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Abstract

Knowledge of “popular proteins” has been a focus of multiple Human Proteome Organi-
zation (HUPO) initiatives and can guide the development of proteomics assays targeting
important disease pathways. We report here an updated method to identify prioritized
protein lists from the research literature, and apply it to catalog lists of important
proteins across multiple cell types, sub-anatomical regions, and disease phenotypes of
interest. We provide a systematic collection of popular proteins across 10,129 human
diseases as defined by the Disease Ontology, 10,642 disease phenotypes defined by Human
Phenotype Ontology, and 2,370 cellular pathways defined by Pathway Ontology. This
strategy allows instant retrieval of popular proteins across the human ”diseasome”, and
further allows reverse queries from protein to disease, enabling functional analysis of
experimental protein lists using bibliometric annotations.
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Introduction

The corpus of scientific literature presents a network of structured associations among
genes/proteins, diseases, and researchers [Fortunato et al., 2018]. Identifying the prior-
itized proteins within a biomedical topic, whether it be a disease, cell type, or organ,
can yield insights into the research trends and important pathways within a biomedical
area of interest. Recently it has been recognized that understanding protein-disease
relationships provides a valuable tool to guide proteomics researchers to prioritize their
efforts on developing proteomics assays to examine proteins that are of interest to a
board number of researchers. We previously demonstrated a method and workflow
to objectively interrogate the most popular proteins in a number of research areas
and organ systems [Lam et al., 2016a,b]. Our workflow is based on measurements of
semantic similarity between genes/proteins and literature publications using publicly
available resources provided by the search function on PubMed and a gene to PMID
reference dataset available on NCBI. By combining these online resources, we were able
to determine the most published proteins/genes in 6 organ systems and beyond. The
Biology/Disease Human Proteome Project (B/D-HPP) initiatives within the Human
Proteome Organization (HUPO) have widely adopted this approach to discover critical
proteins in the heart [Lam et al., 2015], liver [Mora et al., 2017], brain [Lam et al., 2016b],
and eye [Semba et al., 2015], and the results of which are leveraged to identify research
trends and prioritize bioassay development.

Here we have expanded on the original normalized co-publication distance (NCD)
approach. The updated approach incorporates additional data sources and further
introduces a regularized copublication distance (RCD) metric which takes into account
the immediacy and influence of individual publications to limit outsized contributions
of single publications to influence popularity scores. We show that this approach
outperforms the published NCD scores. We also compare this improved approach with
parallel efforts to identify prioritized gene lists using literature data. We demonstrate
the utility of the approach to identify popular proteins across diseases and disease
phenotypes, including inflammation, fibrosis, metabolic syndrome, protein misfolding,
and cell death. We then extended this approach to identify significant protein lists from
a compilation of known human diseases sometimes collectively referred to as the human
“diseasome” or disease network [Hoehndorf et al., 2015, Zhou et al., 2014}, by querying a
vast collection of over 23,000 biomedical terms compiled in standardized vocabularies of
human disease processes including 10,129 diseases, and 10,642 phenotypes, and 2,370
pathways. We show that disease search terms are associated with specific prioritized
protein lists whereas similar diseases are associated with similar prioritized proteins.
Finally, we have implemented a reverse protein search strategy over the precompiled
terms, which associates an input list of genes/proteins with the diseases and disease
phenotypes in which they are intensively investigated.

Materials and Methods

Calculation of semantic distance between protein and topics

The popular protein strategy performs large-scale bibliometric analysis from the research
papers curated on PubMed. Research topics are used to query PubMed via the NCBI
EUtils Application Programming Interfaces [Agarwala et al., 2018] to retrieve associated
articles, and an annotation table that houses known PubMed ID (PMID)-Gene associa-
tions. To measure the semantic distance between a gene/protein with a topic of interest
in the literature, we previously devised a semantic similarity metric NCD, defined as:
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[max(logio|T|,logio|P|) — logio|T N P
[logio| A| — min(logio|T, logio| Pl)]

NCDpr = (1)

where T denotes the set of articles associated with any protein in the set of articles
contained in the annotation table and that are retrieved from the PubMed query; P is
the set of articles associated with a particular protein in the annotation table; A is the
set of all articles associated with any proteins in any topics in the annotation, i.e., all
PubMed IDs in the annotation table; such T'C A and P C A.

Here we devised a regularized variant of NCD by introducing weighted adjustments
to each article’s contribution by immediacy and influence metrics. In the unadjusted
NCD each associated article a; carries an equal weight of 1. The weight is adjusted in
the regularized co-publication distance (RCD) such that each annotated article in the
association table i carries a weight of w;:

max (50910 ( Zi\ai €T wz) ) l0910( Zi\aieP wl)) — logio ( Zi|aie(TﬂP) wl)

RCDpy =
10g10(3 0,4 Wi) — min (10910 (Xijarer wi)s 10g10( Xijaep wz))

(2)

To model the influence of a publication a;, we applied the logistic transformation of

the base 10 logarithm of the number of citations of a publication plus one n;, where the
scale a, shape b and steepness c are 1, 6 and 2, respectively.

a
14+b-exp(—c-n;)

(3)

To model the immediacy of a paper, we use a weibull transformation of distance
in decades since the publication date of the paper to the present y;, with the shape
parameters A and k heuristically set to 1 and 1.25.

= (§)- (3o g

The final weight of the paper is calculated as the sum of the associated publication
counts plus each associated publication’s immediacy and influence.

Mg b,ci =

Determination of popular protein lists

With the above method, we retrieved popular protein lists with search terms as described
in the results section. Protein-PMID associations are retrieved on 2018-04-22 from NCBI
Gene2Pubmed (NCBI Resource Coordinators 2018) curations, and data downloaded
from Pubtator [Wei et al., 2013], the latter of which contains text-mined relationships
between biomedical concepts and entities. A union of the two sets of curation was used.

We performed PubMed queries on 27,257 defined topics retrieved from publicly avail-
able vocabularies, including 11,093 disease definitions from Disease Ontology (DOID)
[Kibbe et al., 2015] (version 2018-03-02; retrieved 2018-03-15), 13,537 phenotypic descrip-
tions from Human Phenotype Ontology (HPO) [Kohler et al., 2017] (version 2018-03-08;
retrieved 2018-03-15), and 2,627 biochemical and signaling pathways from Pathway
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Ontology (PW) [Petri et al., 2014] (version 7-4-2; retrieved 2018-03-15). From the re- 1
trieved PubMed IDs from each query, protein-term associations are ranked according to s
normalized co-publication distance as previously described (popularity index). Moreover, &
the popularity index for all terms and proteins that are significantly associated with &
each individual topics (P < 0.05) have been uploaded to the PubPular web app and are s
made searchable. 8

Web application and user interface 5

We provide a web app Pubpular (http://pubpular.org) that allows users to query the s
popular protein lists of custom topics. The PubPular web app automatically analyzes &
the occurrences of each protein being referenced to the retrieved papers using the s
Gene2PubMed [Agarwala et al., 2018] and Pubtator [Wei et al., 2013] resources, and s
performs calculation of RCD between a protein and the queried topic. We created o
an extended module to the PubPular web application named FABIAN (Functional o
Annotation by Bibliometric Analysis) which provides the functionality for gene lists o
to be uploaded and compared to results from curated terms. The module builds on o
the precompiled results from search terms on PubPularDB and uses parametric gene
set enrichment analysis [Kim and Volsky, 2005] to discover terms for which the list of o
associated proteins (P < 0.05) are significantly enriched or depleted with reference to o
the ranks of the uploaded gene list. o7

Comparison of prioritized gene lists against curated standards %

Curated “gold standard” protein lists were retrieved as follows: Proteins associated o
with three Gene Ontology (GO) [Consortium., 2017] terms for disease processes namely 10
apoptosis (apoptotic process, GO:0006915; 762 genes), cell adhesion (GO:0007155; 800 1
genes), and DNA repair (463 genes; GO:0006281) were retrieved from European Bioinfor- 1o
matics Institute (EBI) QuickGO interface [Binns et al., 2009] and filtered to include only 103
human Entrez Gene IDs that exist in the annotation source. Proteins associated with 10
three complex disease terms namely hypertension (170 genes), obesity (202 genes), and 10
schizophrenia (180 genes) were retrieved from Comparative Toxicogenomics Database 10
(CTD) [Grondin et al., 2018] (downloaded on 2018-04-21). Comparisons with the pri- 1o
oritized gene/protein lists from GLADA4U [Jourquin et al., 2012] and PURPOSE [Yu 10
et al., 2018] were perform by downloading query results after accessing the web tools 10
and entering the exact search terms as shown and the protein lists were retrieved in 110
entirety using their download functions. Precision for A/B classification is defined as 1
trueA/(trueA + trueB), recall is defined as trueA/(trueA + falseB) and Fj is defined w2
as (1+ B2) - (precision - recall) /(3 - precision + recall). us

Results "

Evaluation of prioritized gene lists based on regularized co-publication
distance 116

We previously devised a metric NCD for the semantic similarity between a protein and a 17
topic of interest. NCD normalizes the count of query-specific publications by the count s
of total publications on PubMed that are associated with the protein, so that a query 19
will not be populated only by proteins that are broadly studied in many fields (e.g., p53 12
or APOE). RCD modifies NCD by modeling the immediacy and influence of an article 1=
to weight its contribution to the overall protein-term association (Figure 1). 122
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Figure 1. Modeling the immediacy and influence of protein-associated pub-
lications. A The immediacy of a publication is modeled using a weibull distribution
such that recent publications within the past decade are given greater weights. B The
influence of a publication is modeled using a logistic transformation of the log citation
counts of the publication retrieved from Europe PubMed central.
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Figure 2. Prioritized protein lists in selected diseases. A-C Top prioritized
protein lists in cystic fibrosis, diabetes mellitus, and hypertrophic cardiomyopathy are
shown.
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The resulting metrics prioritizes top proteins in PubMed query search terms including 12
searches for inherited and complex diseases (Figure 2). A lower RCD for a protein i
within a disease query suggests higher semantic similarity between the protein term 12
and the disease term in the literature, and is overall correlated with greater number of 12
publications for the proteins within that topic. 127

128

To compare the performance of RCD to retrieve relevant gene lists, we compared 12
the results to a list of benchmark curated terms in public resources. These including 1
curated biological process terms from Gene Ontology (cell adhesion, DNA repair, and =
apoptosis) as well as four complexe disease terms (hypertension, insulin resistance, 12
obesity, and schizophrenia). Gene Ontology contains manually and automated curated 13
relationship between terms and genes [Consortium., 2017], whereas the Comparative 1
Toxicogenomics Database (CTD) [Grondin et al., 2018] collages annotations from Gene 13
Ontology, Reactome, PubMed, and other sources. Both databases contain curated lists 13
of good quality and are well utilized by researchers. We compared the performance to 1
the NCD from the PubPular2 webapp NCD [Lam et al., 2016b] and to two other web 13
tools namely GLADA4U [Jourquin et al., 2012] and PURPOSE [Yu et al., 2018]. The test 13
terms were chosen to avoid biasing towards the present approach with specific terms 10
as six of the seven terms were used as gold standards in the GLADA4U publication and 1«
the CTD database was a data source used to benchmark PURPOSE in its publication 12

(Table 1) 143
Table 1. F-measure against benchmark curated gene lists .
Term Source | Protein | (Precision, recall, Fq, Fs)
GLAD4U PURPOSE PubPular NCD RCD

Apoptosis GO 762 0.44, 0.40 0.42, 0.41 | 0.08, 0.73 0.16, 0.30 | 0.60, 0.30 0.40, 0.33 | 0.49, 0.30, 0.37, 0.33
Cell adhesion co 800 0.51, 0.46, 0.49, 0.47 | 0.11, 0.56, 0.18, 0.30 | 0.69, 0.29, 0.41, 0.33 | 0.59, 0.34, 0.43, 0.37
DNA repair co 463 0.51, 0.58, 0.54, 0.56 | 0.12, 0.61, 0.19, 0.33 | 0.90, 0.39, 0.55, 0.44 | 0.81, 0.43, 0.56, 0.48
Hypertension CTD 170 0.23, 0.38, 0.29, 0.34 | 0.05, 0.84, 0.09, 0.19 | 0.11, 0.31, 0.16, 0.23 | 0.20, 0.28, 0.23, 0.26
Insulin resistance | CTD 61 0.16, 0.62, 0.26, 0.40 | 0.03, 0.88, 0.05, 0.12 | 0.17, 0.30, 0.21, 0.25 | 0.15, 0.48, 0.23, 0.33
Obesity CTD | 202 0.23, 0.45, 0.30, 0.38 | 0.05, 0.70, 0.09, 0.18 | 0.14, 0.36, 0.20, 0.28 | 0.22, 0.29, 0.25, 0.27
Schizophrenia CTD 180 0.16, 0.45, 0.24, 0.33 | 0.05, 0.59, 0.10, 0.19 | 0.34, 0.15, 0.22, 0.30 | 0.31, 0.20, 0.24, 0.20

We evaluate each prioritized protein list by its F-measure, which is a function of recall 14
and precision of the approaches. The F} score is equal to the harmonic mean of precision s
and recall to take into account the accuracy and specificity of prioritized protein lists, 1
such that an indiscriminate prioritized protein list containing all known proteins will 14
have high recall but low precision. The F; score places twice the emphasis on recall over s
precision. We find that the compared methods differ in precision vs. recall across disease 19
processes vs. complex disease terms. Overall the RCD-based prioritization improves on  1s0
the F1 measure of four out of six terms against NCD. The precision and recall of the 1
prioritized lists compares with similar approaches including GLAD4U and PURPOSE. 1
We note that each strategy achieves different trade offs for recall vs. precision. 153

Catalogs of popular proteins across cell types, and diseases 154

Using the devised prioritization method, we set out to identify prioritized proteins in  1ss
several individual sub-anatomical regions and cell types. We previously demonstrated 1ss
that queries of six major organ systems revealed specific affinity with different proteins. 1
Here we asked whether the sub-anatomical regions and cell types can also be shown s
to be preferentially associated with different proteins. For the heart we queried the 1so
anatomical regions “left atrium”, “left ventricle”, “right atrium”, and “right ventricle” as 160
well as the cell types “cardiomyocytes”, “smooth muscle cells”, “endothelial cells”, and 1e
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“fibroblasts”, using the search terms “cardiac OR heart AND left AND atrium”, etc. For
the lung, we queried the anatomical regions “alveolar sac”, “bronchiole”, “capillaries”, as
well as the cell types “pneumocytes”, “smooth muscle”, “epithelial”, and “fibroblasts”.
From the brain, we queried proteins associated with the anatomical regions “cerebellum”,
“cerebrum”, and “brain stem”, and the cell types “neurons”, “astrocyte”, “glial cell”,
and “oligodendrocyte”.

The analysis led to several general observations (Table 2). Firstly, we found that
queries of different sub-anatomical regions were sufficiently specific and returned associ-
ations with region-specific proteins. For example, in the heart connexin-40 (GJA5) is
preferentially associated with the atria but not ventricles, consistent with the known
involvement of the protein in the pathogenesis of atrial fibrillation [van der Velden and
Jongsma, 2002]. In the brain, ataxins (ATXN1/2), associated with progressive ataxias,
are preferentially associated with the cerebellum but not the cerebrum. Cell types
from each tissues were also associated with different lists of prioritized proteins. For
instance, surfactant proteins are preferentially associated with pneumocytes, which form
the alveolar linings, whereas fibroblast growth factors (FGFs) populate the prioritized
list for lung fibroblasts. Notably, the fibroblasts and smooth muscle cells in the heart
and in the lung are found to be associated with different sets of proteins, e.g., FGF23
and FGF21 for heart fibroblasts vs. FGF10 and FGF7 for lung fibroblasts, suggesting
the prioritized protein lists may help shed light into the gene expression and properties
of similar cell types found across multiple organs, such as fibroblasts and endothelial
cells, that may be implicated in common disease processes, e.g., fibrosis and I endothelial
disorders, that accompany diverse human diseases.

Table 2. Prioritized proteins across cell types and anatomical regions.
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Cell Types Anatomical Regions
Heart || Cardiomyocytes | Smooth muscle cell | Endothelial cell | Fibroblast Left atrium | Left ventricle | Right atrium | Right ventricle
TTN MYOCD NOS3 FGF23 NPPB NPPA PKP2 NPPA
NKX2-5 TAGLN PECAM1 FGF21 TP53INP2 NPPB NPPB GJAS
GATA4 SRF KDR FGF2 ADRBI1 GJAS TBX1 ADRBI1
RYR2 ACTA1 VCAM1 MYOCD MYHT7 MYL4 DSG2 HCN4
SCN5A KCNJ8 CDH5 GATA4 MYBPC3 HCN4 HAND?2 GJC1
Lung | Pneumocytes Smooth muscle cell | Epithelial cell Fibroblasts Alveolar sac | Bronchiole Capillaries
SFTPC ACTA1A CFTR CFHR1 FOXQ1 SCGB1A1 PLSCR2
SFTPA1 BMPR2 SFTPC FGF10 FOXJ1 CYP2F1 PLEK2
SFTPB EDN1 CDH1 FGF7 FOXF1 KCNRG GPR182
SFTPD KCNA5 SCGB1A1 TGFB1 ATP1A1 SAA2-SAA4 | COL15A1
NKX2-1 KCNS3 CXCL8 FGFR1 ABCA3 SFTPB PIANP
Brain || Neuron Astrocyte Glia Oligodendrocyte | Cerebellum | Cerebrum Brainstem
CAl GFAP GFAP OLIG2 CBLN1 CA1l TH
CA3 SLC1A2 GDNF MOG CACNA1A | CA3 OLIG2
BDNF AQP4 OLIG2 MBP ATXN1 PVALB PROM1
PVALB SLC1A2 AIF1 CNP ATXN2 GRIA1 GFAP
RBFOX3 AIF1 SLC1A2 CSPG4 GRID2 BDNF BDNF

The majority of known human diseases can be grouped into subnetworks within

a disease network sometimes called the “diseasome” an diseases can be grouped into
clusters based on their shared disease phenotypes [Zhou et al., 2014]. To determine
how the prioritized protein lists intersect with common disease processes that occur in
complex human diseases including those that are the thematic focuses of HUPO B/D
HPP initiatives, we queried six specific disease processes, namely fibrosis, cell death,
inflammation, metabolic syndrome, oxidative stress, and protein misfolding (Table 3).

We find that the top five proteins in “fibrosis” are transforming growth factor beta 1
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Table 3. Top popular proteins for common disease phenotypes. Top 10 proteins represented by their
gene name for each common disease characteristic are shown and ranked by RCD and their p-values.

Rank || Cell death Fibrosis | Inflammation | Metabolic Syndrome | Oxidative Stress | Protein Misfolding
1 CASP3 TGFB1 1IL6 ADIPOQ NFE2L2 PRNP

2 CASPS8 CTGF CRP INS CAT SNCA

3 BCL2 ACTA1 TNF CRP SOD1 HTT

4 PDCD1 SMAD3 IL1B SHBG HMOX1 TTR

5 CD274 SMAD2 CXCL8 HSD11B1 SOD2 SOD1

6 BAX KIF21A CCL2 SLC12A3 GSR IAPP

7 TNFRSF10B | PNPLA3 | IL10 RARRES2 KEAP1 TARDBP
8 FADD SLC17A5 | IL17A ETV3 GPX1 CANX

9 CASP9 SAMSN1 | TLR4 LEP TXN ATXN3
10 TNFSF10 GPT NLRP3 FABP4 GCLC HSPA4

(TGFB1), followed by connective tissue growth factor (CTGF), actin alpha skeletal muscle
(ACTA1), mothers against decapentaplegic homolog 3 (SMAD3), and mothers against
decapentaplegic homolog 2 (SMAD2). Another molecular phenotype common in multiple
diseases is “cell death”. The top 5 proteins in our popular protein search using the key
cell death returned caspase-3 (CASP3), apoptosis regulator BAX (BAX), programmed
cell death protein 1 (PDCD1), apoptosis regulator Bel-2 (BCL2), and tumor necrosis
factor ligand superfamily member 10 (TNFSF10). The query for inflammatory response
returned common cytokines including interleukin-6 (IL6), C-reactive protein (CRP),
tumor necrosis factor (TNF), interleukin-1 beta (IL1B), and interleukin-8 (CXCL8); the
query for metabolic syndrome returned lipid metabolism proteins including adiponectin
(ADPOQ), insulin (INS), fatty acid-binding protein (FABP4), and leptin (LEP); oxidative
stress queries returned nuclear factor erythroid 2-related factor 2 (NRF2/NEF2L2),
catalase (CAT), superoxide dismutases (SOD1/2), and kelch-like ECH-associated protein
1 (KEAP1). Finally protein misfolding returned tauopathy and neurodegenerative
proteins as well as amyloidosis proteins including alternative prion protein (PRNP), alpha-
synuclein (SNCA), huntingtin (HTT), transthyretin (TTR), and superoxide dismutase
(SOD1).

Protein-disease networks across the human diseasome

While the individual results on common disease processes are perhaps not surprising
on their own, the prioritized gene lists could potentially be useful for identifying genes
and pathways that are preferentially studied in particular disease processes such that
reagent development efforts could be prioritized towards these topics (e.g., fibrosis in
the heart). Building on this effort, we then systematically queried over 25,000 search
terms in comprehensive vocabularies that describe the entirety of known human diseases
(the “diseasome”). In total, we performed PubMed queries and calculated the list of
prioritized proteins for 23,141 defined topics retrieved from publicly available vocabularies,
including proteins for 10,129 disease definitions from Disease Ontology (DOID), 10,642
phenotypic descriptions from Human Phenotype Ontology (HPO), and 2,370 biochemical
and signaling pathways from Pathway Ontology (PW). Among the vocabularies, 6,214
DOID terms are associated with no fewer than 50 distinct proteins, along with 5,342 in
HPO and 1,479 in PW. Moreover, 7,897 search terms in DOID were associated with at
least one significant (P < 0.05) protein; along with 7,076 terms in HPO and 1,798 terms
in PW (Figure 3.)
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Figure 3. Distribution of total proteins per term in three vocabularies. A
Number of proteins per term across three queried vocabularies. B The distribution of
number of significantly associated proteins per term in each vocabulary (P < 0.05).

Reverse query from proteins to significantly-associated topics

Having compiled the prioritized protein lists compiled for a virtually complete collection
of human diseases and phenotypes, we explored whether reverse queries could be made
from proteins to retrieve information on disease vocabulary terms, i.e., given a protein
name, return all the disease areas in which this protein is intensively studied based on
literature records. For example, one of the most highly investigated proteins in the
topic heart is troponin I (TNNI3). Reverse query with TNNI3 against precompiled
popular protein lists of DO and HP terms indicate that as expected TNNI3 is also
highly associated with a cluster of cardiovascular-related topics, ranging from myocardial
infarction (DOID accession 5844; P: 9.6e-5) to hypertrophic cardiomyopathy (DOID
accession 11984; P: 4.1e-3). Utilizing the reverse search strategy on the list of popular
disease phenotype proteins above, we find that the top fibrosis protein TGFBI is sig-
nificantly associated with mesenchymal cell neoplasm (DOID accession 3350; P:0.059),
collagen diseases (DOID accession 854, P: 0.0016), as well as a number of fibrotic
diseases including pulmonary fibrosis (DOID accession 3770; P: 0.0045), renal fibrosis
(DOID accession 50855; P: 0.0042), and liver cirrhosis (DOID accession 5082; P: 0.031),
consistent with its involvement in common disease processes. Moreover, we determined
with which other disease terms is another top fibrosis protein CTGF also popularly
associated and identified a broad spectrum of disease terms including “connective tissue
benign neoplasm”, “connective tissue cancer”, “renal fibrosis”, “liver cirrhosis”, and
“scleroderma”. In the Human Phenotype Ontology database, TGFB1 is further associ-
ated with phenotypes including cirrhosis, beta-cell dysfunction, hepatic, pulmonary, and
renal fibrosis. The pathways associated with TGFBI includes transforming growth factor
0 signaling pathway, cell-extracellular matrix signaling pathway, peptide and protein
metabolic process. Reverse interrogation using precompiled NCD values with the Brenda
tissue ontology (BTO) terms revealed that TGFB1 is preferentially associated with a
number of fibroblast-related publications in the literature, including myofibrolasts, lung
fibroblasts, and others.

One utility of the reverse query is that the curated popular protein lists across human
diseases allows the popular proteins to be used as an annotation source for protein list
functional analysis, e.g., given a list of differentially expressed proteins in a proteomics
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experiment, find out whether the significantly up/down-regulated proteins are enriched 2
in proteins that are intensively researched in a particular disease or disease phenotypes. 22
We implemented a new module (FABIAN) to perform gene enrichment analysis against 26
precompiled popular protein lists. To evaluate the potential utility of this approach, we 2
retrieved a transcriptomics dataset on cardiac failure, containing 5 replicates each of s
control vs. failing hearts from a rodent model of transverse aortic constriction with apical 26
myocardial infarction (GSE56348) [Lai et al., 2014]. We performed a hypergeometric 2o
test to identify enriched annotation terms among differentially expressed protein (limma 26
[Ritchie et al., 2015] adjusted P < 0.01) against Gene Ontology biological process terms o
and the precompiled DOID disease-gene associations (Figure 4). The results show that 2w
reverse popular protein queries provide complementary annotations to GO Process terms, on
e.g., we find enrichment of differentially regulated genes that are intensively researched on
in DOID “collagen disease” and “cartilage disease” terms, corresponding to enrichment 213
of GO extracellular matrix organization” term; as well as ”mitochondrial disease” term 27
which corresponds to GO “mitochondrial electron transport, NADH to ubiquinone”. s
Moreover, enrichment analysis against DOID suggests significant involvement of genes 2
highlighted in “atrial fibrillation” which was not apparent among the enriched GO terms 2
(Figure 5). 278
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Figure 4. Enriched terms in reverse search (DOID and HPO) vs. Gene
Ontology A-C The enriched terms (hypergeometric test P < 0.05) from DOID, HPO,
and GO associated with differentially expressed genes (limmaadjusted.P < 0.01) in a
microarray dataset from a rodent model of heart failure.
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Differentially expressed genes vs. top enriched annotation

Jamino acd metaboto disorder

200 bone benign neapiasm

down

150

up

50

Direction DOID HPO GO

Figure 5. Relationship between assigned DOID, HPO, and GO terms. Top
associated terms are shown for each significantly up-regulated (blue) or down-regulated
(red) transcripts (limma adjusted P < 0.01) in microarray dataset from a rodent model
of heart failure. The alluvial streams link the top enriched term of DOID to the
corresponding terms in HPO and GO for each transcript. For example, a number of
up-regulated transcripts are associated with the ”familial atrial fibrillation” term in
DOID, corresponding in part to the ”"arrhythmia” term in HPO, and to the "regulation
of heart rate by cardiac conduction” term in GO.

Discussion

We describe here a method and analysis to prioritize intensively researched proteins
associated with cell types, sub-anatomical regions, and molecular phenotypes common
across human diseases. Gene/protein prioritization is a recurring informatics problem in
biological and biomedical research [Guala and Sonnhammer, 2017]. The gene prioritiza-
tion problem can be generally stated as follows: given a collection of gene names, identify
a subset that is of interest to the topic or disease of interest. For instance, given a list of
genes residing at a locus implicated in a genetic mapping study, one may wish to find the
causal disease genes or variants responsible for the observed phenotypes. More recently,
there has also been interest in protein prioritization efforts to guide rationally allocate
limited resources. Such resources may include the prioritized development of research
reagents or the distributive fairness in biocuration efforts. The Human Proteome Projects
(HPP) within the Human Proteome Organization (HUPO) in particular has the foresight
and vision to popularize proteomics assays and reagents, which requires prioritization
of genes and proteins that are most worth the effort. This has spawned text-mining
and network approaches [Guala and Sonnhammer, 2017, Yin et al., 2017]. Recently we
demonstrated that the semantic similarity calculated form the number of publications
linked to a gene/protein with a particular topic of interest in the literature may be used
to identify priority proteins within a topic within the HUPO HPP. Literature-based gene
prioritization is predicated on the hypothesis that over time researchers will choose to
work and publish preferentially on proteins relevant to a disease or topic and hence a
popular protein will tend also to be biologically important.

Our analysis suggests that regularized co-publication distance metrics offer compatible
results to curated disease gene lists, and is distinguished by its compatibility with any
topic relevant to PubMed searches. We find that cell types from each organ are
preferentially associated with different proteins. The precompilation of popular proteins
across disease terms enables a reverse query strategy to identify the diseases and disease
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phenotypes that have been associated with a protein in the literature. We envision the
approach and results presented here will help guide prioritization methods for protein
assays, e.g., to develop a panel of MRM assays for fibrosis that can be applicable to
ongoing research in the heart, lung, as well as liver. Future work may also leverage
the approach discussed here to identify proteins that interact with intensively research
proteins but are themselves under-studied in the literature.
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