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Abstract

Knowledge of “popular proteins” has been a focus of multiple Human Proteome Organi-
zation (HUPO) initiatives and can guide the development of proteomics assays targeting
important disease pathways. We report here an updated method to identify prioritized
protein lists from the research literature, and apply it to catalog lists of important
proteins across multiple cell types, sub-anatomical regions, and disease phenotypes of
interest. We provide a systematic collection of popular proteins across 10,129 human
diseases as defined by the Disease Ontology, 10,642 disease phenotypes defined by Human
Phenotype Ontology, and 2,370 cellular pathways defined by Pathway Ontology. This
strategy allows instant retrieval of popular proteins across the human ”diseasome”, and
further allows reverse queries from protein to disease, enabling functional analysis of
experimental protein lists using bibliometric annotations.

1/14

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 29, 2018. ; https://doi.org/10.1101/309203doi: bioRxiv preprint 

https://doi.org/10.1101/309203
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 1

The corpus of scientific literature presents a network of structured associations among 2

genes/proteins, diseases, and researchers [Fortunato et al., 2018]. Identifying the prior- 3

itized proteins within a biomedical topic, whether it be a disease, cell type, or organ, 4

can yield insights into the research trends and important pathways within a biomedical 5

area of interest. Recently it has been recognized that understanding protein-disease 6

relationships provides a valuable tool to guide proteomics researchers to prioritize their 7

efforts on developing proteomics assays to examine proteins that are of interest to a 8

board number of researchers. We previously demonstrated a method and workflow 9

to objectively interrogate the most popular proteins in a number of research areas 10

and organ systems [Lam et al., 2016a,b]. Our workflow is based on measurements of 11

semantic similarity between genes/proteins and literature publications using publicly 12

available resources provided by the search function on PubMed and a gene to PMID 13

reference dataset available on NCBI. By combining these online resources, we were able 14

to determine the most published proteins/genes in 6 organ systems and beyond. The 15

Biology/Disease Human Proteome Project (B/D-HPP) initiatives within the Human 16

Proteome Organization (HUPO) have widely adopted this approach to discover critical 17

proteins in the heart [Lam et al., 2015], liver [Mora et al., 2017], brain [Lam et al., 2016b], 18

and eye [Semba et al., 2015], and the results of which are leveraged to identify research 19

trends and prioritize bioassay development. 20

21

Here we have expanded on the original normalized co-publication distance (NCD) 22

approach. The updated approach incorporates additional data sources and further 23

introduces a regularized copublication distance (RCD) metric which takes into account 24

the immediacy and influence of individual publications to limit outsized contributions 25

of single publications to influence popularity scores. We show that this approach 26

outperforms the published NCD scores. We also compare this improved approach with 27

parallel efforts to identify prioritized gene lists using literature data. We demonstrate 28

the utility of the approach to identify popular proteins across diseases and disease 29

phenotypes, including inflammation, fibrosis, metabolic syndrome, protein misfolding, 30

and cell death. We then extended this approach to identify significant protein lists from 31

a compilation of known human diseases sometimes collectively referred to as the human 32

“diseasome” or disease network [Hoehndorf et al., 2015, Zhou et al., 2014], by querying a 33

vast collection of over 23,000 biomedical terms compiled in standardized vocabularies of 34

human disease processes including 10,129 diseases, and 10,642 phenotypes, and 2,370 35

pathways. We show that disease search terms are associated with specific prioritized 36

protein lists whereas similar diseases are associated with similar prioritized proteins. 37

Finally, we have implemented a reverse protein search strategy over the precompiled 38

terms, which associates an input list of genes/proteins with the diseases and disease 39

phenotypes in which they are intensively investigated. 40

Materials and Methods 41

Calculation of semantic distance between protein and topics 42

The popular protein strategy performs large-scale bibliometric analysis from the research 43

papers curated on PubMed. Research topics are used to query PubMed via the NCBI 44

EUtils Application Programming Interfaces [Agarwala et al., 2018] to retrieve associated 45

articles, and an annotation table that houses known PubMed ID (PMID)-Gene associa- 46

tions. To measure the semantic distance between a gene/protein with a topic of interest 47

in the literature, we previously devised a semantic similarity metric NCD, defined as: 48
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NCDP,T =
[max(log10|T |, log10|P |)− log10|T ∩ P |]

[log10|A| −min(log10|T |, log10|P |)]
(1)

where T denotes the set of articles associated with any protein in the set of articles 49

contained in the annotation table and that are retrieved from the PubMed query; P is 50

the set of articles associated with a particular protein in the annotation table; A is the 51

set of all articles associated with any proteins in any topics in the annotation, i.e., all 52

PubMed IDs in the annotation table; such T ⊆ A and P ⊆ A. 53

Here we devised a regularized variant of NCD by introducing weighted adjustments 54

to each article’s contribution by immediacy and influence metrics. In the unadjusted 55

NCD each associated article ai carries an equal weight of 1. The weight is adjusted in 56

the regularized co-publication distance (RCD) such that each annotated article in the 57

association table i carries a weight of wi: 58

RCDP,T =

max

(
log10

(∑
i|ai∈T wi

)
, log10

(∑
i|ai∈P wi

))
− log10

(∑
i|ai∈(T∩P ) wi

)
log10(

∑
i|ai∈A wi

)
−min

(
log10

(∑
i|ai∈T wi

)
, log10

(∑
i|ai∈P wi

))
(2)

To model the influence of a publication ai, we applied the logistic transformation of 59

the base 10 logarithm of the number of citations of a publication plus one ni, where the 60

scale a, shape b and steepness c are 1, 6 and 2, respectively. 61

ma,b,c,i =
a

1 + b · exp (−c · ni)
(3)

To model the immediacy of a paper, we use a weibull transformation of distance 62

in decades since the publication date of the paper to the present yi, with the shape 63

parameters λ and k heuristically set to 1 and 1.25. 64

nλ,k,i =
(k
λ

)
·
(yi
λ

)k−1
· e−(yi/λ)

k

(4)

The final weight of the paper is calculated as the sum of the associated publication 65

counts plus each associated publication’s immediacy and influence. 66

wi = 1 +mi + ni (5)

Determination of popular protein lists 67

With the above method, we retrieved popular protein lists with search terms as described 68

in the results section. Protein-PMID associations are retrieved on 2018-04-22 from NCBI 69

Gene2Pubmed (NCBI Resource Coordinators 2018) curations, and data downloaded 70

from Pubtator [Wei et al., 2013], the latter of which contains text-mined relationships 71

between biomedical concepts and entities. A union of the two sets of curation was used. 72

73

We performed PubMed queries on 27,257 defined topics retrieved from publicly avail- 74

able vocabularies, including 11,093 disease definitions from Disease Ontology (DOID) 75

[Kibbe et al., 2015] (version 2018-03-02; retrieved 2018-03-15), 13,537 phenotypic descrip- 76

tions from Human Phenotype Ontology (HPO) [Kohler et al., 2017] (version 2018-03-08; 77

retrieved 2018-03-15), and 2,627 biochemical and signaling pathways from Pathway 78
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Ontology (PW) [Petri et al., 2014] (version 7-4-2; retrieved 2018-03-15). From the re- 79

trieved PubMed IDs from each query, protein-term associations are ranked according to 80

normalized co-publication distance as previously described (popularity index). Moreover, 81

the popularity index for all terms and proteins that are significantly associated with 82

each individual topics (P < 0.05) have been uploaded to the PubPular web app and are 83

made searchable. 84

Web application and user interface 85

We provide a web app Pubpular (http://pubpular.org) that allows users to query the 86

popular protein lists of custom topics. The PubPular web app automatically analyzes 87

the occurrences of each protein being referenced to the retrieved papers using the 88

Gene2PubMed [Agarwala et al., 2018] and Pubtator [Wei et al., 2013] resources, and 89

performs calculation of RCD between a protein and the queried topic. We created 90

an extended module to the PubPular web application named FABIAN (Functional 91

Annotation by Bibliometric Analysis) which provides the functionality for gene lists 92

to be uploaded and compared to results from curated terms. The module builds on 93

the precompiled results from search terms on PubPularDB and uses parametric gene 94

set enrichment analysis [Kim and Volsky, 2005] to discover terms for which the list of 95

associated proteins (P ≤ 0.05) are significantly enriched or depleted with reference to 96

the ranks of the uploaded gene list. 97

Comparison of prioritized gene lists against curated standards 98

Curated “gold standard” protein lists were retrieved as follows: Proteins associated 99

with three Gene Ontology (GO) [Consortium., 2017] terms for disease processes namely 100

apoptosis (apoptotic process, GO:0006915; 762 genes), cell adhesion (GO:0007155; 800 101

genes), and DNA repair (463 genes; GO:0006281) were retrieved from European Bioinfor- 102

matics Institute (EBI) QuickGO interface [Binns et al., 2009] and filtered to include only 103

human Entrez Gene IDs that exist in the annotation source. Proteins associated with 104

three complex disease terms namely hypertension (170 genes), obesity (202 genes), and 105

schizophrenia (180 genes) were retrieved from Comparative Toxicogenomics Database 106

(CTD) [Grondin et al., 2018] (downloaded on 2018-04-21). Comparisons with the pri- 107

oritized gene/protein lists from GLAD4U [Jourquin et al., 2012] and PURPOSE [Yu 108

et al., 2018] were perform by downloading query results after accessing the web tools 109

and entering the exact search terms as shown and the protein lists were retrieved in 110

entirety using their download functions. Precision for A/B classification is defined as 111

trueA/(trueA+ trueB), recall is defined as trueA/(trueA+ falseB) and Fβ is defined 112

as (1 + β2) · (precision · recall)/(β · precision+ recall). 113

Results 114

Evaluation of prioritized gene lists based on regularized co-publication115

distance 116

We previously devised a metric NCD for the semantic similarity between a protein and a 117

topic of interest. NCD normalizes the count of query-specific publications by the count 118

of total publications on PubMed that are associated with the protein, so that a query 119

will not be populated only by proteins that are broadly studied in many fields (e.g., p53 120

or APOE). RCD modifies NCD by modeling the immediacy and influence of an article 121

to weight its contribution to the overall protein-term association (Figure 1). 122
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Figure 1. Modeling the immediacy and influence of protein-associated pub-
lications. A The immediacy of a publication is modeled using a weibull distribution
such that recent publications within the past decade are given greater weights. B The
influence of a publication is modeled using a logistic transformation of the log citation
counts of the publication retrieved from Europe PubMed central.
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Figure 2. Prioritized protein lists in selected diseases. A-C Top prioritized
protein lists in cystic fibrosis, diabetes mellitus, and hypertrophic cardiomyopathy are
shown.
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The resulting metrics prioritizes top proteins in PubMed query search terms including 123

searches for inherited and complex diseases (Figure 2). A lower RCD for a protein 124

within a disease query suggests higher semantic similarity between the protein term 125

and the disease term in the literature, and is overall correlated with greater number of 126

publications for the proteins within that topic. 127

128

To compare the performance of RCD to retrieve relevant gene lists, we compared 129

the results to a list of benchmark curated terms in public resources. These including 130

curated biological process terms from Gene Ontology (cell adhesion, DNA repair, and 131

apoptosis) as well as four complexe disease terms (hypertension, insulin resistance, 132

obesity, and schizophrenia). Gene Ontology contains manually and automated curated 133

relationship between terms and genes [Consortium., 2017], whereas the Comparative 134

Toxicogenomics Database (CTD) [Grondin et al., 2018] collages annotations from Gene 135

Ontology, Reactome, PubMed, and other sources. Both databases contain curated lists 136

of good quality and are well utilized by researchers. We compared the performance to 137

the NCD from the PubPular2 webapp NCD [Lam et al., 2016b] and to two other web 138

tools namely GLAD4U [Jourquin et al., 2012] and PURPOSE [Yu et al., 2018]. The test 139

terms were chosen to avoid biasing towards the present approach with specific terms 140

as six of the seven terms were used as gold standards in the GLAD4U publication and 141

the CTD database was a data source used to benchmark PURPOSE in its publication 142

(Table 1). 143

Table 1. F-measure against benchmark curated gene lists .

Term Source Protein (Precision, recall, F1, F2)
GLAD4U PURPOSE PubPular NCD RCD

Apoptosis GO 762 0.44, 0.40 0.42, 0.41 0.08, 0.73 0.16, 0.30 0.60, 0.30 0.40, 0.33 0.49, 0.30, 0.37, 0.33
Cell adhesion GO 800 0.51, 0.46, 0.49, 0.47 0.11, 0.56, 0.18, 0.30 0.69, 0.29, 0.41, 0.33 0.59, 0.34, 0.43, 0.37
DNA repair GO 463 0.51, 0.58, 0.54, 0.56 0.12, 0.61, 0.19, 0.33 0.90, 0.39, 0.55, 0.44 0.81, 0.43, 0.56, 0.48
Hypertension CTD 170 0.23, 0.38, 0.29, 0.34 0.05, 0.84, 0.09, 0.19 0.11, 0.31, 0.16, 0.23 0.20, 0.28, 0.23, 0.26
Insulin resistance CTD 61 0.16, 0.62, 0.26, 0.40 0.03, 0.88, 0.05, 0.12 0.17, 0.30, 0.21, 0.25 0.15, 0.48, 0.23, 0.33
Obesity CTD 202 0.23, 0.45, 0.30, 0.38 0.05, 0.70, 0.09, 0.18 0.14, 0.36, 0.20, 0.28 0.22, 0.29, 0.25, 0.27
Schizophrenia CTD 180 0.16, 0.45, 0.24, 0.33 0.05, 0.59, 0.10, 0.19 0.34, 0.15, 0.22, 0.30 0.31, 0.20, 0.24, 0.20

We evaluate each prioritized protein list by its F -measure, which is a function of recall 144

and precision of the approaches. The F1 score is equal to the harmonic mean of precision 145

and recall to take into account the accuracy and specificity of prioritized protein lists, 146

such that an indiscriminate prioritized protein list containing all known proteins will 147

have high recall but low precision. The F2 score places twice the emphasis on recall over 148

precision. We find that the compared methods differ in precision vs. recall across disease 149

processes vs. complex disease terms. Overall the RCD-based prioritization improves on 150

the F1 measure of four out of six terms against NCD. The precision and recall of the 151

prioritized lists compares with similar approaches including GLAD4U and PURPOSE. 152

We note that each strategy achieves different trade offs for recall vs. precision. 153

Catalogs of popular proteins across cell types, and diseases 154

Using the devised prioritization method, we set out to identify prioritized proteins in 155

several individual sub-anatomical regions and cell types. We previously demonstrated 156

that queries of six major organ systems revealed specific affinity with different proteins. 157

Here we asked whether the sub-anatomical regions and cell types can also be shown 158

to be preferentially associated with different proteins. For the heart we queried the 159

anatomical regions “left atrium”, “left ventricle”, “right atrium”, and “right ventricle” as 160

well as the cell types “cardiomyocytes”, “smooth muscle cells”, “endothelial cells”, and 161
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“fibroblasts”, using the search terms “cardiac OR heart AND left AND atrium”, etc. For 162

the lung, we queried the anatomical regions “alveolar sac”, “bronchiole”, “capillaries”, as 163

well as the cell types “pneumocytes”, “smooth muscle”, “epithelial”, and “fibroblasts”. 164

From the brain, we queried proteins associated with the anatomical regions “cerebellum”, 165

“cerebrum”, and “brain stem”, and the cell types “neurons”, “astrocyte”, “glial cell”, 166

and “oligodendrocyte”. 167

168

The analysis led to several general observations (Table 2). Firstly, we found that 169

queries of different sub-anatomical regions were sufficiently specific and returned associ- 170

ations with region-specific proteins. For example, in the heart connexin-40 (GJA5) is 171

preferentially associated with the atria but not ventricles, consistent with the known 172

involvement of the protein in the pathogenesis of atrial fibrillation [van der Velden and 173

Jongsma, 2002]. In the brain, ataxins (ATXN1/2), associated with progressive ataxias, 174

are preferentially associated with the cerebellum but not the cerebrum. Cell types 175

from each tissues were also associated with different lists of prioritized proteins. For 176

instance, surfactant proteins are preferentially associated with pneumocytes, which form 177

the alveolar linings, whereas fibroblast growth factors (FGFs) populate the prioritized 178

list for lung fibroblasts. Notably, the fibroblasts and smooth muscle cells in the heart 179

and in the lung are found to be associated with different sets of proteins, e.g., FGF23 180

and FGF21 for heart fibroblasts vs. FGF10 and FGF7 for lung fibroblasts, suggesting 181

the prioritized protein lists may help shed light into the gene expression and properties 182

of similar cell types found across multiple organs, such as fibroblasts and endothelial 183

cells, that may be implicated in common disease processes, e.g., fibrosis and I endothelial 184

disorders, that accompany diverse human diseases. 185

186

Table 2. Prioritized proteins across cell types and anatomical regions.
Cell Types Anatomical Regions

Heart Cardiomyocytes Smooth muscle cell Endothelial cell Fibroblast Left atrium Left ventricle Right atrium Right ventricle
TTN MYOCD NOS3 FGF23 NPPB NPPA PKP2 NPPA
NKX2-5 TAGLN PECAM1 FGF21 TP53INP2 NPPB NPPB GJA5
GATA4 SRF KDR FGF2 ADRB1 GJA5 TBX1 ADRB1
RYR2 ACTA1 VCAM1 MYOCD MYH7 MYL4 DSG2 HCN4
SCN5A KCNJ8 CDH5 GATA4 MYBPC3 HCN4 HAND2 GJC1

Lung Pneumocytes Smooth muscle cell Epithelial cell Fibroblasts Alveolar sac Bronchiole Capillaries
SFTPC ACTA1A CFTR CFHR1 FOXQ1 SCGB1A1 PLSCR2
SFTPA1 BMPR2 SFTPC FGF10 FOXJ1 CYP2F1 PLEK2
SFTPB EDN1 CDH1 FGF7 FOXF1 KCNRG GPR182
SFTPD KCNA5 SCGB1A1 TGFB1 ATP1A1 SAA2-SAA4 COL15A1
NKX2-1 KCNS3 CXCL8 FGFR1 ABCA3 SFTPB PIANP

Brain Neuron Astrocyte Glia Oligodendrocyte Cerebellum Cerebrum Brainstem
CA1 GFAP GFAP OLIG2 CBLN1 CA1 TH
CA3 SLC1A2 GDNF MOG CACNA1A CA3 OLIG2
BDNF AQP4 OLIG2 MBP ATXN1 PVALB PROM1
PVALB SLC1A2 AIF1 CNP ATXN2 GRIA1 GFAP
RBFOX3 AIF1 SLC1A2 CSPG4 GRID2 BDNF BDNF

The majority of known human diseases can be grouped into subnetworks within 187

a disease network sometimes called the “diseasome” an diseases can be grouped into 188

clusters based on their shared disease phenotypes [Zhou et al., 2014]. To determine 189

how the prioritized protein lists intersect with common disease processes that occur in 190

complex human diseases including those that are the thematic focuses of HUPO B/D 191

HPP initiatives, we queried six specific disease processes, namely fibrosis, cell death, 192

inflammation, metabolic syndrome, oxidative stress, and protein misfolding (Table 3). 193

194

We find that the top five proteins in “fibrosis” are transforming growth factor beta 1 195
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Table 3. Top popular proteins for common disease phenotypes. Top 10 proteins represented by their
gene name for each common disease characteristic are shown and ranked by RCD and their p-values.

Rank Cell death Fibrosis Inflammation Metabolic Syndrome Oxidative Stress Protein Misfolding
1 CASP3 TGFB1 IL6 ADIPOQ NFE2L2 PRNP
2 CASP8 CTGF CRP INS CAT SNCA
3 BCL2 ACTA1 TNF CRP SOD1 HTT
4 PDCD1 SMAD3 IL1B SHBG HMOX1 TTR
5 CD274 SMAD2 CXCL8 HSD11B1 SOD2 SOD1
6 BAX KIF21A CCL2 SLC12A3 GSR IAPP
7 TNFRSF10B PNPLA3 IL10 RARRES2 KEAP1 TARDBP
8 FADD SLC17A5 IL17A ETV3 GPX1 CANX
9 CASP9 SAMSN1 TLR4 LEP TXN ATXN3
10 TNFSF10 GPT NLRP3 FABP4 GCLC HSPA4

(TGFB1), followed by connective tissue growth factor (CTGF), actin alpha skeletal muscle 196

(ACTA1), mothers against decapentaplegic homolog 3 (SMAD3), and mothers against 197

decapentaplegic homolog 2 (SMAD2). Another molecular phenotype common in multiple 198

diseases is “cell death”. The top 5 proteins in our popular protein search using the key 199

cell death returned caspase-3 (CASP3), apoptosis regulator BAX (BAX), programmed 200

cell death protein 1 (PDCD1), apoptosis regulator Bcl-2 (BCL2), and tumor necrosis 201

factor ligand superfamily member 10 (TNFSF10). The query for inflammatory response 202

returned common cytokines including interleukin-6 (IL6), C-reactive protein (CRP), 203

tumor necrosis factor (TNF), interleukin-1 beta (IL1B), and interleukin-8 (CXCL8); the 204

query for metabolic syndrome returned lipid metabolism proteins including adiponectin 205

(ADPOQ), insulin (INS), fatty acid-binding protein (FABP4), and leptin (LEP); oxidative 206

stress queries returned nuclear factor erythroid 2-related factor 2 (NRF2/NEF2L2), 207

catalase (CAT), superoxide dismutases (SOD1/2), and kelch-like ECH-associated protein 208

1 (KEAP1). Finally protein misfolding returned tauopathy and neurodegenerative 209

proteins as well as amyloidosis proteins including alternative prion protein (PRNP), alpha- 210

synuclein (SNCA), huntingtin (HTT), transthyretin (TTR), and superoxide dismutase 211

(SOD1). 212

Protein-disease networks across the human diseasome 213

While the individual results on common disease processes are perhaps not surprising 214

on their own, the prioritized gene lists could potentially be useful for identifying genes 215

and pathways that are preferentially studied in particular disease processes such that 216

reagent development efforts could be prioritized towards these topics (e.g., fibrosis in 217

the heart). Building on this effort, we then systematically queried over 25,000 search 218

terms in comprehensive vocabularies that describe the entirety of known human diseases 219

(the “diseasome”). In total, we performed PubMed queries and calculated the list of 220

prioritized proteins for 23,141 defined topics retrieved from publicly available vocabularies, 221

including proteins for 10,129 disease definitions from Disease Ontology (DOID), 10,642 222

phenotypic descriptions from Human Phenotype Ontology (HPO), and 2,370 biochemical 223

and signaling pathways from Pathway Ontology (PW). Among the vocabularies, 6,214 224

DOID terms are associated with no fewer than 50 distinct proteins, along with 5,342 in 225

HPO and 1,479 in PW. Moreover, 7,897 search terms in DOID were associated with at 226

least one significant (P ≤ 0.05) protein; along with 7,076 terms in HPO and 1,798 terms 227

in PW (Figure 3.) 228
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number of significantly associated proteins per term in each vocabulary (P ≤ 0.05).

Reverse query from proteins to significantly-associated topics 229

Having compiled the prioritized protein lists compiled for a virtually complete collection 230

of human diseases and phenotypes, we explored whether reverse queries could be made 231

from proteins to retrieve information on disease vocabulary terms, i.e., given a protein 232

name, return all the disease areas in which this protein is intensively studied based on 233

literature records. For example, one of the most highly investigated proteins in the 234

topic heart is troponin I (TNNI3). Reverse query with TNNI3 against precompiled 235

popular protein lists of DO and HP terms indicate that as expected TNNI3 is also 236

highly associated with a cluster of cardiovascular-related topics, ranging from myocardial 237

infarction (DOID accession 5844; P: 9.6e-5) to hypertrophic cardiomyopathy (DOID 238

accession 11984; P: 4.1e-3). Utilizing the reverse search strategy on the list of popular 239

disease phenotype proteins above, we find that the top fibrosis protein TGFB1 is sig- 240

nificantly associated with mesenchymal cell neoplasm (DOID accession 3350; P:0.059), 241

collagen diseases (DOID accession 854, P: 0.0016), as well as a number of fibrotic 242

diseases including pulmonary fibrosis (DOID accession 3770; P: 0.0045), renal fibrosis 243

(DOID accession 50855; P: 0.0042), and liver cirrhosis (DOID accession 5082; P: 0.031), 244

consistent with its involvement in common disease processes. Moreover, we determined 245

with which other disease terms is another top fibrosis protein CTGF also popularly 246

associated and identified a broad spectrum of disease terms including “connective tissue 247

benign neoplasm”, “connective tissue cancer”, “renal fibrosis”, “liver cirrhosis”, and 248

“scleroderma”. In the Human Phenotype Ontology database, TGFB1 is further associ- 249

ated with phenotypes including cirrhosis, beta-cell dysfunction, hepatic, pulmonary, and 250

renal fibrosis. The pathways associated with TGFB1 includes transforming growth factor 251

β signaling pathway, cell-extracellular matrix signaling pathway, peptide and protein 252

metabolic process. Reverse interrogation using precompiled NCD values with the Brenda 253

tissue ontology (BTO) terms revealed that TGFB1 is preferentially associated with a 254

number of fibroblast-related publications in the literature, including myofibrolasts, lung 255

fibroblasts, and others. 256

257

One utility of the reverse query is that the curated popular protein lists across human 258

diseases allows the popular proteins to be used as an annotation source for protein list 259

functional analysis, e.g., given a list of differentially expressed proteins in a proteomics 260
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experiment, find out whether the significantly up/down-regulated proteins are enriched 261

in proteins that are intensively researched in a particular disease or disease phenotypes. 262

We implemented a new module (FABIAN) to perform gene enrichment analysis against 263

precompiled popular protein lists. To evaluate the potential utility of this approach, we 264

retrieved a transcriptomics dataset on cardiac failure, containing 5 replicates each of 265

control vs. failing hearts from a rodent model of transverse aortic constriction with apical 266

myocardial infarction (GSE56348) [Lai et al., 2014]. We performed a hypergeometric 267

test to identify enriched annotation terms among differentially expressed protein (limma 268

[Ritchie et al., 2015] adjusted P ≤ 0.01) against Gene Ontology biological process terms 269

and the precompiled DOID disease-gene associations (Figure 4). The results show that 270

reverse popular protein queries provide complementary annotations to GO Process terms, 271

e.g., we find enrichment of differentially regulated genes that are intensively researched 272

in DOID “collagen disease” and “cartilage disease” terms, corresponding to enrichment 273

of GO extracellular matrix organization” term; as well as ”mitochondrial disease” term 274

which corresponds to GO “mitochondrial electron transport, NADH to ubiquinone”. 275

Moreover, enrichment analysis against DOID suggests significant involvement of genes 276

highlighted in “atrial fibrillation” which was not apparent among the enriched GO terms 277

(Figure 5). 278
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B
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Figure 4. Enriched terms in reverse search (DOID and HPO) vs. Gene
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microarray dataset from a rodent model of heart failure.
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Figure 5. Relationship between assigned DOID, HPO, and GO terms. Top
associated terms are shown for each significantly up-regulated (blue) or down-regulated
(red) transcripts (limma adjusted P ≤ 0.01) in microarray dataset from a rodent model
of heart failure. The alluvial streams link the top enriched term of DOID to the
corresponding terms in HPO and GO for each transcript. For example, a number of
up-regulated transcripts are associated with the ”familial atrial fibrillation” term in
DOID, corresponding in part to the ”arrhythmia” term in HPO, and to the ”regulation
of heart rate by cardiac conduction” term in GO.

Discussion 279

We describe here a method and analysis to prioritize intensively researched proteins 280

associated with cell types, sub-anatomical regions, and molecular phenotypes common 281

across human diseases. Gene/protein prioritization is a recurring informatics problem in 282

biological and biomedical research [Guala and Sonnhammer, 2017]. The gene prioritiza- 283

tion problem can be generally stated as follows: given a collection of gene names, identify 284

a subset that is of interest to the topic or disease of interest. For instance, given a list of 285

genes residing at a locus implicated in a genetic mapping study, one may wish to find the 286

causal disease genes or variants responsible for the observed phenotypes. More recently, 287

there has also been interest in protein prioritization efforts to guide rationally allocate 288

limited resources. Such resources may include the prioritized development of research 289

reagents or the distributive fairness in biocuration efforts. The Human Proteome Projects 290

(HPP) within the Human Proteome Organization (HUPO) in particular has the foresight 291

and vision to popularize proteomics assays and reagents, which requires prioritization 292

of genes and proteins that are most worth the effort. This has spawned text-mining 293

and network approaches [Guala and Sonnhammer, 2017, Yin et al., 2017]. Recently we 294

demonstrated that the semantic similarity calculated form the number of publications 295

linked to a gene/protein with a particular topic of interest in the literature may be used 296

to identify priority proteins within a topic within the HUPO HPP. Literature-based gene 297

prioritization is predicated on the hypothesis that over time researchers will choose to 298

work and publish preferentially on proteins relevant to a disease or topic and hence a 299

popular protein will tend also to be biologically important. 300

301

Our analysis suggests that regularized co-publication distance metrics offer compatible 302

results to curated disease gene lists, and is distinguished by its compatibility with any 303

topic relevant to PubMed searches. We find that cell types from each organ are 304

preferentially associated with different proteins. The precompilation of popular proteins 305

across disease terms enables a reverse query strategy to identify the diseases and disease 306
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phenotypes that have been associated with a protein in the literature. We envision the 307

approach and results presented here will help guide prioritization methods for protein 308

assays, e.g., to develop a panel of MRM assays for fibrosis that can be applicable to 309

ongoing research in the heart, lung, as well as liver. Future work may also leverage 310

the approach discussed here to identify proteins that interact with intensively research 311

proteins but are themselves under-studied in the literature. 312
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