others would 
produce approximately the same component but pointed in the opposite direction 
(multiplied by -1). Therefore, we aligned the orientation of components from across 
replicates by identifying components whose median usage across all cells was positive 
and scaled these and the corresponding usages by -1. 

For Louvain clustering, we used 14 principal components to compute distances 
between cells and used 15 nearest neighbors to define the KNN graph. For ground-truth 
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assignment clustering, we assigned each cell to a cluster defined by its true identity 
program, except for cells which had greater that 40% usage of the activity program, 
which we assigned to an activity program cluster. Then we determined a GEP 
corresponding to each cluster as the mean TPM value for each gene over cells in the 
cluster. 

To evaluate the accuracy of these various methods, we first calculated the coefficient 
for associating each genes with each program as described above. We then calculated 
sensitivity and false discovery rate (FDR) for each threshold on those coefficients and 
plotted those as an ROC-curve, except with FDR on the X-axis instead of false positive 
rate. For this evaluation, we considered a gene as truly associated with a GEP if it had a 
ground-truth fold-change of >=2 and only considered genes as null if the had no fold-
change. 

Testing enrichment of genesets in programs 

We used the Z-score regression coefficients identified as above, but with negative 
coefficients floored to 0, as inputs for a one-sided Mann Whitney U Test (with tie 
correction) comparing the median of genes in each geneset to those of genes not in the 
geneset.  

Data Availability 

The organoid data described in the manuscript is accessible at NCBI GEO accession 
number GSE86153. However, we obtained the clustering and unnormalized data by 
request from the authors. The visual cortex datasets used for Figure 3 are accessible at 
NCBI GEO, accession numbers GSE102827 and GSE71585. All datasets (including the 
simulation) and the code to reproduce all analyses in this manuscript are available 
through Code Ocean (link: TBD) 

Code Availability 

Code for running cNMF is available on Github https://github.com/dylkot/cNMF, as is 
code for simulating data with doublets and activity programs 
https://github.com/dylkot/scsim. 

All analysis in this manuscript are available for exploration and re-execution on Code 
Ocean:  https://doi.org/10.24433/CO.9044782e-cb96-4733-8a4f-bf42c21399e6 
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Supplementary Figure 1: Robustness of Matrix Factorization Methods. (a) Pairwise correlation coefficients for 
all components combined across 200 replicates for multiple simulations (rows) and multiple matrix factorization 
algorithms (columns). All 14 components for each replicate were assigned in a one-to-one fashion to a ground 
truth GEP in order from most correlated to least correlated. Components are ordered in the plot by the assigned 
ground truth GEP which is denoted by the outer color bars. The three simulations had different average signal 
strengths as parameterized by the mean log2 fold-change for differentially expressed genes in a GEP (Online 
Methods) and are ordered from least signal (top row) to most signal (bottom row) (b) Components from the 200 
replicates were assigned to a ground truth GEP, as in (a), and were correlated with the median of their assigned 
group. Then, for each factorization replicate, the 14 components were ranked in order from most to least correlat-
ed component. The plots shows the % of replicates where the kth most correlated component had a Pearson 
correlation >.9 with the median of the components assigned to the same ground truth GEP. We plot the mean and 
standard deviation of this percentage across the 20 replicates as bars around the mean, and plot individual dots 
for simulation replicates that exceeded one standard deviation of the mean. 
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Supplementary Figure 2: Deconvolution accuracy of matrix factorization methods. (a) Pearson 
correlation between ground truth GEP means (rows) and GEPs inferred by different iterations of NMF 
(left), cNMF, or PCA (right) for an example simulation. All correlations are computed considering only 
the 2000 most over-dispersed genes and on vectors normalized by the computed sample standard 
deviation of each gene. Arrows annotate cases where GEPs were merged into a single component or a 
GEP was split into 2 components. (b) Pearson correlation between inferred GEPs and true simulated 
GEPs for several matrix factorization methods across all 20 simulation replicates for each average signal 
level. (c) Percentage of simulation replicates for which GEPs of each type had a pearson correlation of 
R>.8 with the true simulated GEP, as a function of the average signal level.
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Supplementary Figure 3: Diagnostic plot for cNMF on an example simulated dataset. (a) Number of 
cNMF components (K) against solution stability (blue, left axis) measured by the euclidean distance silhou-
ette score of the clustering, and Frobenius error of the consensus solution (red, right axis). (b) Clustergram 
showing the clustered NMF components for K=14, combined across 200 replicates, before (left) and after 
filtering (right). In between, we show the average distance of each component to its 70 nearest neighbors as 
a histogram with a dashed line where we set the threshold for filtering outliers.
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a

b

Supplementary Figure 4: GEP usage inference. (a) Comparison of GEP usage inference by 
cNMF, cLDA, and cICA for an example identity GEP (top row) and the activity GEP (bottom row). 
Each cell is represented as a point and its usage is represented by the marker color.  (b) Compari-
son of the results of ground truth cluster assignment and Louvain clustering represented on a 
t-SNE plot. (Left) Reproduction of figure 1b which shows cells colored based on their true identity 
program, doublets marked with an X, and cells that express the activity program with a black 
border.  (Middle) Cells are colored based on Louvain clustering. (Right) Cells with activity GEP 
usage of greater than 40% are assigned to an activity cluster, and all other cells are assigned to 
their identity cluster. This shows how an ‘optimal’ discrete clustering might behave.
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a

b

Supplementary Figure 5: Accuracy of identifying genes in each GEP. (a) Receiver operating characteristics 
(ROCs) but showing false discovery rate (FDR) on the X-axis against sensitivity on the Y-axis for detection of 
genes in GEPs. Separate curves are shown for  cNMF, cICA, cLDA, NMF, ICA, LDA, ground truth cluster assignment, 
Louvain clustering, or PCA. These show combined results for all 20 simulations with mean log2 fold-change = 
1.00. Sensitivity is calculated considering genes with a differential expression fold-change of >=2 and FDR is 
calculated considering genes with no differential expression (fold change = 1) (b) Same as (a) but only showing 
the results for the activity GEP and plotted separately for each of the 20 simulations at the mean differential 
expression log2 fold-change of 1.00.
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Supplementary Figure 6: Comparison of run-times for different matrix factorization algorithms. Run-time 
in seconds for NMF, ICA, and LDA for a simulated scRNA-Seq dataset down-sampled to 6250, 12500, 25000, or 
50000 cells, run either using 8 CPUs or 4 CPUs. Estimates are the average of 3 independent replicates with differ-
ent seeds.
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bb

Supplementary Figure 7: cNMF demonstration on simulated datasets with many doublets. (a) tSNE plot  for 
a simulated dataset containing 50% doublets with marker color and edge color representing the simulated cell 
types. (b) K selection diagnostic plot showing solution stability (measured by the silhouette distance) in blue and 
Frobenius error of the consensus solution in red. (c) Pairwise Pearson correlation between ground truth GEP 
means (rows) and GEPs inferred by cNMF (columns) for the 50% doublet simulated dataset.
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a

Supplementary Figure 8: Diagnostic plot for cNMF on the Quadrato et. al., 2017 brain organoid dataset. 
(a) Number of cNMF components (K) against solution stability (blue, left axis) measured by the silhouette score 
of the clustering, and Frobenius error of consensus solution (red, right axis). (b) Clustergram showing the clus-
tered NMF components for K=31, combined across 500 replicates, before (left) and after filtering (right). In 
between, we show the average distance of each component to its 150 nearest neighbors as a histogram with a 
dashed line where we set the threshold for filtering outliers.
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Supplementary Figure 9: Correlation between GEP spectra pairs and fraction of cells that use both 
programs. Scatter plot of the pearson correlation between pairs of GEPs (X axis) and the fraction of cells that 
co-use the GEP pair (Y axis). Co-usage is defined as the number of cells with usage > .1 for both programs divided 
by the number of cells that use the less common of the programs with usage >.1. Dots are colored by whether or 
not the GEP pair is made up of identity or any of the 3 activity programs.
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Supplementary Figure 10: t-SNE plots of identity and activity GEPs in the Quadrato et. al. brain organoid 
dataset. t-SNE plots of cells colored by maximum identity GEP usage (left) or by absolute usage of each activity 
GEP (right).
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Supplementary Figure 11: Comparison of cNMF usages with the cell-type clusters from Quadrato et. al., 
2017. Box and whisker plot of the usage of each GEP (column) in cells of the clusters from Quadrato et. al. 2017 
(rows). Boxes represent interquartile range, whiskers represent 5th and 95th percentiles.
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a

b

Supplementary Figure 12: Diagnostic plot for cNMF on the Hrvatin et. al., 2017 visual cortex dataset. (a) 
Number of cNMF components (K) against solution stability (blue, left axis) measured by the silhouette score and 
Frobenius error of consensus solution (red, right axis). (b) Clustergram showing the clustered NMF components 
for K=20, combined across 500 replicates, before (left) and after filtering (right). In between, we show the average 
distance of each component to its 150 nearest neighbors as a histogram with a dashed line for the threshold for 
filtering outliers.
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Supplementary Figure 13: Comparison of cNMF with the visual cortex cell-type clusters from Hrvatin et. 
al., 2017. Box and whisker plot of the usage of each GEP (column) in cells of each cluster from Hrvatin et. al. 2017 
(rows) stratified by the stimulus condition of those cells (hue). Boxes represent interquartile range, whiskers 
represent 5th and 95th percentiles.
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a

b

Supplementary Figure 14: Comparison of GEPs identified in the Hrvatin et. al., 2017 and Tasic et. al., 
2016 visual cortex datasets. (a) Heatmap showing the odds ratio for the intersection of top associated 
genes in each inferred GEP in the Hrvatin et. al., 2017 and Tasic et. al., 2016 datasets. Top associated genes 
were defined as those with an association score >= 0.0015. Odds ratios above 100 were set to 100 for better 
visualization of pairs in the lower range. GEPs from the Tasic et. al. dataset are labeled as ABA for Allen Brain 
Atlas. (b) Proportion of cells of each cell type that express the superficial LRP with greater than 10% usage in 
the Tasic et. al. dataset. Cells were assigned to a cell type based on their most used identity GEP.
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