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Abstract 1 
 2 
About a quarter of human cerebral cortex is dedicated mainly to visual processing. The large-scale 3 
organization of visual cortex can be measured with functional magnetic resonance imaging (fMRI) while 4 
subjects view spatially modulated visual stimuli, also known as ‘retinotopic mapping’. One of the datasets 5 
collected by the Human Connectome Project (HCP) involved ultra-high-field (7 Tesla) fMRI retinotopic 6 
mapping in 181 healthy young adults (1.6-mm resolution), yielding the largest freely available collection of 7 
retinotopy data. Here, we describe the experimental paradigm and the results of model-based analysis of 8 
the fMRI data. These results provide estimates of population receptive field position and size. Our 9 
analyses include both results from individual subjects as well as results obtained by averaging fMRI time-10 
series across subjects at each cortical and subcortical location and then fitting models. Both the group-11 
average and individual-subject results reveal robust signals across much of the brain, including occipital, 12 
temporal, parietal, and frontal cortex as well as subcortical areas. The group-average results agree well 13 
with previously published parcellations of visual areas. In addition, split-half analyses show strong within-14 
subject reliability, further demonstrating the high quality of the data. We make publicly available the 15 
analysis results for individual subjects and the group average, as well as associated stimuli and analysis 16 
code. These resources provide an opportunity for studying fine-scale individual variability in cortical and 17 
subcortical organization and the properties of high-resolution fMRI. In addition, they provide a set of 18 
observations that can be compared with other HCP measures acquired in these same participants. 19 
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Introduction 1 
 2 
The central nervous system maps sensory inputs onto topographically organized representations. In the 3 
field of vision, researchers have successfully exploited functional magnetic resonance imaging (fMRI) to 4 
noninvasively measure visual field representations (‘retinotopy’) in the living human brain (DeYoe et al., 5 
1996; Engel, Glover, & Wandell, 1997; Engel et al., 1994; Sereno et al., 1995). These efforts enable 6 
parcellation of visual cortex into distinct maps of the visual field, thereby laying the foundation for detailed 7 
investigations of the properties of visual cortex (parcellation references: Abdollahi et al., 2014; Benson, 8 
Butt, Brainard, & Aguirre, 2014; Wang, Mruczek, Arcaro, & Kastner, 2015; review references: Silver & 9 
Kastner, 2009; Tootell, Dale, Sereno, & Malach, 1996; Wandell & Winawer, 2011; Wandell, Dumoulin, & 10 
Brewer, 2007).  11 
 12 
One of the datasets acquired by the Human Connectome Project (HCP) (Ugurbil et al., 2013; Van Essen 13 
et al., 2013) was a 7T fMRI retinotopy experiment. This experiment, conducted in 181 healthy young 14 
adults, involved carefully designed stimuli and a substantial amount of fMRI data (30 minutes, 1,800 time 15 
points) acquired at high spatial and temporal resolution (1.6-mm isotropic voxels, 1-second sampling). 16 
Although retinotopy is routinely measured in small groups of subjects by individual laboratories in support 17 
of various research projects, to date there has not been a large publicly available set of retinotopic 18 
measurements. 19 
 20 
In this paper, we describe the design of the retinotopy experiment and demonstrate the analyses that we 21 
have performed on the fMRI data. We adopt a model-based analysis approach in which a computationally 22 
intensive nonlinear optimization is performed to determine parameters of a population receptive field 23 
(pRF) model (Dumoulin & Wandell, 2008; Kay, Winawer, Mezer, & Wandell, 2013; Wandell & Winawer, 24 
2015). The results include estimates of pRF position (angle and eccentricity) and pRF size for each 25 
'grayordinate' (cortical surface vertex or subcortical voxel), and can be used to define retinotopic maps in 26 
the brain. We show that the HCP retinotopy data provide high-quality pRF results in many parts of 27 
occipital, temporal, parietal, and frontal cortex. We make freely available these pRF results, as well as 28 
associated stimuli and analysis code, at an Open Science Framework web site (https://osf.io/bw9ec/). The 29 
pRF results are also accessible via the BALSA database (https://balsa.wustl.edu/study/show/9Zkk; Van 30 
Essen et al., 2017), downloadable as ‘scene files’ that can be visualized using Connectome Workbench 31 
software (see Appendix). The neuroscience community at large can now exploit these resources for a 32 
variety of purposes, such as developing normative models, mapping new brain areas, analyzing 33 
connectomics, characterizing individual differences, and comparing with other suitably aligned datasets 34 
(either published or ongoing). 35 
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Results 1 
 2 
Here we present a summary of the data quality and example results from the HCP 7T Retinotopy Dataset. 3 
The stimuli and analyses are detailed in the Methods and are described here very briefly. Each of 181 4 
subjects participated in six 5-minute pRF mapping runs. The stimuli comprised colorful object textures 5 
windowed through slowly moving apertures (Figure 1A). The colorful object textures were used because 6 
they produce high signal-to-noise ratio in higher-level visual areas. The apertures were clockwise or 7 
counterclockwise rotating wedges, expanding or contracting rings, or bars that swept across the visual 8 
field in several directions (Figure 1B).  9 
 10 

 11 
 12 

Figure 1. Schematic of experiment. (A) Example stimulus frame. The stimulus 13 
consisted of a dynamic colorful texture (composed of objects at multiple scales placed on 14 
a pink-noise background) presented within a slowly moving aperture. The aperture and 15 
texture were updated at 15 Hz. Subjects were instructed to fixate on a small fixation dot 16 
and to press a button whenever its color changed. A fixation grid was provided to aid 17 
fixation. (B) Run design. Six 300-s runs were acquired. The temporal structure of the runs 18 
is depicted. The first two runs involved a rotating wedge (RETCCW, RETCW), the 19 
second two runs involved an expanding or contracting ring (RETEXP, RETCON), and the 20 
last two runs involved a moving bar (RETBAR1, RETBAR2). 21 

 22 
The resource we provide with this paper is a large set of population receptive field (pRF) model solutions. 23 
We define the pRF as the region of the visual field within which a visual stimulus elicits an increase in 24 
response from the pooled neural activity reflected in fMRI measurements, and can be summarized by the 25 
pRF’s angle, eccentricity, and size (Figure 2A). The total dataset consists of 181 individual subjects and 3 26 
group averages. The 3 group averages reflect two split-halves of the subjects as well as all 181 subjects. 27 
For each of the 181 individuals and the 3 group averages, we solved 3 sets of models: one from the 28 
concatenation of all 6 runs (300 seconds per run, 1,800 time points), one from the first half of each run 29 
(150 seconds per run, 900 time points), and one from the second half of each run (150 seconds per run, 30 
900 time points). For each subject or group average and for each of the 3 types of model fits, we obtained 31 
model solutions for the 91,282 cortical vertices and subcortical voxels (‘grayordinates’ spaced on average 32 
2 mm apart). Each model solution yielded 6 numbers: angle, eccentricity, pRF size, and gain describing 33 
the pRF model, variance explained by the model, and mean BOLD signal. Therefore in total, the pRF 34 
model solutions that we provide consist of 184 subjects (181 individuals and 3 group averages) ´ 91,282 35 
grayordinates ´ 3 model fits ´ 6 quantities (Figure 2B). Individual subjects are referred to as S1–S181, the 36 
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two split-half group averages are referred to as S182 and S183, and the full group average is referred to 1 
as S184. 2 
 3 

 4 
 5 

Figure 2. pRF model solutions provided in this resource. (A) pRF parameters. Each 6 
pRF is described by a 2D Gaussian. Angle is the rotation of the center of the Gaussian 7 
with respect to the positive x-axis. Eccentricity is the distance between the center of gaze 8 
and the center of the Gaussian. Size is defined as one standard deviation (s.d.) of the 9 
Gaussian. Angle is in units of degrees of polar angle, whereas eccentricity and size are in 10 
units of degrees of visual angle. (B) pRF model solutions. We solved pRF models for 181 11 
individual subjects and 3 group-average pseudo-subjects (the average of split-halves of 12 
the subjects or of all subjects). For each individual subject (S1–S181) and each group 13 
average (S182–S184), 3 types of models were fit: one reflecting the complete set of runs 14 
and two reflecting split-halves of the runs. Model fits were obtained independently for 15 
each of 91,282 grayordinates, yielding 6 quantities. The total dimensions of the pRF 16 
model solutions are 184 subjects ´ 91,282 grayordinates ´ 3 model fits ´ 6 quantities. 17 

 18 
The particular form of the pRF model we employed assumes that each grayordinate’s pRF is a 2D 19 
isotropic Gaussian and that contrast within the pRF is summed sublinearly according to a static power-law 20 
nonlinearity with exponent 0.05 (Kay et al., 2013a). This can be expressed formally as  21 

r(t) = (g × (S(t)•G)n) ∗ h(t) 22 
where r(t) is the predicted stimulus-related time series, g is a gain parameter, S(t) is the stimulus aperture 23 
at time t, G is the 2D isotropic Gaussian, n is an exponent parameter (n = 0.05), and h(t) is a canonical 24 
HRF. The sub-additive exponent was used to obtain more accurate pRF solutions, but since it was fixed 25 
for all models we do not analyze it further. Note that the pRF sizes that we report take into account the 26 
effects of the sub-additive exponent (see Methods for details).  27 
 28 
Distinctions between visual responsivity, spatial selectivity, retinotopic organization, and 29 
retinotopic maps 30 
 31 
The pRF model solutions can be used to make different types of inferences regarding visual response 32 
properties. First, if the pRF model successfully explains variance in the time-series data for a 33 
grayordinate, this indicates that the grayordinate is visually responsive, but does not by itself imply spatial 34 
selectivity. For example, if a grayordinate responds with equal strength to a stimulus presented anywhere 35 
in the visual field, variance in its time-series data can be explained by a pRF model that has very large 36 
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spatial extent. Second, to be considered spatially selective, a grayordinate must not only be visually 1 
responsive but also exhibit larger responses to stimuli in some locations compared to others. To help 2 
assess spatial selectivity in the HCP dataset, we fit each grayordinate time series with a simple ON/OFF 3 
model that is sensitive only to the presence or absence of the stimulus, and compare the variance 4 
explained by this model to that explained by the full pRF model (see Supplementary Figure 1). Visual 5 
responsivity and spatial selectivity are properties of a single grayordinate. A third type of inference is 6 
retinotopic organization. This is a stronger claim that describes spatial selectivity at a larger scale: 7 
retinotopic organization implies not only that single brain locations are spatially selective, but also that 8 
adjacent brain locations respond to nearby locations in the visual field, thereby producing smooth 9 
progressions of polar angle and/or eccentricity. In principle, a brain region might be spatially selective but 10 
not retinotopic if the spatial tuning of nearby brain locations is haphazard. In practice, this seems to be 11 
uncommon. Finally, a retinotopic map, or visual area, is generally considered to be a region of the brain 12 
that contains a representation of all or most of the contralateral visual hemifield in each hemisphere. In 13 
this paper, we make observations regarding retinotopic organization in the HCP dataset but do not 14 
attempt to resolve various ongoing controversies regarding human retinotopic maps (see Discussion). 15 
 16 
Group-average results 17 
 18 
Cortical data 19 
 20 
We first summarize pRF model solutions from group average S184 (which reflects all 181 individual 21 
subjects). Group-average results were obtained by taking the time-series data from individual subjects 22 
(aligned using MSMAll to HCP's average cortical surface space fs_LR; see Methods), computing the 23 
across-subject average of the time-series data observed at each grayordinate, and then fitting a pRF 24 
model to the time-series data at each grayordinate. For visualization, we map the results from fs_LR 25 
space to fsaverage space and plot the results on the fsaverage surface that has been inflated, spherized, 26 
and orthographically projected to a plane (Figure 3). We also provide visualizations of the results on the 27 
inflated fsaverage surface using dynamic rotating movies (Supplementary Movies 1–12). 28 
 29 

 30 
 31 

Figure 3. Cortical surface visualization. Cortical surfaces are inflated, warped to a 32 
sphere, and rotated with shading discarded to render as an orthographic projection. The 33 
regions of the first two surfaces (white, inflated) that are not visible in the final view are 34 
darkened. For this schematic, we depict the thresholded group-average angle results 35 
(see Figure 4) to provide a visual reference across the transformations. 36 

 37 
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The effect of averaging the time-series data across subjects differs across the cortex, depending on how 1 
well pRF parameters match between subjects given the MSMAll alignment. Prior work has shown that the 2 
V1–V3 maps have highly regular topography and are well aligned to measures of anatomy, such as 3 
surface curvature (Benson et al., 2014; 2012; Hinds et al., 2008) and myelination (Abdollahi et al., 2014), 4 
and to measures of function such as resting-state connectivity (Bock et al., 2015; Raemaekers et al., 5 
2014). Therefore, these maps are likely to be well aligned across subjects, and averaging will preserve 6 
many of the features found in the maps of individual subjects. In particular, the angle and eccentricity 7 
maps show clear and expected patterns in V1–V3 (Figure 4, second and third columns), and the variance 8 
explained is greater than 75% (cyan regions in the fifth column of Figure 4). As expected, from the lower 9 
to upper bank of the calcarine sulcus, there is a smooth progression from the upper vertical meridian 10 
through the contralateral horizontal meridian to the lower vertical meridian (blue-cyan-green-yellow-red 11 
sweep in the angle colormaps). The angle map reverses at the lips of the calcarine sulcus, with mirror-12 
reversed and approximately quarter-field representations in the bordering dorsal and ventral V2 maps and 13 
dorsal and ventral V3 maps. As expected, the eccentricity map is in register across V1–V3, progressing 14 
from foveal to peripheral representations from near the occipital pole towards medial and anterior 15 
directions (blue-magenta-red-yellow-green progression in the eccentricity colormap). The pRF size map 16 
has some of the same features of the eccentricity map, exhibiting smaller sizes near the occipital pole 17 
and larger sizes in the mid-peripheral regions of V1–V3. However, in the more peripheral portions of the 18 
maps, the size estimates are smaller than predicted from eccentricity due to stimulus edge effects (blue 19 
rim around the anterior/medial edge of the V1–V3 maps; see Discussion). 20 
 21 

 22 
 23 

Figure 4. Group-average results. The pRF model solutions are mapped from fs_LR 24 
space to fsaverage using nearest-neighbor interpolation and then visualized (see 25 
Methods). Here we visualize results for group average S184 (which reflects all 181 26 
individual subjects) in occipital cortex using an orthographic projection (see Figure 3). 27 
The first column shows the thresholded fsaverage curvature. White lines are hand-drawn 28 
borders of V1, V2, and V3 based on the angle results. Labels indicate several major 29 
posterior sulci. The second through fourth columns show angle, eccentricity, and pRF 30 
size maps (with areal boundaries now shown in black). These maps are thresholded at 31 
9.8% variance explained (see Methods). In the eccentricity maps, the insets marked with 32 
green show the same results but with the entire color range corresponding to 0–0.5°—33 
this demonstrates that the large uniform swath of blue in the main figure actually has 34 
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 8 

gradients of near-foveal eccentricities. The fifth column shows variance explained. 1 
Finally, the images on the right show thresholded variance explained on inflated left and 2 
right surfaces, demonstrating the existence of robust signals in other parts of cortex. 3 
Labels: S = superior, I = inferior, M = medial, L = lateral, IPS = intraparietal sulcus, LOS = 4 
lateral occipital sulcus, POS = parieto-occipital sulcus, Calc = calcarine sulcus, OTS = 5 
occipitotemporal sulcus, CoS = collateral sulcus. In the top panels, the numbers 1–8 6 
indicate features of the parameter maps and are discussed in the text. Distinct numbers 7 
are used in each parameter map although some locations are the same or nearly the 8 
same (locations 4 and 7; locations 3, 5, and 8).    9 

 10 
In cortical locations where pRF parameters are variable across subjects (even after registration using 11 
MSMAll), the group-average results will preserve less of the detail from individual subjects. Nonetheless, 12 
there is a large amount of structure in the group-average results beyond V1–V3, and some clear patterns 13 
are evident. The angle maps show the expected progression from upper to lower field ventral to V3, and 14 
from lower to upper field dorsal to V3 (locations 1 and 2 in Figure 4, top row), consistent with 15 
measurements of ventral (Kastner et al., 2001; McKeefry, Watson, Frackowiak, Fong, & Zeki, 1997; 16 
Wade, Brewer, Rieger, & Wandell, 2002) and dorsal (Press, Brewer, Dougherty, Wade, & Wandell, 2001; 17 
Tootell et al., 1997) occipital cortex. The eccentricity map also shows clear large-scale organization 18 
throughout large expanses of parietal and temporal cortex. One feature of the eccentricity maps is 19 
multiple distinct, foveal representations: in addition to the foveal representation in V1–V3 at the occipital 20 
pole, the eccentricity maps show distinct foveal representations in ventral temporal cortex and parietal 21 
cortex (locations 3 and 4 in Figure 4), consistent with many prior studies (Swisher, Halko, Merabet, 22 
McMains, & Somers, 2007; Tootell et al., 1997; Wade et al., 2002; Wandell, Brewer, & Dougherty, 2005). 23 
Near both of these distinct foveal representations, there are foveal to peripheral progressions along the 24 
lateral to medial direction. 25 
 26 
The pRF size map also shows a variety of large-scale patterns. In ventral temporal cortex, there is a 27 
small-to-large size gradient from the fusiform gyrus to the collateral sulcus (locations 5 and 6 in Figure 4). 28 
These regions roughly correspond to the locations of face-selective and place-selective cortex (Epstein & 29 
Kanwisher, 1998; Grill-Spector & Weiner, 2014; Kanwisher, McDermott, & Chun, 1997). More generally, 30 
pRF sizes tend to be larger outside V1–V3, as expected from both single-unit and fMRI measurements 31 
(Dumoulin & Wandell, 2008; Maunsell & Van Essen, 1983; Smith, Singh, Williams, & Greenlee, 2001; 32 
Tootell et al., 1997). Finally, the variance explained map shows that robust signals occur not only within 33 
V1–V3 but also in higher-level areas. Variance explained is above 50% in several regions ventral, lateral, 34 
and dorsal to the V1–V3 maps, including much of ventral temporal cortex and the intraparietal sulcus 35 
(locations 7 and 8 in Figure 4). Furthermore, for nearly all the cortical locations that survive the variance 36 
explained threshold, pRF model parameters are highly reliable. This is confirmed by two types of split-half 37 
analysis: First, the data averaged across all 181 subjects (S184) were split into two halves by time, with 38 
one dataset comprising time series from the first half of each of the six runs, and a second dataset 39 
comprising time series from the second half of each of the six runs. Second, the data were split into two 40 
halves by subject, with one dataset reflecting averaging time-series data across 91 subjects (S182), and 41 
a second dataset reflecting averaging time-series data across the remaining 90 subjects (S183). Both 42 
split-half analyses indicate high reliability of pRF parameters (results not shown; pRF model solutions 43 
available online). 44 
 45 
Relationship to cortical parcellations 46 
 47 
Many features of the group-average results are in good agreement with recently published parcellations 48 
of visual areas, particularly near the posterior occipital pole (Figure 5). We compare the group-average 49 
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pRF results to two atlases made using different methods: the Wang et al. (Wang et al., 2015) maximum 1 
probability atlas and the Glasser et al. (Glasser, Coalson, et al., 2016a) multimodal parcellation of cortex. 2 
The Wang et al. maximum probability atlas includes 25 regions of interest (ROIs) per hemisphere whose 3 
boundaries are derived from the anatomically-aligned overlap of manually labeled visual areas in 4 
individual subjects. Ten of these in posterior cortex are clearly aligned with expected features of the angle 5 
maps: V1v/V1d, V2v/V2d, V3v/V3d, V3A, V3B, LO-1, and hV4. In each of these 10 ROIs, one or more 6 
borders lie on an angle reversal. For example, the V1d/V2d border lies on a lower-field angle reversal, 7 
and the V1v/V2v border lies on an upper-field angle reversal. The agreement between the retinotopic 8 
features of the HCP dataset and the borders from the Wang et al. atlas is remarkably good despite the 9 
atlas reflecting different subjects and different experimental and analysis methods. Other maps such as 10 
LO-2, TO-1/2, IPS maps, VO-1/2, and PHC-1/2 show contralateral representations but not clear 11 
progressions of angle, in part due to blurring from group averaging (i.e., averaging cortical locations from 12 
different subjects that represent different portions of the visual field). The Glasser et al. parcellation was 13 
generated using a semi-automated, supervised approach applied to multimodal neuroimaging data 14 
(representing architecture, connectivity, function, and visuotopic organization). For the Glasser et al. 15 
parcellation, several areas are well aligned with features of the retinotopic maps, particularly V1, V2, V3, 16 
V4, and V3A. In several map clusters in the Wang et al. atlas, there are clear eccentricity gradients: the 17 
IPS0–2 maps show a clear foveal-to-peripheral gradient along the medial-to-lateral direction, as do the 18 
V1–V3 maps and the VO-1/2 maps. In the Glasser et al. atlas, several areas fall within iso-eccentricity 19 
regions. For example, the areas PH and TE2p are clearly foveal, whereas the adjacent fusiform face 20 
complex (FFC) is more peripheral, with a sharp change in eccentricity along the border between these 21 
areas. Consistent with our definitions in the previous sections, the eccentricity gradients indicate clear 22 
retinotopic organization in these anterior areas; however, we do not try to draw conclusions in this paper 23 
regarding whether there are complete maps of the visual field or the most appropriate way to parcellate 24 
cortex into distinct areas. 25 
 26 

 27 
 28 

Figure 5. Relationship between group-average results and cortical parcellations. 29 
The angle and eccentricity maps from the group-average dataset (S184) are re-plotted 30 
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 10 

from Figure 4 (same color scales). Superimposed on the maps are regions of interest 1 
from the maximum probability atlas of Wang et al. (Wang et al., 2015) and cortical 2 
parcellations from Glasser et al. (Glasser, Coalson, et al., 2016a). 3 

 4 
Subcortical data 5 
 6 
The HCP 7T Retinotopy Dataset includes subcortical results in addition to cortical results. Several 7 
subcortical nuclei have retinotopic maps that have been previously measured using fMRI (Arcaro, Pinsk, 8 
& Kastner, 2015; Cotton & Smith, 2007; DeSimone, Viviano, & Schneider, 2015; Katyal, Zughni, Greene, 9 
& Ress, 2010; Schneider & Kastner, 2005; Schneider, Richter, & Kastner, 2004). The subcortical fMRI 10 
data were aligned using FNIRT nonlinear volume registration based on T1-weighted image intensities 11 
(Glasser et al., 2013). In contrast to cortex, subcortical structures are not easily represented as 2D 12 
surfaces, and hence it is more difficult to visualize complete maps. Nonetheless, slices through 13 
subcortical structures reveal clear, high-quality pRF model solutions in the group-average dataset (Figure 14 
6). In particular, we see expected structure in visual nuclei such as the lateral geniculate nucleus (LGN), 15 
superior colliculus (SC), and ventral pulvinar (vPul1/2). Within these regions, there are clear 16 
representations of the contralateral visual field. As expected, the visual field maps of the LGN and 17 
pulvinar are both inverted with smooth progressions from the upper visual field located ventrally to the 18 
lower visual field located dorsally. In the superior colliculus, there is a smooth progression from the upper 19 
visual field (anterior and medial) to the lower visual field (posterior and lateral). 20 
 21 

 22 
 23 

Figure 6. Subcortical results. (A) Anatomical location. The two coronal slices (y = 25, 24 
far left; y = 30, far right) show the MNI average anatomy (ICBM 152 nonlinear symmetric 25 
atlas 2009b, 0.5-mm resolution). The red and green rectangles mark the regions detailed 26 
in panel B. Vertical lines on the sagittal slice (x = 23) indicate the locations of the two 27 
coronal slices. (B) pRF results. The upper row highlights the left and right LGN and the 28 
lower row highlights the pulvinar and superior colliculus. Outlines of the LGN and ventral 29 
pulvinar (vPul1/2) are taken from Arcaro et al., 2015. All pRF results are from the group-30 
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average dataset (S184) and are thresholded at 9.8% variance explained, as in Figure 4. 1 
Colormaps are identical to those in Figure 4 except that only the left-hemisphere angle 2 
colormap is used. The blue shading in the anatomy column indicates voxels that are 3 
included in the CIFTI subcortical data mask. 4 

 5 
Individual-subject results 6 
 7 
In addition to group-average results, we also computed pRF model solutions for the 181 individual 8 
subjects. We summarize results in several ways, including quantifying the amount of variance explained 9 
by the pRF model, inspecting maps in individual subjects, and assessing within-subject reliability of pRF 10 
parameters. These analyses reveal that overall data quality is high. 11 
 12 
Variance explained 13 
 14 
We quantified variance explained by the pRF model within atlas-defined ROIs. We defined one ROI as 15 
the union of the 50 maps found in the Wang et al. maximum probability atlas (25 maps per hemisphere) 16 
and a second ROI as the union of the V1–V3 maps from the same atlas (Wang et al., 2015). The V1–V3 17 
ROI is a subset of the larger ROI. Because these ROIs are defined based on group-average anatomy, 18 
they do not necessarily conform to each individual subject’s retinotopic maps, but they provide a simple 19 
objective method for region definition. Within the union of the 50 maps, we computed for each subject the 20 
median variance explained across grayordinates, yielding one number per subject. The median of this 21 
number across the 181 subjects was 17% (Figure 7A). Within just the V1–V3 maps, the median of the 22 
median variance explained was substantially higher, at 44%. For comparison, we estimate that for 23 
grayordinates not sensitive to the experimental paradigm, the variance explained by the pRF model is 24 
less than 1%. This can be seen by inspecting the large peak in the histogram of variance explained 25 
across all grayordinates from all individual subjects (Figure 7C). 26 
 27 
Cortical maps 28 
 29 
For map visualization, we selected three representative subjects: the subjects at the 25th, 50th, and 75th 30 
percentiles with respect to median variance explained across regions in the Wang et al. atlas (see red 31 
lines in Figure 7A). For simplicity we show only the left hemisphere, and we re-plot the group-average 32 
results for comparison. The three depicted subjects have clear retinotopic maps in occipital cortex, as 33 
seen in the angle and eccentricity results (Figure 7C). In each subject, the angle maps reveal the 34 
boundaries of V1–V3, and the eccentricity maps are in register across visual field maps around the 35 
occipital pole. The locations of the V1–V3 boundaries differ slightly across the subjects, as seen by 36 
comparing the angle reversals and the V1–V3 boundary lines that were drawn based on the group-37 
average results. This suggests that even after alignment using state-of-the-art algorithms guided by 38 
folding and areal features (MSMAll), there is residual misalignment of retinotopic maps in some subjects. 39 
A few subjects showed strikingly atypical retinotopy, such as a “forked” representation of the lower vertical 40 
meridian representation running across V2d and V3d of the group average in subjects S80 (HCP ID 41 
198653) and S138 (HCP ID 644246) (see Figure S2 in Van Essen and Glasser, 2018 and 42 
https://balsa.wustl.edu/ZLV7). 43 
 44 
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 1 
 2 

Figure 7. Individual-subject results. (A) Variance explained within all regions of the 3 
Wang et al. maximum probability atlas (Wang et al., 2015). For each subject, we 4 
computed the median variance explained across grayordinates located within the union 5 
of all regions in both hemispheres of the Wang et al. atlas. The histogram shows the 6 
distribution of this value across the 181 subjects. The subjects at the 25th, 50th, and 75th 7 
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percentiles are indicated by red lines. (B) Variance explained within V1–V3 of the Wang 1 
et al. atlas. (C) Histogram of variance explained across all grayordinates in individual 2 
subjects S1–S181 and in the group average S184 (bin size 0.2%; histogram counts 3 
normalized to sum to 1 in each plot). (D) Maps of pRF parameters (left hemisphere). We 4 
re-plot the group-average results from Figure 4 (S184) and show individual-subject 5 
results for the three subjects indicated in panel A (S43, S11, and S124, corresponding to 6 
the 25th, 50th, and 75th percentiles, respectively; corresponding HCP IDs 164131, 115017, 7 
and 536647). Angle, eccentricity, pRF size, and variance explained results are plotted as 8 
in Figure 4 (with the same color scales), except that the variance explained threshold 9 
used for individual subjects is 2.2% (see Methods). For reference, we show on each map 10 
the same V1–V3 boundary lines determined from group-average results in Figure 4 as 11 
well as the same numbered locations (1–8) that mark features of the parameter maps. 12 

 13 
Beyond V1–V3, several of the features we noted in the group-average results are also generally evident 14 
in the individual subjects. For example, the angle maps show a lower-field representation ventral to V3 15 
and an upper-field representation dorsal to V3 (locations 1 and 2 in Figure 7). There are also distinct 16 
foveal representations in parietal and temporal cortex (locations 3 and 4), and pRF size gradients in 17 
ventral cortex (locations 5 and 6). Because variance explained is generally lower for individual subjects 18 
compared to the group average, there are some regions in which the group average may provide useful 19 
information that is absent in individual subjects (e.g. location 8). By visual inspection, the overall map 20 
quality appears comparable across the three subjects. Since these subjects span the central 50% of 21 
variance explained (as detailed previously), this suggests that most of the subjects in the HCP 7T 22 
Retinotopy Dataset have good data quality. Additional aspects of individual variability can be readily 23 
inspected by scrolling through polar angle and eccentricity maps for all 181 individual subjects in the 24 
downloadable Connectome Workbench ‘scene’ files (see Appendix). 25 
 26 
Within-subject reliability 27 
 28 
To quantify reliability of pRF parameters for individual subjects, we compared parameter estimates across 29 
split-halves of the data. We binned cortical grayordinates into 4 large ROIs which comprise distinct 30 
subsets of the regions in the Wang et al. atlas (Wang et al., 2015): posterior (V1–V3), dorsal (V3A/B, 31 
IPS0–5), lateral (LO-1/2, TO-1/2), and ventral (VO-1/2, PHC-1/2). We then aggregated grayordinates 32 
within each of these ROIs across subjects, and computed 2D histograms comparing parameter estimates 33 
across the two model fits (first half of each run; second half of each run). 34 
 35 
Angle estimates were highly reliable across splits for all 4 ROIs, indicated by the high density along the 36 
diagonals (Figure 8, top row). In addition to demonstrating within-subject reliability, these histograms 37 
highlight the fact that angles near the vertical meridian (90º and 270º) are less represented than other 38 
angles, an effect observed in many prior studies (Arcaro, McMains, Singer, & Kastner, 2009; Kastner et 39 
al., 2007; Larsson & Heeger, 2006; Mackey, Winawer, & Curtis, 2017; Silver, Ress, & Heeger, 2005; 40 
Swisher et al., 2007). This effect is likely due, in part, to the fMRI signal pooling activity from neurons that 41 
represent the vertical meridian with activity from neurons that represent regions off the vertical. The 42 
eccentricity histograms (Figure 8, middle row) also show a high degree of reliability, with density highest 43 
on and near the diagonal in all 4 ROIs. Note that the dorsal ROI, while reliable, is more foveally biased 44 
than other ROIs. Nonetheless, as indicated in both the maps (Figures 4 and 7) and the reliability plots 45 
(Figure 8), the dorsal regions contain eccentricities spanning 0 to 8 degrees. Finally, the size estimates 46 
were also fairly reliable, though less so than the angle and eccentricity estimates. In agreement with the 47 
maps (Figures 4 and 7), posterior maps generally contain the smallest pRFs, with few pRF sizes larger 48 
than 3 degrees. The high reliability of pRF parameters across data splits supports the interpretation that 49 
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grayordinates in not only V1–V3 but also dorsal, lateral, and ventral higher extrastriate regions exhibit 1 
spatial selectivity and not mere visual responsivity. If grayordinates responded indiscriminately to a visual 2 
stimulus presented anywhere in the visual field, pRF parameters would not exhibit such reliable tuning for 3 
specific pRF parameter values. 4 
 5 

 6 
 7 

Figure 8. Within-subject reliability of pRF estimates. Estimates of pRF parameters 8 
were obtained for two independent splits of the data (first half of each run; second half of 9 
each run). Here, we aggregate results across all 181 individual subjects and plot 2D 10 
histograms comparing pRF parameter estimates across the two splits of the data (x-axis: 11 
first split; y-axis: second split). The depicted colormap is used to represent histogram 12 
counts from 0 to the maximum count observed in each plot. The Wang et al. atlas (Wang 13 
et al., 2015) was used to bin grayordinates into different ROIs (posterior, dorsal, lateral, 14 
ventral). 15 

 16 
  17 
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Discussion 1 
 2 
In this study, we have described the HCP 7T Retinotopy Dataset and the results of fitting pRF models to 3 
all 181 individual subjects as well as the group average. To facilitate quantification of model reliability, all 4 
datasets were analyzed using split-halves in addition to the full dataset. In addition to the pRF model 5 
solutions, we also make available the stimuli and analysis code used to solve the models. This allows the 6 
research community to reproduce our analyses and/or re-analyze the time-series data using different 7 
techniques. The analyses we conducted are computationally intensive, involving three independent 8 
nonlinear optimizations for each grayordinate time series. This resulted in approximately 50 million model 9 
fits that necessitated the use of a large-scale compute cluster. By providing the parameters of the solved 10 
models, we substantially lower the barrier to entry for scientists to make use of the dataset.  11 
 12 
Size and quality of the HCP 7T Retinotopy Dataset 13 
 14 
Although researchers frequently collect, and occasionally make public, retinotopy datasets, such datasets 15 
have generally included no more than 20 subjects (e.g. Benson et al., 2012). To the best of our 16 
knowledge, the HCP 7T Retinotopy Dataset is the largest publicly available dataset by an order of 17 
magnitude. In addition to containing many subjects, retinotopic maps are derived from six fMRI runs (a 18 
total of 30 minutes of data), making this dataset large both in terms of number of subjects as well as 19 
amount of data per subject. Finally, the data were acquired at ultra-high magnetic field strength (7T), 20 
providing enhanced signal-to-noise ratio and high spatial and temporal resolution (1.6-mm isotropic 21 
voxels, 1-second temporal sampling using multiband data acquisition). The advantages of the dataset are 22 
clear. In individual subjects, there are reliable results, even beyond striate and extrastriate cortex. At the 23 
group level, the massive averaging of subjects reveals signals in regions of cortex (such as the inferior 24 
frontal sulcus) where conventional datasets typically have low signal that can be difficult to distinguish 25 
from noise. 26 
 27 
Limitations of the dataset 28 
 29 
Though the dataset has clear value, it is also important to understand its limitations and take these into 30 
account when interpreting the data. There are several technical issues; we mention a few here, but refer 31 
to the Methods for a fuller description. The stimulus size extended to an eccentricity of 8 degrees of visual 32 
angle, and so representations of the far periphery are not well measured. Because of cortical 33 
magnification of the central visual field, robust signals are found in about half of the surface area of V1 34 
(see Figure 5). Edge effects arise for grayordinates whose pRF centers are near the limit of the stimulus 35 
extent: these grayordinates are likely to have underestimates of pRF size and a displaced pRF center. 36 
Model solutions are somewhat discretized, reflecting the influence of the first-stage grid fit. Model 37 
solutions were constrained to have a non-negative gain factor; this may not be appropriate for studying 38 
brain regions that exhibit BOLD signal decreases in response to visual stimulation. Finally, there is an 39 
inherent limitation related to the fact that we analyzed the data using one specific pRF model with a 40 
particular code implementation. The motivation of this paper is to use established tools and models to 41 
generate a high-quality retinotopy resource, but some scientific questions will require additional modeling 42 
work. Exploring other pRF models (such as a difference-of-Gaussians pRF model (Zuiderbaan, Harvey, & 43 
Dumoulin, 2012), an anisotropic Gaussian pRF model (Merkel, Hopf, & Schoenfeld, 2018; Silson, 44 
Reynolds, Kravitz, & Baker, 2018), or pRF models with flexible shapes (Greene, Dumoulin, Harvey, & 45 
Ress, 2014; Lee, Papanikolaou, Logothetis, Smirnakis, & Keliris, 2013)) and carefully evaluating model 46 
accuracy (Kay et al., 2013a) may be important to answer such questions. 47 
 48 
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In addition to modeling choices, it is important to also consider stimulus selectivity and task effects. In 1 
particular, there may be parts of the brain that show retinotopic organization given an appropriate 2 
stimulus and task but not in all retinotopic experimental paradigms. In the experiment used for the HCP 3 
dataset, the images within the moving apertures changed 15 times per second. Cortical areas with low-4 
pass temporal tuning might not be effectively driven by these stimuli (Liu & Wandell, 2005). Other areas, 5 
for example in the dorsal attention network, might respond strongly only when stimuli are attended 6 
(Mackey, Winawer, & Curtis, 2017); in the HCP experiment, subjects attended to the fixation location. 7 
Hence, a lack of spatial selectivity or retinotopic organization in this dataset, even with the large number 8 
of subjects, should not be taken as definitive evidence that a brain area is not spatially selective or 9 
retinotopically organized. 10 
 11 
The neuroscientific interpretation of the pRF results must also be done carefully. Whereas in visual 12 
cortex, there is clear interpretation of pRF models in terms of visually responsive population receptive 13 
fields, in other parts of the brain, it may be possible to obtain good pRF fits but for different reasons. For 14 
example, it is possible that a cortical region indexing cognitive difficulty exhibits response increases when 15 
the stimulus is near the fovea because at these points in the experiment, the stimulus is more likely to 16 
interfere with the fixation task performed by the subjects. In such a case, the existence of a pRF model 17 
solution does not imply visually driven activity in the conventional sense. 18 
 19 
Group-average interpretation 20 
 21 
The group-average datasets (S182–S184) provide a useful summary of the overall organization of 22 
visually responsive cortex. Because of the large number of subjects that are averaged together and the 23 
improved intersubject alignment methods, these datasets contain very high signal-to-noise level. 24 
However, there are several caveats to interpreting these data. Most significantly, unlike in individual 25 
subjects, the quality of pRF model fits is influenced by the quality of the alignment used to generate these 26 
averages. In particular, the quality of the fits in V1, V2, and V3 of the group average appears to be very 27 
high; this is due both to the fact that visually evoked signals in V1–V3 are particularly robust as well as 28 
the fact that these cortical areas are less variable in their locations and internal topographic structure than 29 
higher visual areas. As one moves from striate to extrastriate cortex and beyond, coverage of the visual 30 
field becomes less and less complete. The effect of averaging can be appreciated by comparing the 31 
group-average data to the individual data (see Figure 7). In the group-average data, the V1 maps sweep 32 
out nearly 180º of polar angle from the lower vertical meridian (deep red) to the upper vertical meridian 33 
(deep blue); the V3 maps do not quite reach the vertical meridians, and V3A (location 2 in the angle map) 34 
reaches only about 45° (cyan as opposed to blue). In contrast, the individual-subject maps, though 35 
noisier, often exhibit more representation of the vertical meridian in V3 and V3A (deep blue and red in the 36 
angle maps of Figure 7). Indeed, previous work has found that for most visual areas beyond V1–V3, the 37 
overlap among subjects decreases substantially (Wang et al., 2015). One analysis that could help shed 38 
light on these issues is to examine intersubject variability in pRF parameters as a function of cortical 39 
location. 40 
 41 
What can the HCP 7T Retinotopy Dataset be used for?  42 
 43 
This rich dataset has a wide range of uses. It provides the basis for further analysis of other HCP data; for 44 
example, the pRF solutions for an individual subject can be used to determine visual ROIs that could then 45 
be used to analyze or validate other HCP measures. Some example applications include the following: (1) 46 
The retinotopy dataset can be used for comparison with the HCP’s multimodal parcellation (Glasser, 47 
Coalson, et al., 2016a) (see Figure 5). We have shown that the group-average results approximately 48 
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agree with portions of the parcellation, but we did not compare individual-subject results to the group 1 
average parcellation or to the individual-subject parcellations that were generated using an areal classifier 2 
algorithm (Glasser et al., 2016a). (2) Identifying visual ROIs and pRF properties within the ROIs can be 3 
used in conjunction with resting-state data (Van Essen et al., 2012) to test hypotheses about how maps 4 
relate to functional connectivity. (3) The pRF model solutions can be used in conjunction with the working 5 
memory dataset (Barch et al., 2013) to study the role of visual cortex in working memory. Many more 6 
such applications (e.g. combining retinotopy with the 7T movie data) are possible. 7 
 8 
The visuotopic mapping in the Glasser et al. (Glasser et al., 2016a) parcellation was based on resting-9 
state fMRI correlations measured across the entire visual field representation. This enabled mapping the 10 
full extent of visuotopic areas, but does not provide explicit measurement of specific eccentricities or polar 11 
angles within each map. Hence, the current 7T retinotopic maps and the visuotopic organization derivable 12 
from resting-state data represent complementary and potentially synergistic information. 13 
 14 
The HCP 7T Retinotopy Dataset also has a great deal of standalone value, owing to the very large 15 
number of subjects. Any examination of the relationship between anatomy and function benefits from 16 
having many subjects to characterize the extent of intersubject structure-function variability in an 17 
anatomically-normalized format. Averaging retinotopic time-series data across a large number of subjects 18 
has revealed that large swaths of cortex not typically studied by vision scientists show evidence of 19 
retinotopic organization (see Figure 4); many of these regions would not have clear signals in smaller 20 
sample sizes.  21 
 22 
Resolving controversies regarding retinotopic maps 23 
 24 
Despite 25 years of measuring retinotopic maps with fMRI, a number of disagreements concerning map 25 
organization remain unresolved. For example, there are two different proposals for the organization of the 26 
V4 map and neighboring regions. The hV4/VO proposal consists of a single hV4 hemifield map on the 27 
ventral surface, with several additional hemifield maps located more anterior (Arcaro et al., 2009; 28 
McKeefry & Zeki, 1997; Wade et al., 2002; Winawer & Witthoft, 2015). The V4/V8 proposal involves a 29 
different arrangement, with the V4 map split into dorsal and ventral arms (Hansen, Kay, & Gallant, 2007; 30 
Sereno et al., 1995) and with a V8 hemifield map adjacent to ventral V4 (Hadjikhani & Tootell, 2000; 31 
Hadjikhani, Liu, Dale, Cavanagh, & Tootell, 1998; Tootell & Hadjikhani, 2001). These two different 32 
proposals are implicit in the parcellations shown in Figure 5 from Wang et al. (Wang et al., 2015) and 33 
Glasser et al. (Glasser, Coalson, et al., 2016a). There are a number of additional unresolved questions 34 
regarding map organization, including the number and arrangement of maps in the vicinity of MT (Amano, 35 
Wandell, & Dumoulin, 2009; Kolster, Peeters, & Orban, 2010). In fact, beyond the V1–V3 maps, there is 36 
likely no retinotopic map that is universally agreed upon by researchers in the field. Part of this is due to 37 
the challenge of interpreting complex spatial data; other disagreements might stem from differences 38 
across datasets, e.g., due to differences in MRI acquisition methods, stimuli, analysis approaches, and 39 
subjects. Indeed, even within V1–V3, there are unresolved questions about retinotopic organization, such 40 
as how precisely the maps align with anatomical landmarks and whether some individuals have maps 41 
that qualitatively differ from the typical pattern (see Supplemental Information in Van Essen & Glasser, 42 
2018; https://balsa.wustl.edu/ZLV7). We believe that the HCP 7T Retinotopy Dataset provides a unique 43 
opportunity to adjudicate among competing hypotheses about the organization of retinotopic 44 
representations in the human brain. Future work, perhaps exploiting automated, objective atlas-based 45 
fitting procedures (e.g. Benson & Winawer, 2018), could help evaluate how well different proposals are 46 
supported by the data.  47 
 48 
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Conclusion 1 
 2 
The visual system is one of the primary functional systems of the human brain, and the resources 3 
provided in this paper represent an important step towards more fully characterizing its fundamental 4 
organization. The authors believe that the present measurements fill a critical role, both for answering 5 
novel scientific questions and for establishing baselines and hypotheses for new experiments. To this 6 
end, we have put effort into making all data and analyses fully public and well-documented, and we hope 7 
that other researchers will find this dataset enlightening and useful. 8 
  9 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2018. ; https://doi.org/10.1101/308247doi: bioRxiv preprint 

https://doi.org/10.1101/308247
http://creativecommons.org/licenses/by/4.0/


 19 

Acknowledgements 1 
 2 
This work was supported by the Human Connectome Project (1U54MH091657) from the 16 Institutes and 3 
Centers of the National Institutes of Health that support the NIH Blueprint for Neuroscience Research; 4 
Biotechnology Research Center (BTRC) grant P41 EB015894 from NIBIB; NINDS Institutional Center 5 
Core grant P30 NS076408; and R01 EY027401 (J.W.). 6 
 7 
Author Contributions 8 
 9 
D.V.E. and K.U. planned the experiment. A.V., E.Y., and K.U. developed and optimized acquisition 10 
sequences and protocols. A.V. and K.K. designed the experiment. N.B., K.J., M.A., M.G., T.C., and K.K. 11 
analyzed the data. T.C., M.G., and D.V.E. prepared results for the BALSA database. N.B., J.W., and K.K. 12 
wrote the paper. All authors discussed the results and edited the manuscript. 13 
 14 
  15 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2018. ; https://doi.org/10.1101/308247doi: bioRxiv preprint 

https://doi.org/10.1101/308247
http://creativecommons.org/licenses/by/4.0/


 20 

Methods 1 
 2 
Subjects 3 
 4 
Complete retinotopy datasets (six fMRI runs) were acquired for a total of 181 subjects (109 females, 72 5 
males), age 22–35, as part of the Young Adult Human Connectome Project (HCP) 6 
(https://www.humanconnectome.org/study/hcp-young-adult/data-releases). All subjects also participated 7 
in ~4 hours of multimodal MRI data acquisition on a customized Siemens 3T ‘Connectom’ scanner at 8 
Washington University (Van Essen et al., 2013) as well as extensive behavioral and demographic 9 
assessments (Barch et al., 2013). All subjects had normal or corrected-to-normal visual acuity. The 10 
subjects include 53 pairs of genetically confirmed identical twins (106 individuals), 34 pairs of fraternal 11 
twins (68 individuals), 2 pairs of non-twin siblings (4 individuals), and 3 individuals whose twins/siblings 12 
were not included. Each subject has an assigned 6-digit HCP ID. For family structure details, researchers 13 
must apply for access to “Restricted Data” on ConnectomeDB 14 
(https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-consortium-restricted-15 
data-use-terms). 16 
 17 
Structural image acquisition and pre-preprocessing 18 
 19 
T1-weighted (T1w) and T2-weighted (T2w) structural scans at 0.7-mm isotropic resolution were acquired 20 
at 3T and used as the anatomical substrate for the retinotopy data. White and pial cortical surfaces were 21 
reconstructed from the structural scans using the HCP Pipelines (Glasser et al., 2013). Surfaces were 22 
aligned across subjects to the HCP 32k fs_LR standard surface space using first a gentle folding-based 23 
registration ‘MSMSulc’ and then a more aggressive areal-feature-based registration ‘MSMAll’ that was 24 
driven by myelin maps, resting-state network maps, and 3T resting-state visuotopic maps (Glasser, 25 
Coalson, et al., 2016a; Robinson et al., 2018; 2014). Myelin maps were the ratio of T1w/T2w images 26 
(Glasser & Van Essen, 2011) normalized using a surface-based atlas to estimate B1+ transmit effects 27 
(Glasser et al., 2013). Note that because the MSMAll registration is based partly on measurements of 28 
resting-state networks and resting-state-based estimates of visuotopic organization (Glasser et al., 29 
2016a), alignment of pRF solutions across individuals is likely to be improved relative to alignment based 30 
on cortical folding alone. Subcortical volume data were aligned to MNI space using FNIRT nonlinear 31 
volume-based registration based on T1w image intensities (Glasser et al., 2013). 32 
 33 
fMRI acquisition and pre-processing 34 
 35 
Full details on data acquisition and pre-processing are provided elsewhere (Glasser et al., 2013; Vu et al., 36 
2016). In brief, fMRI data were collected at the Center for Magnetic Resonance Research at the 37 
University of Minnesota using a Siemens 7T Magnetom actively shielded scanner and a 32-channel 38 
receiver coil array with a single channel transmit coil (Nova Medical, Wilmington, MA). Whole-brain fMRI 39 
data were collected at a resolution of 1.6-mm isotropic and 1-s TR (multiband acceleration 5, in-plane 40 
acceleration 2, 85 slices). The data were processed using the HCP pipelines (Glasser et al., 2013) that 41 
correct for head motion and EPI spatial distortion and bring the fMRI data into alignment with the HCP 42 
standard surface space as described above. (Note that the data used here reflect the correct phase-43 
encode directions in the EPI undistortion procedure, unlike an early pre-2018 release of the data.) The 44 
data produced by the pipeline are in the CIFTI format, which consists of 91,282 grayordinates that cover 45 
both cortical and subcortical brain regions with approximately 2-mm spatial resolution. (Higher-resolution 46 
CIFTI outputs are also available, consisting of 170,494 grayordinates with approximately 1.6-mm spatial 47 
resolution. Only the 2-mm CIFTI data are used in this paper.) The fMRI data were also denoised for 48 
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spatially specific structured noise using multi-run sICA+FIX (Glasser et al., 2018; Griffanti et al., 2014; 1 
Salimi-Khorshidi et al., 2014). Differences in slice timing were not corrected since the fast multiband 2 
acquisition makes such corrections less important (though slices may differ by as much as 1 s). The 3 
dimensions of the pre-processed data are 181 subjects ´ 91,282 grayordinates ´ 6 runs ´ 300 time 4 
points. These pre-processed data are available from ConnectomeDB (https://db.humanconnectome.org/). 5 
 6 
The HCP’s methods of pre-processing are designed to maximize alignment of cortical areas across 7 
subjects while minimizing blurring of the data in individuals or groups (Coalson, Van Essen, & Glasser, 8 
2018; Glasser, Smith, et al., 2016b). HCP-style pre-processing includes correction of distortions in all MRI 9 
images so that the images represent the physical space of the subject, registration across modalities and 10 
correction for motion within fMRI and DWI scans, and bringing cortical data onto surface meshes and 11 
subcortical data in gray-matter parcels (Glasser et al., 2013). Data are aligned on the surface using 12 
MSMAll areal-feature-based registration, which uses myelin maps and resting-state data to more 13 
accurately align cortical areas than a standard folding-based registration (Glasser, Coalson, et al., 2016a; 14 
Robinson et al., 2014; 2018). Data from subcortical areas are aligned using FNIRT nonlinear volume-15 
based registration. Care was taken to minimize the number of interpolations and to use interpolation 16 
methods like splines that minimize the blurring effects of interpolation. 17 
 18 
Despite efforts in careful pre-processing methods, imperfections inevitably remain in the data. Partial 19 
volume effects and other types of blurring are inherent in data acquisition and cannot be easily removed 20 
through pre-processing methods. Thus, care must be taken in interpretation where different tissue types 21 
are in close proximity. For example, it appears that the dorsal rim of the cerebellum may exhibit visually 22 
responsive signals that likely originate, in part, from nearby locations in cortex. 23 
 24 
Stimuli 25 
 26 
Retinotopic mapping stimuli were constructed by creating slowly moving apertures and placing a dynamic 27 
colorful texture within the apertures. Apertures and textures were generated at a resolution of 768 pixels ´ 28 
768 pixels, and were constrained to a circular region with diameter 16.0°. The display was uniform gray 29 
beyond the circular region. 30 
 31 
Texture design 32 
 33 
To elicit strong neural responses in high-level visual areas (while also driving responses in early visual 34 
areas), we designed a texture composed of colorful visual objects. The texture was constructed by taking 35 
objects from Kriegeskorte et al., 2008, preparing these objects at multiple scales, and placing the objects 36 
on an achromatic pink-noise background. One hundred (100) distinct texture images were generated. To 37 
generate a texture image, we first created an achromatic pink-noise (1/f amplitude spectrum) background. 38 
Then, starting at the largest scale and proceeding to smaller scales, objects were randomly selected and 39 
placed at random positions in the image, potentially occluding objects already placed, similar to a ‘dead 40 
leaves’ tessellation. There were seven different scales. The object sizes associated with the seven scales 41 
were 350 (7.3°), 247 (5.1°), 175 (3.6°), 124 (2.6°), 88 (1.8°), 62 (1.3°), and 44 (0.9°) pixels (decreasing by 42 
a factor of √2), and the numbers of objects at each scale were 1, 2, 4, 8, 16, 32, and 64 (increasing by a 43 
factor of 2). Textures were updated at a rate of 15 Hz (details below). Pilot experiments confirmed that 44 
compared to conventional checkerboard patterns, the object texture produces larger BOLD responses 45 
and improves test-retest reliability of retinotopic estimates. 46 
 47 
Aperture design 48 
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 1 
The experiment consisted of six runs in which three different types of apertures were presented (wedges, 2 
rings, bars). Apertures moved slowly across the visual field, and were occasionally interrupted by blank 3 
periods in order to help distinguish between non-visual responses and responses from neurons with very 4 
large receptive fields (Dumoulin & Wandell, 2008). Each run lasted 300.0 s. The order of runs was 5 
RETCCW, RETCW, RETEXP, RETCON, RETBAR1, and RETBAR2, and are described below: 6 

• RETCCW consisted of a 22-s blank period, 8 cycles of a 90° wedge rotating counter-clockwise 7 
with a period of 32 s, and a 22-s blank period. The duty cycle for a given point in the visual field 8 
was 25% (8 s of 32 s). 9 

• RETCW was the same as RETCCW except that the wedge rotated clockwise. 10 
• RETEXP consisted of a 22-s blank period, 8 cycles of a ring expanding away from the center of 11 

the screen with a period of 32 s, and a 22-s blank period. The last 4 s of each 32-s period was 12 
blank (thus helping distinguish foveal and peripheral responses). Ring size increased linearly with 13 
eccentricity. The duty cycle for a given point in the visual field was 19% (6 s of 32 s). 14 

• RETCON was the same as RETEXP except that the ring contracted towards the center of the 15 
screen. 16 

• RETBAR1 and RETBAR2 were identical, and consisted of a 16-s blank period, 4 bar movements 17 
lasting 32 s each (RIGHT, UP, LEFT, DOWN), a 12-s blank period, 4 bar movements lasting 32 s 18 
each (UPPER-RIGHT, UPPER-LEFT, LOWER-LEFT, LOWER-RIGHT), and a 16-s blank period. 19 
The capitalized term indicates the direction of bar movement. The last 4 s of each 32-s bar 20 
movement was blank (thus, the bar traversed the visual field in 28 s). The width of the bar was 21 
1/8 of the full stimulus extent. The duty cycle for a given point in the visual field was 10% (3.11 s 22 
of 32 s). 23 

Apertures were animated at a rate of 15 Hz, and each aperture was anti-aliased to minimize discretization 24 
effects. On each aperture update, one of the 100 texture images was randomly selected (under the 25 
constraint that the same texture image is not presented consecutively) and presented within the confines 26 
of the aperture (using the continuous values of the aperture as opacity values). Each run consisted of 300 27 
s ´ 15 Hz = 4500 stimulus frames.  28 
 29 
Experimental design and task 30 
 31 
A small semi-transparent dot (0.3° ´ 0.3°) at the center of the display was present throughout the 32 
experiment. The color of the central dot switched randomly to one of three colors (black, white, or red) 33 
every 1–5 s. Subjects were instructed to maintain fixation on the dot and to press a button whenever the 34 
color of the dot changed. The purpose of the task was to encourage fixation and allocation of attention to 35 
the center of the display. To further aid fixation, a semi-transparent fixation grid was superimposed on the 36 
display throughout the experiment (Schira, Tyler, Breakspear, & Spehar, 2009). 37 
 38 
Stimuli were presented using an NEC NP4000 projector. The projected image was focused onto a 39 
backprojection screen, and subjects viewed this screen via a mirror mounted on the RF coil. The projector 40 
operated at a resolution of 1024 ´ 768 @ 60 Hz. A Macintosh computer controlled stimulus presentation 41 
using code based on the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). Behavioral responses 42 
were recorded using a Curdes FORP button box. Eye-tracking was performed using an EyeLink 1000 43 
system (SR Research, Mississauga, Ontario, Canada). Eye-tracking data are available on 44 
ConnectomeDB for most subjects, but we caution that the quality of the data is variable due to 45 
obstructions within the head coil. Eye-tracking data were not used in this paper. 46 
 47 
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The viewing distance to the backprojection screen was 101.5 cm, and the full stimulus extent (i.e. 1 
diameter of the circle within which apertures are shown) was 28.5 cm, yielding a total stimulus size of 2 
16.0°. However, due to variations in subject setup, these numbers should be considered approximate. 3 
Furthermore, due to the confines of the MRI environment, some subjects were unable to see the very top 4 
and very bottom of the stimuli (approximately 1° at each end). This should be taken into account when 5 
interpreting the fMRI results. 6 
 7 
pRF analysis 8 
 9 
Population receptive field (pRF) model 10 
 11 
We analyzed the time-series data of each grayordinate using a pRF model called the Compressive 12 
Spatial Summation model (Kay et al., 2013a). This model is implemented in a MATLAB toolbox called 13 
analyzePRF (http://cvnlab.net/analyzePRF/); to analyze the HCP 7T Retinotopy Dataset, we modified the 14 
implementation and archived the resulting code on the Open Science Framework web site 15 
(https://osf.io/bw9ec/). The model predicts the fMRI time series as the sum of a stimulus-related time 16 
series and a baseline time series. The stimulus-related time series is obtained by computing the dot 17 
product between the stimulus apertures and a 2D isotropic Gaussian, applying a static power-law 18 
nonlinearity, scaling the result by a gain factor, and then convolving the result with a canonical 19 
hemodynamic response function (HRF). This can be expressed formally as r(t) = (g ´ (S(t)•G)n) ∗ h(t) 20 

where r(t) is the predicted stimulus-related time series, g is a gain parameter, S(t) is the stimulus aperture 21 

at time t, G is the 2D isotropic Gaussian, n is an exponent parameter, and h(t) is a canonical HRF. This 22 
time series characterizes BOLD modulations driven by the stimulus. The baseline time series is obtained 23 
by computing a weighted sum of low-order polynomial terms (constant, linear, quadratic, etc.). This time 24 
series characterizes the baseline BOLD signal level, i.e., the MR signal intensity that is present in the 25 
absence of the stimulus. The canonical HRF was obtained by taking an ideal impulse response 26 
determined in a previous study (Kay et al., 2013b) (spm_hrf(0.1,[6.68 14.66 1.82 3.15 3.08 0.1 48.9]) from 27 
SPM), convolving the impulse response to predict the response to a 1-s stimulus, resampling to a 1-s 28 
sampling rate using cubic interpolation, and normalizing the result to have a peak amplitude of 1. Note 29 
that this HRF was used for all grayordinates in all subjects. 30 
 31 
The model yields several parameters of interest: two parameters (x, y) that indicate the position of the 32 
Gaussian, a parameter (𝜎) that indicates the standard deviation of the Gaussian, a parameter (n) that 33 
indicates the exponent of the power-law nonlinearity, and a parameter (g) that indicates the overall gain of 34 
the predicted responses in raw scanner units. In pilot analyses, we found that the experimental paradigm 35 
used here generally does not provide enough statistical power to estimate the exponent parameter 36 
reliably. Thus, we did not attempt to estimate this parameter but instead fixed the value of n to 0.05, 37 
which is representative of the typical values that we observed in the dataset. Note that a compressive 38 
exponent (like 0.05) has the effect of making responses tolerant to changes in the position and size of the 39 
stimulus (Kay et al., 2013a); intuitively, with a compressive exponent, stimuli presented anywhere within 40 
the pRF tend to drive responses equally strongly. 41 
 42 
pRF size 43 
 44 
The spatial selectivity of a grayordinate depends on both the size of the Gaussian and the sub-additive 45 
exponent. This relationship can be made explicit by considering the predicted response to point stimuli at 46 
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different locations in the visual field. As described previously (Kay et al., 2013a), these responses can be 1 
expressed as: 2 
 3 

𝑀(𝑥, 𝑦) = 𝑔 × 𝐺(𝑥, 𝑦)- ∝ exp 2−
(𝑥 − 𝑥4)5 + (𝑦 − 𝑦′)5

2𝜎5 𝑛: 4 

= exp

⎝

⎜
⎛
−
(𝑥 − 𝑥4)5 + (𝑦 − 𝑦′)5

2 > 𝜎
√𝑛
@
5

⎠

⎟
⎞

 5 

 6 
where M indicates responses to the different point stimuli, g is the pRF gain, G is the 2D isotropic 7 
Gaussian parameterized by position (x’, y’) and standard deviation (s), and n is the sub-additive 8 
exponent. Note that these responses, M, follow the form of a new Gaussian. We define pRF size as the 9 
standard deviation of this new Gaussian: 10 

𝜎DEFG = 	
I
√-

. 11 
 12 
Because we fix n at 0.05, the pRF size is ~4.5 times larger than the standard deviation of the Gaussian G. 13 
Throughout the text, all references to pRF size reflect ssize. Hence, the reported pRF size already 14 
accounts for the effect of the power-law nonlinearity. In summary, pRF size can be interpreted as one 15 
standard deviation of a 2D Gaussian that characterizes how a grayordinate responds to point stimuli in 16 
the visual field. 17 
 18 
Stimulus pre-processing 19 
 20 
Prior to model fitting, we performed pre-processing of the stimulus apertures. The original resolution of 21 
the apertures in each run is 768 pixels ´ 768 pixels ´ 4500 frames. Aperture values range between 0 and 22 
1, where 0 indicates the absence of the texture image and 1 indicates the presence of the texture image. 23 
To reduce computational burden, we resized the apertures to 200 pixels ´ 200 pixels. Then, to match the 24 
temporal resolution of the stimulus to the temporal resolution of the fMRI data, we averaged consecutive 25 
groups of 15 frames. This yielded a final stimulus resolution of 200 pixels ´ 200 pixels ´ 300 frames. 26 
Model fitting was performed in pixel units, and model parameters were post hoc converted from pixel 27 
units to degrees by multiplying by a scaling factor of 16.0° / 200 pixels. 28 
 29 
Model fitting 30 
 31 
In pilot analyses of the fMRI data, we noticed a high propensity for local minima in model solutions. To 32 
reduce inaccuracies and biases due to local minima, we designed the following fitting approach. We first 33 
performed a grid fit in which a range of parameter combinations were evaluated. We densely sampled 34 
parameter space using 25 nonlinearly spaced eccentricity values between 0 and 16 degrees (0, 0.04, 35 
0.09, 0.16, 0.22, 0.33, 0.43, 0.58, 0.73, 0.95, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.0, 9.6, 11.3, 36 
13.7, and 16 degrees), 32 angle values between 0 and 360 degrees (0, 11.25, 22.5, ..., and 348.75 37 
degrees), and 13 size values on a log scale between 1 and 128 pixels (equivalent to 0.08, 0.11, 0.16, 38 
0.23, 0.32, 0.45, 0.64, 0.91, 1.3, 1.8, 2.6, 3.6, 5.1, 7.2, and 10.2 degrees), yielding 25 ´ 32 ´ 13 = 10,400 39 
parameter combinations. The combination yielding the optimal fit (in a least-squares sense) to the data 40 
was identified. We then used this parameter combination as the initial seed in a nonlinear optimization 41 
procedure (MATLAB Optimization Toolbox, Levenberg-Marquardt algorithm). For this initial seed, the gain 42 
parameter was changed to 75% of its discovered (optimal) value to allow room for adjustment in the 43 
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optimization. Also, the gain parameter was restricted to be non-negative to constrain the space of fits to 1 
solutions that predict positive BOLD responses to stimulation. Note that no spatial constraints are 2 
incorporated into the model fitting process (e.g., smoothing, priors on expected parameter values, etc.). 3 
Thus, parameter estimates for grayordinates are independent, thereby maximizing resolution and 4 
minimizing bias. 5 
 6 
We fit the pRF model not only to the data from each subject (S1–S181), but also to the data from three 7 
group-average pseudo-subjects, which were constructed by averaging time-series data across subjects. 8 
One group average is the result of averaging all 181 subjects (S184); the second group average is the 9 
result of averaging a randomly chosen half of the subjects (S182); and the third group average is the 10 
result of averaging the other half of the subjects (S183). For each individual subject and each group 11 
average, we performed three separate model fits: one fit uses all six runs, a second fit uses only the first 12 
half of each of the six runs, and the third fit uses only the second half of each of the six runs. The 13 
rationale for these fits is that the first fit provides the best estimate of model parameters, whereas the 14 
second and third fits can be used to assess the reliability of parameter estimates. 15 
 16 
Each fit produces six quantities of interest: pRF angle, pRF eccentricity, pRF size (calculated as 𝜎/√n), 17 
pRF gain, percentage of variance explained, and mean signal intensity (calculated as the mean of all time 18 
points). The dimensions of the final results are (181+3) subjects ´ 91,282 grayordinates ´ 3 model fits ´ 6 19 
quantities (see Figure 2). 20 
 21 
Surface visualization 22 
 23 
The pre-processed time-series data (CIFTI format) reflect MSMAll-alignment of individual subjects to the 24 
fs_LR surface (Glasser et al., 2013). The pRF model solutions are obtained by fitting each CIFTI 25 
grayordinate independently; thus, there are no additional spatial transformations applied. In this paper, we 26 
visualize pRF model solutions for cortical grayordinates by mapping from CIFTI space to fsaverage space 27 
using nearest-neighbor interpolation and then using orthographic projection to visualize the fsaverage 28 
surface (see Figure 3). The underlay for the group-average results is the thresholded fsaverage 29 
curvature, whereas the underlay for individual-subject results is the curvature obtained from individual 30 
subjects. An alternative to the fsaverage curvature is to compute the average curvature of the 181 31 
subjects, which is useful for maintaining the true relationship between the retinotopic features and folding 32 
features in the data (e.g. as in Glasser et al. 2016a); this average curvature is the underlay provided in 33 
the downloadable BALSA datasets (https://balsa.wustl.edu/study/show/9Zkk). 34 
 35 
Group-average maps in Figures 3–6 are thresholded at 9.8% variance explained. This threshold was 36 
determined by fitting a Gaussian Mixture Model with two Gaussians to the distribution of variance 37 
explained values across grayordinates in the group-average data and then identifying the value at which 38 
the posterior probability switches from the Gaussian with smaller mean to the Gaussian with larger mean. 39 
The interpretation of this procedure is that the Gaussian with smaller mean likely reflects noise 40 
(grayordinates that are not visually responsive), the Gaussian with larger mean likely reflects signal 41 
(grayordinates that are visually responsive), and values above the threshold are more likely to reflect 42 
signal than noise. The same procedure was performed for the distribution of variance explained values 43 
across grayordinates in individual-subject data, and this yielded a threshold of 2.2% variance explained. 44 
We used this more liberal threshold for the individual-subject maps in Figure 7. 45 
 46 
Timing and behavioral analysis 47 
 48 
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Stimulus timing, scanner timing, and button presses were logged in a behavioral file for each run. 1 
Behavioral files are missing for a small fraction of the runs (17 of 1086) and button presses were not 2 
detected for one of the subjects (S152, HCP ID 782561). Analysis of stimulus timing indicates that run 3 
durations were highly reliable: the central 95% of run durations lie within the range [299.974 s, 299.982 s]. 4 
Analysis of scanner timing indicates that synchronization of the stimulus computer and the scanner was 5 
robust, with the exception of two runs in which scanner acquisition may have started 1 s (1 TR) too early 6 
relative to the stimulus. 7 
 8 
To quantify behavioral performance, we calculated, for each run, (A–B)/C ´ 100, where A indicates the 9 
number of successful detections of color changes (defined as the existence of a button press within 1 s of 10 
a color change), B indicates the number of extraneous button presses, and C indicates the total number 11 
of color changes. We then averaged this performance value across the six runs. Behavioral performance 12 
was quite good overall: the interquartile range (central 50%) of performance values across subjects is 13 
[91.6%, 97.8%]. 14 
 15 
  16 
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Supplementary Material 1 
 2 

 3 
 4 
Supplementary Movies 1–12. pRF results on dynamic rotating cortical surfaces. Each movie shows 5 
group-average pRF model solutions (S184) on the inflated fsaverage surface. The format is the same as 6 
in Figure 4. There are a total of 2 hemispheres ´ 6 maps (curvature, angle, eccentricity, zoomed 7 
eccentricity, pRF size, variance explained) = 12 movies. The movies are accessible at the OSF web site 8 
(https://osf.io/bw9ec/). 9 
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 1 
 2 
Supplementary Figure 1. Comparison of full pRF model to a simple ON/OFF model. It is possible 3 
that the pRF model, when fitted to a grayordinate, successfully explains variance in the time-series data, 4 
even if the grayordinate possesses little or no spatial selectivity. To assess this issue, we constructed a 5 
simple model that is sensitive only to the presence or absence of the retinotopic mapping stimulus. In this 6 
model (code available on the OSF web site), the stimulus-related time-series is computed as the 7 
convolution of the canonical HRF with a time-series whose value is 1 when a stimulus is present in the 8 
visual field and 0 when a stimulus is absent. This ON/OFF model is an asymptotic case of the pRF model 9 
as pRF size approaches infinity. This figure depicts for the group average (S184), the variance explained 10 
by the full pRF model, the variance explained by the ON/OFF model, and the difference between the two. 11 
As expected, the ON/OFF model fares poorly in early visual areas (V1–V3) but performs increasingly well 12 
in later visual areas. This is consistent with the fact that later visual areas have increasingly large pRFs. 13 
However, even in lateral (e.g. LO-1/2, TO-1/2), ventral (e.g. hV4, VO-1/2), and parietal regions (e.g. MIP, 14 
IP0, IP1), the full pRF model explains substantially more variance than the ON/OFF model. This indicates 15 
that these regions are not only visually responsive but also exhibit some degree of spatial selectivity. 16 
 17 
 18 
 19 
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