

1
2
3
4
5
6 **Genetic regulatory mechanisms of smooth muscle cells map to coronary artery disease risk loci**
7
8
9

0 Boxiang Liu⁺, Milos Pjanic[®], Ting Wang[#], Trieu Nguyen[®], Michael Gloudemans[%], Abhiram Rao[^], Victor G.
1 Castano[®], Sylvia Nurnberg^Δ, Daniel J. Rader^Δ, Susannah Elwyn^Δ, Erik Ingelsson[®], Stephen B. Montgomery^{*#},
2 Clint L. Miller^{*&}, and Thomas Quertermous^{*®}
3
4
5

6 Stanford University Dept. of ⁺Biology, [#]Genetics, ^{\$}Pathology, [^]Bioengineering, [®]Medicine, and the
7 Cardiovascular Institute, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305;

8 [%]Biomedical Informatics Training Program, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA
9 94305;

0 ^ΔUniversity of Pennsylvania, Philadelphia, PA; and [&]Center for Public Health Genomics, Department of Public
1 Health Sciences, Biochemistry and Genetics, and Biomedical Engineering, University of Virginia,
2 Charlottesville, VA 22908
3
4
5
6
7
8
9
0

1 *These authors contributed equally to this work
2
3
4
5
6
7
8
9

0 **Materials and Correspondence**
1
2
3
4
5
6
7
8

1 Thomas Quertermous
2 300 Pasteur Dr.
3 Falk CVRC
4 Stanford, CA 94305
5 tomq1@stanford.edu
6 Tel: 650-723-5012
7 Fax: 650-725-2178
8

9 **Abstract**

0 Coronary artery disease (CAD) is the leading cause of death globally. Genome-wide association studies
1 (GWAS) have identified more than 95 independent loci that influence CAD risk, most of which reside in non-
2 coding regions of the genome. To interpret these loci, we generated transcriptome and whole-genome
3 datasets using human coronary artery smooth muscle cells (HCASMC) from 52 unrelated donors, as well as
4 epigenomic datasets using ATAC-seq on a subset of 8 donors. Through systematic comparison with publicly
5 available datasets from GTEx and ENCODE projects, we identified transcriptomic, epigenetic, and genetic
6 regulatory mechanisms specific to HCASMC. We assessed the relevance of HCASMC to CAD risk using
7 transcriptomic and epigenomic level analyses. By jointly modeling eQTL and GWAS datasets, we identified five
8 genes (*SIPA1*, *TCF21*, *SMAD3*, *FES*, and *PDGFRA*) that modulate CAD risk through HCASMC, all of which
9 have relevant functional roles in vascular remodeling. Comparison with GTEx data suggests that *SIPA1* and
0 *PDGFRA* influence CAD risk predominantly through HCASMC, while other annotated genes may have multiple
1 cell and tissue targets. Together, these results provide new tissue-specific and mechanistic insights into the
2 regulation of a critical vascular cell type associated with CAD in human populations.

3

4 **Introduction**

5 Atherosclerotic coronary artery disease (CAD) is the leading cause of death in both developed and developing
6 countries worldwide, and current estimates predict that more than 1 million individuals will suffer from new and
7 recurrent CAD this year in the U.S. alone¹. Like most polygenic diseases, both genetic and environmental
8 factors influence an individual's lifetime risk for CAD². Early Swedish twin studies and more recent genome-
9 wide association studies (GWAS) have estimated that about 50% of CAD risk is explained by genetic factors^{3,4}.
0 To date, GWAS have reported more than 95 replicated independent loci and numerous additional loci that are
1 associated at an FDR<0.05⁵⁻⁸. A majority of these loci reside in non-coding genomic regions and are expected
2 to function through regulatory mechanisms. Also, approximately 75% of CAD loci are not associated with
3 classical risk factors, suggesting that at least part of them function through mechanisms intrinsic to the vessel
4 wall.

5

6 Smooth muscle cells (SMC) constitute the majority of cells in the coronary artery wall. In response to vascular
7 injury (e.g. lipid accumulation, inflammation), SMCs undergo phenotypic switching, and ultimately contribute to
8 both atherosclerotic plaque formation and stabilization⁹⁻¹². Recent lineage tracing studies in mice have
9 revealed that although 80% of plaque-derived cells lack traditional SMC markers, roughly half are of SMC
0 origin^{13,14}. Thus, genetic studies of human coronary artery smooth muscle cells (HCASMC) have the potential
1 to shed new light on their diverse functions in the vessel wall relevant to human atherosclerosis. In a few
2 cases, the underlying mechanisms have been identified for CAD loci in vascular SMC models^{10,15-18}. Large-
3 scale expression quantitative trait loci (eQTL) mapping efforts such as the Genotype Tissue Expression
4 (GTEx) project have helped refine these mechanisms for multiple traits across human tissues¹⁹. However, due
5 to the lack of HCASMC in both GTEx and other studies, the overall contribution of this cell type towards
6 heritable CAD risk remains unknown.

7
8 Herein, we performed whole-genome sequencing and transcriptomic profiling of 52 HCASMC donors to
9 quantify the effects of *cis*-acting variation on gene expression and splicing associated with CAD. We evaluated
0 the tissue specificity and disease relevance of our findings in HCASMC by comparing to publicly available
1 GTEx and ENCODE datasets. We observed significant colocalization of eQTL and GWAS signals for five
2 genes (*FES*, *SMAD3*, *TCF21*, *PDGFRA* and *SIPA1*), which all have the capacity to perform relevant functions
3 in vascular remodeling. Further, comparative analyses with GTEx datasets reveals that *SIPA1* and *PDGFRA*
4 act primarily in HCASMC. Together, these findings demonstrate the power of leveraging genetics of gene
5 regulation for a critical cell type to uncover new risk-associated mechanisms for CAD.

6
7 **Material and Methods**

8 **Sample acquisition and cell culture.** A total of 62 primary human coronary artery smooth muscle cell
9 (HCASMC) lines collected from donor hearts were purchased, and 52 lines remained after stringent filtering
0 (see **Supplementary Note**). These 52 lines were from PromoCell (catalog # C-12511, n = 19), Cell
1 Applications (catalog # 350-05a, n = 25), Lonza (catalog # CC-2583, n = 3), Lifeline Cell Technology (catalog #
2 FC-0031, n = 3), and ATCC (catalog # PCS-100-021, n = 2). All lines were stained with smooth muscle alpha
3 actin to check for smooth muscle content and all lines tested negative for mycoplasma (Table S1). All cell lines

4 were cultured in smooth muscle growth medium (Lonza catalog # CC-3182) supplemented with hEGF, insulin,
5 hFGF-b, and 5% FBS, according to Lonza instructions. All HCASMC lines were expanded to passage 5-6 prior
6 to extraction.

7

8 **Library preparation and sequencing.** Whole Genome Sequencing: Genomic DNA was isolated using Qiagen
9 DNeasy Blood & Tissue Kit (catalog # 69506) and quantified using NanoDrop 1000 Spectrophotometer
0 (Thermo Fisher). Macrogen performed library preparation using Illumina's TruSeq DNA PCR-Free Library
1 Preparation Kit and 150 bp paired-end sequencing on Illumina HiSeq X Ten System. RNA Sequencing: RNA
2 was extracted using Qiagen miRNeasy Mini Prep Kit (catalog # 74106). Quality of RNA was assessed on the
3 Agilent 2100 Bioanalyzer. Samples with RIN greater than or equal to 8 were sent to the Next-Generation
4 Sequencing Core at the Perelman School of Medicine at the University of Pennsylvania. Libraries were made
5 using Illumina TruSeq Stranded Total RNA Library Prep Kit (catalog # 20020597) and sequenced using 125bp
6 paired-end on HiSeq 2500 Platform. ATAC Sequencing: We used ATAC-seq to assess chromatin accessibility
7 with slight modifications to the published protocol⁵⁷. Approximately 5×10^4 fresh cells were collected at 500 g,
8 washed in PBS, and nuclei extracted with cold lysis buffer. Pellets were subjected to transposition containing
9 Tn5 transposases (Illumina) at 37 °C for 30 min, followed by purification using the DNA Clean-up and
0 Concentration kit (Zymo). Libraries were PCR amplified using Nextera barcodes, with the total number of
1 cycles empirically determined using SYBR qPCR. Amplified libraries were purified and quantified using
2 bioanalyzer, nanodrop and qPCR (KAPA) analysis. Libraries were multiplexed and 2x75 bp sequencing was
3 performed using an Illumina NextSeq 500.

4

5 **Alignment and quantification of genomic, transcriptomic and epigenomic features.** Whole-genome
6 sequencing data were processed with the GATK best practices pipeline with hg19 as the reference
7 genome^{20,58}, and VCF records were phased with Beagle v4.1⁵⁹. Variants with imputation allelic r² less than 0.8
8 and Hardy-Weinberg Equilibrium p-value less than 1×10^{-6} were filtered out (see **Supplementary Note**). De-
9 multiplexed FASTQ files were mapped with STAR version 2.4.0i in 2-pass mode⁶⁰ over the hg19 reference
0 genome. Prior to expression quantification, we filtered our reads prone to mapping bias using WASP⁶¹. Total
1 read counts and RPKM were calculated with RNA-SeQC v1.1.8⁶² using default parameters with additional flags

2 “-n 1000 -noDoC -strictMode” over GENCODE v19 reference. Allele-specific read counts were generated with
3 the createASVCF module in RASQUAL²⁷. We quantified intron excision levels using LeafCutter intron-
4 spanning reads⁶³. In brief, we converted bam files to splice junction files using the bam2junc.sh script, and
5 defined intron clusters using leafcutter_cluster.py with default parameters, which requires at least 30 reads
6 supporting each intron and allows intron to have a maximum size of 100kb. We used the ENCODE ATAC-seq
7 pipeline to perform alignment and peak calling (https://github.com/kundajelab/atac_dnase_pipelines)⁶⁴. FASTQ
8 files were trimmed with Cutadapt v1.9⁶⁵ and aligned with Bowtie2 v2.2.6⁶⁶. MACS2 v2.0.8⁶⁷ was used to call
9 peaks with default parameters. Irreproducible Discovery Rate (IDR)⁶⁸ analyses were performed based on
0 pseudo-replicates (subsample of reads) with a cutoff of 0.1 to output an IDR call set, which was used for
1 downstream analysis. We used WASP⁶¹ to filter out reads that are prone to mapping bias.

2

3 **Mapping of cis-acting quantitative trait loci (QTL).** Prior to QTL mapping, we inferred ancestry principal
4 components (PCs) using the R package SNPRelate⁶⁹ on a pruned SNP set (Fig. S4). We filtered out SNPs
5 based on Hardy-Weinberg equilibrium ($HWE < 1 \times 10^{-6}$), LD ($r^2 < 0.2$) and minor allele frequency (MAF < 0.05)⁶⁹.
6 To correct for hidden confounders, we extracted 15 covariates using PEER⁷⁰ on quantile normalized and rank-
7 based inverse normal transformed RPKM values. The number of hidden confounders to removed was
8 determined by empirically maximize the power to discover eQTLs on chromosome 20 (for computational speed
9 and to avoid overfitting). We tested combinations of 3 to 5 genotype principal components with 1 to 15 PEER
0 factors. We found that the combination of 4 genotype PCs with 8 PEER factors provides the most power to
1 detect eQTLs. We then used sex, the top four genotype principal components, and the top eight PEER factors
2 in both FastQTL and RASQUAL to map cis-eQTL with a 2Mb window centered at transcription start sites.
3 Mathematically, the model is the following:

$$E(e|g, sex, PC, PEER) = \beta_0 + \beta_g \cdot g + \beta_s \cdot sex + \sum_{i=1}^4 \beta_{a,i} \cdot PC + \sum_{i=1}^8 \beta_{p,i} \cdot PEER$$

4 Where e stands for gene expression, and g stands for the genotype of the test SNP. We used LeafCutter³¹ to
5 quantify intron excision levels, and FastQTL²⁶ to map cis-sQTLs within a 200 kbp window around splice donor
6 sites, controlling for sex, genotype PCs, and splicing PCs. Using a similar approach, we found that 3 genotype
7 PCs and 6 splicing PCs maximized the power to map sQTLs. To control for multiple hypothesis testing, we
8 calculated per-gene eQTL p-values using FastQTL with permutation, and controlled transcriptome-wide false

9 discovery rate with the q-value package⁷¹. For RASQUAL, it was not computationally feasible to perform gene-
0 level permutation testing. Instead, we used TreeQTL to simultaneously control for SNP-level FDR and gene-
1 level FDR⁷². Note that TreeQTL is more conservative than permutation {Consortium:jn}.

2

3 Quantifying tissue- and cell-type specific contribution to coronary artery disease (CAD) risk

4 We used stratified LD score regression³³ to estimate the enrichment of heritability for SNPs around tissue- and
5 cell-type specific genes as described previously³². We defined tissue-specific genes by first selecting for
6 independent tissues and removing tissues primarily composed of smooth muscle to avoid correlation with
7 HCASMC (see **Supplementary note**). After filtering, 16 tissues remained: HCASMC, Adipose - Subcutaneous,
8 Adrenal Gland, Artery - Coronary, Brain - Caudate (basal ganglia), Cells - EBV-transformed lymphocytes, Cells
9 - Transformed fibroblasts, Liver, Lung, Minor Salivary Gland, Muscle - Skeletal, Pancreas, Pituitary, Skin - Not
0 Sun Exposed (Suprapubic), Testis, Whole Blood. We defined tissue-specific genes using gene expression z-
1 score. For each gene, we determined the mean and standard deviation of median RPKM across tissues, from
2 which the z-score is derived.

$$\tilde{e}_t = \text{median}(\mathbf{e}_t)$$

$$z = (\tilde{e}_t - E(\tilde{e}_t)) / \text{Var}(\tilde{e}_t)$$

3 Where \mathbf{e}_t is the RPKM across all individuals in tissue t . We ranked each gene based on the z-scores (a higher
4 z-score indicates more tissue specificity), and defined tissue-specific genes as the top 1000, 2000, and 4000
5 genes. A given SNP was assigned to a gene if it fell into the union of exon +/- 1kb of that gene. We estimated
6 the heritability enrichment using stratified LD score regression on a joint SNP annotation across all 16 tissues
7 against the CARDIoGRAMplusC4D GWAS meta-analysis⁷³. To determine whether CAD risk variants are
8 enriched in the open chromatin regions tissue- and cell-type specific fashion, we used a modified version of
9 GREGOR³⁴ to estimate the likelihood of observing given number of GWAS variants falling into open chromatin
0 regions of each tissue and cell type (see **Supplementary Note**). We first defined a GWAS locus as all variants
1 in LD ($r^2 > 0.7$) with the lead variant. Given a set of GWAS loci, we selected 500 background variants matched
2 by 1) number of variants in LD, 2) distance to the nearest gene, and 3) minor allele frequency, and 4) gene
3 density in a 1Mb window. We calculated p-values and odds ratios between GWAS variants and background
4 variants across HCASMC and all ENCODE tissues and primary cell lines.

5

6 **Colocalization between molecular QTL and CAD genome-wide association study (GWAS).** We used
7 summary-data-based Mendelian Randomization (SMR)³⁷ to determine GWAS loci that can be explained by *cis*-
8 acting QTLs. We performed colocalization tests for 3,379 genes with *cis*-eQTL p-value < 5x10⁻⁵ for the top
9 variant and 2,439 splicing events with *cis*-sQTL p-value < 5x10⁻⁵ for the top variant in HCASMC against the
0 latest CARDIoGRAMplusC4D and UK Biobank GWAS meta-analysis⁶. We identified genome-wide significant
1 eQTL and sQTL colocalizations based on adjusted SMR p-values (Benjamini-Hochberg FDR < 0.05). The
2 equivalent p-value was 2.96x10⁻⁵ and 2.05x10⁻⁵ for eQTL and sQTL, respectively. SMR uses a reference
3 population to determine linkage between variants; we used genetic data from individuals of European ancestry
4 from 1000 Genomes as the reference population in our analyses. We also used a modified version of
5 eCAVIAR³⁵ to identify colocalized signals (see **Supplementary Note**). We calculated colocalization posterior
6 probability (CLPP) using all SNPs within 500kb of the lead eQTL SNP against CAD summary statistics from
7 CARDIoGRAMplusC4D and UK Biobank GWAS meta-analysis⁶. For computational feasibility, the GWAS and
8 eQTL loci were assumed to have exactly one causal SNP. We defined colocalization events using CLPP >
9 0.05. Note that this is more conservative than the default eCAVIAR cutoff (CLPP > 0.01). We determined the
0 direction of effect, namely whether gene upregulation increases risk, using the correlation of effect sizes in the
1 GWAS and the eQTL studies. We selected SNPs with p-value < 1x10⁻³ in both the GWAS and eQTL datasets
2 (since other SNPs carry mostly noise), and fitted a regression using the GWAS and eQTL effect sizes as the
3 predictor and the response, respectively. We defined the direction of effect as the sign of the regression slope.

4

5 **Results**

6 **HCASMC-specific genomic architecture**

7 We obtained and cultured 62 primary HCASMC lines, and 52 lines remained for analysis after stringent quality
8 control (**Supplementary Note** and Table S1). We performed whole-genome sequencing to an average depth
9 of 30X, and jointly called genotypes using the GATK best practices pipeline²⁰, producing a total of ~15.2 million
0 variants after quality control (see **Methods**). For RNA, we performed 125bp paired-end sequencing to a
1 median depth of 51.3 million reads, with over 2.7 billion reads in total. After quantification and quality control,
2 19,607 genes were expressed in sufficient depth for downstream analysis (Table 1). To confirm that HCASMC

3 derived from tissue culture reflect *in vivo* physiology, we first projected their transcriptomes onto the 53 tissues
4 profiled in GTEx¹⁹ (Fig. 1A). Using multi-dimensional scaling (MDS) to visualize the similarity of HCASMC to
5 GTEx tissues, we observed that HCASMC forms a distinct cluster and closely neighbors fibroblasts, skeletal
6 muscle, arteries, heart and various smooth muscle-enriched tissues (vagina, colon, stomach, uterus and
7 esophagus). These results were expected given that HCASMC are predicted to be similar to skeletal muscle,
8 smooth muscle-enriched tissues as well as tissues representing the same anatomical compartment (e.g. heart
9 and artery)²¹. In addition, HCASMC resemble fibroblast as both can be differentiated from mesenchymal cells
0 from the dorsal mesocardium²². We also computed the epigenetic similarity between HCASMC and ENCODE
1 cell types²³. Consistent with the transcriptomic findings, the closest neighbors to HCASMC using epigenomic
2 data were fibroblasts, heart, lung and skeletal muscle (Fig. 1B).

3
4 Next, we determined the pathways that may be selectively upregulated in HCASMC compared to closely
5 related tissues. We performed differential expression analysis of HCASMC against fibroblasts and coronary
6 artery in GTEx after correcting for batch effects and other hidden confounders (see **Methods**). Overall, 2,610
7 and 6,864 genes were found to be differentially expressed, respectively (FDR < 1x10⁻³, Fig. 1C and Fig. S1),
8 affecting pathways involved in cellular proliferation, epithelial-mesenchymal transition (EMT) and extracellular
9 matrix (ECM) secretion (Table S2). Next, we sought to identify HCASMC-specific epigenomic signatures by
0 comparing HCASMC open chromatin profiles, as determined with ATAC-seq, against DNasel hypersensitivity
1 (DHS) sites across all ENCODE primary cell types and tissues (Table S3). We processed HCASMC ATAC-seq
2 data with the ENCODE pipeline and standardized peaks as 75 bp around the peak summit for all tissues and
3 cell lines to mitigate batch effect (see **Methods**). A total of 7332 peaks (2.1%) were not previously identified in
4 ENCODE and represent HCASMC-specific sites (Fig. 1D). For example, an intronic peak within the *LMOD1*
5 gene was found to be unique to HCASMC (Fig. 1E). This gene is expressed only in vascular and visceral
6 smooth muscle cells where it is involved in actin polymerization, and has been mapped as a candidate causal
7 CAD gene¹¹. We then sought to identify transcription factor binding sites overrepresented in HCASMC-specific
8 peaks. Motif enrichment analyses indicated that HCASMC-specific open chromatin sites are enriched with
9 binding sites for members of the forkhead box (FOX) transcription factor family (see **Methods**). We performed
0 motif enrichment analysis using 50-, 200-, and 1000-bp regions flanking HCASMC-specific peaks, and found

1 that the enrichment was robust to selection of window size, indicating the result is not simply due to selection
2 bias (Fig. S2). The FOX transcription factors are known to regulate tissue- and cell-type specific gene
3 transcription²⁴, and a subgroup of this family includes those with the ability to serve as pioneer factors²⁵. To
4 validate that FOX motif enrichment is specific to HCASMC, we performed similar analyses for brain-, heart-,
5 and fibroblast-specific open chromatin regions and observed a depletion of FOX motifs (Fig. S3). Together
6 these results suggest that HCASMC-specific transcriptomic and epigenomic profiles provide new regulatory
7 mechanisms previously lacking in large publicly available datasets.

8

9 **Expression and splicing quantitative trait locus discovery**

0 In order to investigate the genetic regulatory mechanisms of gene expression in HCASMC, we conducted
1 genome-wide mapping of eQTLs using both FastQTL²⁶ and RASQUAL²⁷ on the 52 donor samples from diverse
2 ethnic backgrounds (Table S1 and Fig S4). RASQUAL has been previously shown to increase the *cis*-eQTL
3 discovery power in small sample sizes by leveraging allele-specific information²⁷. Indeed, using a threshold of
4 FDR < 0.05, RASQUAL increased the number of eQTLs discovered approximately seven-fold as compared to
5 FastQTL (RASQUAL:1220 vs. FastQTL:167, Table 1). We next evaluated whether these eQTLs were enriched
6 in regions of open chromatin using data from a subset of individuals with ATAC-seq profiles. We observed that
7 eQTLs within HCASMC open chromatin regions had more significant p-values compared to all eQTLs (Fig. S5,
8 two-sided rank-sum test p-value < 9.2x10⁻⁵). This is consistent with putative effects of *cis*-acting variation,
9 potentially functioning through altered TF binding around these accessible regions. Next, using a Bayesian
0 meta-analytic approach²⁸, we sought to identify HCASMC-specific eQTLs using GTEx tissues as a reference.
1 Under the most stringent criteria (eQTL posterior probability > 0.9 for HCASMC and < 0.1 for all GTEx tissues,
2 see **Methods**), we identified four HCASMC-specific eQTLs (Fig. S6). For example, rs1048709 is the top eQTL-
3 SNP and confers HCASMC-specific regulatory effects on Complement Factor B (Fig. S6B), a gene that has
4 been previously implicated in atherosclerosis and other inflammatory diseases²⁹. In addition to regulatory
5 effects on gene expression, previous studies have identified splicing as a major source of regulatory impact of
6 genetic variation on complex diseases³⁰. Therefore, we mapped splicing QTLs (sQTLs) using LeafCutter³¹ and
7 identified 581 sQTLs associated at FDR < 0.05 (Table 1). As a quality control, we estimated the enrichment of
8 sQTLs and eQTLs against a matched set of background variants. As expected, eQTLs were enriched around

9 the 5' UTR (Fig. S7A), whereas sQTLs were enriched in splicing regions, particularly splice donor and acceptor
0 sites (Fig. S7B).

1

2 Overall CAD genetic risk mediated by HCASMC

3 We next examined the heritable contribution of HCASMC towards the risk of CAD. Previous reports have
4 suggested that disease-associated SNPs are often enriched in genes expressed in the relevant tissue types³².
5 Thus, we estimated the contribution to CAD risk from SNPs in or near genes showing patterns of tissue-
6 specific expression and identified the top 2000 tissue-specific genes for HCASMC and GTEx tissues (see
7 **Methods**). We then applied stratified LD score regression³³ to estimate CAD heritability explained by SNPs
8 within 1kb of tissue-specific genes. We found that HCASMC, along with coronary artery and adipose tissues,
9 contribute substantially towards CAD heritability (Fig. 2A). These enrichment results were robust to the tissue-
0 specificity cutoff (top 1000, 2000, or 4000 genes), suggesting that they were not simply due to selection bias
1 (Fig. S8). Complementary epigenomic evidence previously demonstrated that risk variants for complex
2 diseases are often enriched in open chromatin regions in relevant tissue types^{23,33,34}. Thus, we estimated the
3 degree of overlap between CAD variants and open chromatin in HCASMC and ENCODE cell types using a
4 modified version of GREGOR³⁴ (see **Methods**). We observed that open chromatin regions in HCASMC, as
5 well as vascular endothelial cells, monocytes, uterus (smooth muscle) and B-cells, are enriched for CAD risk
6 variants (Fig. 2B). These findings support the role of HCASMC as an appropriate cellular model to map the
7 genetic basis of CAD, which may be supplemented by the contribution of other vessel wall cell types.

8

9 Fine-mapping CAD risk variants

0 Whole-genome sequencing of our HCASMC population sample provides the opportunity to fine-map CAD risk
1 loci. Several studies have used colocalization between GWAS and eQTL signals as a fine-mapping approach
2 to identify candidate causal regulatory variants³⁵⁻³⁸, and in several cases pinpointing single causal variants^{39,40}.
3 Given the global overlap between CAD risk variants and genetic regulation in HCASMC, we sought to find
4 evidence for colocalization between GWAS and eQTL signals. We thus compiled publicly available genome-
5 wide summary statistics from the latest meta-analysis⁶. We then applied two methods with different statistical
6 assumptions, eQTL and GWAS CAusal Variants Identification in Associated Regions (eCAVIAR)³⁵ and

7 Summary-data-based Mendelian Randomization (SMR)³⁷ to identify colocalizing variants and genes across all
8 CAD loci, and focused on the union of results from the two independent methods. We used FDR < 0.05 and
9 colocalization posterior probability (CLPP) > 0.05 as cutoffs for SMR and eCAVIAR, respectively (Note that
0 CLPP > 0.05 is more conservative than the CLPP > 0.01 recommended in the publication of the eCAVIAR
1 method). From this approach, we identified five high-confidence genes, namely *FES*, *SMAD3*, *TCF21*,
2 *PDGFRA* and *SIPA1* (Fig. 3). Although the top genes found by two methods differed, we observed that the
3 SMR p-values and eCAVIAR CLPPs positively correlate (Fig. S9), and that two of the three genes found only
4 by eCAVIAR achieved nominal significance in SMR (Table S4). We then investigated whether these
5 colocalizations were unique to HCASMC by conducting colocalization tests across all GTEx tissues. For *SIPA1*
6 and *PDGFRA*, colocalization appears to be HCASMC-specific (Fig. 3G; Fig. S10A and S10D). For *SMAD3*,
7 both HCASMC and thyroid have strong colocalization signals (Fig. S10B). *TCF21* and *FES* colocalization were
8 found to be shared across multiple tissues (Fig. S10C and Fig. S11D). Next, we conducted colocalization
9 analysis between sQTL and GWAS summary statistics with both eCAVIAR and SMR. We identified
0 colocalization with four genes (Table S4, and Fig. S12). The most significant colocalization event is at the
1 *SMG9* locus. Interestingly, the top sQTL variant, rs4760, is a coding variant located in the exon of the *PLAUR*
2 (plasminogen activator urokinase receptor) gene and is also a GWAS variant for circulating cytokines and
3 multiple immune cell traits^{41,42}. By correlating eQTL and GWAS effect sizes, we observed that increased
4 *TCF21* and *FES* expression levels are associated with reduced CAD risk, while increased *PDGFRA*, *SIPA1*,
5 and *SMAD3* expression levels are associated with increased CAD risk (Fig. 4A-E). These results provide
6 genetic evidence that pathways promoting SMC phenotypic transition during atherosclerosis can be both
7 protective and detrimental depending on the genes implicated (Fig. 4F).

8
9

0 **Discussion**

1 In this study, we have integrated genomic, transcriptomic, and epigenetic datasets to create the first map of
2 genetic regulation of gene expression in human coronary artery smooth muscle cells. Comparison with publicly
3 available transcriptomic and epigenomic datasets in GTEx and ENCODE revealed regulatory patterns specific
4 to HCASMC. By comparing against neighboring tissues in GTEx, we found thousands of differentially

5 expressed genes, which were enriched in pathways such as EMT, protein secretion and cellular proliferation,
6 consistent with our current understanding of HCASMC physiology *in vivo*. In comparison with ENCODE, we
7 found 7332 (~2.1%) open chromatin peaks unique to HCASMC, and showed that these peaks are enriched
8 with binding motifs for Forkhead box family proteins, which are known to regulate cell-type-specific gene
9 expression⁴³. FOXP1 in particular has been shown to increase collagen production in smooth muscle cells⁴⁴,
0 supporting a potential role in extracellular matrix remodeling in the vessel wall.

1
2 Using both transcriptomic and epigenomic profiles, we established that HCASMC represent an important cell
3 type for coronary artery disease. On a tissue-level, we demonstrated that genes highly expressed in HCASMC,
4 coronary artery and adipose tissue are enriched for SNPs associated with CAD risk. While the proximal aortic
5 wall is also susceptible to atherosclerosis, the coronary arteries represent the primary origin of ischemic
6 coronary artery disease in humans⁹. Given that the majority of coronary arteries in the epicardium are
7 encapsulated by perivascular adipose tissue in individuals with disease, one would expect these tissues to
8 share gene responses involved in both vascular inflammation and lipid homeostasis⁴⁵. Further, we
9 demonstrated that HCASMC, endothelial cells, and immune cells also contribute towards the genetic risk of
0 coronary artery disease. Recent –omic profiling of human aortic endothelial cells (HAECS) isolated from
1 various donors identified a number of genetic variants and transcriptional networks mediating responses to
2 oxidized phospholipids and pro-inflammatory stimuli⁴⁶. Likewise, systems approaches investigating resident
3 macrophages and other immune cells involved in vessel inflammation have provided additional insights into
4 context-specific disease mechanisms^{47,48}.

5
6 Our integrative analyses identified a number of CAD-associated genes that may offer clues into potentially
7 targetable HCASMC-mediated disease mechanisms. Although two of these associated genes, *TCF21* and
8 *SMAD3*, have established roles in regulating vascular remodeling and inflammation during disease^{12,16,49}, the
9 other identified genes, *PDGFRA*, *FES* and *SIPA1*, appear to be novel SMC associated genes. While the role
0 for *PDGFRB* mediated signaling has been well documented in atherosclerosis and modulation of SMC
1 phenotype, the possible involvement of *PDGFRA* has not been investigated in detail^{50,51}. Interestingly, *FES*
2 and *SIPA1* were found to harbor CpGs identified in current smokers in the Rotterdam Study, based on targeted

3 methylation profiling of CAD loci in whole blood⁵². The two identified CpGs in *FES* were located near the
4 transcription start site, while the one CpG identified in *SIPA1* was located in the 5'-UTR, suggesting potential
5 environmental influences on gene expression levels. *SIPA1* encodes a mitogen induced GTPase activating
6 protein (GAP), specifically activating Ras and Rap GTPases⁵³. *SIPA1* may be a unique mitogen response
7 signal in HCASMC undergoing phenotypic transition in the injured vessel wall; however, these hypotheses
8 should be explored in relevant functional models. Another HCASMC eQTL variant, rs2327429, located in the
9 *TCF21* promoter region, was also the lead SNP in this locus in a recent CAD meta-analysis and has been
0 identified as an mQTL for *TCF21* expression in two separate studies^{54,55}. These data suggest that regulation of
1 methylation is a novel molecular trait that may mediate risk for CAD. Splicing QTL colocalization analysis
2 reveals that alternative splicing in *SMG9* also influences CAD risk. *SMG9* has been shown to regulate the non-
3 sense mediated decay (NMD) pathway in human cells, and has been implicated in several developmental
4 disorders such as brain malformations and congenital heart disease⁵⁶.

5
6 In summary, the current study confirms the value of detailed genomic and genetic analyses of disease-related
7 tissues and cell types, which when analyzed in the context of publicly available data can provide deep insights
8 into the physiology of human traits and pathophysiology of complex human disease. We expect that these
9 findings will provide a rich resource for the community and prompt detailed functional investigations of
0 candidate loci for preclinical development.

1
2 **Supplemental Data**
3

4
5 Supplemental Data include fifteen figures and five tables.

6
7 **Acknowledgement**
8 We thank Professor Nicolas Mermod for providing biological material and Normal Cyr for making illustrations.
9 B.L. is supported in part by the Stanford Center for Computational, Evolutionary and Human Genetics
0 Fellowship. T.Q is supported by NIH grants R01HL109512(NIH), R01HL134817 (NIH), R33HL120757 (NIH),
R01DK107437 (NIH), and R01HL139478 (NIH). C.L.M is supported by R00HL125912 (NIH). S.B.M. is
supported by R33HL120757 (NHLBI), U01HG009431 (NHGRI; ENCODE4), R01MH101814 (NIH Common

1 Fund; GTEx Program), R01HG008150 (NHGRI; Non-Coding Variants Program) and the Edward Mallinckrodt
2 Jr. Foundation.

3

4 **Declaration of Interests**

5 The authors declare no competing financial interests.

6

7 **Web Resources**

8 **Data and code availability.** RNA sequencing data has been deposited at Gene Expression Omnibus (GEO),
9 accession number GSE113348. All eQTL and sQTL summary statistics are accessible through the website
0 <http://montgomerylab.stanford.edu/resources.html>. All code used to perform analyses and generate figures are
1 in the GitHub repository: https://github.com/boxiangliu/hcasmc_eqtl

2

3 **URLs.** GATK, <https://software.broadinstitute.org/gatk/>; BWA, <https://github.com/lh3/bwa>; STAR,
4 <https://github.com/alexdobin/STAR>; Picard, <https://broadinstitute.github.io/picard/>; RASQUAL,
5 <https://github.com/natsuhiko/rasqual>; Beagle, <https://faculty.washington.edu/browning/beagle/beagle.html>;
6 1000 Genomes, <http://www.internationalgenome.org/>; VerifyBamID,
7 <https://genome.sph.umich.edu/wiki/VerifyBamID>; FastQC,
8 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>; WASP, <https://github.com/bmvdgeijn/WASP>; RNA-
9 SeQC, <http://archive.broadinstitute.org/cancer/cga/rna-seqc>; GENCODE, <https://www.gencodegenes.org/>;
0 ENCODE, <https://www.encodeproject.org/>; Bowtie2, <http://bowtie-bio.sourceforge.net/bowtie2/index.shtml>;
1 MACS2, <https://github.com/taoliu/MACS>; ENCODE ATAC-seq/DNAse-seq pipeline,
2 https://github.com/kundajelab/atac_dnase_pipelines; DESeq2,
3 <https://bioconductor.org/packages/release/bioc/html/DESeq2.html>; sva,
4 <https://bioconductor.org/packages/release/bioc/html/sva.html>; NOISeq,
5 <https://bioconductor.org/packages/release/bioc/html/NOISeq.html>; bedtools,
6 <http://bedtools.readthedocs.io/en/latest/>; JASPAR, <http://jaspar.genereg.net/>; LD score regression,
7 <https://github.com/bulik/ldsc>; LeafCutter, <https://github.com/davidaknowles/leafcutter>; GREGOR,
8 <https://genome.sph.umich.edu/wiki/GREGOR>; PLINK, <https://www.cog-genomics.org/plink2>; FastQTL,

9 <http://fastqtl.sourceforge.net/>; TreeQTL, <http://www.bioinformatics.org/treeqtl/>; METASOFT,
0 <http://genetics.cs.ucla.edu/meta/>; SMR, <http://cnsgenomics.com/software/smr/#Overview>; eCAVIAR,
1 <http://zarlab.cs.ucla.edu/tag/ecaviar/>; FINEMAP: <http://www.christianbenner.com/#>.

2

3 **Reference**

4 1. Benjamin, E.J., Blaha, M.J., Chiuve, S.E., Cushman, M., Das, S.R., Deo, R., de Ferranti, S.D., Floyd, J.,
5 Fornage, M., Gillespie, C., et al. (2017). Heart Disease and Stroke Statistics—2017 Update: A Report From the
6 American Heart Association. *Circulation* 135, CIR.000000000000485–e603.

7 2. Khera, A.V., Emdin, C.A., Drake, I., Natarajan, P., Bick, A.G., Cook, N.R., Chasman, D.I., Baber, U.,
8 Mehran, R., Rader, D.J., et al. (2016). Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease.
9 *N. Engl. J. Med.* 375, 2349–2358.

0 3. Won, H.-H., Natarajan, P., Dobbyn, A., Jordan, D.M., Roussos, P., Lage, K., Raychaudhuri, S., Stahl, E.,
1 and Do, R. (2015). Disproportionate Contributions of Select Genomic Compartments and Cell Types to Genetic
2 Risk for Coronary Artery Disease. *PLoS Genet.* 11, e1005622.

3 4. Zdravkovic, S., Wienke, A., Pedersen, N.L., Marenberg, M.E., Yashin, A.I., and De Faire, U. (2002).
4 Heritability of death from coronary heart disease: a 36-year follow-up of 20 966 Swedish twins. *J. Intern. Med.*
5 252, 247–254.

6 5. Howson, J.M.M., Zhao, W., Barnes, D.R., Ho, W.-K., Young, R., Paul, D.S., Waite, L.L., Freitag, D.F.,
7 Fauman, E.B., Salfati, E.L., et al. (2017). Fifteen new risk loci for coronary artery disease highlight arterial-wall-
8 specific mechanisms. *Nat Genet* 385, 117.

9 6. Nelson, C.P., Goel, A., Butterworth, A.S., Kanoni, S., Webb, T.R., Marouli, E., Zeng, L., Ntalla, I., Lai, F.Y.,
0 Hopewell, J.C., et al. (2017). Association analyses based on false discovery rate implicate new loci for
1 coronary artery disease. *Nat Genet* 49, 1385–1391.

2 7. Klarin, D., Zhu, Q.M., Emdin, C.A., Chaffin, M., Horner, S., McMillan, B.J., Leed, A., Weale, M.E., Spencer,
3 C.C.A., Aguet, F., et al. (2017). Genetic analysis in UK Biobank links insulin resistance and transendothelial
4 migration pathways to coronary artery disease. *Nat Genet* 388, 1459.

5 8. van der Harst, P., and Verweij, N. (2017). The Identification of 64 Novel Genetic Loci Provides an Expanded
6 View on the Genetic Architecture of Coronary Artery Disease. *Circulation Research* 122,
7 CIRCRESAHA.117.312086–CIRCRESAHA.117.312443.

8 9. Khera, A.V., and Kathiresan, S. (2017). Genetics of coronary artery disease: discovery, biology and clinical
9 translation. *Nature Reviews Genetics* 18, 331–344.

0 10. Pu, X., Xiao, Q., Kiechl, S., Chan, K., Ng, F.L., Gor, S., Poston, R.N., Fang, C., Patel, A., Senver, E.C., et
1 al. (2013). ADAMTS7 Cleavage and Vascular Smooth Muscle Cell Migration Is Affected by a Coronary-Artery-
2 Disease-Associated Variant. *The American Journal of Human Genetics* 92, 366–374.

3 11. Miller, C.L., Pjanic, M., Wang, T., Nguyen, T., Cohain, A., Lee, J.D., Perisic, L., Hedin, U., Kundu, R.K.,
4 Majmudar, D., et al. (2016). Integrative functional genomics identifies regulatory mechanisms at coronary
5 artery disease loci. *Nature Communications* 7, 12092.

6 12. Braitsch, C.M., Combs, M.D., Quaggin, S.E., and Yutzey, K.E. (2012). Pod1/Tcf21 is regulated by retinoic
7 acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing he...

8 - PubMed - NCBI. *Developmental Biology* 368, 345–357.

9 13. Shankman, L.S., Gomez, D., Cherepanova, O.A., Salmon, M., Alencar, G.F., Haskins, R.M., Swiatlowska, P., Newman, A.A.C., Greene, E.S., Straub, A.C., et al. (2015). KLF4-dependent phenotypic modulation of 1 smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. *Nature Medicine* 21, 628–637.

2 14. Cherepanova, O.A., Gomez, D., Shankman, L.S., Swiatlowska, P., Williams, J., Sarmento, O.F., Alencar, 3 G.F., Hess, D.L., Bevard, M.H., Greene, E.S., et al. (2016). Activation of the pluripotency factor OCT4 in 4 smooth muscle cells is atheroprotective. *Nature Medicine* 22, 657–665.

5 15. Nurnberg, S.T., Cheng, K., Raiesdana, A., Kundu, R., Miller, C.L., Kim, J.B., Arora, K., Carcamo-Oribe, I., 6 Xiong, Y., Tellakula, N., et al. (2015). Coronary Artery Disease Associated Transcription Factor TCF21 7 Regulates Smooth Muscle Precursor Cells That Contribute to the Fibrous Cap. *PLoS Genet.* 11, e1005155.

8 16. Miller, C.L., Haas, U., Diaz, R., Leeper, N.J., Kundu, R.K., Patlolla, B., Assimes, T.L., Kaiser, F.J., Perisic, 9 L., Hedin, U., et al. (2014). Coronary Heart Disease-Associated Variation in TCF21 Disrupts a miR-224 Binding 0 Site and miRNA-Mediated Regulation. *PLoS Genet.* 10, e1004263.

1 17. Srivastava, R., Zhang, J., Go, G.-W., Narayanan, A., Nottoli, T.P., and Mani, A. (2015). Impaired LRP6- 2 TCF7L2 Activity Enhances Smooth Muscle Cell Plasticity and Causes Coronary Artery Disease. *Cell Reports* 3 13, 746–759.

4 18. Kim, J.B., Pjanic, M., Nguyen, T., Miller, C.L., Iyer, D., Liu, B., Wang, T., Sazonova, O., Carcamo-Orive, I., 5 Matic, L.P., et al. (2017). TCF21 and the environmental sensor aryl-hydrocarbon receptor cooperate to activate 6 a pro-inflammatory gene expression program in coronary artery smooth muscle cells. *PLoS Genet.* 13, 7 e1006750.

8 19. Consortium, G., analysts, L., Laboratory, Data Analysis & Coordinating Center (LDACC):, management, 9 N.P., collection, B., Pathology, group, E.M.W., Battle, A., Brown, C.D., Engelhardt, B.E., et al. Genetic effects 0 on gene expression across human tissues. *Nature* 550, 204–213.

1 20. Van der Auwera, G.A., Carneiro, M.O., Hartl, C., Poplin, R., del Angel, G., Levy-Moonshine, A., Jordan, T., 2 Shakir, K., Roazen, D., Thibault, J., et al. (2002). From FastQ Data to High-Confidence Variant Calls: The 3 Genome Analysis Toolkit Best Practices Pipeline (Hoboken, NJ, USA: John Wiley & Sons, Inc.).

4 21. Wang, G., Jacquet, L., Karamariti, E., and Xu, Q. (2015). Origin and differentiation of vascular smooth 5 muscle cells. - PubMed - NCBI. *J Physiol* 593, 3013–3030.

6 22. Vrancken Peeters, M.P., Gittenberger-de Groot, A.C., Mentink, M.M., and Poelmann, R.E. (1999). Smooth 7 muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the 8 epicardium. *Anat. Embryol.* 199, 367–378.

9 23. Consortium, R.E., Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., 0 Kheradpour, P., Zhang, Z., Wang, J., et al. (2015). Integrative analysis of 111 reference human epigenomes. 1 *Nature* 518, 317–330.

2 24. Li, S., Weidenfeld, J., and Morrisey, E.E. (2004). Transcriptional and DNA binding activity of the Foxp1/2/4 3 family is modulated by heterotypic and homotypic protein interactions. *Mol. Cell. Biol.* 24, 809–822.

4 25. Iwafuchi-Doi, M., Donahue, G., Kakumanu, A., Watts, J.A., Mahony, S., Pugh, B.F., Lee, D., Kaestner, 5 K.H., and Zaret, K.S. (2016). The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome 6 Configuration at Enhancers for Tissue-Specific Gene Activation. *Molecular Cell* 62, 79–91.

7 26. Ongen, H., Buil, A., Brown, A.A., Dermitzakis, E.T., and Delaneau, O. (2016). Fast and efficient QTL 8 mapper for thousands of molecular phenotypes. *Bioinformatics* 32, 1479–1485.

9 27. Kumasaka, N., Knights, A.J., and Gaffney, D.J. (2016). Fine-mapping cellular QTLs with RASQUAL and
0 ATAC-seq. *Nat Genet* 48, 206–213.

1 28. Han, B., and Eskin, E. (2012). Interpreting Meta-Analyses of Genome-Wide Association Studies. *PLoS*
2 *Genet.* 8, e1002555.

3 29. Hovland, A., Jonasson, L., Garred, P., Yndestad, A., Aukrust, P., Lappégård, K.T., Espevik, T., and
4 Mollnes, T.E. (2015). The complement system and toll-like receptors as integrated players in the
5 pathophysiology of atherosclerosis. *Atherosclerosis* 241, 480–494.

6 30. Li, Y.I., van de Geijn, B., Raj, A., Knowles, D.A., Petti, A.A., Golan, D., Gilad, Y., and Pritchard, J.K. (2016).
7 RNA splicing is a primary link between genetic variation and disease. *Science* 352, 600–604.

8 31. Li, Y.I., Knowles, D.A., Humphrey, J., Barbeira, A.N., Dickinson, S.P., Im, H.K., and Pritchard, J.K. (2018).
9 Annotation-free quantification of RNA splicing using LeafCutter. *Nat Genet* 50, 151–158.

0 32. Boyle, E.A., Li, Y.I., and Pritchard, J.K. (2017). An Expanded View of Complex Traits: From Polygenic to
1 Omnipgenic. *Cell* 169, 1177–1186.

2 33. Finucane, H.K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P.-R., Anttila, V., Xu, H., Zang,
3 C., Farh, K., et al. (2015). Partitioning heritability by functional annotation using genome-wide association
4 summary statistics. *Nat Genet* 47, 1228–1235.

5 34. Schmidt, E.M., Zhang, J., Zhou, W., Chen, J., Mohlke, K.L., Chen, Y.E., and Willer, C.J. (2015). GREGOR:
6 evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven
7 approach. *Bioinformatics* 31, 2601–2606.

8 35. Hormozdiari, F., van de Bunt, M., Segrè, A.V., Li, X., Joo, J.W.J., Bilow, M., Sul, J.H., Sankararaman, S.,
9 Pasaniuc, B., and Eskin, E. (2016). Colocalization of GWAS and eQTL Signals Detects Target Genes. *The*
0 *American Journal of Human Genetics* 99, 1245–1260.

1 36. Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani, A.D., Wallace, C., and Plagnol, V.
2 (2014). Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary
3 Statistics. *PLoS Genet.* 10, e1004383.

4 37. Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M.R., Powell, J.E., Montgomery, G.W., Goddard, M.E.,
5 Wray, N.R., Visscher, P.M., et al. (2016). Integration of summary data from GWAS and eQTL studies predicts
6 complex trait gene targets. *Nat Genet* 48, 481–487.

7 38. Nica, A.C., Montgomery, S.B., Dimas, A.S., Stranger, B.E., Beazley, C., Barroso, I., and Dermitzakis, E.T.
8 (2010). Candidate Causal Regulatory Effects by Integration of Expression QTLs with Complex Trait Genetic
9 Associations. *PLoS Genet.* 6, e1000895.

0 39. Claussnitzer, M., Dankel, S.N., Kim, K.-H., Quon, G., Meuleman, W., Haugen, C., Glunk, V., Sousa, I.S.,
1 Beaudry, J.L., Puvilindran, V., et al. (2015). FTO Obesity Variant Circuitry and Adipocyte Browning in Humans.
2 [Http://dx.doi.org/10.1056/NEJMoa1502214](http://dx.doi.org/10.1056/NEJMoa1502214) 373, 895–907.

3 40. Musunuru, K., Strong, A., Frank-Kamenetsky, M., Lee, N.E., Ahfeldt, T., Sachs, K.V., Li, X., Li, H.,
4 Kuperwasser, N., Ruda, V.M., et al. (2010). From noncoding variant to phenotype via SORT1 at the 1p13
5 cholesterol locus. *Nature* 466, 714–719.

6 41. Ahola-Olli, A.V., Würtz, P., Havulinna, A.S., Aalto, K., Pitkänen, N., Lehtimäki, T., Kähönen, M.,
7 Lytykäinen, L.-P., Raitoharju, E., Seppälä, I., et al. (2017). Genome-wide Association Study Identifies 27 Loci
8 Influencing Concentrations of Circulating Cytokines and Growth Factors. - PubMed - NCBI. *The American*
9 *Journal of Human Genetics* 100, 40–50.

0 42. Astle, W.J., Elding, H., Jiang, T., Allen, D., Ruklisa, D., Mann, A.L., Mead, D., Bouman, H., Riveros-Mckay,
1 F., Kostadima, M.A., et al. (2016). The Allelic Landscape of Human Blood Cell Trait Variation and Links to
2 Common Complex Disease. - PubMed - NCBI. *Cell* 167, 1415–1429.e1419.

3 43. Golson, M.L., and Kaestner, K.H. (2016). Fox transcription factors: from development to disease.
4 *Development* 143, 4558–4570.

5 44. Bot, P.T., Grundmann, S., Goumans, M.J., 2011 Forkhead box protein P1 as a downstream target of
6 transforming growth factor- β induces collagen synthesis and correlates with a more stable plaque phenotype.
7 *Atherosclerosis*.

8 45. Berg, A.H., and Scherer, P.E. (2005). Adipose Tissue, Inflammation, and Cardiovascular Disease.
9 *Circulation Research* 96, 939–949.

0 46. Hogan, N.T., Whalen, M.B., Stolze, L.K., Hadeli, N.K., Lam, M.T., Springstead, J.R., Glass, C.K., and
1 Romanoski, C.E. (2017). Transcriptional networks specifying homeostatic and inflammatory programs of gene
2 expression in human aortic endothelial cells. *eLife Sciences* 6, e22536.

3 47. Ghattas, A., Griffiths, H.R., Devitt, A., Lip, G.Y.H., and Shantsila, E. (2013). Monocytes in Coronary Artery
4 Disease and Atherosclerosis: Where Are We Now? *Journal of the American College of Cardiology* 62, 1541–
5 1551.

6 48. Kinlay, S., Libby, P., and Ganz, P. (2001). Endothelial function and coronary artery disease. *Curr. Opin.*
7 *Lipidol.* 12, 383–389.

8 49. Turner, A.W., Martinuk, A., Silva, A., Lau, P., Nikpay, M., Eriksson, P., Folkersen, L., Perisic, L., Hedin, U.,
9 Soubeyrand, S., et al. (2016). Functional Analysis of a Novel Genome-Wide Association Study Signal in
0 SMAD3 That Confers Protection From Coronary Artery Disease. *Arterioscler Thromb Vasc Biol* 36, 972–983.

1 50. Andrae, J., Gallini, R., and Betsholtz, C. (2008). Role of platelet-derived growth factors in physiology and
2 medicine. *Genes Dev.* 22, 1276–1312.

3 51. He, C., Medley, S.C., Hu, T., Hinsdale, M.E., Lupu, F., Virmani, R., and Olson, L.E. (2015). PDGFR β
4 signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis.
5 *Nature Communications* 6, 7770.

6 52. Steenaard, R.V., Ligthart, S., Stolk, L., Peters, M.J., van Meurs, J.B., Uitterlinden, A.G., Hofman, A.,
7 Franco, O.H., and Dehghan, A. (2015). Tobacco smoking is associated with methylation of genes related to
8 coronary artery disease. - PubMed - NCBI. *Clin Epigenet* 7, 820.

9 53. Kurachi, H., Wada, Y., Tsukamoto, N., Maeda, M., Kubota, H., Hattori, M., Iwai, K., and Minato, N. (1997).
0 Human SPA-1 Gene Product Selectively Expressed in Lymphoid Tissues Is a Specific GTPase-activating
1 Protein for Rap1 and Rap2 SEGREGATE EXPRESSION PROFILES FROM A rap1GAP GENE PRODUCT. *J.*
2 *Biol. Chem.* 272, 28081–28088.

3 54. Gutierrez-Arcelus, M., Lappalainen, T., Montgomery, S.B., Buil, A., Ongen, H., Yurovsky, A., Bryois, J.,
4 Giger, T., Romano, L., Planchon, A., et al. (2013). Passive and active DNA methylation and the interplay with
5 genetic variation in gene regulation. *eLife Sciences* 2, e00523.

6 55. Gibbs, J.R., van der Brug, M.P., Hernandez, D.G., Traynor, B.J., Nalls, M.A., Lai, S.-L., Arepalli, S.,
7 Dillman, A., Rafferty, I.P., Troncoso, J., et al. (2010). Abundant Quantitative Trait Loci Exist for DNA
8 Methylation and Gene Expression in Human Brain. *PLoS Genet.* 6, e1000952.

9 56. Shaheen, R., Anazi, S., Ben-Omran, T., Seidahmed, M.Z., Caddle, L.B., Palmer, K., Ali, R., Alshidi, T.,
0 Hagos, S., Goodwin, L., et al. (2016). Mutations in SMG9, Encoding an Essential Component of Nonsense-

1 Mediated Decay Machinery, Cause a Multiple Congenital Anomaly Syndrome in Humans and Mice. Am. J.
2 Hum. Genet. 98, 643–652.

3 57. Buenrostro, J.D., Wu, B., Chang, H.Y., and Greenleaf, W.J. (2015). ATAC-seq: A Method for Assaying
4 Chromatin Accessibility Genome-Wide. Curr Protoc Mol Biol 109, 21.29.1–29.9.

5 58. DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del Angel,
6 G., Rivas, M.A., Hanna, M., et al. (2011). A framework for variation discovery and genotyping using next-
7 generation DNA sequencing data. Nat Genet 43, 491–498.

8 59. Browning, B.L., and Yu, Z. (2009). Simultaneous genotype calling and haplotype phasing improves
9 genotype accuracy and reduces false-positive associations for genome-wide association studies. Am. J. Hum.
0 Genet. 85, 847–861.

1 60. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and
2 Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

3 61. van de Geijn, B., McVicker, G., Gilad, Y., and Pritchard, J. (2014). WASP: allele-specific software for robust
4 discovery of molecular quantitative trait loci. bioRxiv.

5 62. Deluca, D.S., Levin, J.Z., Sivachenko, A., Fennell, T., Nazaire, M.-D., Williams, C., Reich, M., Winckler, W.,
6 and Getz, G. (2012). RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics
7 28, 1530–1532.

8 63. Li, Y.I., Knowles, D.A., and Pritchard, J.K. (2016). LeafCutter: Annotation-free quantification of RNA
9 splicing. bioRxiv.

0 64. Sloan, C.A., Chan, E.T., Davidson, J.M., Malladi, V.S., Strattan, J.S., Hitz, B.C., Gabdank, I., Narayanan,
1 A.K., Ho, M., Lee, B.T., et al. (2016). ENCODE data at the ENCODE portal. Nucleic Acids Research 44, D726–
2 D732.

3 65. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.
4 EMBnet.Journal 17, pp.10–pp.12.

5 66. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. 9, 357–359.

6 67. Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M.,
7 Brown, M., Li, W., et al. (2008). Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137.

8 68. Li, Q., Brown, J.B., Huang, H., and Bickel, P.J. (2011). Measuring reproducibility of high-throughput
9 experiments. The Annals of Applied Statistics 5, 1752–1779.

0 69. Zheng, X., Levine, D., Shen, J., Gogarten, S.M., Laurie, C., and Weir, B.S. (2012). A high-performance
1 computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–
2 3328.

3 70. Stegle, O., Parts, L., Piipari, M., Winn, J., and Durbin, R. (2012). Using probabilistic estimation of
4 expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses.
5 Nature Protocols 7, 500–507.

6 71. Storey, J.D., and Tibshirani, R. (2003). Statistical significance for genomewide studies. Pnas 100, 9440–
7 9445.

8 72. Peterson, C.B., Bogomolov, M., Benjamini, Y., and Sabatti, C. (2016). TreeQTL: hierarchical error control
9 for eQTL findings. Bioinformatics btw198.

0 73. Consortium, T.C. (2015). A comprehensive 1000 Genomes-based genome-wide association meta-analysis
1 of coronary artery disease. *Nat Genet* 47, 1121–1130.

2 74. Schunkert, H., König, I.R., Kathiresan, S., Reilly, M.P., Assimes, T.L., Holm, H., Preuss, M., Stewart,
3 A.F.R., Barbalic, M., Gieger, C., et al. (2011). Large-scale association analysis identifies 13 new susceptibility
4 loci for coronary artery disease. *Nat Genet* 43, 333–338.

5 75. The CARDIoGRAMplusC4D Consortium, DIAGRAM Consortium, CARDIOGENICS Consortium, MuTHER
6 Consortium, Wellcome Trust Case Control Consortium, Deloukas, P., Kanoni, S., Willenborg, C., Farrall, M.,
7 Assimes, T.L., et al. (2012). Large-scale association analysis identifies new risk loci for coronary artery
8 disease. *Nat Genet* 45, 25–33.

9 76. Acharya, A., Baek, S.T., Huang, G., Eskiocak, B., Goetsch, S., Sung, C.Y., Banfi, S., Sauer, M.F., Olsen,
0 G.S., Duffield, J.S., et al. (2012). The bHLH transcription factor Tcf21 is required for lineage-specific EMT of
1 cardiac fibroblast progenitors. *Development (Cambridge, England)* 139, 2139–2149.

2 77. Greer, P. (2002). Closing in on the biological functions of fps/fes and fer. *Nat Rev Mol Cell Biol* 3, 278–289.

3 78. Hattori, M., Tsukamoto, N., Nur-e-Kamal, M.S., Rubinfeld, B., Iwai, K., Kubota, H., Maruta, H., and Minato,
4 N. (1995). Molecular cloning of a novel mitogen-inducible nuclear protein with a Ran GTPase-activating
5 domain that affects cell cycle progression. *Mol. Cell. Biol.* 15, 552–560.

6 79. Verrecchia, F., and Mauviel, A. (2002). Transforming Growth Factor- β Signaling Through the Smad
7 Pathway: Role in Extracellular Matrix Gene Expression and Regulation. *Journal of Investigative Dermatology*
8 118, 211–215.

9

0 **Figure Legends**

1 **Fig. 1 The relationship between HCASMC and GTEx and ENCODE cell and tissue types. (A)** The
2 multidimensional scaling plot of gene expression shows that HCASMC form a distinct cluster, which neighbors
3 fibroblast, skeletal muscle, heart, blood vessel and various types of smooth muscle tissues such as esophagus
4 and vagina (inset). **(B)** Jaccard similarity index between HCASMC and ENCODE cell and tissue types reveals
5 that fibroblast, skeletal muscle, heart and lung are most closely related to HCASMC. **(C)** Thousands of genes
6 are differentially expressed between HCASMC and its close neighbors, fibroblast, as well as the tissue of
7 origin, coronary artery. **(D)** A total of 344284 open chromatin peaks are found in HCASMC, of which 7332
8 (2.1%) are HCASMC-specific. **(E)** An example of a HCASMC-specific peak located within the intron of *LMOD1*,
9 which is an HCASMC-specific gene.

0
1 **Fig. 2 Tissue- and cell-type specific contribution to CAD risk. (A)** Tissue-specific enrichment of CAD
2 heritability. We used stratified LD score regression to estimate the CAD risk explained by SNPs close to tissue-
3 specific genes, defined as the 2000 genes with highest expression z-scores (see **Methods**). Genes whose

4 expression is specific to coronary artery, adipose, and HCASMC harbors SNPs with large effects on CAD. **(B)**
5 Overlap between CAD risk variants and tissue- and cell-type specific open chromatin regions. We used a
6 modified version of GREGOR (see **Methods**) to estimate the probability and odds ratio (compared with
7 matched background SNPs) of overlap between CAD risk variants and open chromatin regions in HCASMC
8 and across ENCODE tissues. HCASMC, arterial endothelial cells, monocytes, B cell, uterus (composed
9 primarily of smooth muscle), and pons (possibly through regulation of blood pressure) showed the highest
0 degrees of overlap.

1

2 **Fig. 3 Colocalization between HCASMC eQTL and coronary artery disease GWAS. (A-C)** Three potential
3 causal genes identified by eCAVIAR. **(A)** Platelet-derived growth factor alpha (*PDGFRα*) eQTL signal
4 colocalized with the *KDR* GWAS locus, which reached FDR < 0.05 significance in the latest
5 CARDIoGRAMplusC4D and UK Biobank GWAS meta-analysis⁶. **(B)** Signal-Induced Proliferation-Associated 1
6 (*SIPA1*) eQTL signal colocalized with the *PCNX3* locus, which reached genome-wide significance (p-value <
7 9.71×10^{-9}) in Howson *et al.*⁵ Note that this study only genotyped selected loci but have a larger sample size
8 than the UK Biobank study. **(C)** *SMAD3* eQTL signal colocalized with the *SMAD3* locus, which is newly
9 identified in the UK Biobank meta-analysis⁶. **(D)** Transcriptome-wide colocalization signals between HCASMC
0 eQTL and CAD GWAS. We used eCAVIAR (top) and SMR (bottom) to fine-map GWAS causal variants and to
1 identify eQTL signals that can explain CAD risk variants (see **Methods**). We found five genes whose eQTL
2 signals show significant colocalization with CAD GWAS signal (SMR FDR < 0.05 or eCAVIAR colocalization
3 posterior probability > 0.05). **(E-F)** Two potential causal genes identified by SMR. **(E)** Transcription factor 21
4 (*TCF21*) eQTL signal colocalized with the *TCF21* locus, which was identified by Schunkert *et al.*⁷⁴ and
5 replicated in the UK Biobank meta-analysis. **(F)** *FES* eQTL signal colocalized with the *FURIN-FES* locus, which
6 was identified by Deloukas *et al.*⁷⁵ and replicated in the UK Biobank meta-analysis. **(G)** *SIPA1* colocalization is
7 strongest in HCASMC, indicating that this gene influences CAD risk primarily through HCASMC.

8

9 **Fig. 4 Causal genes are involved in HCASMC-related vascular remodeling. (A-E)** We determined the
0 direction of effect, i.e. whether gene expression upregulation increases risk, using the correlation between the
1 GWAS and the eQTL study effect sizes on SNPs with p-value < 1×10^{-3} in both datasets. Upregulation of genes

2 *TCF21* and *FES* are protective against CAD risk, and upregulation of *SMAD3*, *PDGFRA*, and *SIPA1* increases
3 CAD risk. (F) Hypothetical functions of five potential causal genes. Upregulation of *TCF21* facilitates the
4 transition of smooth muscle cells from a contractile to a synthetic state⁷⁶. Upon phenotypic transition, *FES*
5 assists in smooth muscle cell migration to the neo-intima⁷⁷. Both *SIPA1* and *PDGFRA* promotes HCASMC
6 proliferation^{50,78}. *SMAD3* induces synthetic smooth muscle re-differentiation into the synthetic phenotype for
7 vessel wall repair⁷⁹. Upward arrows indicate genetic upregulation increases CAD risk, and downward arrows
8 indicate genetic upregulation is protective against CAD risk.

9

0 **Table Legends**

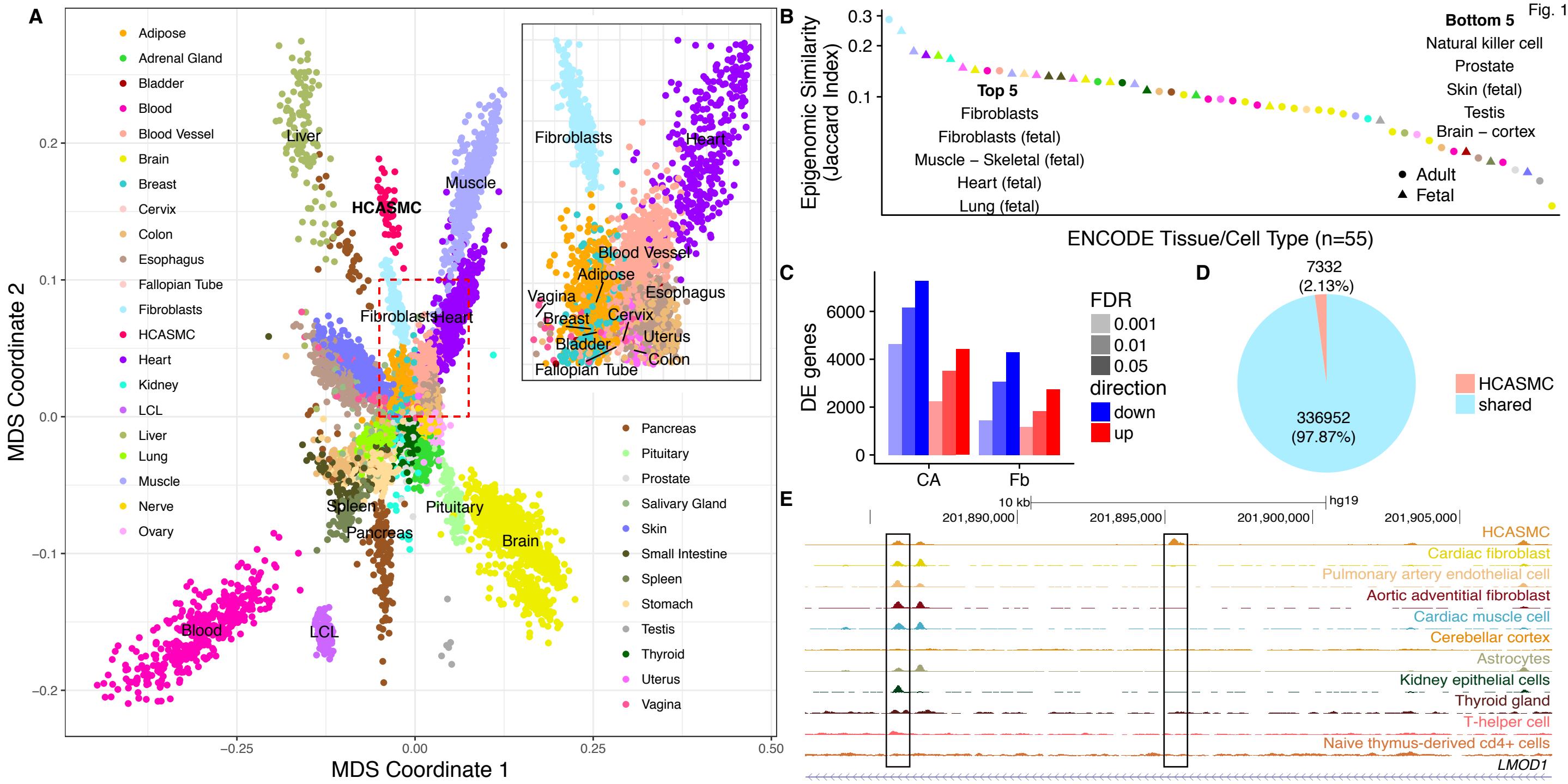
1 **Table 1 Molecular quantitative trait loci discoveries.** We report the number of tests performed and the
2 number of significant loci at FDR < 0.05, 0.01, and 0.001 for eQTL and sQTL stratified by molecular trait type.
3 We used permutation and the Benjamini-Hochberg adjustment for sQTL discovery, and a multi-level FDR
4 correction procedure (TreeQTL⁷²) for eQTL discovery, where permutation was not computationally feasible
5 (see **Methods**).

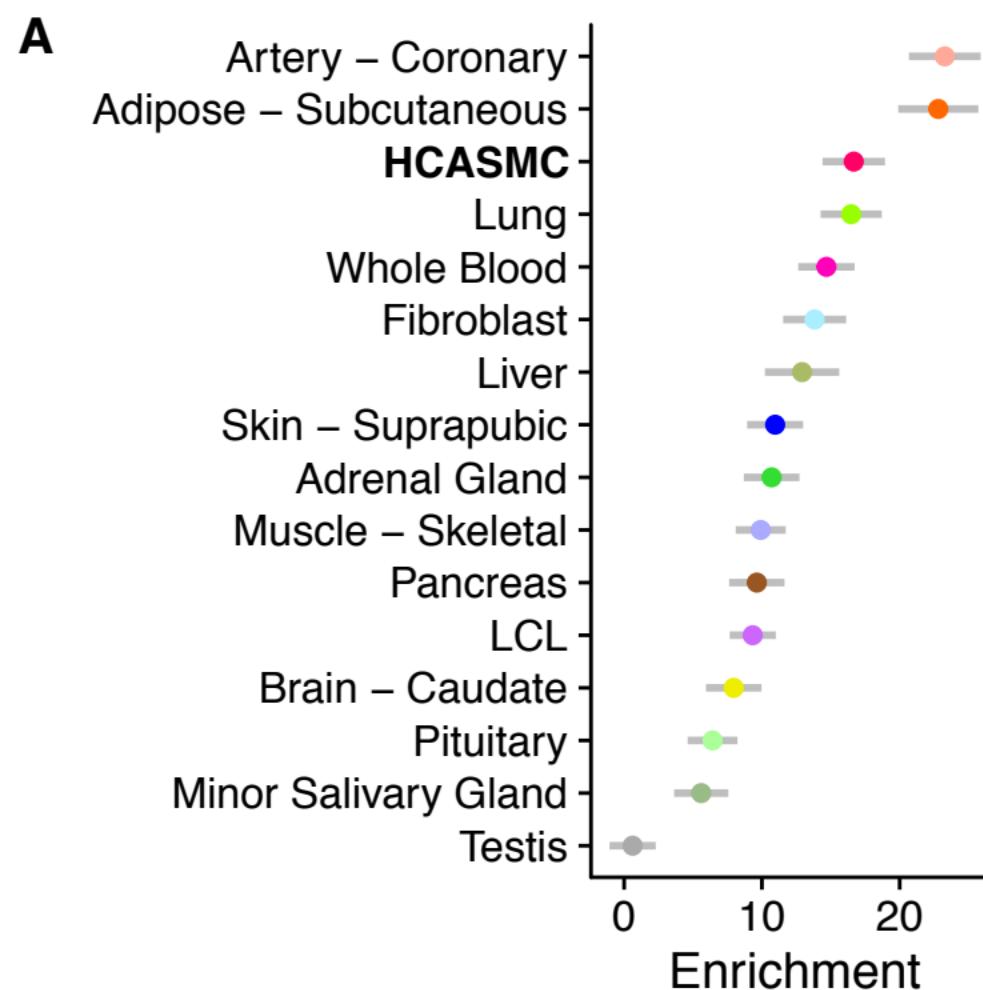
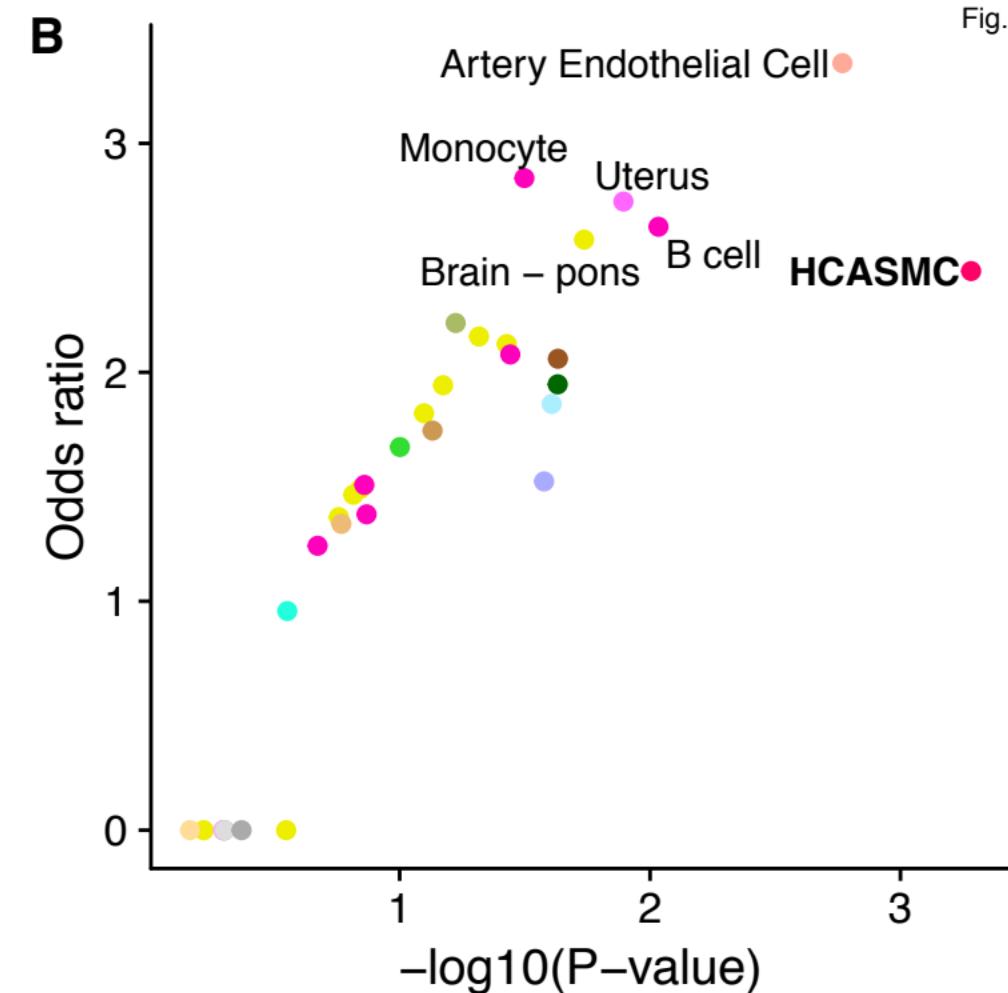
6 **Tables**

7 **Table 1. Molecular quantitative trait loci discoveries.**

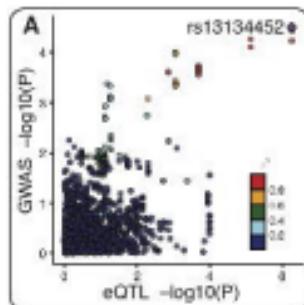
Molecular Phenotype	Trait type	# of traits tested	# of traits with at least one QTL		
			FDR = 0.05	FDR = 0.01	FDR = 0.001
Gene expression	Protein coding	13624	1048 (7.69%)	841 (6.17%)	636 (4.67%)
	lincRNA	1266	51 (4.03%)	41 (3.24%)	33 (2.61%)
	Pseudogene	2616	50 (1.91%)	34 (1.3%)	25 (0.96%)
	Other	2101	71 (3.38%)	56 (2.67%)	44 (2.09%)
	Total	19607	1220 (6.22%)	972 (4.96%)	738 (3.76%)
Splicing	Protein coding	24461	519 (2.12%)	349 (1.43%)	245 (1%)
	lincRNA	300	11 (3.67%)	7 (2.33%)	5 (1.67%)
	Pseudogene	376	22 (5.85%)	15 (3.99%)	12 (3.19%)
	Other	541	29 (5.36%)	19 (3.51%)	17 (3.14%)
	Total	25678	581 (2.96%)	390 (1.99%)	279 (1.42%)

1

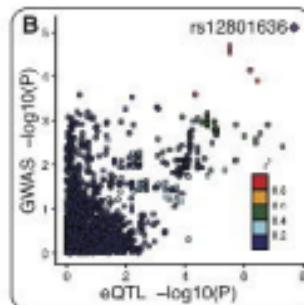




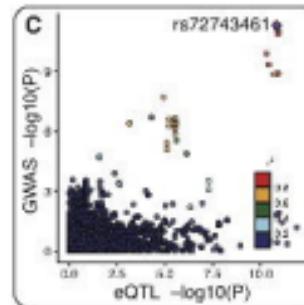
PDGFRA



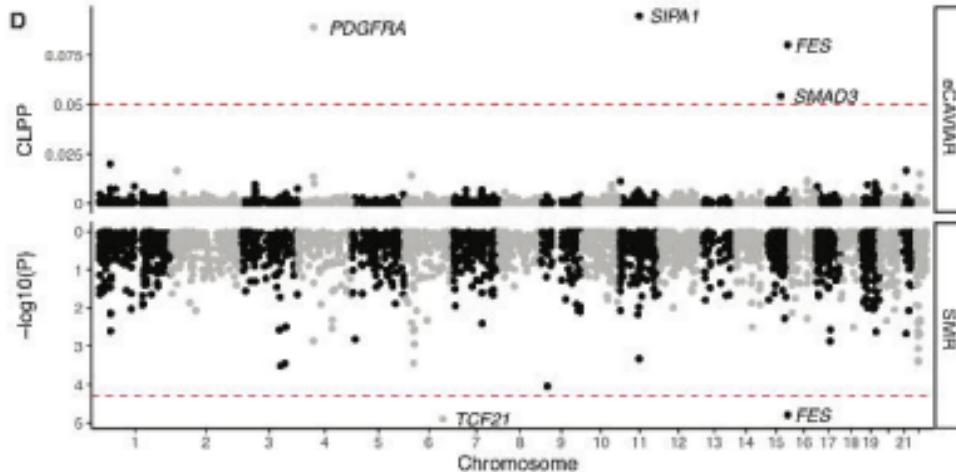
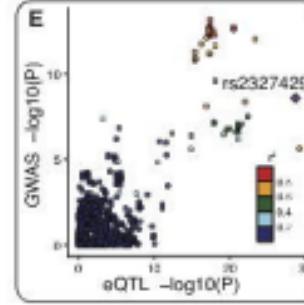
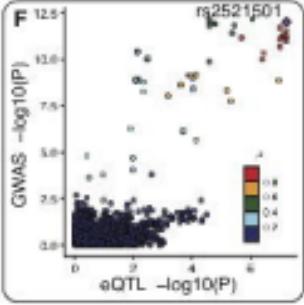
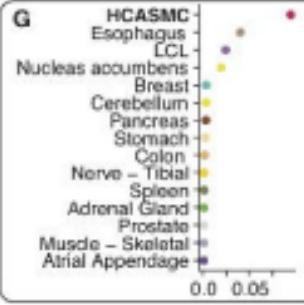
SIPA1



SMAD3



D



TCF21

FES

SiPA1 CLPP

