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Abstract
Autism spectrum disorder (ASD) is a markedly heterogeneous condition with a varied

phenotypic presentation. Its high concordance among siblings, as well as its clear association
with specific genetic disorders, both point to a strong genetic etiology. However, the molecu-
lar basis of ASD is still poorly understood, although recent studies point to the existence of
sex-specific ASD pathophysiologies and biomarkers. Despite this, little is known about how
exactly sex influences the gene expression signatures of ASD probands. In an effort to identify
sex-dependent biomarkers (and characterise their function), we present an analysis of a sin-
gle paired-end post-mortem brain RNA-Seq data set and a meta-analysis of six blood-based
microarray data sets. Here, we identify several genes with sex-dependent dysregulation, and
many more with sex-independent dysregulation. Moreover, through pathway analysis, we find
that these sex-independent biomarkers have substantially different biological roles than the
sex-dependent biomarkers, and that some of these pathways are ubiquitously dysregulated in
both post-mortem brain and blood. We conclude by synthesizing the discovered biomarker
profiles with the extant literature, by highlighting the advantage of studying sex-specific dys-
regulation directly, and by making a call for new transcriptomic data that comprise large
female cohorts.

1 Introduction
Autism Spectrum Disorder (ASD) is a markedly heterogeneous condition with a varied phenotypic
presentation and a spectrum of disability for those affected. As a neurodevelopmental disorder, the
ASD syndrome is characterised by social abnormalities, language abnormalities, and stereotyped
behavioural patterns Bailey et al. (1996). The presence of a genetic link in ASD etiology is well-
established Miles (2011); Miyauchi and Voineagu (2013), first evidenced by ASD concordance
among siblings and by a clear association between ASD and specific genetic disorders (e.g., Fragile
X mental retardation) Bailey et al. (1996). This link has prompted a number of transcriptomic
studies (e.g., Hertz-Picciotto et al. (2006); Glatt et al. (2012); Gupta et al. (2014)) to identify
gene expression signatures (i.e., as a kind of biomarker) that might help elucidate the etiology of
ASD and aid in its diagnosis (an important objective since early diagnosis and therapy is shown
to improve outcomes in ASD Elder et al. (2017)). However, despite the number of transcriptomic
studies performed, the pathophysiology and biomarker profile of ASD are still not known. Rather,
these studies have tended to produce inconsistent results, suggesting wide heterogeneity among
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both the individual patients and the study populations. Indeed, ASD may not have one signature
at all, but instead multiple diverging signatures Tylee et al. (2017a).

Transcriptomic studies of ASD probands typically use cells collected from either post-mortem
brains or blood in order to estimate the mRNA abundance for thousands of gene transcripts
(by way of microarray technology or massively parallel high-throughput sequencing (RNA-Seq)).
Since many expressed transcripts are a precursor to structural or functional proteins, these studies
can provide an insight into the functional state of a cell, capturing the common pathway for
hereditary predisposition and environmental exposure. Although post-mortem brain studies have
an advantage in that they look directly at the tissue of interest, blood-based studies can identify
clinically useful biomarkers while also serving as a reliable proxy for gene expression in the brain
Tylee et al. (2013) (though a complete understanding of ASD pathophysiology and its biomarker
profile will likely require careful consideration of both lines of evidence). To date, more than
a dozen studies have measured the transcriptomic profiles of ASD probands (and controls), the
results of which have been summarised by two separate meta-analyses Ch’ng et al. (2015); Ning
et al. (2015) and one “mega-analysis” Tylee et al. (2017a).

Sex is often called a risk factor for ASD, and it is stated that the risk for a male to have
ASD is four to five times higher than that for females Werling et al. (2016); Christensen et al.
(2016) (although the magnitude of this difference may be partly due to diagnostic biases Lai et al.
(2015)). A similar observation, that the increased male risk is even higher among high-functioning
ASD probands Fombonne (1999), likewise suggests that sex-specific mechanisms could influence
ASD pathophysiology and its biomarker profile. Further evidence for sex-specific mechanisms is
found in recent transcriptomic and functional-imaging studies. For example, Tylee et al., using
transformed lymphoblastoid cell lines, found evidence for sex-specific differential regulation of
genes and pathways among ASD probands Tylee et al. (2017). Similarly, Trabzuni et al. found
sex-specific differences in alternative splicing in adult human brains, including for a well-known
ASD risk gene NRXN3 Trabzuni et al. (2013). Functional brain connectivity studies using fRMI
imaging have also identified sexual heterogeneity among ASD probands, showing dysregulation in
sexually dimorphic brain regions across two large studies Floris et al. (2018); Lai et al. (2013).
Moreover, recent work by Mitra et al. found evidence for pleiotropy between common single
nucleotide polymorphisms (SNPs) for secondary sex characteristics and ASD risk, as well as sex
heterogeneity on the X-chromosome, through a comprehensive SNP “mega-analysis” combining 12
individual data sets from diverse genetic backgrounds Mitra et al. (2016). Taken together, it seems
plausible that sex could interact with other genetic and environmental factors to create sex-specific
ASD pathophysiologies and biomarker profiles.

As ASD is more common in males, it suggests that females may have some underlying protec-
tion whereby a higher risk load is required for them to become afflicted Robinson et al. (2013).
One hypothesis posits that ASD itself reflects a shift towards “extreme maleness” such that males
are necessarily predisposed Baron-Cohen (2002). In support of this, females with ASD do harbour
more (and larger) copy number variants than males with ASDs Levy et al. (2011), and moreover
exhibit differential penetrance given the same genetic etiology Lionel et al. (2014) (although Mitra
et al. found no evidence for an increased SNP load in females Mitra et al. (2016)). Unfortu-
nately, however, the increased prevalence of ASD in males has led to the exclusion of females from
many transcriptomic studies (e.g., Hu et al. (2009); Sarachana et al. (2010); Alter et al. (2011)),
making it difficult to understand the male skew in ASD prevalence. Indeed, individual studies
are often underpowered to detect subtle sex-specific differences (if they contain female subjects
at all). When female subjects are included, sex is typically modelled as a simple covariate rather
than an interaction term (i.e. the ASD-sex interaction), meaning that only sex-independent (and
not sex-dependent) biomarkers are discovered. When male ASD is contrasted with female ASD,
it typically involves loosely comparing simple sex-specific differences (e.g., differential expression
present in males but not females, and vice versa) in a statistically anticonservative manner. To
our knowledge, no study has looked at whether gene expression signatures show a sex-autism
interaction across multiple studies and human tissues.

Using a single paired-end post-mortem brain RNA-Seq data set and a meta-analysis of six blood-
based microarray data sets, we present an analysis of transcriptomic data that focuses on comparing
sex-dependent and sex-independent ASD biomarkers (and the functional profiles thereof) across
multiple tissues. By modelling the interaction of sex and ASD directly, we identify biomarkers (as
well as functional pathways) that show sex-differences in ASD probands that are different than
those in control subjects. Then, for those biomarkers that show no interaction, we pool male and
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female probands for a secondary sex-independent analysis. Our results suggest that, despite low
power, some genes have FDR-adjusted significant sex-dependent interactions, while even more have
significant sex-independent main effects. Subsequent pathway analysis further shows that these
sex-independent biomarkers have substantially different biological roles than the sex-dependent
biomarkers, and that some of these pathways are ubiquitously dysregulated in both post-mortem
brain and blood.

2 Methods
2.1 Data acquisition
2.1.1 RNA-Seq data

We searched for relevant publicly available RNA-Seq data using the Gene Expression Omnibus
(GEO) Barrett and Edgar (2006) with the term ("expression profiling by high throughput sequenc-
ing"[DataSet Type] AND ("autism spectrum disorder"[MeSH Terms] OR "autistic disorder"[MeSH
Terms])) AND "homo sapiens"[Organism] (query made January 2018). We restricted eligible data
sets to those sequenced with paired-end and non-poly-A-selected libraries. After excluding any data
sets that used cell lines or did not have female cases, only one experiment, GSE107241 Wright et al.
(2017), remained. These data comprise a RiboZero Gold paired-end RNA-Seq data set from 52
postmortem dorsolateral prefrontal cortex tissue samples.

Prior to alignment and quantification, raw RNA-Seq reads were trimmed using Trimmomatic
(docker image quay.io/biocontainers/trimmomatic:0.36–4) Bolger et al. (2014) and quality con-
trol metrics were recorded (before and after trimming) using FastQC (docker image biocontain-
ers/fastqc:0.11.5) Andrews (2010). We aligned trimmed reads and quantified expression using
Salmon (docker image combinelab/salmon:0.9.0) Patro et al. (2017) as run in pseudo-quantification
mode with a k-mer index of length 31. For the reference, we concatenated a human coding reference
(i.e., GRCh38.90.cds) with the corresponding non-coding reference (i.e., GRCh38.90.ncrna).

2.1.2 Microarray data

We collected multiple microarray data sets to perform a meta-analysis of sex-autism interactions
and main effects of ASD (i.e., sex-independent effects, where males and females are pooled). We
referenced two prior meta-analyses Ch’ng et al. (2015); Ning et al. (2015), and one “mega-analysis”
Tylee et al. (2017a), to prepare a list of data sets to study. Of these data sets, we excluded any
study that (a) measured transcript expression from brain tissue, (b) had no female cases, (c) used
cell lines (i.e., GSE37772 and GSE43076), or (d) treated cells with PPA (i.e., GSE32136). Six data
sets remained after exclusion, as described in Table 1.

Data acquired from the Gene Expression Omnibus (GEO) Barrett and Edgar (2006) (i.e.,
GSE6575 Gregg et al. (2008) and GSE18123 Kong et al. (2012)) were acquired already normalised
and were not modified further. The other data sets (i.e., the Glatt et al. Wave I and Wave II
data Glatt et al. (2012), the CHARGE study data Hertz-Picciotto et al. (2006), and the Kong et
al. 2013 data Kong et al. (2013)) each underwent RMA normalization, quantile normalization,
and base-2 logarithm transformation. All subjects with a labelled condition other than typically
developed (TD) were assigned to the autism spectrum disorder (ASD) group, except for the two
Glatt et al. data sets where “Type-1 errors” were assigned to the TD group. Note that, in crafting
this dichotomy, some subjects assigned to the ASD group have delays that fall outside of the
“spectrum” per se.

2.2 Differential expression analysis of RNA-Seq data
We used DESeq2 (Version 3.6) Love et al. (2014) to test for differential transcript expression within
the Salmon-generated counts. We applied a conservative expression filter (i.e., at least 10 estimated
counts per-gene in every sample) to the raw count matrix to ensure that the high variability of
lowly expressed transcripts did not bias results due to the small group sizes. For each transcript
that passed the expression filter, a model was fit using the formula ~ASD * Sex + Age (where Age
is the age of death). Interaction and sex-independent main effects (i.e., of the ASD condition)
were then extracted from the model by specifying the relevant contrasts to the DESeq2::results
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function. We corrected for multiple testing using the Benjamini-Hochberg procedure Benjamini
and Hochberg (1995).

2.3 Meta-analysis of microarray data
Before proceeding with the meta-analysis, we established a set of probes (i.e., for each microarray
platform) that represent genes also represented by probes in the other platforms. In other words,
we established a final probe set based on the intersection of unique gene symbols present in all
microarray platforms under study. Note that we resolved one-to-many mapping ambiguities by
excluding any probe that mapped to multiple gene symbols.

For each microarray data set, and for each probe (i.e., of those representing genes found in all
data sets), we performed differential expression analysis using limma (Version 3.34) Smyth (2004),
applying the following steps: (1) fit a model with the formula ~ASD * Sex + Age where ASD
and Sex are each two-level factors (except GSE6575, where the Age covariate is unknown), (2)
define contrasts for the sex-autism interaction and for the sex-independent main effects (i.e., of
the ASD condition), and (3) measure the differential expression for each contrast using the eBayes
procedure.

Next, we transformed platform-specific probe p-values to HGNC symbol p-values using Anno-
tationDbi (available from Bioconductor Huber et al. (2015)). We resolved many-to-one mapping
ambiguities by FDR-adjusting the minimum p-value of all probes for a given gene symbol (i.e., cal-
culating a within-gene FDR correction). We then used Fisher’s method to perform a meta-analysis
of the p-values obtained from the differential expression analysis. For K studies, Fisher’s method
scores each gene based on (negative two times) the sum of the logarithm of the p-values:

χ2
2K = −2

K∑
i

log pi (1)

This score follows a χ2 distribution with 2K degrees of freedom Mosteller and Fisher (1948). Thus,
for each gene, we computed a p-value directly from this score. We corrected for multiple testing
using the Benjamini-Hochberg procedure Benjamini and Hochberg (1995).

2.4 Adjustment of latent batch effects
To ensure that latent batch effects did not inflate the discovery of false positives, we performed all
analyses above with adjustment for batch effects using sva (Version 3.26) Leek et al. (2012); Leek
(2014), applying the following steps: (1) estimate the number of surrogate variables while specifying
the ASD * Sex interaction as the variable of interest and Age as an adjustment variable, (2) use
the sva function (or, in the case of Salmon-generated counts, the svaseq function) to estimate the
surrogate variables, and (3) include the surrogate variables in the differential expression model(s)
described above. Generally speaking, using sva yielded more conservative results than not using
sva. All tables and figures show results generated with sva except where otherwise noted.

2.5 Pathway analysis and knowledge integration
We performed pathway analysis using GSEA (Version 3.0) Subramanian et al. (2005a) in PreRanked
mode with classic enrichment and 1,000 permutations. Enrichment scores were calculated for spe-
cific MSigDB (Version 6.1) Subramanian et al. (2005b); Liberzon et al. (2011) gene sets, including
the curated KEGG (c2.cp.keggKanehisa et al. (2017)), Gene Ontology Biological Process (c5.bp)
The Gene Ontology Consortium (2017), Reactome (c2.cp.reactome) Fabregat et al. (2018), and
MSigDB Hallmark (h.all) Liberzon et al. (2015) sets.

Based on the nature of the analyses, input rank lists were prepared differently for the RNA-Seq
and microarray results. For the RNA-Seq analysis, we ranked transcripts based on the p-value, p,
and the magnitude of the fold-change, FC:

Rank = − log10(p) × sign(log2(FC)) (2)

Then, these transcript-level ranks were converted into gene-level ranks based on the top transcript-
level rank. For the microarray meta-analysis, we ranked genes using the χ2 test statistic (as
calculated from Fisher’s method). Note that since this latter metric is agnostic to the direction
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of expression changes (i.e., only large χ2 test statistics suggest dysregulation), we focused here
on pathways enriched with a positive score (effectively making this pathway enrichment test one-
tailed).

3 Results
3.1 Evidence for sex-dependent autism biomarkers
By modelling the sex-autism interaction directly, we can detect gene expression signatures that
have differential dysregulation in male ASD probands when compared with female ASD probands.
In other words, we can find sexually dimorphic ASD biomarkers (e.g., a gene up-regulated in male
ASD but not in female ASD, or vice versa). Despite small study sizes (and disproportionately
fewer females), we find some evidence for a sex-autism interaction among biomarkers, especially
throughout the microarray meta-analysis data.

From the analysis of the RNA-Seq data derived from post-mortem brain tissue, we find no tran-
scripts with significant (FDR-adjusted p-value < 0.05) sex-dependent dysregulation, although one
of these transcripts showed a significant interaction prior to batch correction with sva. To illustrate
what a sex-autism interaction might look like, Figure 1 shows the per-group expression profiles
for the two transcripts with the largest interaction effect (i.e., those with the smallest corrected
p-value). Table 2 characterises those transcripts with the most sex-dependent dysregulation.

From the meta-analysis of the blood-based microarray data, we find two genes with significant
(FDR-adjusted) sex-dependent dysregulation: TTF2 and UTY . Table 3 characterises those genes
with the most sex-dependent dysregulation. Since for a meta-analysis by Fisher’s method, a large
departure from the null (i.e., a very small p-value) in only one of several studies could cause the
meta-analysis to post a significant result (i.e., even after FDR-adjustment) Tseng et al. (2012), it is
useful to inspect visually how each study contributed to the results of the meta-analysis. For this,
Figure 2 shows how each study contributed to the meta-analysis findings by plotting the aggregate
Fisher score for each gene (of those with large sex-dependent dysregulation) along with the study-
wise nominal significance (unadjusted p-value < 0.05). Notably, several of the most significantly
dysregulated genes are at least nominally significant in more than one study.

3.2 Evidence for sex-independent autism biomarkers
In situations where a sex-autism interaction is not detectable, we can proceed to measure main
condition (i.e., sex-independent) effects by pooling male ASD probands with female ASD probands
(and male controls with female controls), without having to model sex as a covariate. Genes with
significant sex-independent main effects (i.e., of the ASD condition) have large unidirectional effect
sizes in male ASD probands, female ASD probands, or both. Yet, because the interaction is tested
first, we can interpret the main condition effects as sex-independent.

From the analysis of the RNA-Seq data derived from post-mortem brain tissue, we find seven
transcripts with significant (FDR-adjusted p-value < 0.05) sex-independent differential expression.
Of these, only one transcript showed significant up-regulation in ASD (with all others showing
down-regulation). Figure 3 shows the expression profile for the two transcripts with the most
significant sex-independent main effects (i.e., of the ASD condition). Table 4 characterises those
transcripts with significant sex-independent dysregulation. Interestingly, several of the transcripts
called differentially expressed by the analysis are annotated as non-coding RNA species.

From the meta-analysis of blood-based microarray data, we find 21 genes with significant (FDR-
adjusted) sex-independent dysregulation. Table 5 characterises those genes with the most sex-
independent dysregulation. As in Figure 2, Figure 4 shows how each study contributed to the
meta-analysis findings by plotting the aggregate Fisher score for each gene (i.e., of those with large
sex-independent dysregulation) along with the study-wise nominal significance (unadjusted p-value
< 0.05). Again, most genes selected as statistically significant by the meta-analysis are at least
nominally significant in more than one study.

3.3 Pathway enrichment of ASD biomarkers
In an effort to summarise the biological relevance of the biomarker profiles generated above, we used
the complete ranked lists of the differentially expressed transcripts (and genes) in four separate
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gene set enrichment analyses to identify common differentially regulated pathways. Four enrich-
ment profiles were generated using the sex-dependent RNA-Seq (brain) biomakers, sex-independent
RNA-Seq (brain) biomarkers, sex-dependent microarray (blood) biomarkers, and sex-independent
microarray (blood) biomarkers.

Figure 5 shows the KEGG pathways enriched by the biomarkers as ranked by the analysis of
the RNA-Seq data. For the sex-dependent biomarkers, nine pathways showed significant (FDR-
adjusted p-value < 0.15) enrichment. For the sex-independent biomarkers, five pathways showed
significant enrichment. Interestingly, all significant enrichment occurred in the same direction.

Figure 6 shows the KEGG pathways enriched by the biomarkers as ranked by the analysis of
the microarray data. For the sex-dependent biomarkers, one pathway (i.e., Alanine Aspartate and
Glutamate Metabolism) showed significant (FDR-adjusted p-value < 0.30) enrichment. For the
sex-independent biomarkers, thirty-six pathways showed significant enrichment. Note that because
only positive (i.e., one-tailed) enrichments are considered for these data, an FDR-adjusted p-value
< 0.30 is used here (see Methods for more details).

Figure 7 compares the overlap between these significant pathways. For the sex-dependent
analyses, no pathways are enriched in both the RNA-Seq and microarray data. However, for the
sex-independent analyses, two pathways are enriched in both data. Interestingly, this agreement
exists despite differences in the ranked lists, suggesting that ASD biomarker profiles may show
some degree of higher-order conservation at the pathway-level that exists not only across multiple
studies, but across multiple tissues (as well as multiple transcript quantification assays). Note
that we also tested for enrichment among the Gene Ontology Biological Process, Reactome, and
MSigDB Hallmarks gene sets, all of which show more examples of overlap between the separate
sex-independent analyses (see the Supplementary Information for more details).

4 Discussion
In this report, we present an analysis of several ASD transcriptomic studies, including an analysis of
RNA-Seq data derived from post-mortem brain and a meta-analysis of six blood-based microarray
data sets. Specifically, we focus on identifying both sex-dependent and sex-independent biomarker
profiles for ASD by modelling the sex-autism interaction directly and secondarily measuring main
effects of the ASD condition (i.e., sex-independent effects where males and females are pooled). In
addition to identifying transcript (and gene) biomarkers, we use gene set enrichment analysis to
summarise the observed dysregulation at the pathway level, contrasting sex-dependent pathway
enrichment with sex-independent pathway enrichment. In doing so, we find evidence that ASD
biomarker profiles may show some degree of higher-order conservation at the pathway level that
exists not only across multiple studies, but across multiple tissues (and across multiple transcript
quantification assays).

Despite small sample sizes in all studies, we found evidence for the existence of some sex-
dependent biomarkers in human tissue. The meta-analysis identified two genes, TTF2 and UTY ,
with sexually dimorphic expression in the blood. One of these, TTF2, plays an important role
in normal thyroid development De Felice and Di Lauro (2004). Interestingly, a loss of thyroid
hormone homoeostasis has been linked to ASD Berbel et al. (2014); Khan et al. (2014). Since it
is well-known that thyroid diseases have a sex-specific presentation Bauer et al. (2014), it seems
plausible that thyroid abnormalities could contribute to a sexually dimorphic ASD signature. Some
thyroid-disrupting environmental chemicals have also been linked to an altered risk for autism Lyall
et al. (2017); Braun et al. (2014), including one study showing sexually dimorphic associations
Lyall et al. (2017). The other, UTY , is a Y-chromosome gene (with considerable homology to
an X-chromosome homolog), making any interpretation of its differential dysregulation difficult.
Two other genes, KCNJ8 and MAP1B, had FDR-adjusted p-values very close to the pre-defined
significance cutoff, warranting follow-up in another study. Although the RNA-Seq analysis did not
yield any significant interactions, it is not surprising considering this data set contained only three
female ASD probands. Nevertheless, the large (albeit non-significant) effect sizes warrant repeat
studies with bigger cohorts and more female ASD probands.

By modelling the sex-autism interaction directly, we are able to follow-up the sex-dependent
analysis with a secondary sex-independent analysis for any transcript (or gene) whose expression
did not significantly interact with sex. In this scenario, we contrast the pooled male ASD probands
and female ASD probands against the pooled male controls and female controls to calculate the
main effects (which we can thus interpret as sex-independent biomarkers). Here, over twenty
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transcripts and genes exceeded the threshold for FDR-adjusted significance. Interestingly, for the
RNA-Seq data, several of the significant biomarkers are not protein-coding genes (highlighting the
value of using non-poly-A-selected libraries to quantify both coding and non-coding transcripts).
For the microarray meta-analysis, several of the sex-independent biomarkers are associated with
key neurodevelopmental processes, including some X-chromosome genes. For example,MAGED2,
differentially expressed in ASD probands, is located on an X-linked intellectual disability hotspot
(i.e., Xp11.2) Langnaese et al. (2001); Moey et al. (2016) (which, if causally relevant, could con-
tribute to the male risk bias).

For both the RNA-Seq analysis and the microarray meta-analysis, we tested the ranked sex-
dependent and sex-independent biomarker profiles separately for pathway-level enrichment. We
found some pathway enrichment for the sex-dependent profiles, and even more for the sex-independent
profiles. Importantly, very few of the enriched pathways were the same for both the interaction
and main effects. This suggests that males and females exhibit unique pathway-level signatures
that, if causally relevant, might further suggest the existence of both sex-specific and common ASD
pathophysiologies. Although few KEGG pathways are enriched among the sex-dependent results,
there are dozens of significantly enriched sex-dependent pathways across other tested gene sets
(see Supplementary Information for more details). Among the sex-independent enriched pathways
(for the meta-analysis results), there are a number of pathways for known neurodevelopmental
and neurodegenerative diseases, including Huntingtons, Parkinsons, Alzheimers, and amyotrophic
lateral sclerosis (ALS), suggesting that at least some of these ASD biomarkers may have functions
important to general brain health. Considering that both unique and shared signatures (i.e., at the
biomarker-level and pathway-level) exist among ASD probands, it seems plausible that molecular
diagnostics could benefit from modelling sex-specific processes directly.

Although we found pathway enrichment to differ considerably between the sex-dependent and
sex-independent biomarker profiles, we found that several sex-independent pathways (i.e., based
on KEGG and other genes sets) were enriched across both the RNA-Seq and microarray data.
Interestingly, this overlap exists despite the fact that analyses were performed on different human
tissues (and with different transcript quantification assays). In fact, more than fifty Gene Ontology
pathways were enriched among both sets of ranked sex-independent biomarkers (even though no
gene products showed significant differential expression in both data). This overlap is consistent
with a broad literature supporting common (and perhaps etiologically relevant) gene expression
signatures across the widely heterogeneous population of ASD probands. If true, it seems plausible
that molecular insights could further benefit from modelling pathway-level dysregulation directly
(i.e., in addition to modelling conventional transcriptomic biomarkers).

When we compare our pathway enrichments to the previous ASD “mega-analysis” pathway
enrichments Tylee et al. (2017b), we observe several complementary results. First, we found
positive enrichment of the MAPK pathway in our sex-dependent RNA-Seq results, agreeing with
the male-specific enrichment of Mek targets found in the Tylee et al. study Tylee et al. (2017b).
Second, we found an enrichment of the ribosome-related pathway in both of our sex-independent
analyses, agreeing with the ribosome-related pathway enrichment identified by the sex-independent
“mega-analysis” Tylee et al. (2017b). Third, we found an enrichment of the Toll-like receptor
(TLR) signalling pathway in our sex-independent meta-analysis results, agreeing with the TLR
3 and 4 signalling pathway enrichment identified by the sex-independent “mega-analysis” Tylee
et al. (2017b). Importantly, these complementary results exist despite considerable differences in
statistical methodology and data set inclusion.

Our analysis is not without limitations. First, although we used sva to adjust for latent batch
effects, it is still possible that any number of remaining factors (or batch effects) could coincide with
the diagnostic label (e.g., undocumented co-morbidities or medication use), thereby confounding
the discovered biomarker profile. Second, as with any observational study, it is impossible to con-
clude whether the gene expression signatures (and their biological pathways) are causally related
to ASD (or, likewise, the sex-autism interaction), rather than a result of the condition. Third, this
analysis is likely under-powered to detect both sex-autism interactions and main effects, owing to
the small sample sizes and disproportionately smaller female cohorts. Yet, based on the extant
literature (which clearly highlights sex as an ASD risk factor) and the results published here, we
believe that modelling the sex-autism interaction should become a mainstay of ASD transcrip-
tomic research. Advantageously, as shown here, interaction modelling is compatible with the most
commonly used softwares for batch-effect correction Leek et al. (2012), RNA-Seq analysis Love
et al. (2014), and microarray analysis Smyth (2004). Yet, this analytical technique cannot offer
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any benefit if transcriptomic studies continue to systematically exclude female subjects (Hu et al.
(2009); Sarachana et al. (2010); Alter et al. (2011)). Although there seems to exist a strong skew
in the prevalence of male ASD, this very fact underlies the importance of studying female ASD: a
complete understanding of the molecular basis of ASD will require the intentional study of both
sex-dependent and sex-independent mechanisms, as well as their differences and commonalities.
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by the joined lines. Set size is indicated by the top bar chart. The bar chart on the
left shows the total set size for each individual GSEA run. Results are filtered using
a liberal FDR threshold of FDR < 0.15 for the RNA-Seq data and FDR < 0.3 for
the meta-analysis data (see Methods). . . . . . . . . . . . . . . . . . . . . . . . . . 20
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Figure 1: These violin plots show the base-2 logarithm-transformed expression for the two tran-
scripts with the largest interaction effect from the RNA-Seq data (i.e., those with the smallest
corrected p-value). The solid lines show sex-specific mean expression differences. The dashed line
shows the sex-independent (i.e., pooled) mean expression difference.
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Figure 2: This figure shows the genes with the most significant sex-dependent dysregulation (i.e.,
a sex-autism interaction) according to the meta-analysis of the microarray data. Above, the bar
plot shows the χ2 score for each gene as calculated using Fisher’s method (where the dark bars
indicate that the gene has an FDR-adjusted p-value < 0.05). Below, the dot plot shows whether a
gene showed a nominally significant sex-dependent dysregulation at an unadjusted p-value < 0.05
for a given study. Note that most genes selected for by the meta-analysis show at least nominal
significance across multiple studies.
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Figure 3: These violin plots show base-2 logarithm-transformed expression for the two most sig-
nificant main effects (i.e., of the ASD condition) from the RNA-Seq data. The solid lines show
sex-specific mean expression differences. The dashed line shows the sex-independent (i.e., pooled)
mean expression difference.
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Figure 4: This figure shows the genes with the most significant sex-independent main effects (i.e.,
of the ASD condition) according to the meta-analysis of the microarray data. Above, the bar
plot shows the χ2 score for each gene as calculated using Fisher’s method (where the dark bars
indicate that the gene has an FDR-adjusted p-value < 0.05). Below, the dot plot shows whether a
gene showed a nominally significant sex-independent main effect at an unadjusted p-value < 0.05
for a given study. Note that most genes selected for by the meta-analysis show at least nominal
significance across multiple studies.
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Figure 5: This dot plot shows results from a GSEA of the RNA-Seq data against the MSigDB
KEGG pathways. For the two sets of results (i.e., the sex-autism interaction and the main effect),
a KEGG pathway (y-axis) has a circle (or triangle) if it is enriched (or depleted). The size of the
points indicates the absolute normalised enrichment score. The colour indicates the FDR. Note
that only points with an FDR < 0.3 are plotted (see Methods).
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Figure 6: This dot plot shows results from a GSEA of the meta-analysis data against the MSigDB
KEGG pathways. For the two sets of results (i.e., the sex-autism interaction and the main effect),
a KEGG pathway (y-axis) has a circle if it is enriched. The size of the points indicates the absolute
normalised enrichment score. The colour indicates the FDR. Note that only points with an FDR
< 0.3 are plotted (see Methods).
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Figure 7: This UpSet plot Lex et al. (2014) shows set intersections (and their sizes) from a GSEA
of four results against the MSigDB KEGG pathways. Set identity is indicated by the joined lines.
Set size is indicated by the top bar chart. The bar chart on the left shows the total set size for
each individual GSEA run. Results are filtered using a liberal FDR threshold of FDR < 0.15 for
the RNA-Seq data and FDR < 0.3 for the meta-analysis data (see Methods).
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List of Tables
1 This table details all studies included in the meta-analysis, and the number of probes

available after establishing a final probe set. All subjects with a labelled condition
other than typically developed (TD) were assigned to the autism spectrum disorder
(ASD) group, except for the two Glatt et al. data sets where “Type-1 errors” were
assigned to the TD group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 This table shows SVA-adjusted results for the sex-autism interaction for the RNA-
Seq data (sorted by FDR-adjusted p-value). Note that FDR-adjusted p-values are
also shown for an analysis performed without the adjustment of latent batch effects. 23

3 This table shows genes with the most sex-dependent dysregulation (and their chro-
mosomal position), sorted by Fisher score and adjusted p-value. In addition, this
table shows the Fisher score and adjusted p-value calculated for an analysis repeated
without the adjustment of latent batch effects. . . . . . . . . . . . . . . . . . . . . 24

4 This table shows SVA-adjusted results for the main effects (i.e., of the ASD con-
dition) for the RNA-Seq data (sorted by FDR-adjusted p-value). Note that FDR-
adjusted p-values are also shown for an analysis performed without the adjustment
of latent batch effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 This table shows genes with the most sex-independent dysregulation (and their
chromosomal position), sorted by Fisher score and adjusted p-value. In addition,
this table shows the Fisher score and adjusted p-value calculated for an analysis
repeated without the adjustment of latent batch effects. . . . . . . . . . . . . . . . 26
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Study ID Probes (Intersect) Females (TD) Males (TD) Females (ASD) Males (ASD)
GSE6575 39561 3 9 8 36
GSE18123 19532 34 48 24 80
Glatt et al. Wave I 28424 28 40 23 88
Glatt et al. Wave II 28424 35 56 28 85
CHARGE 39561 15 75 15 103
Kong et al. 2013 19532 7 10 7 46

Table 1: This table details all studies included in the meta-analysis, and the number of probes
available after establishing a final probe set. All subjects with a labelled condition other than
typically developed (TD) were assigned to the autism spectrum disorder (ASD) group, except for
the two Glatt et al. data sets where “Type-1 errors” were assigned to the TD group.
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Transcript ID Gene symbol Transcript biotype Log 2 FC P-adj SVA P-adj (no SVA)
ENST00000354042 SLC13A4 protein_coding 3.27 0.293 0.1136846
ENST00000379802 DSP protein_coding 3.19 0.293 0.6534814
ENST00000262551 OGN protein_coding 2.97 0.299 0.8169099
ENST00000371625 PTGDS protein_coding 1.74 0.299 0.0329544
ENST00000223357 AEBP1 protein_coding 1.85 0.529 0.8713166

Table 2: This table shows SVA-adjusted results for the sex-autism interaction for the RNA-Seq
data (sorted by FDR-adjusted p-value). Note that FDR-adjusted p-values are also shown for an
analysis performed without the adjustment of latent batch effects.
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Location Fisher Fisher p-adj Fisher (no SVA) Fisher p-adj (noSVA)
TTF2 1p13.1 52.16404 0.0105053 28.88686 1.0000000
UTY Yq11.221 50.59543 0.0198876 45.76688 0.1378710
KCNJ8 12p12.1 48.17048 0.0528841 38.16932 1.0000000
MAP1B 5q13.2 48.15632 0.0531822 47.94878 0.0578051
RAP2C Xq26.2 47.70446 0.0637312 24.82099 1.0000000
PAFAH1B1 17p13.3 45.45517 0.1559409 17.84249 1.0000000
CRHR1 17q21.31 44.98624 0.1876599 43.46097 0.3416423
NCS1 9q34.11 44.79693 0.2021903 30.46521 1.0000000
CHST11 12q23.3 44.75342 0.2056750 21.19593 1.0000000
SH3BGR 21q22.2 44.61154 0.2174809 32.59585 1.0000000
BNC2 9p22.3-p22.2 44.40363 0.2360031 39.81245 1.0000000
RORA 15q22.2 43.52113 0.3335702 34.11125 1.0000000
HECA 6q24.1 43.22311 0.3747481 33.12178 1.0000000
FBRSL1 12q24.33 43.04625 0.4015007 35.53452 1.0000000
PAK3 Xq23 43.03339 0.4034965 43.20181 0.3780235
ZC3H7B 22q13.2 42.95711 0.4156536 35.03776 1.0000000
CAMK1D 10p13 42.80430 0.4411269 24.56439 1.0000000
TMED10 14q24.3 42.55614 0.4858196 17.45529 1.0000000

Table 3: This table shows genes with the most sex-dependent dysregulation (and their chromosomal
position), sorted by Fisher score and adjusted p-value. In addition, this table shows the Fisher
score and adjusted p-value calculated for an analysis repeated without the adjustment of latent
batch effects.
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Transcript ID Gene symbol Transcript biotype Log 2 FC P-adj (SVA) P-adj (no SVA)
ENST00000390930 SNORD17 snoRNA -2.98 1.54e-05 0.0000102
ENST00000410396 RNU2-2P snRNA -4.76 4.04e-05 0.0000000
ENST00000613119 snRNA -3.23 9.18e-05 0.0000000
ENST00000258526 PLXNC1 protein_coding 0.48 0.00468 0.4273372
ENST00000393775 IGSF11 protein_coding -1.18 0.00468 1.0000000
ENST00000459255 SCARNA10 snoRNA -1.71 0.00468 0.0014803
ENST00000618786 RN7SL1 misc_RNA -1.35 0.0124 0.0026454

Table 4: This table shows SVA-adjusted results for the main effects (i.e., of the ASD condition)
for the RNA-Seq data (sorted by FDR-adjusted p-value). Note that FDR-adjusted p-values are
also shown for an analysis performed without the adjustment of latent batch effects.
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Location Fisher Fisher p-adj Fisher (no SVA) Fisher p-adj (noSVA)
ARHGAP35 19q13.32 69.17663 0.0000083 59.97651 0.0004125
GIMAP8 7q36.1 58.39735 0.0008000 52.71485 0.0083436
UCHL3 13q22.2 55.85012 0.0023073 31.88589 1.0000000
SPART 13q13.3 53.75888 0.0054659 43.79029 0.2920570
HNRNPA3P1 10q11.21 53.16493 0.0069742 54.55326 0.0039291
ZNF721 4p16.3 53.02620 0.0073817 45.32102 0.1608751
MAGED2 Xp11.21 52.57098 0.0088931 31.43801 1.0000000
UBE2A Xq24 52.15816 0.0105264 24.84369 1.0000000
KIF13B 8p12 51.80723 0.0121459 44.99172 0.1830060
POLR1A 2p11.2 51.21815 0.0154371 35.12970 1.0000000
PATL1 11q12.1 50.53892 0.0203385 37.55012 1.0000000
COX19 7p22.3 50.48910 0.0207524 51.68452 0.0126954
GNG5 1p22.3 50.42442 0.0213024 21.04799 1.0000000
HNRNPF 10q11.21 50.20526 0.0232786 52.19956 0.0102957
MUM1 19p13.3 50.09134 0.0243757 38.59229 1.0000000
MTERF4 2q37.3 49.77445 0.0277066 40.36576 1.0000000
KLF1 19p13.13 49.50019 0.0309497 35.07655 1.0000000
SART3 12q23.3 48.93549 0.0388576 51.89275 0.0116656
EIF3A 10q26.11 48.86929 0.0399046 48.66280 0.0429001
ESF1 20p12.1 48.82351 0.0406442 40.26756 1.0000000
TCEAL8 Xq22.1 48.76924 0.0415389 30.32699 1.0000000
RNF168 3q29 47.89156 0.0590766 40.39014 1.0000000
NUCB2 11p15.1 47.52251 0.0684739 46.57846 0.0981743
CCP110 16p12.3 47.21328 0.0774723 30.63996 1.0000000
ZNF569 19q13.12 47.18319 0.0784042 35.01402 1.0000000
CHP1 15q15.1 47.17381 0.0786939 46.71912 0.0928712
ZC3H7B 22q13.2 47.11959 0.0804103 31.75604 1.0000000
GNPDA1 5q31.3 46.86648 0.0889439 39.70348 1.0000000
ECI2 6p25.2 46.83204 0.0901676 54.27612 0.0044030
VCP 9p13.3 46.73363 0.0937667 33.68338 1.0000000
ARHGAP8 22q13.31 46.70772 0.0947338 50.13461 0.0237714
PGM1 1p31.3 46.58133 0.0996154 36.39139 1.0000000
ZNF286A 17p12 46.57586 0.0998268 31.41283 1.0000000

Table 5: This table shows genes with the most sex-independent dysregulation (and their chromo-
somal position), sorted by Fisher score and adjusted p-value. In addition, this table shows the
Fisher score and adjusted p-value calculated for an analysis repeated without the adjustment of
latent batch effects.
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