

1 Oxytocin enhancement of emotional empathy: generalization

2 across cultures and effects on amygdala activity

3

4 YaYuan Geng¹, Weihua Zhao¹, Feng Zhou¹, Xiaole Ma¹, Shuxia Yao¹, Rene Hurleman^{2,3},
5 Benjamin Becker^{1*}, Keith M. Kendrick^{1*}

6

⁷ ¹The Clinical Hospital of the Chengdu Brain Science Institute, MOE Key Laboratory for
⁸ Neuroinformation, University of Electronic Science and Technology of China, China

9 ²Department of Psychiatry, University of Bonn, Bonn, Germany

10 ³Division of Medical Psychology, University of Bonn, Bonn, Germany

11

12 *Joint-corresponding authors

13

14 Correspondence:

15 Keith M. Kendrick (k.kendrick.uestc@gmail.com)

16 Benjamin Becker (ben_becker@gmx.de)

17

18

19 Manuscript information

20 Manuscript length

21 Abstract: 252 words

22 Manuscript body: 6362

23 Number of References:

24 Number of Figures: 7

25 Supplementary Figure

26 Supplementary Tables: 3

27 **Abstract**

28

29 Accumulating evidence suggests that the neuropeptide oxytocin can enhance empathy
30 although it is unclear which specific behavioral and neural aspects are influenced, and
31 whether the effects are modulated by culture, sex and trait autism. Based on previous findings
32 in Caucasian men, we hypothesized that a single intranasal dose of oxytocin would
33 specifically enhance emotional empathy via modulatory effects on the amygdala in an Asian
34 (Chinese) population and explored the modulatory role of sex and trait autism on the effects.
35 We first conducted a double-blind, randomized between-subject design experiment using a
36 modified version of the multifaceted empathy task (MET) to determine whether oxytocin's
37 facilitation of emotional empathy can be replicated in Chinese men (n = 60). To further
38 explore neural mechanisms behind and potential sex differences, functional MRI and skin
39 conductance measures were acquired in an independent experiment incorporating men and
40 women (n = 72). Oxytocin enhanced emotional empathy across experiments and sex, an
41 effect that was accompanied by reduced amygdala activity and increased skin conductance
42 responses. On the network level oxytocin enhanced functional coupling of the right amygdala
43 with the insula and posterior cingulate cortex for positive valence stimuli but attenuated
44 coupling for negative valence stimuli. The effect of oxytocin on amygdala functional
45 connectivity with the insula was modulated by trait autism. Overall, our findings provide
46 further support for the role of oxytocin in facilitating emotional empathy and demonstrate
47 that effects are independent of culture and sex and involve modulatory effects on the
48 amygdala and its interactions with other key empathy regions.

49

50 **Key words:** amygdala; autism; cognitive empathy; culture; emotional empathy; oxytocin.

51 **1. Introduction**

52
53 Empathy is a key social-cognitive capacity that facilitates interpersonal functioning by
54 allowing us to recognize, understand and respond appropriately to mental and affective states
55 experienced by others (Decety and Jackson, 2004; Dziobek, et al., 2008; Reniers, et al., 2010).
56 Impaired empathy is a core deficit in psychiatric disorders characterized by interpersonal
57 dysfunctions, including autism (Dziobek, et al., 2008), schizophrenia (Lee, et al., 2011;
58 Rosenfeld, et al., 2011; Shamay-Tsoory, et al., 2007), and personality disorders (Herpertz and
59 Bertsch, 2014).

60

61 Empathy is a multidimensional construct, entailing cognitive processes of perspective-taking,
62 to make inferences about others' mental states (cognitive empathy, CE), as well as emotional
63 processes reflecting a direct affective reaction involving understanding, sharing and
64 responding appropriately to others' feelings (emotional empathy, EE) (Bernhardt and Singer,
65 2012; Shamay-Tsoory, 2011; Shamay-Tsoory, et al., 2009). EE has been further divided into
66 a direct component (direct emotional empathy, EED), referring to explicit emotional
67 evaluation and empathic concern, and an indirect component (indirect emotional empathy,
68 EEI), referring to a more general physiological arousal response to both person and context
69 (Dziobek, et al., 2008). Although the cognitive and emotional components of empathy
70 represent partly dissociable systems (Shamay-Tsoory, et al., 2009), integrative approaches
71 propose that the experience of empathy evolves as a dynamic interplay between them
72 requiring an explicit representation of the specific affective state of the other person, thereby
73 making CE a prerequisite for EE (Decety and Jackson, 2004; Hillis, 2014). On the neural
74 level the functional organization of empathy is partially mirrored in shared and separable
75 anatomical representations (Bernhardt and Singer, 2012; Lamm, et al., 2011; Lamm, et al.,
76 2007; Leigh, et al., 2013; Schulte-Ruther, et al., 2007; Singer and Lamm, 2009), with the
77 bilateral insula, posterior cingulate cortex (PCC) and anterior cingulate cortex (ACC)
78 contributing to both (Fan, et al., 2011), and the amygdala contributing to the emotional
79 component of empathy (Cox, et al., 2012; Leigh, et al., 2013).

80

81 Converging evidence suggests that the hypothalamic neuropeptide oxytocin (OXT) facilitates
82 empathy (Riem, 2012; Rosenfeld, et al., 2011; Striepens, et al., 2011). Genetic approaches
83 have consistently revealed associations between individual variations in the OXT receptor
84 gene and levels of trait empathy in Caucasian (Rodrigues, et al., 2009; Smith, et al., 2014)
85 and Chinese populations (Wu, et al., 2012), with more recent studies suggesting that the
86 specific associations evolve in interaction with other factors, particularly culture (Luo, et al.,
87 2015b; Montag, et al., 2017) and sex (Weisman, et al., 2015). Studies investigating the
88 behavioral effects of intranasal OXT administration on CE have reported enhanced accuracy
89 in the reading the mind in the eyes test (RMET) (Domes, et al., 2007b) and a paradigm
90 requiring participants to infer the intensity of positive or negative emotions expressed by
91 subjects portrayed in videos (Bartz, et al., 2010). However, findings in the domain of CE

92 have been variable, with OXT effects in the RMET being either restricted to difficult items
93 (Feeser et al., 2015) or unable to be reproduced at all even when taking into account stimulus
94 difficulty and valence (Radke and de Bruijn, 2015). Other studies have also reported that
95 effects were more pronounced in individuals with poor baseline performance (Riem, et al.,
96 2014) or high trait autism (Bartz, et al., 2010). Studies that aimed specifically at determining
97 effects of OXT on EE focused on empathy for pain, an evolutionary conserved primary
98 emotional component (Decety, 2011; Panksepp and Panksepp, 2013), and found no effect on
99 pain empathy towards a partner (Singer, et al., 2008), although an enhanced pain empathic
100 response towards members of an out-group (Shamay-Tsoory, et al., 2013). In contrast,
101 another study in men using the Multifaceted Empathy Test (MET) (Dziobek, et al., 2008),
102 which assesses both CE and EE, observed that OXT specifically enhanced both EED and EEI,
103 but not CE (Hurlemann, et al., 2010). This latter study additionally demonstrated selective EE
104 deficits in amygdala lesion patients and therefore suggested that the amygdala may mediate
105 the EE enhancing effects of OXT. Although several neuroimaging studies have demonstrated
106 modulatory effects of intranasally administered OXT on the core neural components of the
107 empathy network, including the insula, ACC and amygdala and their functional interactions,
108 across different task paradigms (Bakermans-Kranenburg and van IJzendoorn, 2013; Herpertz
109 and Bertsch, 2016; Wigton, et al., 2015), to date only two studies have directly explored the
110 neural mechanisms underlying OXT's empathy enhancing effects. The first reported that
111 OXT increased activation in the superior temporal gyrus and insula during the RMET task
112 (Riem, et al., 2014), whereas the second reported reductions in left insula activity during pain
113 empathic processing (Bos, et al., 2015).

114
115 In summary, although the empathy enhancing effects of OXT are central to its proposed
116 social-cognitive and therapeutic properties, it remains unclear whether it selectively enhances
117 CE or EE, and which specific neural substrates are involved. To systematically address these
118 questions, we employed two independent pharmacological between-subject placebo (PLC)
119 controlled experiments in healthy Chinese individuals investigating the effects of intranasal
120 OXT on CE and EE and the underlying neural basis of this effects during the MET (Dziobek,
121 et al., 2008).

122
123 Previous studies on the empathy enhancing potential of intranasal OXT are entirely based on
124 observations in Caucasian populations. However, there is accumulating evidence from OXT-
125 administration studies either employing comparable experimental protocols in Caucasian and
126 Chinese subjects (Hurlemann, et al., 2010; Hu, et al., 2015) or examining moderating effects
127 of key cultural orientation differences such as a collectivistic orientation (Pfundmair, et al.,
128 2014; Xu, et al., 2017), suggesting culture-dependent social-cognitive effects of OXT. To this
129 end, the first experiment aimed to replicate findings in a male Caucasian sample showing that
130 OXT enhances EE but not CE (Hurlemann, et al., 2010) in a male Chinese sample. In a
131 second independent sample, male and female Chinese participants performed the same MET
132 paradigm during fMRI to determine the neural substrates involved. Analyses on the neural

133 level focused on the insula, amygdala and ACC as core empathy regions (Bernhardt and
134 Singer, 2012; Lamm, et al., 2011; Lamm, et al., 2007; Leigh, et al., 2013; Schulte-Ruther, et
135 al., 2007; Singer and Lamm, 2009). Given that the amygdala has been specifically (Cox, et al.,
136 2012; Leigh, et al., 2013) and critically (Hurlemann, et al., 2010) associated with emotional
137 facets of empathy, we expected that OXT's enhancement of EE would be accompanied by
138 altered regional activity and network level connectivity of the amygdala. Previous studies
139 reported increased as well as decreased amygdala activity and connectivity following OXT
140 (Domes, et al., 2007a; Hu, et al., 2015; Striepens, et al., 2012; Tully, et al., 2018; Wigton, et
141 al., 2015) therefore no directed hypothesis with respect to OXT's neural effect was
142 formulated.

143

144 Based on a growing number of findings suggesting sex-dependent effects of OXT on social
145 cognition (Gao, et al., 2016; Chen, et al., 2016; Luo, et al., 2017), the second experiment
146 additionally explored whether OXT differentially affects empathic processing in men and
147 women. In line with a previous study reporting that sex does not affect OXT's modulation of
148 empathy (Shamay-Tsoory, et al., 2013), we hypothesized that OXT facilitation of EE would
149 generalize across sexes. Finally, in the context of increasing interest in the therapeutic
150 application of OXT as a potential treatment to improve social cognitive deficits, including
151 empathy, in autism spectrum disorders (Young and Barrett, 2015), and in line with previous
152 studies in healthy subjects (Bartz, et al., 2010; Scheele, et al., 2014; Xu, et al., 2015), the
153 modulatory role of trait autism (assessed by the Autism Spectrum Quotient questionnaire,
154 ASQ, Baron-Cohen, et al., 2001) was explored.

155 **Materials and Methods**

156

157 **2.1 Participants**

158 To fully replicate the previous study on Caucasian participants (Hurlemann, et al., 2010),
159 only males were recruited in the first experiment but both males and females were enrolled in
160 the second experiment to explore potential sex-dependent effects of OXT on empathy.
161 Experiment 1 (Exp 1) included 60 participants ($M \pm SD$, mean age = 22.42 ± 2.23 , all male)
162 and Experiment 2 (Exp 2) included an independent sample of 72 participants (34 females,
163 mean age = 21.18 ± 1.95 , 38 males, mean age = 22.61 ± 2.01). Both experiments
164 incorporated a double-blind, between-participant design, with participants being randomly
165 assigned to receive either OXT or PLC nasal-spray, resulting in $n = 30$ (Exp 1) and $n = 36$
166 (Exp 2, female = 17) participants treated with OXT. The experimental groups in both
167 experiments were of comparable age (Exp 1, $p = 0.53$, $T_{58} = 0.63$; Exp 2, $p = 0.66$, $T_{70} = -$
168 0.44), education (Exp 1, $p = 0.66$, $T_{58} = 0.44$; Exp 2, $p = 0.63$, $T_{70} = -0.49$) and, in Exp 2, of
169 equivalent sex distribution (chi-square < 0.001 , $df = 1$, $p = 1$). Exclusion criteria for all
170 participants were past or current physical, neurological or psychiatric disorders, regular or
171 current use of medication or tobacco.

172

173 Participants were required to abstain from alcohol, caffeine or nicotine for at least 12 hours
174 before the experiment. None of the females in Exp 2 were taking oral contraceptives or were
175 tested during their menstrual period. Menstrual cycle phase was determined using validated
176 procedures as described in (Penton-Voak, et al., 1999). The proportion of females estimated
177 to be in their follicular or luteal phases did not differ significantly between the treatment
178 groups (chi-square = 0.12, $df = 1$, $p = 0.73$). In Exp 1, one participant (in the OXT group) and
179 in Exp 2, three participants (in the PLC group) failed to understand task instructions and were
180 consequently excluded from all further analysis, leading to a total of $n = 59$ participants in
181 Exp 1 and $n = 69$ participants in Exp 2.

182

183 Before the experiment, written informed consent was obtained from all participants. The
184 study was approved by the local ethics committee of the University of Electronic Science and
185 Technology of China and all procedures were in accordance with the latest revision of the
186 declaration of Helsinki.

187

188 **2.2 Experimental Protocol**

189 To control for potential confounding variables, all participants initially completed the
190 following questionnaires: Becks Depression Inventory (BDI; Beck, et al., 1961), WLEIS-C
191 Emotional Intelligence Scale (Wleis-C; Wong and Law, 2002), State Trait Anxiety Inventory
192 (STAI; Spielberger, et al., 1970), Empathy Quotient (EQ; Baron-Cohen and Wheelwright,
193 2004), and Positive and Negative Affect Scale (PANAS; Watson, et al., 1988). To examine
194 associations with trait autism, the ASQ questionnaire (Baron-Cohen, et al., 2001) was
195 administered. Intranasal treatment (oxytocin nasal spray, Sichuan Meike Pharmacy Co., Ltd.,

196 China, or placebo nasal spray with identical ingredients except oxytocin) was administered in
197 line with recommendations for the intranasal administration of OXT in humans (Guastella, et
198 al., 2013) and 45min before the start of the experimental paradigm. In Exp 1, three puffs per
199 nostril (at 30s intervals) were administered (24 IU) and in Exp 2, five puffs per nostril (40 IU).
200 Both doses are in the typical range employed by other studies (Guastella, et al., 2013;
201 Striepens, et al., 2011) with the rationale for increasing the dose in Exp 2 being to explore
202 dose-dependent behavioral effects of OXT. In a previous study we found equivalent
203 behavioral and neural effects of 24 and 48 IU OXT doses (Zhao, et al., 2017). However, it
204 should be noted that findings from some other studies investigating dose-dependent effects of
205 intranasal OXT have suggested an inverted-U-shaped dose-response curve (Cardoso, et al.,
206 2013; Quintana, et al., 2017; Quintana, et al., 2016; Spengler, et al., 2017) and thus a stronger
207 enhancement of EE with 24 IU relative to 40 IU is conceivable. In post experiment interviews,
208 participants were unable to guess better than chance whether they had received the OXT
209 nasal spray, confirming successful blinding.
210

211 **2.3 Experimental paradigm**

212 In line with a previous study on male Caucasian participants (Hurlemann, et al., 2010),
213 empathy was assessed using the MET (Dziobek et al., 2008; Domes, et al., 2013; Edele, et al.,
214 2013; Hurlemann, et al., 2010; Wingenfeld, et al., 2014), which assesses both EE and CE
215 components using ecologically valid photo-based stimuli of either negative or positive
216 valence. To account for potential confounding effects of OXT on in-group versus out-group
217 empathy (De Dreu and Kret, 2016) and a cultural empathy bias (Cao, et al., 2015; Luo, et al.,
218 2015a), the original Caucasian MET stimuli were exchanged with corresponding pictures
219 displaying Chinese protagonists. The Chinese stimuli were initially evaluated in an
220 independent sample (supplementary materials) and the final set of Chinese stimuli (30
221 positive, 30 negative valence) closely resembled the Caucasian stimuli depicting daily life
222 scenarios and conveying emotional mental states via facial expression, body posture and
223 contextual cues. To assess CE, participants were instructed to infer the emotional state of the
224 protagonist in each scene and choose the corresponding answer from 4 options listed. The 4
225 options presented similar but distinct emotional states to ensure at least 70% accuracy for
226 each stimulus picture. For EED, participants were required to rate how they felt for the
227 protagonist in the depicted scene (1-9 scale, 1 = not at all, 9 = very strong), for EEI
228 participants were required to rate how much they were aroused by the scene (1-9 scale, 1 =
229 very calm, 9 = very aroused).
230

231 The different components of empathy were presented in a mixed event/block-design.
232 Following a 3 second(s) instruction cue and a jittered inter-trial interval of 3.9s (2.3-5.9s), 10
233 stimuli per block were each presented for 3s followed by either a choice of the emotion
234 depicted for the CE condition (displayed for 4 s) or a rating scale (1-9) for the EED and EEI
235 conditions (displayed for 5 s). Six blocks were presented for each condition, resulting in a
236 total of 18 blocks. The order of blocks was counterbalanced across the experimental

237 conditions, and the fMRI experiment was divided into 6 runs, each containing one block per
238 empathy component. During fMRI (Exp 2) electrodermal activity was simultaneously
239 acquired as an index of autonomic sympathetic activity (Stern, et al., 2001) (technical details
240 on the electrodermal data acquisition are provided in the supplementary materials). To allow
241 baseline recovery of the electrodermal signal a mean inter-trial interval of 5s (4-6s) and a
242 mean interval separating stimulus presentation and behavioral response of 4s (3-5s) was
243 adopted for the fMRI experiment.

244

245 **2.4 fMRI data acquisition**

246 The fMRI data in Exp 2 were collected using a GE (General Electric Medical System,
247 Milwaukee, WI, USA) 3.0T Discovery 750 MRI scanner. fMRI time series were acquired
248 using a T2*-weighted echo planar imaging pulse sequence (repetition time, 2000 millisecond
249 (ms); echo time, 30ms; slices, 39; thickness, 3.4 millimeter (mm); gap, 0.6 mm; field of view,
250 $240 \times 240 \text{ mm}^2$; resolution, 64×64 ; flip angle, 90°). Additionally, a high resolution T1-
251 weighted structural image was acquired using a 3D spoiled gradient recalled
252 (SPGR) sequence (repetition time, 6 ms; echo time, 2ms; flip angle 9° ; field of view,
253 $256 \times 256 \text{ mm}^2$; acquisition matrix, 256×256 ; thickness, 1 mm without gap) to exclude
254 participants with apparent brain pathologies and to improve normalization of the fMRI data.

255

256 **2.5 fMRI data processing**

257 fMRI data were analyzed using SPM12 (Wellcome Trust Center of Neuroimaging, University
258 College London, London, United Kingdom). The first five volumes were discarded to allow
259 T1 equilibration and images were realigned to the first image to correct for head motion.
260 Tissue segmentation, bias-correction and skull-stripping were done for the high-resolution
261 structural images. The functional time series were co-registered with the skull-stripped
262 anatomical scan and normalized to MNI space with voxel size of 3 mm^3 . Normalized images
263 were then spatially smoothed using a Gaussian kernel with full-width at half-maximum
264 (FWHM) of 8 mm. On the first level, event-related responses were modelled and
265 subsequently convolved with the standard hemodynamic response function (HRF). The first
266 level design matrix included valence- (positive, negative) and empathy type- (CE, EED, EEI)
267 specific regressors for the viewing phases as main experimental conditions. In addition,
268 regressors for the cue presentation, valence- and empathy type-specific regressors for the
269 rating phases, and for viewing and rating phases of incorrect trials as well as the six
270 movement regressors were included. The experimental contrasts were next submitted to a
271 second level random effects analysis.

272

273 To evaluate empathy-type specific main and interaction effects of treatment and valence,
274 repeated-measured ANOVAs were employed in a flexible-factorial design. Based on our
275 regional hypothesis and the core empathy network (Bakermans-Kranenburg and van
276 IJzendoorn, 2013; Bernhardt and Singer, 2012; Hillis, 2014; Hurlemann, et al., 2010; Leigh,
277 et al., 2013; Shamay-Tsoory and Abu-Akel, 2016; Wigton, et al., 2015), the analyses focused

278 on the bilateral amygdala, insula and ACC which were structurally defined using 60%
279 probability maps from the Harvard-Oxford (sub)cortical atlas. For the regionally focused
280 analysis approach condition-specific parameter estimates were extracted from these regions
281 of interest (ROI) using the Marsbar toolbox (Brett, et al., 2002) and subjected to empathy
282 type-specific ANOVAs with the between-participant factor treatment (OXT, PLC) and the
283 within-participant factor valence (positive, negative) in SPSS (Statistical Package for the
284 Social Sciences, Version 22). P-values for the post-hoc tests of the ROI analysis were
285 Bonferroni-corrected ($P < 0.05$). An exploratory voxel-wise whole-brain analysis in SPM that
286 served to determine contributions of brain regions outside of the predefined network of
287 interest was thresholded at $P < 0.05$, corrected using the family-wise error (FWE) approach.
288 To investigate the effects of OXT on the network level, a generalized form of
289 psychophysiological interaction analysis (gPPI; <http://brainmap.wisc.edu/PPI>; McLaren, et al.,
290 2012) was conducted using regions showing significant OXT effects in the BOLD level
291 analysis as seeds and implementing an empathy-type specific voxel-wise whole-brain
292 ANOVA approach including the between-participant factor treatment (OXT, PLC) and the
293 within-participant factor valence (positive, negative) thresholded at $P < 0.05$, FWE-corrected
294 at the cluster level. In line with recent recommendations for the control of false-positives in
295 cluster-based correction approaches an initial cluster forming threshold of $P < 0.001$ was
296 applied to data with a resolution of $3 \times 3 \times 3$ mm (Eklund, et al., 2016; Slotnick, 2017).
297 Parameter estimates were extracted from the significant regions to disentangle the specific
298 effects in post-hoc comparisons. Finally, associations between neural indices and trait autism
299 (ASQ scores) were conducted in SPSS using Pearson correlation analysis.
300

301 **3. Results**

302 In both experiments, there were no significant differences in trait and mood questionnaire
303 scores between OXT and PLC treatment groups (supplementary Table S1 for Exp 1, Table S2
304 for Exp 2). In line with previous studies in Chinese populations (Melchers et al., 2015;
305 Montag et al., 2017), no significant sex differences in ASQ and EQ scores were observed in
306 Exp 2 (Supplementary Table S3).

307

308 **3.1 Behavioral results**

309 Based on previous conceptualizations of empathy, proposing that CE is a prerequisite for EE
310 (Decety and Jackson, 2004; Hillis, 2014), for EED and EEI measures only trials for which
311 subjects successfully recognized the emotions displayed by the protagonist were analyzed
312 (for a similar approach see (Luo, et al., 2015a)). To this end, correctly recognized trials were
313 initially determined based on the CE performance, with only correct trials subsequently
314 entering the analyses for the EED and EEI facets.

315

316 There were no significant differences in CE accuracy between the two treatment groups in
317 both experiments (Exp 1, OXT, $77.53\% \pm 6.02\%$, PLC, $78.94\% \pm 5.78\%$, $T_{57} = 0.92$, $p = 0.36$;
318 Exp 2, OXT, $80.10\% \pm 6.18\%$, PLC, $81.57\% \pm 5.83\%$, $T_{67} = 1.02$, $p = 0.31$). In Exp 1, there
319 was a main effect of treatment ($F(1, 57) = 6.46$, $p = 0.01$, $\eta^2_p = 0.10$) for EED indicating that
320 OXT generally enhanced EED (Fig. 1A). There was no significant treatment \times valence
321 interaction ($F(1, 57) = 0.96$, $p = 0.33$, $\eta^2_p = 0.02$). Analysis of EEI did not reveal a treatment
322 main effect ($F(1, 57) = 2.19$, $p = 0.14$, $\eta^2_p = 0.04$) or valence \times treatment interaction effect (F
323 ($1, 57) = 3.16$, $p = 0.08$, $\eta^2_p = 0.05$).

324

325 Consistent with the findings for EED in Exp 1, Exp 2 also yielded a significant main effect of
326 treatment on EED ($F(1, 67) = 5.81$, $p = 0.02$, $\eta^2_p = 0.08$) with higher ratings following OXT
327 compared to PLC (Fig. 1B). There was also a significant valence \times treatment interaction ($F(1,$
328 $67) = 4.18$, $p = 0.05$, $\eta^2_p = 0.06$) with more pronounced effects of OXT on negative compared
329 to positive valence stimuli (positive: $F(1, 67) = 1.68$, $p = 0.2$, $\eta^2_p = 0.02$; negative: $F(1, 67) =$
330 9.96 , $p = 0.002$, $\eta^2_p = 0.13$). For EEI there was also a significant main effect of treatment (F
331 ($1, 67) = 4.84$, $p = 0.03$, $\eta^2_p = 0.07$) but no treatment \times valence interaction ($F(1, 67) = 2.02$, p
332 $= 0.16$, $\eta^2_p = 0.03$). For CE, there were neither significant main effects nor interactions (F
333 ($1, 65) = 0.80$, $p = 0.37$, $\eta^2_p = 0.01$). In Exp 2, no significant main or interaction effects
334 involving sex were observed (all $p > 0.18$) arguing against sex-dependent effects of OXT on
335 empathy.

336

337 **3.2 Associations between behavior and trait autism**

338 In Exp 1, there was a trend towards a negative correlation between the ASQ score and the
339 total EED and EEI scores in the OXT group (ASQ Total: EED $r = -0.47$, $p = 0.09$; EEI $r = -$
340 0.37 , $p = 0.19$) but not the PLC group (EED $r = 0.319$, $p = 0.18$; EEI $r = 0.17$, $p = 0.48$). The

341 correlation significantly differed between the PLC and OXT groups for EED (Fisher's $z = -$
342 2.13, $p = 0.03$) although not for EEI (Fisher's $z = -1.43$, $p = 0.15$). In Exp 2, there was a
343 similar pattern of correlation differences between EED and EEI scores and total ASQ scores,
344 although these associations did not reach statistical significance other than for EED under
345 OXT (EED – PLC $r = 0.03$, $p = 0.85$, OXT $r = -0.34$, $p = 0.04$, Fisher's $z = 1.53$, $p = 0.13$;
346 EEI – PLC $r = 0.03$, $p = 0.85$; OXT $r = -0.28$, $p = 0.09$, Fisher's $z = 1.29$, $p = 0.20$).
347 Regression plots are shown in Fig. 2 and suggest that OXT is producing its main behavioral
348 effects in participants with lower autism traits.
349

350 **3.3 Dose-dependent effects between Experiments 1 and 2 (24 IU vs 40 IU)**

351 Dose effects were explored by combining the data from male participants in Exp 1 (24 IU)
352 and Exp 2 (40 IU). To initially explore potential effects of the different experimental
353 environments (Exp 1, 24 IU, behavioral testing room; Exp 2, 40 IU, inside the MRI-scanner)
354 on empathy per se, a first analysis focused on the placebo-treated subjects. A repeated
355 ANOVA with environment (behavioral vs MRI room) as a between-subject factor and
356 valence as a within-subject factor revealed a significant environment main effect for both EE
357 facets, indicating elevated EE ratings in the MRI room (Main effects: EED: $p = 0.003$, F
358 ($1,47$) = 10.19 , $\eta^2_p = 0.18$; EEI: $p = 0.02$, F ($1,47$) = 5.74 , $\eta^2_p = 0.11$, both interactions with
359 valence > 0.38 , non-significant, Fig. 3), but no effects on CE (Main effect: $p = 0.15$, F ($1,47$)
360 = 2.19 , $\eta^2_p = 0.05$; Interaction: $p = 0.9$, F ($1,47$) = 0.02 , $\eta^2_p < 0.001$). These findings suggest
361 that the MRI-environment per se increased EE, an effect possibly related to elevated levels of
362 stress during the MRI assessments, which would be in line with a previous study reporting
363 that stress-induction specifically increased EE, but not CE in the MET (Wolf, et al., 2015).
364 The environmental differences and potential interactions with OXT preclude the
365 interpretation of dose-related differences between the experiments.
366

367 **3.4 Oxytocin effects on SCR**

368 One participant was excluded from SCR analysis due to low skin impedance and thus a total
369 of 68 participants from Exp 2 were included. Analyses of the SCR data paralleled the
370 analyses of the empathy ratings, using ANOVAs with the between-subject factors treatment
371 (OXT, PLC) and sex (male, female), and the within-subject factor valence. There was a
372 marginal main effect of treatment on SCR during EED trials and significant during EEI trials
373 (EED: F ($1, 66$) = 3.77 , $p = 0.06$, $\eta^2_p = 0.05$; EEI: F ($1, 66$) = 4.50 , $p = 0.04$, $\eta^2_p = 0.06$), but
374 not during CE trials (F ($1, 66$) = 2.14 , $p = 0.15$, $\eta^2_p = 0.03$). This was due to SCR responses
375 being increased in the OXT group during EE and EEI trials (Fig. 4). There were no
376 significant main effects of valence or treatment \times valence or treatment \times sex interactions for
377 CE, EE or EEI trials (all $p > 0.2$).
378

379 **3.5 Oxytocin effects on neural activity**

380 In view of the absence of sex-dependent effects in the behavioral analysis, and to increase the
381 statistical power to determine OXT effects on the neural level, the data from male and female
382 participants were pooled for the fMRI analyses. Four further participants were excluded from
383 the fMRI analysis due to excessive head motion (head motion > 3 mm). The neural
384 mechanisms underlying the behavioral effects of OXT were initially explored in the different
385 priori ROIs (amygdala, insula and ACC) using separate repeated measures ANOVAs for the
386 three empathy (CE, EE and EEI) conditions. Main treatment effects were only observed in
387 the amygdala (Fig. 5A) for EED (left amygdala: $F(1,63) = 6.55$, $p = 0.01$, $\eta^2_p = 0.09$; right
388 amygdala: $F(1,63) = 5.18$, $p = 0.03$, $\eta^2_p = 0.08$). There were no significant main effects for
389 CE or EEI or any treatment \times valence interactions for CE, EED or EEI. An exploratory whole
390 brain analysis revealed no regions that showed significant treatment-dependent changes
391 under CE, EED or EEI (all $P_{FDR_corrected} > 0.05$) outside of the prior defined ROIs.
392

393 **3.6 Oxytocin effects on functional connectivity**

394 Repeated measures ANOVA models in SPM that included the between-subject factors
395 treatment (OXT, PLC) and sex (male, female) and the within-subject factor valence (positive,
396 negative) revealed a significant Treatment \times Valence interaction effect for EED-associated
397 functional coupling of the right amygdala with the bilateral insula and the bilateral PCC (left
398 insula peak located at x/y/z, -33/6/-15, $P_{FWE} = 0.02$, cluster size = 143 voxels; right insula
399 peak located at 45/18/-12, $P_{FWE} = 0.03$, cluster size = 121 voxels; left PCC peak located at -
400 30/-33/30, $P_{FWE} = 0.003$, cluster size = 213 voxels; right PCC peak located at 21/-36/33, P_{FWE}
401 = 0.01, cluster size = 149 voxels; coordinates given in MNI-space). Extraction of parameter
402 estimates further revealed that OXT increased functional connectivity for positive valence
403 stimuli whereas it decreased connectivity for negative valence ones (left insula: positive, F
404 ($1,61$) = 10.52, $p = 0.002$, $\eta^2_p = 0.15$, negative, $F(1,61) = 3.86$, $p = 0.05$, $\eta^2_p = 0.06$; right
405 insula: positive, $F(1,61) = 3.34$, $p = 0.07$, $\eta^2_p = 0.05$, negative, $F(1,61) = 5.53$, $p = 0.02$, η^2_p
406 = 0.08; left PCC: positive, $F(1,61) = 4.34$, $p = 0.04$, $\eta^2_p = 0.07$, negative, $F(1,61) = 5.67$, $p =$
407 0.02, $\eta^2_p = 0.09$; right PCC: positive, $F(1,61) = 8.00$, $p = 0.006$, $\eta^2_p = 0.12$, negative, $F(1,61)$
408 = 5.48, $p = 0.02$, $\eta^2_p = 0.08$) (Fig. 6).

409

410 **3.7 Associations between neural and SCR effects of OXT and behavioral and autism 411 trait scores**

412 There was a significant positive correlation between EED scores and bilateral amygdala
413 responses in the PLC group (left $r = 0.49$, $p = 0.004$; right $r = 0.35$, $p = 0.04$) which was
414 absent in the OXT group (left $r = 0.005$, $p = 0.98$; right $r = -0.007$, $p = 0.97$). The correlation
415 difference between the PLC and OXT groups was significant for the left (Fisher's $Z = 2.05$, p
416 = 0.04) but not the right (Fisher's $Z = 1.43$, $p = 0.15$) amygdala (Fig. 5B). There was no
417 correlation between left or right amygdala responses with total ASQ scores.
418 For the functional connections showing OXT effects for EED in terms of a treatment \times
419 valence interaction, coupling strength between the right amygdala and left insula during
420 positive valence EED trials was positively correlated with the total ASQ in the PLC group

421 (total ASQ – r = 0.40, p = 0.02,) but not in the OXT group (total ASQ – r = -0.22, p = 0.22,
422 Fisher's Z = 2.50, p = 0.01; Fig. 7A). OXT particularly appears to increase the strength of
423 right amygdala functional connections with the insula in individuals with lower ASQ scores,
424 although only for positive valence EED. The strength of link between the right amygdala and
425 left PCC during negative valence EED trials was positively correlated with the total ASQ
426 score in the PLC group but not the OXT, although the difference between the groups was not
427 significant (total ASQ – PLC r = 0.36, p = 0.04; OXT r = 0.15, p = 0.41; Fisher's Z = 0.85, p
428 = 0.39; Fig. 7B). There were no significant correlations between SCR values and ASQ scores
429 during either EED or EEI trials (all ps > 0.41).

430

431 **4. Discussion**

432

433 The present study confirmed in two independent samples that intranasal OXT specifically
434 facilitates EE but not CE as assessed by the MET paradigm in Chinese participants, thereby
435 replicating previous findings in Caucasian participants (Hurlemann, et al., 2010). Our
436 findings also demonstrated for the first time that the OXT-induced enhancement of EED is
437 associated with decreased bilateral amygdala reactivity and enhanced functional coupling of
438 the right amygdala with the insula and PCC for positive valence stimuli but attenuated
439 coupling for negative valence stimuli. These behavioral and neural effects were not
440 modulated by subject sex, suggesting a generalization across men and women. Finally, an
441 exploratory analysis of associations with trait autism revealed that both behavioral and neural
442 effects of OXT were modulated to some extent by trait autism scores.

443

444 Although many studies have reported cultural differences between Asian and Caucasian
445 participants in the context of OXT receptor polymorphisms and empathy (Jessica, et al., 2016;
446 Kim, et al., 2010; Luo, et al., 2015b), we did not find any substantive difference with respect
447 to the effects of intranasal OXT on empathy processing as assessed by MET. Thus, in both
448 cultures, OXT enhanced EE but not CE (Hurlemann, et al., 2010) for both valences, although
449 in our second experiment we found stronger effects for negative valence stimuli. Effects of
450 the scanning environment on emotional empathy ratings per se precluded the direct
451 evaluation of dose-response effects between the two experiments, however OXT specifically
452 increased EE in both suggesting that its effects generalize across 24 and 40IU doses, in line
453 with our previous finding (Zhao, et al., 2017). In general, the magnitude of the reported
454 behavioral OXT effect on both EED and EEI reported in Caucasian participants was however
455 somewhat stronger compared to both 24 and 40 IU doses administered in our study, although
456 different MET stimuli were used.

457

458 In agreement with other studies, there were no sex-differences in EE, trait empathy (Wu et al.,
459 2012) or trait autism (Kawamura et al., 2011; Montag et al., 2017) scores in our Chinese
460 study cohort, whereas in Caucasian participants we found that females scored significantly
461 higher than males for both positive and negative valence stimuli (Hurlemann, et al., 2010).
462 Thus, it is conceivable that in Caucasian females the effects of OXT in the MET might not be
463 as pronounced as in males. The absence of an effect of OXT on CE in the MET contrasts
464 with reports using other paradigms, notably the reading the mind in the eyes test (RMET)
465 (Domes, et al., 2007b; Feeser, et al., 2015). However, the robustness of these findings has
466 been questioned by another study which failed to replicate them even when taking into
467 account both item difficulty and valence (Radke and de Brujin, 2015). Moreover, there are
468 also notable differences between the MET and RMET with the images in the MET including
469 more complex natural scenes and emotions conveyed by multiple cues (face, body posture
470 and context) whereas in the RMET emotions are only interpreted from pictures of eye regions
471 and are also often more subtle. Thus, OXT can facilitate CE in some contexts, particularly

472 with cues restricted to eyes, but not in others where multiple cues are present. Additionally,
473 and in contrast to previous studies, we measured SCR responses during trials involving the
474 three empathy components and OXT only increased the SCR in EE and not CE trials. Thus,
475 OXT enhancement of EE is paralleled by increased physiological arousal not only in EEI
476 trials (where participants are asked to score how aroused they are by the stimulus picture) but
477 also in EED trials (where they are scoring the strength of their feelings towards to protagonist
478 in the picture).

479

480 In line with the specific, and critical contribution of the amygdala to emotional, rather than
481 cognitive aspects of empathy (Hurlemann, et al., 2010), OXT's enhancement of EE was
482 accompanied by a reduction of associated amygdala activity. Exploratory analyses revealed
483 that EED scores were positively associated with the magnitude of amygdala responses during
484 positive valence trials in the PLC group, whereas this association was absent under OXT,
485 possibly reflecting an enhancement of amygdala processing efficiency. While some previous
486 studies found that OXT specifically reduced amygdala responses to negative emotional
487 stimuli (Gamer, et al., 2010; Kirsch, et al., 2005), the suppression of EED-associated
488 amygdala activity was observed irrespective of valence. A similar pattern of OXT-induced
489 valence-independent suppression of amygdala activity has previously been suggested to
490 reflect reduced uncertainty of a social stimulus which in turn motivates approach behavior
491 (Domes, et al., 2007a). In line with this interpretation, the valence-independent EED-
492 associated amygdala suppression may reflect that OXT's approach-facilitating properties
493 (Arakawa, et al., 2010) promote EE regardless of whether the emotions expressed by the
494 protagonist are positive or negative, which is also in line with a rodent study reporting an
495 overall reduction of amygdala EEG power following OXT (Sobota, et al., 2015). Other
496 studies have found that OXT's modulation of amygdala responses dependent upon sex (Gao,
497 et al., 2016, Luo, et al., 2017) and it is generally considered that the salience of cues as well
498 as their context may play an important role in determining OXT's effects (Shamay-Tsoory
499 and Abu-Akel, 2016). In the present study, neither sex nor valence influenced amygdala
500 reactivity. This possibly reflects the fact that both salience and context are broadly similar for
501 EE responses in the two sexes.

502

503 OXT also differentially altered the functional connectivity between the right amygdala and
504 bilateral insula in a valence-dependent manner. In EED trials, the strength of the functional
505 connectivity between the right amygdala and insula following OXT was significantly
506 increased during positive valence stimuli but decreased during negative ones. A few previous
507 studies have also reported OXT effects on functional connectivity between the insula and
508 amygdala (Gao, et al., 2016; Hu, et al., 2015; Rilling, et al., 2012; Striepens, et al., 2012) and
509 these two regions are key hubs of the brain salience network (Uddin, 2015). Thus, in the
510 current context OXT may have acted to increase the salience of both positive and negative
511 valence stimuli during EED trials by differentially altering the functional connectivity
512 between the amygdala and insula. Rilling et al., (2012) have also previously suggested that

513 the stronger the functional coupling between amygdala and insula, the more able the
514 amygdala is to elicit subjective feeling states in response to salient social stimuli.
515 The effect of OXT on increasing functional connectivity between the right amygdala and
516 bilateral PCC for positive valence stimuli and decreasing it for negative ones in EED trials
517 may similarly reflect a modulatory influence on salience processing. A previous study has
518 reported that OXT enhanced functional connectivity between amygdala and PCC during
519 exposure to infant laughter (Riem, et al., 2012), suggesting that it increased the incentive
520 salience of infant laughter. In our current study, the consistent patterns of functional
521 connectivity changes elicited by OXT for positive and negative valence stimuli for amygdala
522 functional connectivity with the insula and PCC may indicate that these three regions
523 comprise an integrated network mediating valence-dependent OXT effects.
524

525 Both the behavioral and neural effects of OXT were modified to some extent by trait autism
526 scores, as measured by the ASQ. In both experiments OXT tended to produce a negative
527 correlation between EE and ASQ scores, whereas this correlation was absent in the PLC
528 group. However, this effect of OXT only achieved significance in Exp 1, which included only
529 male participants, and indicates that increased EE scores were more evident in individuals
530 with lower ASQ scores. For the neural associations functional connectivity between the
531 amygdala and insula was positively associated with total ASQ scores for positive valence EE
532 trials in the PLC group, but this was absent in the OXT group. This indicates that OXT
533 effects on functional connections between the right amygdala and left insula (for positive
534 valence stimuli) were also strongest in individuals with lower ASQ scores. Thus overall,
535 while both behavioral and neural OXT effects on EE were modified by ASQ scores, the
536 extent to which these findings represent support for possible therapeutic use in ASD remains
537 unclear. Indeed, a recent study on OXT enhancement of behavioral and neural responses to
538 affective touch also reported stronger effects in individuals with lower ASQ scores (Scheele,
539 et al., 2014).
540

541 There are several limitations which should be acknowledged in the current study. Firstly, we
542 were unable to directly compare behavioral and neural responses during the MET task in
543 Caucasian as well Chinese participants, so we cannot totally exclude the possibility that some
544 cultural differences in response to OXT during empathic processing may exist. Secondly, we
545 only investigated effects using the MET paradigm and it is possible that OXT effects on CE
546 as well as EE would have been found using other paradigms. Lastly, the absence of sex-
547 differences in OXT effects in the current study might have been contributed to by our
548 Chinese male and female participants exhibiting similar EE scores, in contrast to Caucasian
549 participants (Hurlemann, et al., 2010), and also similar ASQ scores.
550

551 In summary, in the current study we have shown that in the MET paradigm, OXT enhances
552 EE but not CE in Chinese participants, similar to Caucasian ones, and additionally that this
553 occurs in female as well as male participants. Furthermore, we have shown for the first time

554 that this EE effect of OXT is associated with decreased amygdala responses and differentially
555 altered functional connectivity between the amygdala and insula and PCC for positive and
556 negative valence stimuli. Finally, we have shown that both behavioral and neural effects of
557 OXT are modified to some extent by trait autism scores, although behavioral and functional
558 connectivity effects were strongest in individuals with lower scores.

559

560

561 **Acknowledgements**

562 This study was supported by the National Natural Science Foundation of China (NSFC) grant
563 (grant number 31530032).

564

565 **Author Contributions Statement**

566 Geng, Hurlemann and Kendrick designed this experiment, Geng collected the data, Geng,
567 Zhao, Zhou, Kendrick and Becker analysed the data, Geng, Zhao, Ma, Yao, Becker and
568 Kendrick interpreted the results. Geng, Becker and Kendrick wrote the paper.

569

570 **Conflicts of Interest Statement**

571 Authors declare no conflict of interest.

572 **References**

573 Arakawa, H., Arakawa, K., and Deak, T. (2010). Oxytocin and vasopressin in the medial
574 amygdala differentially modulate approach and avoidance behavior toward illness-
575 related social odor. *Neuroscience* 171(4), 1141-1151. doi:
576 10.1016/j.neuroscience.2010.10.013.

577 Bakermans-Kranenburg, M.J., and van IJzendoorn, M.H. (2013). Sniffing around oxytocin:
578 review and meta-analyses of trials in healthy and clinical groups with implications for
579 pharmacotherapy. *Translational Psychiatry* 3.

580 Baron-Cohen, S., and Wheelwright, S. (2004). The Empathy Quotient: An Investigation of
581 Adults with Asperger Syndrome or High Functioning Autism, and Normal Sex
582 Differences. *Journal of Autism and Developmental Disorders* 34(2), 163-175. doi:
583 10.1023/b:jadd.0000022607.19833.00.

584 Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., and Clubley, E. (2001). The
585 autism-spectrum quotient (AQ): evidence from Asperger syndrome/high-functioning
586 autism, males and females, scientists and mathematicians. *J Autism Dev Disord* 31(1),
587 5-17.

588 Bartz, J.A., Zaki, J., Bolger, N., Hollander, E., Ludwig, N.N., Kolevzon, A., et al. (2010).
589 Oxytocin Selectively Improves Empathic Accuracy. *Psychological Science* 21(10),
590 1426-1428. doi: 10.1177/0956797610383439.

591 Beck, A.T., Ward, C.H., Mendelson, M., Mock, J., and Erbaugh, J. (1961). An inventory for
592 measuring depression. *Arch Gen Psychiatry* 4, 561-571.

593 Bernhardt, B.C., and Singer, T. (2012). The Neural Basis of Empathy. *Annual Review of
594 Neuroscience*, Vol 35 35, 1-23.

595 Bethlehem, R.A.I., van Honk, J., Auyeung, B., and Baron-Cohen, S. (2013). Oxytocin, brain
596 physiology, and functional connectivity: A review of intranasal oxytocin fMRI studies.
597 *Psychoneuroendocrinology* 38(7), 962-974.

598 Bos, P.A., Montoya, E.R., Hermans, E.J., Keysers, C., and van Honk, J. (2015). Oxytocin
599 reduces neural activity in the pain circuitry when seeing pain in others. *Neuroimage*
600 113, 217-224.

601 Brett, M., Anton, J.-L., Valabregue, R., and Poline, J.-B. (2002). Region of interest analysis
602 using the MarsBar toolbox for SPM 99. *Neuroimage* 16(2), S497.

603 Cao, Y., Contreras-Huerta, L.S., McFadyen, J., and Cunnington, R. (2015). Racial bias in
604 neural response to others' pain is reduced with other-race contact. *Cortex* 70, 68-78.

605 Cardoso, C., Ellenbogen, M.A., Orlando, M.A., Bacon, S.L., and Joober, R. (2013).
606 Intranasal oxytocin attenuates the cortisol response to physical stress: a dose-response
607 study. *Psychoneuroendocrinology* 38(3), 399-407. doi:
608 10.1016/j.psyneuen.2012.07.013.

609 Chen, X., Hackett, P.D., DeMarco, A.C., Feng, C., Stair, S., Haroon, E., et al. (2016). Effects
610 of oxytocin and vasopressin on the neural response to unreciprocated cooperation
611 within brain regions involved in stress and anxiety in men and women. *Brain Imaging
612 Behav* 10(2), 581-593. doi: 10.1007/s11682-015-9411-7.

613 Cox, C.L., Uddin, L.Q., Di Martino, A., Castellanos, F.X., Milham, M.P., and Kelly, C.
614 (2012). The balance between feeling and knowing: affective and cognitive empathy
615 are reflected in the brain's intrinsic functional dynamics. *Social Cognitive and*
616 *Affective Neuroscience* 7(6), 727-737. doi: 10.1093/scan/nsr051.

617 De Dreu, C.K., and Kret, M.E. (2016). Oxytocin Conditions Intergroup Relations Through
618 Upregulated In-Group Empathy, Cooperation, Conformity, and Defense. *Biol*
619 *Psychiatry* 79(3), 165-173. doi: 10.1016/j.biopsych.2015.03.020.

620 Decety, J. (2011). The neuroevolution of empathy. *Ann N Y Acad Sci* 1231, 35-45. doi:
621 10.1111/j.1749-6632.2011.06027.x.

622 Decety, J., and Jackson, P.L. (2004). The functional architecture of human empathy. *Behav*
623 *Cogn Neurosci Rev* 3(2), 71-100. doi: 10.1177/1534582304267187.

624 Domes, G., Heinrichs, M., Glascher, J., Buchel, C., Braus, D.F., and Herpertz, S.C. (2007a).
625 Oxytocin attenuates amygdala responses to emotional faces regardless of valence.
626 *Biological Psychiatry* 62(10), 1187-1190. doi: 10.1016/j.biopsych.2007.03.025.

627 Domes, G., Heinrichs, M., Michel, A., Berger, C., and Herpertz, S.C. (2007b). Oxytocin
628 improves "mind-reading" in humans. *Biological Psychiatry* 61(6), 731-733.

629 Domes, G., Hollerbach, P., Vohs, K., Mokros, A., and Habermeyer, E. (2013). Emotional
630 Empathy and Psychopathy in Offenders: An Experimental Study. *Journal of*
631 *Personality Disorders* 27(1), 67-84.

632 Dziobek, I., Rogers, K., Fleck, S., Bahnemann, M., Heekeren, H.R., Wolf, O.T., et al. (2008).
633 Dissociation of cognitive and emotional empathy in adults with asperger syndrome
634 using the multifaceted empathy test (MET). *Journal of Autism and Developmental*
635 *Disorders* 38(3), 464-473. doi: 10.1007/s10803-007-0486-x.

636 Eklund, A., Nichols, T.E., and Knutsson, H. (2016). Cluster failure: Why fMRI inferences for
637 spatial extent have inflated false-positive rates. *Proc Natl Acad Sci U S A* 113(28),
638 7900-7905. doi: 10.1073/pnas.1602413113.

639 Edele, A., Dziobek, I., and Keller, M. (2013). Explaining altruistic sharing in the dictator
640 game: The role of affective empathy, cognitive empathy, and justice sensitivity.
641 *Learning and Individual Differences* 24, 96-102. doi: 10.1016/j.lindif.2012.12.020.

642 Fan, Y., Duncan, N.W., de Greck, M., and Northoff, G. (2011). Is there a core neural network
643 in empathy? An fMRI based quantitative meta-analysis. *Neuroscience and*
644 *Biobehavioral Reviews* 35(3), 903-911. doi: 10.1016/j.neubiorev.2010.10.009.

645 Feeser, M., Fan, Y., Weigand, A., Hahn, A., Gärtner, M., Böker, H., et al. (2015). Oxytocin
646 improves mentalizing-pronounced effects for individuals with attenuated ability to
647 empathize. *Psychoneuroendocrinology* 53, 223-232.

648 Gamer, M., Zurowski, B., and Buchel, C. (2010). Different amygdala subregions mediate
649 valence-related and attentional effects of oxytocin in humans. *Proceedings of the*
650 *National Academy of Sciences of the United States of America* 107(20), 9400-9405.
651 doi: 10.1073/pnas.1000985107.

652 Gao, S., Becker, B., Luo, L., Geng, Y., Zhao, W., Yin, Y., et al. (2016). Oxytocin, the peptide
653 that bonds the sexes also divides them. *Proc Natl Acad Sci U S A* 113(27), 7650-7654.

654 doi: 10.1073/pnas.1602620113.

655 Guastella, A.J., Hickie, I.B., McGuinness, M.M., Otis, M., Woods, E.A., Disinger, H.M., et al.
656 (2013). Recommendations for the standardisation of oxytocin nasal administration
657 and guidelines for its reporting in human research. *Psychoneuroendocrinology* 38(5),
658 612-625. doi: 10.1016/j.psyneuen.2012.11.019.

659 Herpertz, S.C., and Bertsch, K. (2014). The social-cognitive basis of personality disorders.
660 *Curr Opin Psychiatry* 27(1), 73-77. doi: 10.1097/YCO.0000000000000026.

661 Herpertz, S.C., and Bertsch, K. (2016). Oxytocin Effects on Brain Functioning in Humans.
662 *Biological Psychiatry* 79(8), 631-632.

663 Hillis, A.E. (2014). Inability to empathize: brain lesions that disrupt sharing and
664 understanding another's emotions. *Brain* 137, 981-997.

665 Hu, J.H., Qi, S., Becker, B., Luo, L.Z., Gao, S., Gong, Q.Y., et al. (2015). Oxytocin
666 Selectively Facilitates Learning with Social Feedback and Increases Activity and
667 Functional Connectivity in Emotional Memory and Reward Processing Regions.
668 *Human Brain Mapping* 36(6), 2132-2146.

669 Hurlemann, R., Patin, A., Onur, O.A., Cohen, M.X., Baumgartner, T., Metzler, S., et al.
670 (2010). Oxytocin Enhances Amygdala-Dependent, Socially Reinforced Learning and
671 Emotional Empathy in Humans. *Journal of Neuroscience* 30(14), 4999-5007.

672 Jessica, L.J., Y. Sasaki; Keiko, Ishii; Mizuho, Shinada; Heejung, S. Kim (2016). gene-culture
673 interation influence of culture and oxytocin receptor gene polymorphism on loneliness.
674 *Culture and Brain*. doi: 10.1007/s40167-

675 Kawamura, Y., Liu, X., Shimada, T., Otowa, T., Kakiuchi, C., Akiyama, T., et al. (2011).
676 Association between oxytocin receptor gene polymorphisms and autistic traits as
677 measured by the Autism Spectrum Quotient in a non-clinical Japanese population.
678 *Asia-Pacific Psychiatry* 3(3), 128-136.

679 Kim, H.S., Sherman, D.K., Sasaki, J.Y., Xu, J., Chu, T.Q., Ryu, C., et al. (2010). Culture,
680 distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional
681 support seeking. *Proceedings of the National Academy of Sciences of the United
682 States of America* 107(36), 15717-15721. doi: 10.1073/pnas.1010830107.

683 Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., Siddhanti, S., et al. (2005). Oxytocin
684 modulates neural circuitry for social cognition and fear in humans. *J Neurosci* 25(49),
685 11489-11493. doi: 10.1523/JNEUROSCI.3984-05.2005.

686 Lamm, C., Decety, J., and Singer, T. (2011). Meta-analytic evidence for common and distinct
687 neural networks associated with directly experienced pain and empathy for pain.
688 *Neuroimage* 54(3), 2492-2502. doi: 10.1016/j.neuroimage.2010.10.014.

689 Lamm, C., Nusbaum, H.C., Meltzoff, A.N., and Decety, J. (2007). What Are You Feeling?
690 Using Functional Magnetic Resonance Imaging to Assess the Modulation of Sensory
691 and Affective Responses during Empathy for Pain. *PLOS ONE* 2(12).

692 Lee, J., Zaki, J., Harvey, P.O., Ochsner, K., and Green, M.F. (2011). Schizophrenia patients
693 are impaired in empathic accuracy. *Psychological Medicine* 41(11), 2297-2304.

694 Leigh, R., Oishi, K., Hsu, J., Lindquist, M., Gottesman, R.F., Jarso, S., et al. (2013). Acute

695 lesions that impair affective empathy. *Brain* 136, 2539-2549.

696 Luo, L., Becker, B., Geng, Y., Zhao, Z., Gao, S., Zhao, W., et al. (2017). Sex-dependent
697 neural effect of oxytocin during subliminal processing of negative emotion faces.
698 *Neuroimage* 162, 127-137. doi: 10.1016/j.neuroimage.2017.08.079.

699 Luo, S.Y., Li, B.F., Ma, Y., Zhang, W.X., Rao, Y., and Han, S.H. (2015a). Oxytocin receptor
700 gene and racial ingroup bias in empathy-related brain activity. *Neuroimage* 110, 22-31.

701 Luo, S.Y., Ma, Y.N., Liu, Y., Li, B.F., Wang, C.B., Shi, Z.H., et al. (2015b). Interaction
702 between oxytocin receptor polymorphism and interdependent culture values on
703 human empathy. *Social Cognitive and Affective Neuroscience* 10(9), 1273-1281. doi:
704 10.1093/scan/nsv019.

705 McLaren, D.G., Ries, M.L., Xu, G., and Johnson, S.C. (2012). A generalized form of context-
706 dependent psychophysiological interactions (gPPI): a comparison to standard
707 approaches. *Neuroimage* 61(4), 1277-1286. doi: 10.1016/j.neuroimage.2012.03.068.

708 Melchers, M., Li, M., Chen, Y., Zhang, W., and Montag, C. (2015). Low empathy is
709 associated with problematic use of the Internet: Empirical evidence from China and
710 Germany. *Asian journal of psychiatry* 17, 56-60.

711 Montag, C., Sindermann, C., Melchers, M., Jung, S., Luo, R., Becker, B., et al. (2017). A
712 functional polymorphism of the OXTR gene is associated with autistic traits in
713 Caucasian and Asian populations. *Am J Med Genet B Neuropsychiatr Genet* 174(8),
714 808-816. doi: 10.1002/ajmg.b.32596.

715 Panksepp, J., and Panksepp, J.B. (2013). Toward a cross-species understanding of empathy.
716 *Trends Neurosci* 36(8), 489-496. doi: 10.1016/j.tins.2013.04.009.

717 Penton-Voak, I.S., Perrett, D.I., Castles, D.L., Kobayashi, T., Burt, D.M., Murray, L.K., et al.
718 (1999). Menstrual cycle alters face preference. *Nature* 399(6738), 741-742. doi:
719 10.1038/21557.

720 Pfundmair, M., Aydin, N., Frey, D., and Echterhoff, G. (2014). The interplay of oxytocin and
721 collectivistic orientation shields against negative effects of ostracism. *Journal of
722 Experimental Social Psychology* 55, 246-251.

723 Quintana, D.S., Westlye, L.T., Alnaes, D., Rustan, O.G., Kaufmann, T., Smerud, K.T., et al.
724 (2016). Low dose intranasal oxytocin delivered with Breath Powered device dampens
725 amygdala response to emotional stimuli: A peripheral effect-controlled within-
726 subjects randomized dose-response fMRI trial. *Psychoneuroendocrinology* 69, 180-
727 188. doi: 10.1016/j.psyneuen.2016.04.010.

728 Quintana, D.S., Westlye, L.T., Hope, S., Nærland, T., Elvsashagen, T., Dorum, E., et al.
729 (2017). Dose-dependent social-cognitive effects of intranasal oxytocin delivered with
730 novel Breath Powered device in adults with autism spectrum disorder: a randomized
731 placebo-controlled double-blind crossover trial. *Transl Psychiatry* 7(5), e1136. doi:
732 10.1038/tp.2017.103.

733 Radke, S., and de Brujin, E.R. (2015). Does oxytocin affect mind-reading? A replication
734 study. *Psychoneuroendocrinology* 60, 75-81. doi: 10.1016/j.psyneuen.2015.06.006.

735 Reniers, R.L.E.P., Corcoran, R., Drake, R., Shryane, N., and Vollm, B. (2010). The QCAEP:

736 A questionnaire of cognitive and affective empathy. *Journal of Personality*
737 *Assessment* 93(1), 84-95.

738 Riem, M.M.E. (2012). Oxytocin Modulates Amygdala, Insula, and Inferior Frontal Gyrus
739 Responses to Infant Crying: A Randomized Controlled Trial (vol 70, pg 291, 2011).
740 *Biological Psychiatry* 71(7), 660-660. doi: 10.1016/j.biopsych.2012.02.010.

741 Riem, M.M.E., Bakermans-Kranenburg, M.J., Voorthuis, A., and van IJzendoorn, M.H.
742 (2014). Oxytocin effects on mind-reading are moderated by experiences of maternal
743 love withdrawal: An fMRI study. *Progress in Neuro-Psychopharmacology &*
744 *Biological Psychiatry* 51, 105-112.

745 Riem, M.M.E., van IJzendoorn, M.H., Tops, M., Boksem, M.A.S., Rombouts, S.A.R.B., and
746 Bakermans-Kranenburg, M.J. (2012). No Laughing Matter: Intranasal Oxytocin
747 Administration Changes Functional Brain Connectivity during Exposure to Infant
748 Laughter. *Neuropsychopharmacology* 37(5), 1257-1266. doi: 10.1038/npp.2011.313.

749 Rilling, J.K., DeMarco, A.C., Hackett, P.D., Thompson, R., Ditzen, B., Patel, R., et al. (2012).
750 Effects of intranasal oxytocin and vasopressin on cooperative behavior and associated
751 brain activity in men. *Psychoneuroendocrinology* 37(4), 447-461. doi:
752 10.1016/j.psyneuen.2011.07.013.

753 Rodrigues, S.M., Saslow, L.R., Garcia, N., John, O.P., and Keltner, D. (2009). Oxytocin
754 receptor genetic variation relates to empathy and stress reactivity in humans.
755 *Proceedings of the National Academy of Sciences of the United States of America*
756 106(50), 21437-21441. doi: 10.1073/pnas.0909579106.

757 Rosenfeld, A.J., Lieberman, J.A., and Jarskog, L.F. (2011). Oxytocin, Dopamine, and the
758 Amygdala: A Neurofunctional Model of Social Cognitive Deficits in Schizophrenia.
759 *Schizophrenia Bulletin* 37(5), 1077-1087. doi: 10.1093/schbul/sbq015.

760 Scheele, D., Kendrick, K.M., Khouri, C., Kretzer, E., Schlapfer, T.E., Stoffel-Wagner, B., et al.
761 (2014). An oxytocin-induced facilitation of neural and emotional responses to social
762 touch correlates inversely with autism traits. *Neuropsychopharmacology* 39(9), 2078-
763 2085. doi: 10.1038/npp.2014.78.

764 Schulte-Ruther, M., Markowitsch, H.J., Fink, G.R., and Piefke, M. (2007). Mirror neuron and
765 theory of mind mechanisms involved in face-to-face interactions: A functional
766 magnetic resonance imaging approach to empathy. *Journal of Cognitive Neuroscience*
767 19(8), 1354-1372. doi: DOI 10.1162/jocn.2007.19.8.1354.

768 Shamay-Tsoory, S.G. (2011). The neural bases for empathy. *Neuroscientist* 17(1), 18-24. doi:
769 10.1177/1073858410379268.

770 Shamay-Tsoory, S.G., and Abu-Akel, A. (2016). The Social Salience Hypothesis of Oxytocin.
771 *Biological Psychiatry* 79(3), 194-202.

772 Shamay-Tsoory, S.G., Abu-Akel, A., Palgi, S., Sulieman, R., Fischer-Shofty, M., Levkovitz,
773 Y., et al. (2013). Giving peace a chance: Oxytocin increases empathy to pain in the
774 context of the Israeli-Palestinian conflict. *Psychoneuroendocrinology* 38(12), 3139-
775 3144. doi: 10.1016/j.psyneuen.2013.09.015.

776 Shamay-Tsoory, S.G., Aharon-Peretz, J., and Levkovitz, Y. (2007). The neuroanatomical

777 basis of affective mentalizing in schizophrenia: Comparison of patients with
778 schizophrenia and patients with localized prefrontal lesions. *Schizophrenia Research*
779 90(1-3), 274-283. doi: 10.1016/j.schres.2006.09.020.

780 Shamay-Tsoory, S.G., Aharon-Peretz, J., and Perry, D. (2009). Two systems for empathy: a
781 double dissociation between emotional and cognitive empathy in inferior frontal gyrus
782 versus ventromedial prefrontal lesions. *Brain* 132(Pt 3), 617-627. doi:
783 10.1093/brain/awn279.

784 Singer, T., and Lamm, C. (2009). The Social Neuroscience of Empathy. *Year in Cognitive*
785 *Neuroscience* 2009 1156, 81-96.

786 Singer, T., Snazzi, R., Bird, G., Petrovic, P., Silani, G., Heinrichs, M., et al. (2008). Effects of
787 Oxytocin and Prosocial Behavior on Brain Responses to Direct and Vicariously
788 Experienced Pain. *Emotion* 8(6), 781-791. doi: 10.1037/a0014195.

789 Slotnick, S.D. (2017). Cluster success: fMRI inferences for spatial extent have acceptable
790 false-positive rates. *Cogn Neurosci* 8(3), 150-155. doi:
791 10.1080/17588928.2017.1319350.

792 Smith, K.E., Porges, E.C., Norman, G.J., Connelly, J.J., and Decety, J. (2014). Oxytocin
793 receptor gene variation predicts empathic concern and autonomic arousal while
794 perceiving harm to others. *Social Neuroscience* 9(1), 1-9. doi:
795 10.1080/17470919.2013.863223.

796 Sobota, R., Mihara, T., Forrest, A., Featherstone, R.E., and Siegel, S.J. (2015). Oxytocin
797 reduces amygdala activity, increases social interactions, and reduces anxiety-like
798 behavior irrespective of NMDAR antagonism. *Behav Neurosci* 129(4), 389-398. doi:
799 10.1037/bne0000074.

800 Spengler, F.B., Schultz, J., Scheele, D., Essel, M., Maier, W., Heinrichs, M., et al. (2017).
801 Kinetics and Dose Dependency of Intranasal Oxytocin Effects on Amygdala
802 Reactivity. *Biol Psychiatry* 82(12), 885-894. doi: 10.1016/j.biopsych.2017.04.015.

803 Spielberger, C.D., Gorsuch, R.L., and Lushene, R.E. (1970). Manual for the state-trait anxiety
804 inventory.

805 Stern, R.M., Ray, W.J., and Quigley, K.S. (2001). *Psychophysiological recording*. Oxford
806 University Press, USA.

807 Striepens, N., Kendrick, K.M., Maier, W., and Hurlemann, R. (2011). Prosocial effects of
808 oxytocin and clinical evidence for its therapeutic potential. *Frontiers in*
809 *Neuroendocrinology* 32(4), 426-450. doi: 10.1016/j.yfrne.2011.07.001.

810 Striepens, N., Scheele, D., Kendrick, K.M., Becker, B., Schafer, L., Schwalba, K., et al.
811 (2012). Oxytocin facilitates protective responses to aversive social stimuli in males.
812 *Proc Natl Acad Sci U S A* 109(44), 18144-18149. doi: 10.1073/pnas.1208852109.

813 Tully, J., Gabay, A.S., Brown, D., Murphy, D.G.M., and Blackwood, N. (2018). The effect of
814 intranasal oxytocin on neural response to facial emotions in healthy adults as
815 measured by functional MRI: A systematic review. *Psychiatry Res* 272, 17-29. doi:
816 10.1016/j.psychresns.2017.11.017.

817 Uddin, L.Q. (2015). Salience processing and insular cortical function and dysfunction. *Nat*

818 *Rev Neurosci* 16(1), 55-61. doi: 10.1038/nrn3857.

819 Watson, D., Clark, L.A., and Tellegen, A. (1988). Development and validation of brief
820 measures of positive and negative affect: the PANAS scales. *J Pers Soc Psychol* 54(6),
821 1063-1070.

822 Weisman, O., Pelpfrey, K.A., Leckman, J.F., Feldman, R., Lu, Y., Chong, A., et al. (2015).
823 The association between 2D:4D ratio and cognitive empathy is contingent on a
824 common polymorphism in the oxytocin receptor gene (OXTR rs53576).
825 *Psychoneuroendocrinology* 58, 23-32. doi: 10.1016/j.psyneuen.2015.04.007.

826 Wigton, R., Radua, J., Allen, P., Averbeck, B., Meyer-Lindenberg, A., McGuire, P., et al.
827 (2015). Neurophysiological effects of acute oxytocin administration: systematic
828 review and meta-analysis of placebo-controlled imaging studies. *Journal of
829 Psychiatry & Neuroscience* 40(1), E1-E22.

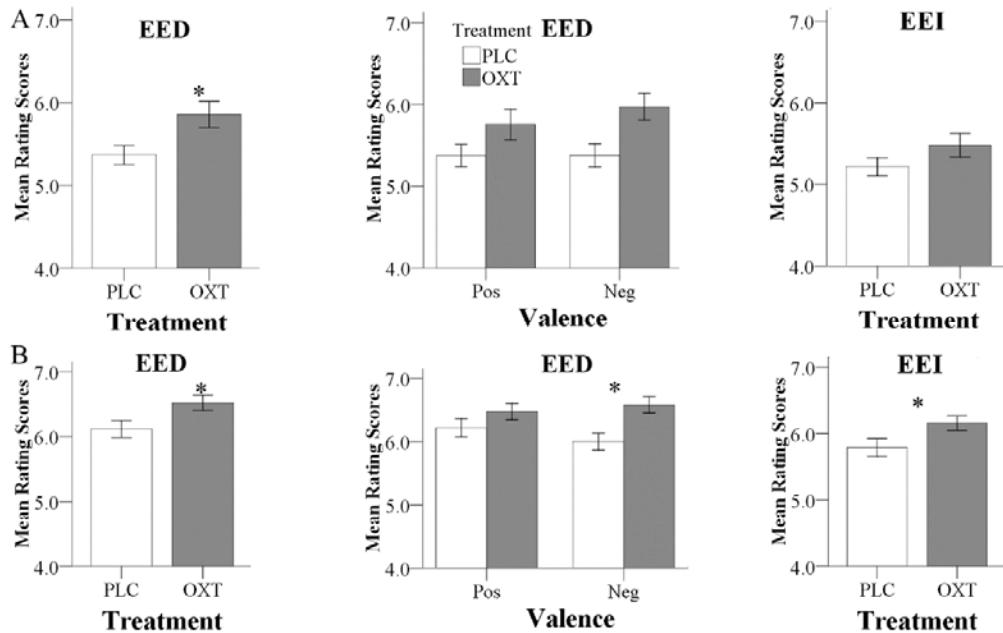
830 Wingenfeld, K., Kuehl, L.K., Janke, K., Hinkelmann, K., Dziobek, I., Fleischer, J., et al.
831 (2014). Enhanced Emotional Empathy after Mineralocorticoid Receptor Stimulation
832 in Women with Borderline Personality Disorder and Healthy Women.
833 *Neuropsychopharmacology* 39(8), 1799-1804. doi: 10.1038/npp.2014.36.

834 Wong, C.-S., and Law, K.S. (2002). The effects of leader and follower emotional intelligence
835 on performance and attitude: An exploratory study. *The leadership quarterly* 13(3),
836 243-274.

837 Wolf, O.T., Schulte, J.M., Drimalla, H., Hamacher-Dang, T.C., Knoch, D., and Dziobek, I.
838 (2015). Enhanced emotional empathy after psychosocial stress in young healthy men.
839 *Stress* 18(6), 631-637. doi: 10.3109/10253890.2015.1078787.

840 Wu, N., Li, Z., and Su, Y.J. (2012). The association between oxytocin receptor gene
841 polymorphism (OXTR) and trait empathy. *Journal of Affective Disorders* 138(3), 468-
842 472. doi: 10.1016/j.jad.2012.01.009.

843 Xu, L., Ma, X., Zhao, W., Luo, L., Yao, S., and Kendrick, K.M. (2015). Oxytocin enhances
844 attentional bias for neutral and positive expression faces in individuals with higher
845 autistic traits. *Psychoneuroendocrinology* 62, 352-358. doi:
846 10.1016/j.psyneuen.2015.09.002.

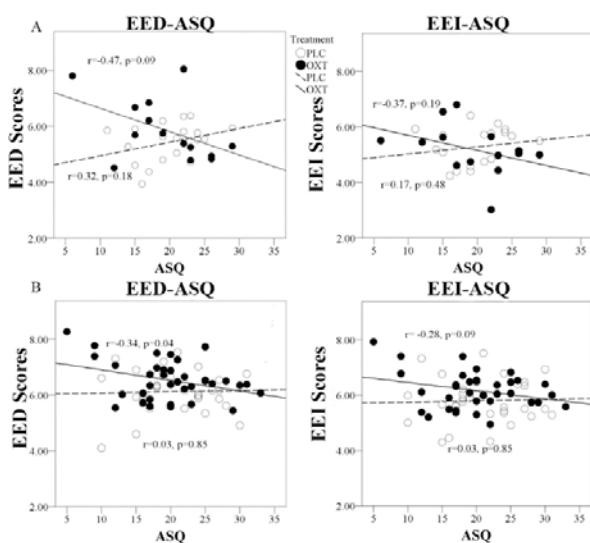

847 Xu, X., Yao, S., Xu, L., Geng, Y., Zhao, W., Ma, X., et al. (2017). Oxytocin biases men but
848 not women to restore social connections with individuals who socially exclude them.
849 *Scientific reports* 7, 40589.

850 Young, L.J., and Barrett, C.E. (2015). Neuroscience. Can oxytocin treat autism? *Science*
851 347(6224), 825-826. doi: 10.1126/science.aaa8120.

852 Zhao, W., Geng, Y., Luo, L., Zhao, Z., Ma, X., Xu, L., et al. (2017). Oxytocin Increases the
853 Perceived Value of Both Self- and Other-Owned Items and Alters Medial Prefrontal
854 Cortex Activity in an Endowment Task. *Front Hum Neurosci* 11, 272. doi:
855 10.3389/fnhum.2017.00272.

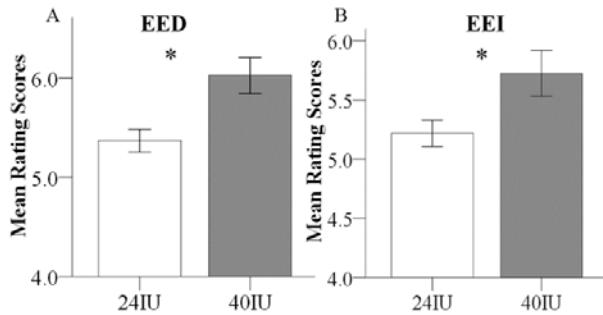
859

860

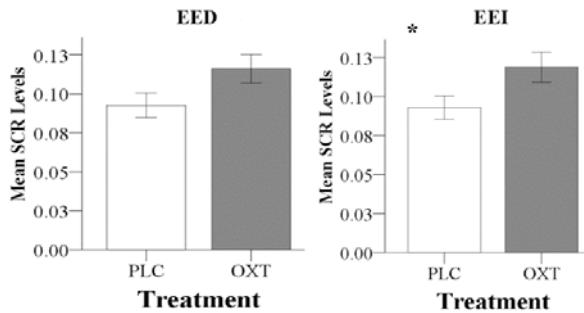

861

862

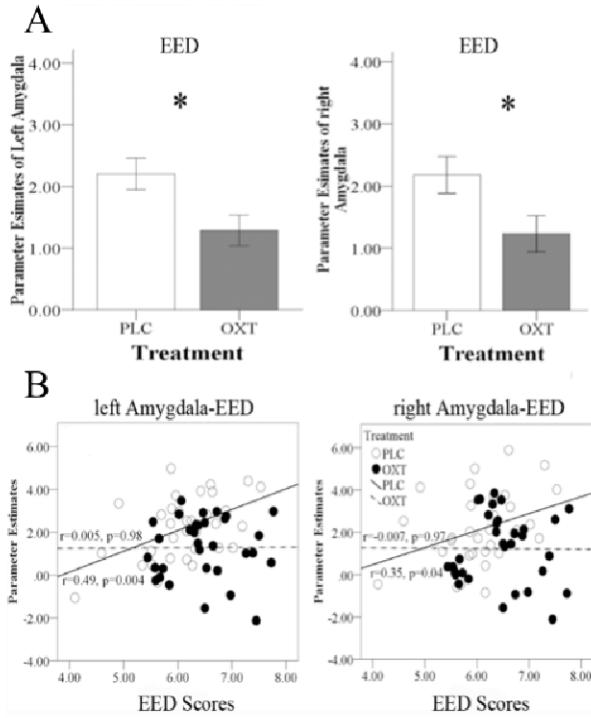
863 **Fig. 1 Behavioral results for Exp 1 (A) and Exp 2 (B).** (A) In Exp 1, OXT significantly
864 increased EED ratings. To allow for a better comparison with Exp 2, effects of OXT on
865 positive and negative EED trials, as well as on EEI are also shown; (B) In Exp 2, OXT
866 increased both EED and EEI ratings; an effect of oxytocin on negative EED drove the
867 significant treatment by valence interaction. (* $P < 0.05$)


868

869


870

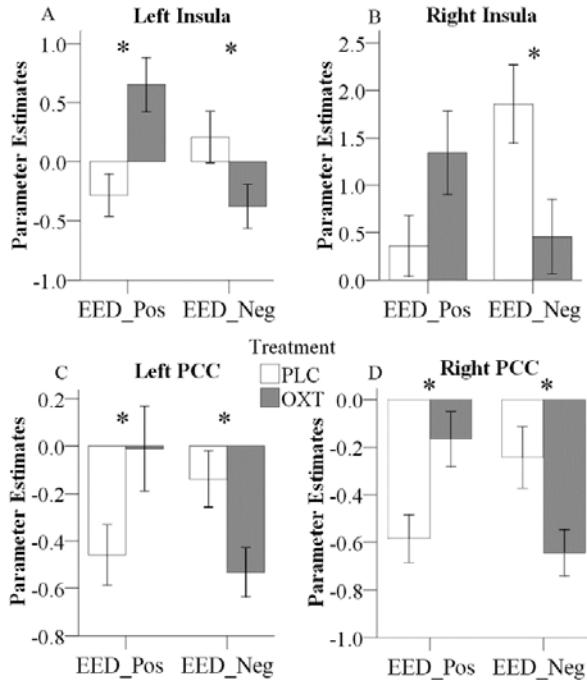
871 **Fig. 2** Regression plots for ASQ score and EED and EEI ratings. Exp 1 (**A**) and Exp 2 (**B**) in
872 OXT and PLC groups.


873
874 **Fig. 3 EE differences between Exp 1 and Exp 2 in the placebo treated subjects.**
875 Examining the placebo treated male subjects from the two experiments revealed that EE was
876 significantly increased in the MRI environment (Exp 2, 40 IU) compared to the behavioral
877 testing room (Exp 1, 24 IU).

878
879

880
881
882 **Fig. 4 OXT effect on SCR in Exp 2.** In Exp 2, OXT increased the SCR during both EED (P
883 $= 0.06$) and EEI trials. (* $P < 0.05$)

884
885
886
887
888
889
890

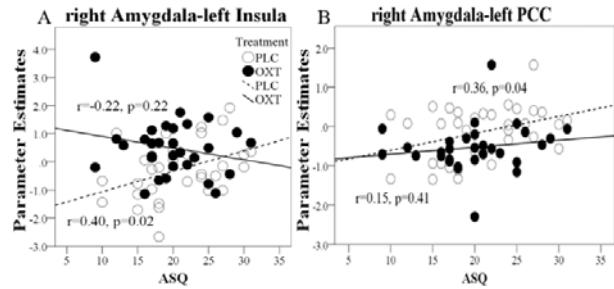


891

892

893 **Fig. 5** Effects of OXT on bilateral amygdala responses. **(A)** Region of interest analysis results
894 for left and right amygdala responses during EED trials; **(B)** Regression plots show
895 correlations between left and right amygdala responses and EED scores in OXT and PLC
896 groups. * $P < 0.05$

897



898

899 **Fig. 6 Effects of OXT effect on right amygdala functional connectivity.** Effects of
900 treatment on functional connectivity of the right amygdala, indicating valence-dependent
901 effects of OXT on the coupling of the right amygdala with the left (A) and right (B), as
902 well as the left (C) and right (D) PCC (* $P < 0.05$). (Pos: Positive; Neg: Negative).

903

904

905

906 **Fig. 7 Regression plots for correlations of ASQ scores with amygdala responses and**
907 **functional connectivity during EE trials in OXT and PLC groups.** (A) Correlation between
908 **right amygdala-left PCC functional connectivity during negative EED trials and total ASQ**
909 **score; (B) Correlation of right amygdala functional connectivity with left insula cortex during**
910 **positive EE trials and total ASQ score. In all cases, significant positive correlations during**
911 **PLC administration are absent in the OXT group.**