NO OO, OON-_O0OO00NODAPRRWN-200O0NO0OOOPFPWON-_ 000N, WON-0O0NOOGPD»OUN-~-

oo

bioRxiv preprint doi: https://doi.org/10.1101/309559; this version posted April 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Genetic regulatory mechanisms of smooth muscle cells map to coronary artery disease risk loci

Boxiang Liu*, Milos Pjanic®, Ting Wang”, Trieu Nguyen®, Michael Gloudemans”, Abhiram Rao", Victor G.
Castano®, Sylvia Nurnberg®, Daniel J. Rader®, Susannah Elwyn® Erik Ingelsson®, Stephen B. Montgomery**®
Clint L. Miller**, and Thomas Quertermous*@

Stanford University Dept. of “Biology, *Genetics, $Patho|ogy, "Bioengineering, @Medicine, and the
Cardiovascular Institute, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305;
*Biomedical Informatics Training Program, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA
94305;

“University of Pennsylvania, Philadelphia, PA; and *Center for Public Health Genomics, Department of Public
Health Sciences, Biochemistry and Genetics, and Biomedical Engineering, University of Virginia,
Charlottesville, VA 22908

*These authors contributed equally to this work

Materials and Correspondence

Thomas Quertermous
300 Pasteur Dr.

Falk CVRC

Stanford, CA 94305
tomq1@stanford.edu
Tel: 650-723-5012
Fax: 650-725-2178


https://doi.org/10.1101/309559
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/309559; this version posted April 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Abstract

Coronary artery disease (CAD) is the leading cause of death globally. Genome-wide association studies
(GWAS) have identified more than 95 independent loci that influence CAD risk, most of which reside in non-
coding regions of the genome. To interpret these loci, we generated transcriptome and whole-genome
datasets using human coronary artery smooth muscle cells (HCASMC) from 52 unrelated donors, as well as
epigenomic datasets using ATAC-seq on a subset of 8 donors. Through systematic comparison with publicly
available datasets from GTEx and ENCODE projects, we identified transcriptomic, epigenetic, and genetic
regulatory mechanisms specific to HCASMC. We assessed the relevance of HCASMC to CAD risk using
transcriptomic and epigenomic level analyses. By jointly modeling eQTL and GWAS datasets, we identified five
genes (SIPA1, TCF21, SMADS3, FES, and PDGFRA) that modulate CAD risk through HCASMC, all of which
have relevant functional roles in vascular remodeling. Comparison with GTEx data suggests that SIPA1 and
PDGFRA influence CAD risk predominantly through HCASMC, while other annotated genes may have multiple
cell and tissue targets. Together, these results provide new tissue-specific and mechanistic insights into the

regulation of a critical vascular cell type associated with CAD in human populations.

Introduction

Atherosclerotic coronary artery disease (CAD) is the leading cause of death in both developed and developing
countries worldwide, and current estimates predict that more than 1 million individuals will suffer from new and
recurrent CAD this year in the U.S. alone'. Like most polygenic diseases, both genetic and environmental
factors influence an individual’s lifetime risk for CAD?. Early Swedish twin studies and more recent genome-
wide association studies (GWAS) have estimated that about 50% of CAD risk is explained by genetic factors*.
To date, GWAS have reported more than 95 replicated independent loci and numerous additional loci that are
associated at an FDR<0.05%®. A majority of these loci reside in non-coding genomic regions and are expected
to function through regulatory mechanisms. Also, approximately 75% of CAD loci are not associated with
classical risk factors, suggesting that at least part of them function through mechanisms intrinsic to the vessel

wall.
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Smooth muscle cells (SMC) constitute the majority of cells in the coronary artery wall. In response to vascular
injury (e.g. lipid accumulation, inflammation), SMCs undergo phenotypic switching, and ultimately contribute to

both atherosclerotic plaque formation and stabilization®"%.

Recent lineage tracing studies in mice have
revealed that although 80% of plaque-derived cells lack traditional SMC markers, roughly half are of SMC
origin™". Thus, genetic studies of human coronary artery smooth muscle cells (HCASMC) have the potential
to shed new light on their diverse functions in the vessel wall relevant to human atherosclerosis. In a few
cases, the underlying mechanisms have been identified for CAD loci in vascular SMC models'®'*"®. Large-
scale expression quantitative trait loci (eQTL) mapping efforts such as the Genotype Tissue Expression
(GTEX) project have helped refine these mechanisms for multiple traits across human tissues'®. However, due

to the lack of HCASMC in both GTEx and other studies, the overall contribution of this cell type towards

heritable CAD risk remains unknown.

Herein, we performed whole-genome sequencing and transcriptomic profiling of 52 HCASMC donors to
quantify the effects of cis-acting variation on gene expression and splicing associated with CAD. We evaluated
the tissue specificity and disease relevance of our findings in HCASMC by comparing to publicly available
GTEx and ENCODE datasets. We observed significant colocalization of eQTL and GWAS signals for five
genes (FES, SMAD3, TCF21, PDGFRA and SIPA1), which all have the capacity to perform relevant functions
in vascular remodeling. Further, comparative analyses with GTEx datasets reveals that SIPA7 and PDGFRA
act primarily in HCASMC. Together, these findings demonstrate the power of leveraging genetics of gene

regulation for a critical cell type to uncover new risk-associated mechanisms for CAD.

Material and Methods

Sample acquisition and cell culture. A total of 62 primary human coronary artery smooth muscle cell
(HCASMC) lines collected from donor hearts were purchased, and 52 lines remained after stringent filtering
(see Supplementary Note). These 52 lines were from PromoCell (catalog # C-12511, n = 19), Cell
Applications (catalog # 350-05a, n = 25), Lonza (catalog # CC-2583, n = 3), Lifeline Cell Technology (catalog #
FC-0031, n = 3), and ATCC (catalog # PCS-100-021, n = 2). All lines were stained with smooth muscle alpha

actin to check for smooth muscle content and all lines tested negative for mycoplasma (Table S1). All cell lines


https://doi.org/10.1101/309559
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/309559; this version posted April 30, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.
were cultured in smooth muscle growth medium (Lonza catalog # CC-3182) supplemented with hEGF, insulin,

hFGF-b, and 5% FBS, according to Lonza instructions. All HCASMC lines were expanded to passage 5-6 prior

to extraction.

Library preparation and sequencing. Whole Genome Sequencing: Genomic DNA was isolated using Qiagen

DNeasy Blood & Tissue Kit (catalog # 69506) and quantified using NanoDrop 1000 Spectrophotometer
(Thermo Fisher). Macrogen performed library preparation using lllumina’s TruSeq DNA PCR-Free Library

Preparation Kit and 150 bp paired-end sequencing on lllumina HiSeq X Ten System. RNA Sequencing: RNA

was extracted using Qiagen miRNeasy Mini Prep Kit (catalog # 74106). Quality of RNA was assessed on the
Agilent 2100 Bioanalyzer. Samples with RIN greater than or equal to 8 were sent to the Next-Generation
Sequencing Core at the Perelman School of Medicine at the University of Pennsylvania. Libraries were made
using lllumina TruSeq Stranded Total RNA Library Prep Kit (catalog # 20020597) and sequenced using 125bp

paired-end on HiSeq 2500 Platform. ATAC Sequencing: We used ATAC-seq to assess chromatin accessibility

I°”. Approximately 5x10* fresh cells were collected at 500 g,

with slight modifications to the published protoco
washed in PBS, and nuclei extracted with cold lysis buffer. Pellets were subjected to transposition containing
Tn5 transposases (lllumina) at 37 °C for 30 min, followed by purification using the DNA Clean-up and
Concentration kit (Zymo). Libraries were PCR amplified using Nextera barcodes, with the total number of
cycles empirically determined using SYBR qPCR. Amplified libraries were purified and quantified using

bioanalyzer, nanodrop and gPCR (KAPA) analysis. Libraries were multiplexed and 2x75 bp sequencing was

performed using an lllumina NextSeq 500.

Alignment and quantification of genomic, transcriptomic and epigenomic features. Whole-genome

sequencing data were processed with the GATK best practices pipeline with hg19 as the reference

20,58 159

genome?*® and VCF records were phased with Beagle v4.1°°. Variants with imputation allelic r? less than 0.8
and Hardy-Weinberg Equilibrium p-value less than 1x10° were filtered out (see Supplementary Note). De-
multiplexed FASTQ files were mapped with STAR version 2.4.0i in 2-pass mode® over the hg19 reference
genome. Prior to expression quantification, we filtered our reads prone to mapping bias using WASP®'. Total

read counts and RPKM were calculated with RNA-SeQC v1.1.8% using default parameters with additional flags
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“-n 1000 -noDoC -strictMode” over GENCODE v19 reference. Allele-specific read counts were generated with
the createASVCF module in RASQUAL?. We quantified intron excision levels using LeafCutter intron-
spanning reads®. In brief, we converted bam files to splice junction files using the bam2junc.sh script, and
defined intron clusters using leafcutter_cluster.py with default parameters, which requires at least 30 reads
supporting each intron and allows intron to have a maximum size of 100kb. We used the ENCODE ATAC-seq
pipeline to perform alignment and peak calling (https://github.com/kundajelab/atac_dnase_pipelines)®. FASTQ
files were trimmed with Cutadapt v1.9%° and aligned with Bowtie2 v2.2.6%. MACS2 v2.0.8%" was used to call
peaks with default parameters. Irreproducible Discovery Rate (IDR)®® analyses were performed based on

pseudo-replicates (subsample of reads) with a cutoff of 0.1 to output an IDR call set, which was used for

downstream analysis. We used WASP®" to filter out reads that are prone to mapping bias.

Mapping of cis-acting quantitative trait loci (QTL). Prior to QTL mapping, we inferred ancestry principal
components (PCs) using the R package SNPRelate®® on a pruned SNP set (Fig. S4). We filtered out SNPs
based on Hardy-Weinberg equilibrium (HWE < 1x10®), LD (r* < 0.2) and minor allele frequency (MAF < 0.05)%°.
To correct for hidden confounders, we extracted 15 covariates using PEER™ on quantile normalized and rank-
based inverse normal transformed RPKM values. The number of hidden confounders to removed was
determined by empirically maximize the power to discover eQTLs on chromosome 20 (for computational speed
and to avoid overfitting). We tested combinations of 3 to 5 genotype principal components with 1 to 15 PEER
factors. We found that the combination of 4 genotype PCs with 8 PEER factors provides the most power to
detect eQTLs. We then used sex, the top four genotype principal components, and the top eight PEER factors
in both FastQTL and RASQUAL to map cis-eQTL with a 2Mb window centered at transcription start sites.

Mathematically, the model is the following:

4 8
E(el|g,sex,PC,PEER) = o + 4+ g + fs - sex + Z fai - PC+ Zﬁp’i - PEER
i=1 i=1

Where e stands for gene expression, and g stands for the genotype of the test SNP. We used LeafCutter®' to
quantify intron excision levels, and FastQTL?® to map cis-sQTLs within a 200 kbp window around splice donor
sites, controlling for sex, genotype PCs, and splicing PCs. Using a similar approach, we found that 3 genotype
PCs and 6 splicing PCs maximized the power to map sQTLs. To control for multiple hypothesis testing, we

calculated per-gene eQTL p-values using FastQTL with permutation, and controlled transcriptome-wide false
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discovery rate with the g-value package’’. For RASQUAL, it was not computationally feasible to perform gene-

level permutation testing. Instead, we used TreeQTL to simultaneously control for SNP-level FDR and gene-

level FDR™. Note that TreeQTL is more conservative than permutation {Consortium:jn}.

Quantifying tissue- and cell-type specific contribution to coronary artery disease (CAD) risk

We used stratified LD score regression® to estimate the enrichment of heritability for SNPs around tissue- and
cell-type specific genes as described previously®?. We defined tissue-specific genes by first selecting for
independent tissues and removing tissues primarily composed of smooth muscle to avoid correlation with
HCASMC (see Supplementary note). After filtering, 16 tissues remained: HCASMC, Adipose - Subcutaneous,
Adrenal Gland, Artery - Coronary, Brain - Caudate (basal ganglia), Cells - EBV-transformed lymphocytes, Cells
- Transformed fibroblasts, Liver, Lung, Minor Salivary Gland, Muscle - Skeletal, Pancreas, Pituitary, Skin - Not
Sun Exposed (Suprapubic), Testis, Whole Blood. We defined tissue-specific genes using gene expression z-
score. For each gene, we determined the mean and standard deviation of median RPKM across tissues, from
which the z-score is derived.

é; = median(e;)
z = (& —E(&))/Var(é;)

Where e, is the RPKM across all individuals in tissue . We ranked each gene based on the z-scores (a higher
z-score indicates more tissue specificity), and defined tissue-specific genes as the top 1000, 2000, and 4000
genes. A given SNP was assigned to a gene if it fell into the union of exon +/- 1kbp of that gene. We estimated
the heritability enrichment using stratified LD score regression on a joint SNP annotation across all 16 tissues
against the CARDIoOGRAMplusC4D GWAS meta-analysis’®. To determine whether CAD risk variants are
enriched in the open chromatin regions tissue- and cell-type specific fashion, we used a modified version of
GREGOR?® to estimate the likelihood of observing given number of GWAS variants falling into open chromatin
regions of each tissue and cell type (see Supplementary Note). We first defined a GWAS locus as all variants
in LD (r*>0.7) with the lead variant. Given a set of GWAS loci, we selected 500 background variants matched
by 1) number of variants in LD, 2) distance to the nearest gene, and 3) minor allele frequency, and 4) gene
density in a 1Mb window. We calculated p-values and odds ratios between GWAS variants and background

variants across HCASMC and all ENCODE tissues and primary cell lines.
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Colocalization between molecular QTL and CAD genome-wide association study (GWAS). We used
summary-data-based Mendelian Randomization (SMR)* to determine GWAS loci that can be explained by cis-
acting QTLs. We performed colocalization tests for 3,379 genes with cis-eQTL p-value < 5x107° for the top
variant and 2,439 splicing events with cis-sQTL p-value < 5x10™ for the top variant in HCASMC against the
latest CARDIoGRAMplusC4D and UK Biobank GWAS meta-analysis®. We identified genome-wide significant
eQTL and sQTL colocalizations based on adjusted SMR p-values (Benjamini-Hochberg FDR < 0.05). The
equivalent p-value was 2.96x10° and 2.05x10™ for eQTL and sQTL, respectively. SMR uses a reference
population to determine linkage between variants; we used genetic data from individuals of European ancestry
from 1000 Genomes as the reference population in our analyses. We also used a modified version of
eCAVIAR® to identify colocalized signals (see Supplementary Note). We calculated colocalization posterior
probability (CLPP) using all SNPs within 500kb of the lead eQTL SNP against CAD summary statistics from
CARDIoGRAMplusC4D and UK Biobank GWAS meta-analysis®. For computational feasibility, the GWAS and
eQTL loci were assumed to have exactly one causal SNP. We defined colocalization events using CLPP >
0.05. Note that this is more conservative than the default eCAVIAR cutoff (CLPP > 0.01). We determined the
direction of effect, namely whether gene upregulation increases risk, using the correlation of effect sizes in the
GWAS and the eQTL studies. We selected SNPs with p-value < 1x107 in both the GWAS and eQTL datasets
(since other SNPs carry mostly noise), and fitted a regression using the GWAS and eQTL effect sizes as the

predictor and the response, respectively. We defined the direction of effect as the sign of the regression slope.

Results

HCASMC-specific genomic architecture

We obtained and cultured 62 primary HCASMC lines, and 52 lines remained for analysis after stringent quality
control (Supplementary Note and Table S1). We performed whole-genome sequencing to an average depth
of 30X, and jointly called genotypes using the GATK best practices pipeline?’, producing a total of ~15.2 million
variants after quality control (see Methods). For RNA, we performed 125bp paired-end sequencing to a
median depth of 51.3 million reads, with over 2.7 billion reads in total. After quantification and quality control,

19,607 genes were expressed in sufficient depth for downstream analysis (Table 1). To confirm that HCASMC
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derived from tissue culture reflect in vivo physiology, we first projected their transcriptomes onto the 53 tissues
profiled in GTEx'® (Fig. 1A). Using multi-dimensional scaling (MDS) to visualize the similarity of HCASMC to
GTEXx tissues, we observed that HCASMC forms a distinct cluster and closely neighbors fibroblasts, skeletal
muscle, arteries, heart and various smooth muscle-enriched tissues (vagina, colon, stomach, uterus and
esophagus). These results were expected given that HCASMC are predicted to be similar to skeletal muscle,
smooth muscle-enriched tissues as well as tissues representing the same anatomical compartment (e.g. heart
and artery)®". In addition, HCASMC resemble fibroblast as both can be differentiated from mesenchymal cells
from the dorsal mesocardium?. We also computed the epigenetic similarity between HCASMC and ENCODE
cell types®. Consistent with the transcriptomic findings, the closest neighbors to HCASMC using epigenomic

data were fibroblasts, heart, lung and skeletal muscle (Fig. 1B).

Next, we determined the pathways that may be selectively upregulated in HCASMC compared to closely
related tissues. We performed differential expression analysis of HCASMC against fibroblasts and coronary
artery in GTEXx after correcting for batch effects and other hidden confounders (see Methods). Overall, 2,610
and 6,864 genes were found to be differentially expressed, respectively (FDR < 1x107, Fig. 1C and Fig. S1),
affecting pathways involved in cellular proliferation, epithelial-mesenchymal transition (EMT) and extracellular
matrix (ECM) secretion (Table S2). Next, we sought to identify HCASMC-specific epigenomic signatures by
comparing HCASMC open chromatin profiles, as determined with ATAC-seq, against DNasel hypersensitivity
(DHS) sites across all ENCODE primary cell types and tissues (Table S3). We processed HCASMC ATAC-seq
data with the ENCODE pipeline and standardized peaks as 75 bp around the peak summit for all tissues and
cell lines to mitigate batch effect (see Methods). A total of 7332 peaks (2.1%) were not previously identified in
ENCODE and represent HCASMC-specific sites (Fig. 1D). For example, an intronic peak within the LMOD1
gene was found to be unique to HCASMC (Fig. 1E). This gene is expressed only in vascular and visceral
smooth muscle cells where it is involved in actin polymerization, and has been mapped as a candidate causal
CAD gene''. We then sought to identify transcription factor binding sites overrepresented in HCASMC-specific
peaks. Motif enrichment analyses indicated that HCASMC-specific open chromatin sites are enriched with
binding sites for members of the forkhead box (FOX) transcription factor family (see Methods). We performed

motif enrichment analysis using 50-, 200-, and 1000-bp regions flanking HCASMC-specific peaks, and found
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that the enrichment was robust to selection of window size, indicating the result is not simply due to selection
bias (Fig. S2). The FOX transcription factors are known to regulate tissue- and cell-type specific gene
transcription®, and a subgroup of this family includes those with the ability to serve as pioneer factors®®. To
validate that FOX motif enrichment is specific to HCASMC, we performed similar analyses for brain-, heart-,
and fibroblast-specific open chromatin regions and observed a depletion of FOX motifs (Fig. S3). Together

these results suggest that HCASMC-specific transcriptomic and epigenomic profiles provide new regulatory

mechanisms previously lacking in large publicly available datasets.

Expression and splicing quantitative trait locus discovery

In order to investigate the genetic regulatory mechanisms of gene expression in HCASMC, we conducted
genome-wide mapping of eQTLs using both FastQTL?* and RASQUAL?" on the 52 donor samples from diverse
ethnic backgrounds (Table S1 and Fig S4). RASQUAL has been previously shown to increase the cis-eQTL
discovery power in small sample sizes by leveraging allele-specific information?’. Indeed, using a threshold of
FDR < 0.05, RASQUAL increased the number of eQTLs discovered approximately seven-fold as compared to
FastQTL (RASQUAL:1220 vs. FastQTL:167, Table 1). We next evaluated whether these eQTLs were enriched
in regions of open chromatin using data from a subset of individuals with ATAC-seq profiles. We observed that
eQTLs within HCASMC open chromatin regions had more significant p-values compared to all eQTLs (Fig. S5,
two-sided rank-sum test p-value < 9.2x10°). This is consistent with putative effects of cis-acting variation,
potentially functioning through altered TF binding around these accessible regions. Next, using a Bayesian
meta-analytic approach?, we sought to identify HCASMC-specific eQTLs using GTEx tissues as a reference.
Under the most stringent criteria (eQTL posterior probability > 0.9 for HCASMC and < 0.1 for all GTEXx tissues,
see Methods), we identified four HCASMC-specific eQTLs (Fig. S6). For example, rs1048709 is the top eQTL-
SNP and confers HCASMC-specific regulatory effects on Complement Factor B (Fig. S6B), a gene that has
been previously implicated in atherosclerosis and other inflammatory diseases®. In addition to regulatory
effects on gene expression, previous studies have identified splicing as a major source of regulatory impact of
genetic variation on complex diseases®. Therefore, we mapped splicing QTLs (sQTLs) using LeafCutter*' and
identified 581 sQTLs associated at FDR < 0.05 (Table 1). As a quality control, we estimated the enrichment of

sQTLs and eQTLs against a matched set of background variants. As expected, eQTLs were enriched around
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the 5' UTR (Fig. S7A), whereas sQTLs were enriched in splicing regions, particularly splice donor and acceptor

sites (Fig. S7B).

Overall CAD genetic risk mediated by HCASMC

We next examined the heritable contribution of HCASMC towards the risk of CAD. Previous reports have
suggested that disease-associated SNPs are often enriched in genes expressed in the relevant tissue types®.
Thus, we estimated the contribution to CAD risk from SNPs in or near genes showing patterns of tissue-
specific expression and identified the top 2000 tissue-specific genes for HCASMC and GTEx tissues (see
Methods). We then applied stratified LD score regression®® to estimate CAD heritability explained by SNPs
within 1kb of tissue-specific genes. We found that HCASMC, along with coronary artery and adipose tissues,
contribute substantially towards CAD heritability (Fig. 2A). These enrichment results were robust to the tissue-
specificity cutoff (top 1000, 2000, or 4000 genes), suggesting that they were not simply due to selection bias
(Fig. S8). Complementary epigenomic evidence previously demonstrated that risk variants for complex
diseases are often enriched in open chromatin regions in relevant tissue types®*3* Thus, we estimated the
degree of overlap between CAD variants and open chromatin in HCASMC and ENCODE cell types using a
modified version of GREGOR* (see Methods). We observed that open chromatin regions in HCASMC, as
well as vascular endothelial cells, monocytes, uterus (smooth muscle) and B-cells, are enriched for CAD risk
variants (Fig. 2B). These findings support the role of HCASMC as an appropriate cellular model to map the

genetic basis of CAD, which may be supplemented by the contribution of other vessel wall cell types.

Fine-mapping CAD risk variants
Whole-genome sequencing of our HCASMC population sample provides the opportunity to fine-map CAD risk

loci. Several studies have used colocalization between GWAS and eQTL signals as a fine-mapping approach

35-38 39,40

to identify candidate causal regulatory variants™™", and in several cases pinpointing single causal variants
Given the global overlap between CAD risk variants and genetic regulation in HCASMC, we sought to find
evidence for colocalization between GWAS and eQTL signals. We thus compiled publicly available genome-
wide summary statistics from the latest meta-analysise. We then applied two methods with different statistical

assumptions, eQTL and GWAS CAusal Variants Identification in Associated Regions (eCAVIAR)* and
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Summary-data-based Mendelian Randomization (SMR)* to identify colocalizing variants and genes across all
CAD loci, and focused on the union of results from the two independent methods. We used FDR < 0.05 and
colocalization posterior probability (CLPP) > 0.05 as cutoffs for SMR and eCAVIAR, respectively (Note that
CLPP > 0.05 is more conservative than the CLPP > 0.01 recommended in the publication of the eCAVIAR
method). From this approach, we identified five high-confidence genes, namely FES, SMAD3, TCF21,
PDGFRA and SIPA1 (Fig. 3). Although the top genes found by two methods differed, we observed that the
SMR p-values and eCAVIAR CLPPs positively correlate (Fig. S9), and that two of the three genes found only
by eCAVIAR achieved nominal significance in SMR (Table S4). We then investigated whether these
colocalizations were unique to HCASMC by conducting colocalization tests across all GTEx tissues. For SIPA1
and PDGFRA, colocalization appears to be HCASMC-specific (Fig. 3G; Fig. S10A and S10D). For SMAD3,
both HCASMC and thyroid have strong colocalization signals (Fig. S10B). TCF21 and FES colocalization were
found to be shared across multiple tissues (Fig. S10C and Fig. S11D). Next, we conducted colocalization
analysis between sQTL and GWAS summary statistics with both eCAVIAR and SMR. We identified
colocalization with four genes (Table S4, and Fig. S12). The most significant colocalization event is at the
SMGJ locus. Interestingly, the top sQTL variant, rs4760, is a coding variant located in the exon of the PLAUR
(plasminogen activator urokinase receptor) gene and is also a GWAS variant for circulating cytokines and
multiple immune cell traits*'*?. By correlating eQTL and GWAS effect sizes, we observed that increased
TCF21 and FES expression levels are associated with reduced CAD risk, while increased PDGFRA, SIPA1,
and SMAD3 expression levels are associated with increased CAD risk (Fig. 4A-E). These results provide
genetic evidence that pathways promoting SMC phenotypic transition during atherosclerosis can be both

protective and detrimental depending on the genes implicated (Fig. 4F).

Discussion

In this study, we have integrated genomic, transcriptomic, and epigenetic datasets to create the first map of
genetic regulation of gene expression in human coronary artery smooth muscle cells. Comparison with publicly
available transcriptomic and epigenomic datasets in GTEx and ENCODE revealed regulatory patterns specific

to HCASMC. By comparing against neighboring tissues in GTEx, we found thousands of differentially
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expressed genes, which were enriched in pathways such as EMT, protein secretion and cellular proliferation,
consistent with our current understanding of HCASMC physiology in vivo. In comparison with ENCODE, we
found 7332 (~2.1%) open chromatin peaks unique to HCASMC, and showed that these peaks are enriched
with binding motifs for Forkhead box family proteins, which are known to regulate cell-type-specific gene

expression®®. FOXP1 in particular has been shown to increase collagen production in smooth muscle cells*,

supporting a potential role in extracellular matrix remodeling in the vessel wall.

Using both transcriptomic and epigenomic profiles, we established that HCASMC represent an important cell
type for coronary artery disease. On a tissue-level, we demonstrated that genes highly expressed in HCASMC,
coronary artery and adipose tissue are enriched for SNPs associated with CAD risk. While the proximal aortic
wall is also susceptible to atherosclerosis, the coronary arteries represent the primary origin of ischemic
coronary artery disease in humans®. Given that the majority of coronary arteries in the epicardium are
encapsulated by perivascular adipose tissue in individuals with disease, one would expect these tissues to
share gene responses involved in both vascular inflammation and lipid homeostasis*®. Further, we
demonstrated that HCASMC, endothelial cells, and immune cells also contribute towards the genetic risk of
coronary artery disease. Recent —omic profiling of human aortic endothelial cells (HAECs) isolated from
various donors identified a number of genetic variants and transcriptional networks mediating responses to
oxidized phospholipids and pro-inflammatory stimuli*®. Likewise, systems approaches investigating resident
macrophages and other immune cells involved in vessel inflammation have provided additional insights into

context-specific disease mechanisms*’*2.

Our integrative analyses identified a number of CAD-associated genes that may offer clues into potentially
targetable HCASMC-mediated disease mechanisms. Although two of these associated genes, TCF21 and
SMAD3, have established roles in regulating vascular remodeling and inflammation during disease'®'®*, the
other identified genes, PDGFRA, FES and SIPA1, appear to be novel SMC associated genes. While the role
for PDGFRB mediated signaling has been well documented in atherosclerosis and modulation of SMC

|50,51

phenotype, the possible involvement of PDGFRA has not been investigated in detai . Interestingly, FES

and S/PA1 were found to harbor CpGs identified in current smokers in the Rotterdam Study, based on targeted
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methylation profiling of CAD loci in whole blood®. The two identified CpGs in FES were located near the
transcription start site, while the one CpG identified in SIPA1 was located in the 5-UTR, suggesting potential
environmental influences on gene expression levels. SIPA1 encodes a mitogen induced GTPase activating
protein (GAP), specifically activating Ras and Rap GTPases®®. SIPA1 may be a unique mitogen response
signal in HCASMC undergoing phenotypic transition in the injured vessel wall; however, these hypotheses
should be explored in relevant functional models. Another HCASMC eQTL variant, rs2327429, located in the
TCF21 promoter region, was also the lead SNP in this locus in a recent CAD meta-analysis and has been
identified as an mQTL for TCF21 expression in two separate studies®*°. These data suggest that regulation of
methylation is a novel molecular trait that may mediate risk for CAD. Splicing QTL colocalization analysis
reveals that alternative splicing in SMG9 also influences CAD risk. SMG9 has been shown to regulate the non-
sense mediated decay (NMD) pathway in human cells, and has been implicated in several developmental

disorders such as brain malformations and congenital heart disease®.

In summary, the current study confirms the value of detailed genomic and genetic analyses of disease-related
tissues and cell types, which when analyzed in the context of publicly available data can provide deep insights
into the physiology of human traits and pathophysiology of complex human disease. We expect that these
findings will provide a rich resource for the community and prompt detailed functional investigations of

candidate loci for preclinical development.
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Supplemental Data include fifteen figures and five tables.
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Figure Legends

Fig. 1 The relationship between HCASMC and GTEx and ENCODE cell and tissue types. (A) The
multidimensional scaling plot of gene expression shows that HCASMC form a distinct cluster, which neighbors
fibroblast, skeletal muscle, heart, blood vessel and various types of smooth muscle tissues such as esophagus
and vagina (inset). (B) Jaccard similarity index between HCASMC and ENCODE cell and tissue types reveals
that fibroblast, skeletal muscle, heart and lung are most closely related to HCASMC. (C) Thousands of genes
are differentially expressed between HCASMC and its close neighbors, fibroblast, as well as the tissue of
origin, coronary artery. (D) A total of 344284 open chromatin peaks are found in HCASMC, of which 7332
(2.1%) are HCASMC-specific. (E) An example of a HCASMC-specific peak located within the intron of LMOD1,

which is an HCASMC-specific gene.

Fig. 2 Tissue- and cell-type specific contribution to CAD risk. (A) Tissue-specific enrichment of CAD
heritability. We used stratified LD score regression to estimate the CAD risk explained by SNPs close to tissue-
specific genes, defined as the 2000 genes with highest expression z-scores (see Methods). Genes whose
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expression is specific to coronary artery, adipose, and HCASMC harbors SNPs with large effects on CAD. (B)
Overlap between CAD risk variants and tissue- and cell-type specific open chromatin regions. We used a
modified version of GREGOR (see Methods) to estimate the probability and odds ratio (compared with
matched background SNPs) of overlap between CAD risk variants and open chromatin regions in HCASMC
and across ENCODE tissues. HCASMC, arterial endothelial cells, monocytes, B cell, uterus (composed

primarily of smooth muscle), and pons (possibly through regulation of blood pressure) showed the highest

degrees of overlap.

Fig. 3 Colocalization between HCASMC eQTL and coronary artery disease GWAS. (A-C) Three potential
causal genes identified by eCAVIAR. (A) Platelet-derived growth factor alpha (PDFGRA) eQTL signal
colocalized with the KDR GWAS locus, which reached FDR < 0.05 significance in the latest
CARDIoGRAMplusC4D and UK Biobank GWAS meta-analysis®. (B) Signal-Induced Proliferation-Associated 1
(SIPA1) eQTL signal colocalized with the PCNX3 locus, which reached genome-wide significance (p-value <
9.71><10'9) in Howson et al.®> Note that this study only genotyped selected loci but have a larger sample size
than the UK Biobank study. (C) SMAD3 eQTL signal colocalized with the SMAD3 locus, which is newly
identified in the UK Biobank meta-analysis®. (D) Transcriptome-wide colocalization signals between HCASMC
eQTL and CAD GWAS. We used eCAVIAR (top) and SMR (bottom) to fine-map GWAS causal variants and to
identify eQTL signals that can explain CAD risk variants (see Methods). We found five genes whose eQTL
signals show significant colocalization with CAD GWAS signal (SMR FDR < 0.05 or eCAVIAR colocalization
posterior probability > 0.05). (E-F) Two potential causal genes identified by SMR. (E) Transcription factor 21
(TCF21) eQTL signal colocalized with the TCF21 locus, which was identified by Schunkert et a.™ and
replicated in the UK Biobank meta-analysis. (F) FES eQTL signal colocalized with the FURIN-FES locus, which
was identified by Deloukas et al.”® and replicated in the UK Biobank meta-analysis. (G) SIPA1 colocalization is

strongest in HCASMC, indicating that this gene influences CAD risk primarily through HCASMC.

Fig. 4 Causal genes are involved in HCASMC-related vascular remodeling. (A-E) We determined the
direction of effect, i.e. whether gene expression upregulation increases risk, using the correlation between the

GWAS and the eQTL study effect sizes on SNPs with p-value < 1x10?in both datasets. Upregulation of genes
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TCF21 and FES are protective against CAD risk, and upregulation of SMAD3, PDGFRA, and SIPA1 increases
CAD risk. (F) Hypothetical functions of five potential causal genes. Upregulation of TCF21 facilitates the
transition of smooth muscle cells from a contractile to a synthetic state®. Upon phenotypic transition, FES
assists in smooth muscle cell migration to the neo-intima’’. Both SIPA1 and PDGFRA promotes HCASMC
proliferation®®’®. SMAD3 induces synthetic smooth muscle re-differentiation into the synthetic phenotype for
vessel wall repair’®. Upward arrows indicate genetic upregulation increases CAD risk, and downward arrows

indicate genetic upregulation is protective against CAD risk.

Table Legends

Table 1 Molecular quantitative trait loci discoveries. We report the number of tests performed and the
number of significant loci at FDR < 0.05, 0.01, and 0.001 for eQTL and sQTL stratified by molecular trait type.
We used permutation and the Benjamini-Hochberg adjustment for sQTL discovery, and a multi-level FDR
correction procedure (TreeQTL’?) for eQTL discovery, where permutation was not computationally feasible

(see Methods).

Tables

Table 1. Molecular quantitative trait loci discoveries.

# of traits with at least one QTL
FDR =0.05 FDR=0.01 FDR=0.001

Molecular Phenotype Trait type # of traits tested

Protein coding 13624 1048 (7.69%) 841 (6.17%) 636 (4.67%)
lincRNA 1266 51 (4.03%) 41 (3.24%) 33 (2.61%)
Gene expression Pseudogene 2616 50 (1.91%) 34 (1.3%) 25 (0.96%)
Other 2101 71 (3.38%) 56 (2.67%) 44 (2.09%)
Total 19607 1220 (6.22%) 972 (4.96%) 738 (3.76%)
Protein coding 24461 519 (2.12%) 349 (1.43%) 245 (1%)
lincRNA 300 11 (3.67%)  7(2.33%) 5 (1.67%)
Splicing Pseudogene 376 22 (5.85%) 15(3.99%) 12 (3.19%)
Other 541 29 (5.36%) 19 (3.51%) 17 (3.14%)
Total 25678 581(2.96%) 390 (1.99%) 279 (1.42%)
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