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27  Abstract

28

29  Accumulating evidence suggests that the neuropeptide oxytocin can enhance empathy

30 athough it isunclear which specific behavioral and neural aspects are influenced, and

31 whether the effects are modulated by culture, sex and trait autism. Based on previous findings
32 in Caucasian men, we hypothesized that a single intranasal dose of oxytocin would

33  specifically enhance emotional empathy via modulatory effects on the amygdalain an Asian
34  (Chinese) population and explored the modulatory role of sex and trait autism on the effects.
35  Wefirst conducted a double-blind, randomized between-subject design experiment using a
36 modified version of the multifaceted empathy task (MET) to determine whether oxytocin’s
37  facilitation of emotional empathy can be replicated in Chinese men (n = 60). To further

38  explore neural mechanisms behind and potential sex differences, functional MRI and skin
39  conductance measures were acquired in an independent experiment incorporating men and
40 women (n = 72). Oxytocin enhanced emotional empathy across experiments and sex, an

41  effect that was accompanied by reduced amygdala activity and increased skin conductance
42  responses. On the network level oxytocin enhanced functional coupling of the right amygdala
43  withtheinsulaand posterior cingulate cortex for positive valence stimuli but attenuated

44 coupling for negative valence stimuli. The effect of oxytocin on amygdala functional

45  connectivity with the insula was modulated by trait autism. Overall, our findings provide

46  further support for the role of oxytocin in facilitating emotional empathy and demonstrate
47  that effects are independent of culture and sex and involve modulatory effects on the

48 amygdala and its interactions with other key empathy regions.

49

50 Key words: amygdala; autism; cognitive empathy; culture; emotional empathy; oxytocin.
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51 1. Introduction

52

53 Empathy is a key social-cognitive capacity that facilitates interpersonal functioning by

54  alowing us to recognize, understand and respond appropriately to mental and affective states
55  experienced by others (Decety and Jackson, 2004; Dziobek, et a., 2008; Reniers, et al., 2010).
56 Impaired empathy isacore deficit in psychiatric disorders characterized by interpersonal

57  dysfunctions, including autism (Dziobek, et al., 2008), schizophrenia (Lee, et al., 2011,

58 Rosenfeld, et a., 2011; Shamay-Tsoory, et al., 2007), and personality disorders (Herpertz and
59  Bertsch, 2014).

60

61 Empathy isamultidimensional construct, entailing cognitive processes of perspective-taking,
62  to makeinferences about others' mental states (cognitive empathy, CE), aswell as emotional
63  processes reflecting a direct affective reaction involving understanding, sharing and

64  responding appropriately to others’ feelings (emotional empathy, EE) (Bernhardt and Singer,
65 2012; Shamay-Tsoory, 2011; Shamay-Tsoory, et a., 2009). EE has been further divided into
66 adirect component (direct emotional empathy, EED), referring to explicit emotional

67 evauation and empathic concern, and an indirect component (indirect emotional empathy,
68 EEI), referring to a more general physiologica arousal response to both person and context
69 (Dziobek, et al., 2008). Although the cognitive and emotional components of empathy

70  represent partly dissociable systems (Shamay-Tsoory, et a., 2009), integrative approaches
71  propose that the experience of empathy evolves as a dynamic interplay between them

72 requiring an explicit representation of the specific affective state of the other person, thereby
73  making CE aprerequisite for EE (Decety and Jackson, 2004; Hillis, 2014). On the neural

74 level the functional organization of empathy is partially mirrored in shared and separable

75 anatomical representations (Bernhardt and Singer, 2012; Lamm, et a., 2011; Lamm, et al.,
76  2007; Leigh, et a., 2013; Schulte-Ruther, et a., 2007; Snger and Lamm, 2009), with the

77 bilateral insula, posterior cingulate cortex (PCC) and anterior cingulate cortex (ACC)

78  contributing to both (Fan, et a., 2011), and the amygdala contributing to the emotional

79  component of empathy (Cox, et a., 2012; Leigh, et a., 2013).

80

81  Converging evidence suggests that the hypothalamic neuropeptide oxytocin (OXT) facilitates
82 empathy (Riem, 2012; Rosenfeld, et a., 2011; Striepens, et a., 2011). Genetic approaches
83  have consistently revealed associations between individual variations in the OXT receptor

84 geneand levels of trait empathy in Caucasian (Rodrigues, et al., 2009; Smith, et al., 2014)

85 and Chinese populations (Wu, et al., 2012), with more recent studies suggesting that the

86  specific associations evolve in interaction with other factors, particularly culture (Luo, et a.,
87  2015b; Montag, et al., 2017) and sex (Weisman, et al., 2015). Studies investigating the

88 behavioral effects of intranasal OXT administration on CE have reported enhanced accuracy
89 inthereading the mind in the eyestest (RMET) (Domes, et al., 2007b) and a paradigm

90 requiring participants to infer the intensity of positive or negative emotions expressed by

91  subjects portrayed in videos (Bartz, et al., 2010). However, findingsin the domain of CE
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92  havebeen variable, with OXT effectsin the RMET being either restricted to difficult items
93  (Feeser et al., 2015) or unable to be reproduced at all even when taking into account stimulus
94  difficulty and valence (Radke and de Bruijn, 2015). Other studies have also reported that
95 effects were more pronounced in individuals with poor baseline performance (Riem, et al.,
96 2014) or high trait autism (Bartz, et al., 2010). Studies that aimed specifically at determining
97 effectsof OXT on EE focused on empathy for pain, an evolutionary conserved primary
98 emotional component (Decety, 2011; Panksepp and Panksepp, 2013), and found no effect on
99 pain empathy towards a partner (Singer, et al., 2008), although an enhanced pain empathic
100  response towards members of an out-group (Shamay-Tsoory, et al., 2013). In contrast,
101  another study in men using the Multifaceted Empathy Test (MET) (Dziobek, et a., 2008),
102  which assesses both CE and EE, observed that OXT specifically enhanced both EED and EEl,
103  but not CE (Hurlemann, et al., 2010). This latter study additionally demonstrated selective EE
104  deficitsin amygdala lesion patients and therefore suggested that the amygdala may mediate
105 the EE enhancing effects of OXT. Although several neuroimaging studies have demonstrated
106  modulatory effects of intranasally administered OXT on the core neural components of the
107  empathy network, including the insula, ACC and amygdala and their functional interactions,
108 across different task paradigms (Bakermans-Kranenburg and van 1Jzendoorn, 2013; Herpertz
109 and Bertsch, 2016; Wigton, et a., 2015), to date only two studies have directly explored the
110  neural mechanisms underlying OXT’s empathy enhancing effects. The first reported that
111  OXT increased activation in the superior temporal gyrus and insuladuring the RMET task
112 (Riem, et a., 2014), whereas the second reported reductions in left insula activity during pain
113  empathic processing (Bos, et a., 2015).
114
115 In summary, athough the empathy enhancing effects of OXT are central to its proposed
116  social-cognitive and therapeutic properties, it remains unclear whether it selectively enhances
117  CE or EE, and which specific neural substrates are involved. To systematically address these
118 questions, we employed two independent pharmacol ogical between-subject placebo (PLC)
119  controlled experiments in healthy Chinese individuals investigating the effects of intranasal
120  OXT on CE and EE and the underlying neural basis of this effects during the MET (Dziobek,
121 etal., 2008).
122
123  Previous studies on the empathy enhancing potential of intranasal OXT are entirely based on
124  observations in Caucasian populations. However, there is accumulating evidence from OXT-
125  administration studies either employing comparable experimental protocolsin Caucasian and
126  Chinese subjects (Hurlemann, et al., 2010; Hu, et a., 2015) or examining moderating effects
127  of key cultural orientation differences such as a collectivistic orientation (Pfundmair, et al.,
128 2014; Xu, et a., 2017), suggesting culture-dependent social-cognitive effects of OXT. To this
129 end, the first experiment aimed to replicate findings in a male Caucasian sample showing that
130 OXT enhances EE but not CE (Hurlemann, et al., 2010) in a male Chinese sample. In a
131  second independent sample, male and female Chinese participants performed the same MET
132  paradigm during fMRI to determine the neural substrates involved. Analyses on the neural
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133  level focused on the insula, amygdalaand ACC as core empathy regions (Bernhardt and
134  Singer, 2012; Lamm, et a., 2011; Lamm, et a., 2007; Leigh, et a., 2013; Schulte-Ruther, et
135 a., 2007; Singer and Lamm, 2009). Given that the amygdala has been specifically (Cox, et al.,
136 2012; Leigh, et a., 2013) and critically (Hurlemann, et al., 2010) associated with emotional
137  facets of empathy, we expected that OXT’s enhancement of EE would be accompanied by
138  dtered regional activity and network level connectivity of the amygdala. Previous studies
139  reported increased as well as decreased amygdala activity and connectivity following OXT
140 (Domes, et al., 2007a; Hu, et a., 2015; Striepens, et al., 2012; Tully, et al., 2018; Wigton, et
141  al., 2015) therefore no directed hypothesis with respect to OXT’s neural effect was

142  formulated.

143

144  Based on a growing number of findings suggesting sex-dependent effects of OXT on socia
145  cognition (Gao, et al., 2016; Chen, et a., 2016; Luo, et al., 2017), the second experiment
146  additionally explored whether OXT differentially affects empathic processing in men and
147  women. In line with a previous study reporting that sex does not affect OXT’s modulation of
148  empathy (Shamay-Tsoory, et al., 2013), we hypothesized that OXT facilitation of EE would
149  generalize across sexes. Finally, in the context of increasing interest in the therapeutic

150 application of OXT as a potential treatment to improve socia cognitive deficits, including
151  empathy, in autism spectrum disorders (Y oung and Barrett, 2015), and in line with previous
152  sudiesin healthy subjects (Bartz, et a., 2010; Scheele, et al., 2014; Xu, et d., 2015), the
153 modulatory role of trait autism (assessed by the Autism Spectrum Quotient questionnaire,
154  ASQ, Baron-Cohen, et a., 2001) was explored.


https://doi.org/10.1101/307256
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/307256; this version posted April 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

aCC-BY-NC-ND 4.0 International license.

Materials and Methods

2.1 Participants

To fully replicate the previous study on Caucasian participants (Hurlemann, et al., 2010),
only males were recruited in the first experiment but both males and females were enrolled in
the second experiment to explore potential sex-dependent effects of OXT on empathy.
Experiment 1 (Exp 1) included 60 participants (M + SD, mean age = 22.42 + 2.23, al male)
and Experiment 2 (Exp 2) included an independent sample of 72 participants (34 females,
mean age = 21.18 + 1.95, 38 males, mean age = 22.61 + 2.01). Both experiments
incorporated a double-blind, between-participant design, with participants being randomly
assigned to receive either OXT or PLC nasal-spray, resulting in n = 30 (Exp 1) and n = 36
(Exp 2, female = 17) participants treated with OXT. The experimental groups in both
experiments were of comparable age (Exp 1, p = 0.53, Tss= 0.63; Exp 2, p=0.66, T7o= -
0.44), education (Exp 1, p = 0.66, Tsg= 0.44; Exp 2, p = 0.63, T7o=-0.49) and, in Exp 2, of
equivalent sex distribution (chi-square < 0.001, df = 1, p = 1). Exclusion criteriafor al
participants were past or current physical, neurological or psychiatric disorders, regular or
current use of medication or tobacco.

Participants were required to abstain from alcohol, caffeine or nicotine for at least 12 hours
before the experiment. None of the females in Exp 2 were taking oral contraceptives or were
tested during their menstrual period. Menstrual cycle phase was determined using validated
procedures as described in (Penton-V oak, et al., 1999). The proportion of females estimated
to bein their follicular or luteal phases did not differ significantly between the treatment
groups (chi-square= 0.12, df = 1, p=0.73). In Exp 1, one participant (in the OXT group) and
in Exp 2, three participants (in the PLC group) failed to understand task instructions and were
consequently excluded from all further analysis, leading to atotal of n = 59 participantsin
Exp 1 and n = 69 participantsin Exp 2.

Before the experiment, written informed consent was obtained from all participants. The
study was approved by the local ethics committee of the University of Electronic Science and
Technology of Chinaand all procedures were in accordance with the latest revision of the
declaration of Helsinki.

2.2 Experimental Protocol

To control for potential confounding variables, all participantsinitially completed the
following questionnaires. Becks Depression Inventory (BDI; Beck, et al., 1961), WLEIS-C
Emotional Intelligence Scale (Wleis-C; Wong and Law, 2002), State Trait Anxiety Inventory
(STAI; Spielberger, et al., 1970), Empathy Quotient (EQ; Baron-Cohen and Wheelwright,
2004), and Positive and Negative Affect Scale (PANAS; Watson, et al., 1988). To examine
associations with trait autism, the ASQ questionnaire (Baron-Cohen, et a., 2001) was
administered. Intranasal treatment (oxytocin nasal spray, Sichuan Meke Pharmacy Co., Ltd.,
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196 China, or placebo nasal spray with identical ingredients except oxytocin) was administered in
197  line with recommendations for the intranasal administration of OXT in humans (Guastella, et
198 d., 2013) and 45min before the start of the experimental paradigm. In Exp 1, three puffs per
199 nostril (at 30s intervals) were administered (24 1U) and in Exp 2, five puffs per nostril (40 [U).
200 Bothdoses arein the typical range employed by other studies (Guastella, et al., 2013;

201 Striepens, et al., 2011) with the rationale for increasing the dose in Exp 2 being to explore
202  dose-dependent behavioral effects of OXT. In a previous study we found equivalent

203  behaviora and neura effects of 24 and 48 |lU OXT doses (Zhao, et al., 2017). However, it
204  should be noted that findings from some other studies investigating dose-dependent effects of
205 intranasal OXT have suggested an inverted-U-shaped dose-response curve (Cardoso, et al.,
206  2013; Quintana, et al., 2017; Quintana, et al., 2016; Spengler, et a., 2017) and thus a stronger
207  enhancement of EE with 24 U relative to 40 1U is conceivable. In post experiment interviews,
208  participants were unable to guess better than chance whether they had received the OXT

209 nasal spray, confirming successful blinding.

210

211 2.3 Experimental paradigm

212 Inline with aprevious study on male Caucasian participants (Hurlemann, et a., 2010),

213  empathy was assessed using the MET (Dziobek et a., 2008; Domes, et al., 2013; Edele, et al.,
214 2013; Hurlemann, et al., 2010; Wingenfeld, et a., 2014), which assesses both EE and CE
215  components using ecologically valid photo-based stimuli of either negative or positive

216  vaence. To account for potential confounding effects of OXT on in-group versus out-group
217  empathy (De Dreu and Kret, 2016) and a cultural empathy bias (Cao, et al., 2015; Luo, et a.,
218 2015a), the original Caucasian MET stimuli were exchanged with corresponding pictures
219 displaying Chinese protagonists. The Chinese stimuli were initially evaluated in an

220  independent sample (supplementary materials) and the final set of Chinese stimuli (30

221  positive, 30 negative valence) closely resembled the Caucasian stimuli depicting daily life
222  scenarios and conveying emotional mental states viafacial expression, body posture and

223  contextual cues. To assess CE, participants were instructed to infer the emotional state of the
224 protagonist in each scene and choose the corresponding answer from 4 options listed. The 4
225  options presented similar but distinct emotional states to ensure at least 70% accuracy for
226  each stimulus picture. For EED, participants were required to rate how they felt for the

227  protagonist in the depicted scene (1-9 scale, 1 = not at al, 9 = very strong), for EEI

228  participants were required to rate how much they were aroused by the scene (1-9 scale, 1 =
229  very cam, 9 = very aroused).

230

231 Thedifferent components of empathy were presented in a mixed event/block-design.

232  Following a3 second(s) instruction cue and ajittered inter-trial interval of 3.9s (2.3-5.9s), 10
233  stimuli per block were each presented for 3s followed by either a choice of the emotion

234  depicted for the CE condition (displayed for 4 s) or arating scale (1-9) for the EED and EEI
235 conditions (displayed for 5 s). Six blocks were presented for each condition, resultingin a
236  total of 18 blocks. The order of blocks was counterbalanced across the experimental

5
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237  conditions, and the fMRI experiment was divided into 6 runs, each containing one block per
238  empathy component. During fMRI (Exp 2) electrodermal activity was simultaneously

239 acquired as an index of autonomic sympathetic activity (Stern, et al., 2001) (technical details
240  on the electrodermal data acquisition are provided in the supplementary materials). To allow
241  baselinerecovery of the electrodermal signal a mean inter-trial interval of 5s (4-6s) and a
242  mean interval separating stimulus presentation and behavioral response of 4s (3-5s) was

243  adopted for the fMRI experiment.

244

245 24fMRI data acquisition

246  ThefMRI datain Exp 2 were collected using a GE (General Electric Medical System,

247  Milwaukee, WI, USA) 3.0T Discovery 750 MRI scanner. fMRI time series were acquired
248 using a T2*-weighted echo planar imaging pulse sequence (repetition time, 2000 millisecond
249  (ms); echo time, 30ms; slices, 39; thickness, 3.4 millimeter (mm); gap, 0.6 mm; field of view,
250 240 x 240 mm? resolution, 64x64; flip angle, 90°). Additionally, a high resolution T1-

251 weighted structural image was acquired using a 3D spoiled gradient recalled

252  (SPGR) sequence (repetition time, 6 ms; echo time, 2ms; flip angle 9°; field of view,

253 256 x 256 mm? acquisition matrix, 256 x 256; thickness, 1 mm without gap) to exclude

254  participants with apparent brain pathologies and to improve normalization of the fMRI data.
255

256 25fMRI data processing

257 fMRI datawere analyzed using SPM 12 (Wellcome Trust Center of Neuroimaging, University
258 College London, London, United Kingdom). The first five volumes were discarded to allow
259  T1 equilibration and images were realigned to the first image to correct for head motion.

260  Tissue segmentation, bias-correction and skull-stripping were done for the high-resolution
261  structural images. The functional time series were co-registered with the skull-stripped

262  anatomical scan and normalized to MNI space with voxel size of 3 mm?®. Normalized images
263  were then spatially smoothed using a Gaussian kernel with full-width at half-maximum

264 (FWHM) of 8 mm. On the first level, event-related responses were modelled and

265  subsequently convolved with the standard hemodynamic response function (HRF). The first
266 level design matrix included valence- (positive, negative) and empathy type- (CE, EED, EEI)
267  specific regressors for the viewing phases as main experimental conditions. In addition,

268  regressors for the cue presentation, valence- and empathy type-specific regressors for the
269  rating phases, and for viewing and rating phases of incorrect trials as well as the six

270  movement regressors were included. The experimental contrasts were next submitted to a
271  second level random effects analysis.

272

273  To evauate empathy-type specific main and interaction effects of treatment and valence,
274  repeated-measured ANOVAs were employed in a flexible-factorial design. Based on our
275  regiona hypothesis and the core empathy network (Bakermans-Kranenburg and van

276  1Jzendoorn, 2013; Bernhardt and Singer, 2012; Hillis, 2014; Hurlemann, et a., 2010; Leigh,
277  etal., 2013; Shamay-Tsoory and Abu-Akel, 2016; Wigton, et a., 2015), the analyses focused
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278 onthe bilateral amygdala, insulaand ACC which were structurally defined using 60%

279  probability maps from the Harvard-Oxford (sub)cortical atlas. For the regionally focused
280 analysis approach condition-specific parameter estimates were extracted from these regions
281  of interest (ROI) using the Marsbar toolbox (Brett, et al., 2002) and subjected to empathy
282  type-specific ANOVAs with the between-participant factor treatment (OXT, PLC) and the
283  within-participant factor valence (positive, negative) in SPSS (Statistical Package for the
284  Socia Sciences, Version 22). P-values for the post-hoc tests of the ROl anaysis were

285 Bonferroni-corrected (P < 0.05). An exploratory voxel-wise whole-brain analysisin SPM that
286  served to determine contributions of brain regions outside of the predefined network of

287 interest was thresholded at P< 0.05, corrected using the family-wise error (FWE) approach.
288 Toinvestigate the effects of OXT on the network level, a generalized form of

289  psychophysiological interaction anaysis (gPP!; http://brainmap.wisc.edu/PPl; McLaren, et .,
290 2012) was conducted using regions showing significant OXT effectsin the BOLD level

291 analysis as seeds and implementing an empathy-type specific voxel-wise whole-brain

292  ANOVA approach including the between-participant factor treatment (OXT, PLC) and the
293  within-participant factor valence (positive, negative) thresholded at P < 0.05, FWE-corrected
294  at thecluster level. In line with recent recommendations for the control of false-positivesin
295  cluster-based correction approaches an initial cluster forming threshold of P < 0.001 was
296  applied to data with aresolution of 3 x 3 x 3 mm (Eklund, et a., 2016; Slotnick, 2017).

297  Parameter estimates were extracted from the significant regions to disentangle the specific
298 effectsin post-hoc comparisons. Finaly, associations between neural indices and trait autism
299  (ASQ scores) were conducted in SPSS using Pearson correlation analysis.

300
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301 3. Results

302  In both experiments, there were no significant differences in trait and mood questionnaire
303  scores between OXT and PLC treatment groups (supplementary Table S1 for Exp 1, Table S2
304 for Exp 2). In line with previous studiesin Chinese populations (Melchers et al., 2015;

305 Montag et al., 2017), no significant sex differencesin ASQ and EQ scores were observed in
306 Exp 2 (Supplementary Table S3).

307

308 3.1Behavioral results

309 Based on previous conceptualizations of empathy, proposing that CE is a prerequisite for EE

310 (Decety and Jackson, 2004; Hillis, 2014), for EED and EEI measures only trials for which

311  subjects successfully recognized the emotions displayed by the protagonist were analyzed

312 (for asimilar approach see (Luo, et al., 20154)). To this end, correctly recognized trials were

313 initialy determined based on the CE performance, with only correct trials subsequently

314  entering the analyses for the EED and EEI facets.

315

316  There were no significant differencesin CE accuracy between the two treatment groups in

317  both experiments (Exp 1, OXT, 77.53% + 6.02%, PLC, 78.94% + 5.78%, Ts7 = 0.92, p = 0.36;

318 Exp2, OXT, 80.10% * 6.18%, PLC, 81.57% + 5.83%, Te7 = 1.02, p = 0.31). In Exp 1, there

319  wasamain effect of treatment (F (1, 57) = 6.46, p = 0.01, 12, = 0.10) for EED indicating that

320 OXT generally enhanced EED (Fig. 1A). There was no significant treatment x valence

321 interaction (F (1, 57) =0.96, p = 0.33, n2p= 0.02). Analysis of EEI did not reveal atreatment

322  main effect (F (1, 57) = 2.19, p= 0.14, %= 0.04) or valence x treatment interaction effect (F

323 (1,57)=3.16, p=0.08, 1% = 0.05).

324

325 Consistent with the findings for EED in Exp 1, Exp 2 also yielded a significant main effect of

326  treatment on EED (F (1, 67) = 5.81, p = 0.02, n%, = 0.08) with higher ratings following OXT

327 compared to PLC (Fig. 1B). There was also asignificant valence x treatment interaction (F (1,

328 67)=4.18, p=0.05, nzp = 0.06) with more pronounced effects of OXT on negative compared

329  to positive valence stimuli (positive: F (1,67) = 1.68, p = 0.2, n%, = 0.02; negative: F (1, 67) =

330  9.96, p=0.002, 0%, = 0.13). For EEI there was also asignificant main effect of treatment (F

331 (1,67)=4.84, p=0.03, 1% = 0.07) but no treatment x valence interaction (F (1, 67) = 2.02, p

332 =0.16, 1% = 0.03). For CE, there were neither significant main effects nor interactions (F

333 (1,65) =0.80, p = 0.37, 1% = 0.01). In Exp 2, no significant main or interaction effects

334 involving sex were observed (al ps > 0.18) arguing against sex-dependent effects of OXT on

335 empathy.

336

337 3.2 Associations between behavior and trait autism

338 In Exp 1, there was atrend towards a negative correlation between the ASQ score and the

339 total EED and EEI scoresin the OXT group (ASQ Total: EED r =-0.47, p=0.09; EEl r = -

340 0.37, p =0.19) but not the PLC group (EED r = 0.319, p=0.18; EEI r = 0.17, p = 0.48). The
8
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341  correlation significantly differed between the PLC and OXT groups for EED (Fisher'sz = -
342  2.13, p = 0.03) athough not for EEI (Fisher’'sz =-1.43, p=0.15). In Exp 2, therewasa
343  similar pattern of correlation differences between EED and EEI scores and total ASQ scores,
344  athough these associations did not reach statistical significance other than for EED under
345 OXT (EED —PLCr=0.03, p=0.85 OXT r =-0.34, p=0.04, Fisher'sz =153, p = 0.13;
346 EEI-PLCr=0.03,p=0.85 OXTr=-0.28, p=0.09, Fisher'sz =1.29, p = 0.20).

347 Regression plots are shown in Fig. 2 and suggest that OXT is producing its main behavioral
348  effectsin participants with lower autism traits.

349

350 3.3 Dose-dependent effects between Experimentsland 2 (241U vs401U )

351 Dose effects were explored by combining the data from male participantsin Exp 1 (24 1U)
352 and Exp 2 (40 1U). Toinitialy explore potential effects of the different experimental

353  environments (Exp 1, 24 1U, behavioral testing room; Exp 2, 40 1U, inside the MRI-scanner)
354  on empathy per se, afirst analysis focused on the placebo-treated subjects. A repeated

355 ANOVA with environment (behavioral vs MRI room) as a between-subject factor and

356 vaence as awithin-subject factor revealed a significant environment main effect for both EE
357 facets, indicating elevated EE ratings in the MRI room (Main effects: EED: p = 0.003, F
358  (1,47) =10.19, 1%, = 0.18; EEl: p = 0.02, F (1,47) = 5.74, 1% = 0.11, both interactions with
359 vaence> 0.38, non-significant, Fig. 3), but no effects on CE (Main effect: p = 0.15, F (1,47)
360 =2.19, n% = 0.05; Interaction: p = 0.9, F (1,47) = 0.02, 1%, < 0.001). These findings suggest
361 that the MRI-environment per se increased EE, an effect possibly related to elevated levels of
362  stressduring the MRI assessments, which would be in line with a previous study reporting
363 that stress-induction specifically increased EE, but not CE in the MET (Wolf, et a., 2015).
364  Theenvironmental differences and potential interactions with OXT preclude the

365 interpretation of dose-related differences between the experiments.

366

367 3.4 Oxytocin effects on SCR

368  One participant was excluded from SCR analysis due to low skin impedance and thus a total
369  of 68 participants from Exp 2 were included. Analyses of the SCR data paralleled the

370 analyses of the empathy ratings, using ANOV As with the between-subject factors treatment
371 (OXT, PLC) and sex (male, female), and the within-subject factor valence. There was a

372  marginal main effect of treatment on SCR during EED trials and significant during EEI trials
373 (EED: F(1, 66) =3.77, p=0.06, n%, = 0.05; EEI: F (1, 66) = 4.50, p = 0.04, n°, = 0.06), but
374  not during CE trids (F (1, 66) = 2.14, p = 0.15, nzp = 0.03). This was due to SCR responses
375 beingincreased in the OXT group during EE and EEI trias (Fig. 4). There were no

376  significant main effects of valence or treatment x valence or treatment x sex interactions for
377 CE, EE or EEl trids (all ps>0.2).

378

379 3.5 Oxytocin effects on neural activity
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380 Inview of the absence of sex-dependent effects in the behavioral analysis, and to increase the
381 datistical power to determine OXT effects on the neural level, the data from male and female
382  participants were pooled for the fMRI analyses. Four further participants were excluded from
383 thefMRI analysis due to excessive head motion (head motion > 3 mm). The neural

384  mechanisms underlying the behavioral effects of OXT were initially explored in the different
385 priori ROIs (amygdala, insulaand ACC) using separate repeated measures ANOV As for the
386 three empathy (CE, EE and EEI) conditions. Main treatment effects were only observed in
387 theamygdala (Fig. 5A) for EED (left amygdala: F (1,63) = 6.55, p = 0.01, %, = 0.09; right
388 amygdala: F (1,63) = 5.18, p = 0.03, n°, = 0.08). There were no significant main effects for
389 CE or EEI or any treatment x valence interactions for CE, EED or EEI. An exploratory whole
390 brain analysis revealed no regions that showed significant treatment—dependent changes

391 under CE, EED or EEI (all Prpr corrected > 0.05) outside of the prior defined ROIs.

392

393 3.6 Oxytocin effects on functional connectivity

394  Repeated measures ANOVA modelsin SPM that included the between-subject factors

395 treatment (OXT, PLC) and sex (male, female) and the within-subject factor valence (positive,
396 negative) revedled asignificant Treatment x Valence interaction effect for EED-associated
397  functional coupling of the right amygdala with the bilateral insula and the bilateral PCC (left
398 insulapeak located at x/y/z, -33/6/-15, Pawe = 0.02, cluster size = 143 voxels; right insula
399  pesk located at 45/18/-12, Prwe = 0.03, cluster size = 121 voxels; left PCC peak located at -
400  30/-33/30, Pye = 0.003, cluster size = 213 voxels; right PCC peak located at 21/-36/33, Prye
401 =0.01, cluster size = 149 voxels; coordinates given in MNI-space). Extraction of parameter
402  estimates further revealed that OXT increased functional connectivity for positive valence
403  stimuli whereas it decreased connectivity for negative valence ones (left insula: positive, F
404  (1,61) = 10.52, p = 0.002, 1% = 0.15, negative, F (1,61) = 3.86, p = 0.05, n°, = 0.06; right
405 insula: positive, F (1,61) = 3.34, p = 0.07, 1%, = 0.05, negative, F (1,61) = 5.53, p = 0.02, n%
406 = 0.08; left PCC: positive, F (1,61) = 4.34, p = 0.04, n’, = 0.07, negative, F (1,61) = 5.67, p =
407  0.02, % = 0.09; right PCC: positive, F (1,61) = 8.00, p = 0.006, %, = 0.12, negative, F (1,61)
408 =5.48,p=0.02, 1% =0.08) (Fig. 6).

409

410 3.7 Associations between neural and SCR effects of OXT and behavioral and autism
411  trait scores

412  There was a significant positive correlation between EED scores and bilateral amygdala

413  responsesin the PLC group (left r = 0.49, p = 0.004; right r = 0.35, p = 0.04) which was

414  absent inthe OXT group (left r = 0.005, p = 0.98; right r = -0.007, p = 0.97). The correlation
415  difference between the PLC and OXT groups was significant for the left (Fisher’'s Z = 2.05, p
416 = 0.04) but not the right (Fisher’'s Z = 1.43, p = 0.15) amygdala (Fig. 5B). There was no

417  correlation between left or right amygdala responses with total ASQ scores.

418  For the functional connections showing OXT effects for EED in terms of a treatment x

419 vaenceinteraction, coupling strength between the right amygdala and left insula during

420 positive valence EED trials was positively correlated with the total ASQ in the PLC group

10


https://doi.org/10.1101/307256
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/307256; this version posted April 26, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

421  (total ASQ —r = 0.40, p = 0.02,) but not in the OXT group (total ASQ —r =-0.22, p=0.22,
422  Fisher'sZ =250, p=0.01; Fig. 7A). OXT particularly appears to increase the strength of
423  right amygdalafunctional connections with the insulain individuals with lower ASQ scores,
424 dthough only for positive valence EED. The strength of link between the right amygdala and
425  |eft PCC during negative valence EED trials was positively correlated with the total ASQ
426  scoreinthe PLC group but not the OXT, although the difference between the groups was not
427  dgnificant (total ASQ—-PLCr=0.36, p=0.04; OXTr=0.15p=0.41; Fisher'sZ=0.85, p
428 =0.39; Fig. 7B). There were no significant correlations between SCR values and ASQ scores
429  during either EED or EEI trials (all ps> 0.41).

430

11
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431 4. Discussion

432

433  The present study confirmed in two independent samples that intranasal OXT specifically
434  facilitates EE but not CE as assessed by the MET paradigm in Chinese participants, thereby
435  replicating previous findings in Caucas an participants (Hurlemann, et a., 2010). Our

436 findings also demonstrated for the first time that the OXT-induced enhancement of EED is
437  associated with decreased bilateral amygdala reactivity and enhanced functional coupling of
438 theright amygdalawith the insulaand PCC for positive valence stimuli but attenuated

439  coupling for negative valence stimuli. These behavioral and neural effects were not

440 modulated by subject sex, suggesting a generalization across men and women. Finaly, an
441  exploratory analysis of associations with trait autism revealed that both behavioral and neural
442  effects of OXT were modulated to some extent by trait autism scores.

443

444 Although many studies have reported cultural differences between Asian and Caucasian

445  participants in the context of OXT receptor polymorphisms and empathy (Jessica, et al., 2016;
446  Kim, et al., 2010; Luo, et al., 2015b), we did not find any substantive difference with respect
447  tothe effects of intranasal OXT on empathy processing as assessed by MET. Thus, in both
448  cultures, OXT enhanced EE but not CE (Hurlemann, et a., 2010) for both valences, although
449  in our second experiment we found stronger effects for negative valence stimuli. Effects of
450 the scanning environment on emotional empathy ratings per se precluded the direct

451  evauation of dose-response effects between the two experiments, however OXT specifically
452  increased EE in both suggesting that its effects generalize across 24 and 40IU doses, in line
453  with our previous finding (Zhao, et a., 2017). In general, the magnitude of the reported

454  behavioral OXT effect on both EED and EEI reported in Caucasian participants was however
455  somewhat stronger compared to both 24 and 40 1U doses administered in our study, although
456  different MET stimuli were used.

457

458  In agreement with other studies, there were no sex-differences in EE, trait empathy (Wu et al.,
459  2012) or trait autism (Kawamuraet a., 2011; Montag et al., 2017) scoresin our Chinese

460  study cohort, whereas in Caucasian participants we found that females scored significantly
461  higher than males for both positive and negative valence stimuli (Hurlemann, et a., 2010).
462  Thus, it isconceivablethat in Caucasian females the effects of OXT in the MET might not be
463  aspronounced asin males. The absence of an effect of OXT on CE in the MET contrasts
464  with reports using other paradigms, notably the reading the mind in the eyes test (RMET)
465 (Domes, et al., 2007b; Feeser, et a., 2015). However, the robustness of these findings has
466  been questioned by another study which failed to replicate them even when taking into

467  account both item difficulty and valence (Radke and de Bruijn, 2015). Moreover, there are
468  also notable differences between the MET and RMET with the images in the MET including
469 more complex natural scenes and emotions conveyed by multiple cues (face, body posture
470  and context) whereas in the RMET emotions are only interpreted from pictures of eye regions
471  and are also often more subtle. Thus, OXT can facilitate CE in some contexts, particularly

12
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with cues restricted to eyes, but not in others where multiple cues are present. Additionally,
and in contrast to previous studies, we measured SCR responses during trials involving the
three empathy components and OXT only increased the SCR in EE and not CE trials. Thus,
OXT enhancement of EE is paralleled by increased physiological arousal not only in EEI
trials (where participants are asked to score how aroused they are by the stimulus picture) but
alsoin EED trials (where they are scoring the strength of their feelings towards to protagonist
in the picture).

In line with the specific, and critical contribution of the amygdalato emotional, rather than
cognitive aspects of empathy (Hurlemann, et a., 2010), OXT’ s enhancement of EE was
accompanied by areduction of associated amygdala activity. Exploratory analyses revealed
that EED scores were positively associated with the magnitude of amygdala responses during
positive valencetrials in the PLC group, whereas this association was absent under OXT,
possibly reflecting an enhancement of amygdala processing efficiency. While some previous
studies found that OXT specifically reduced amygdala responses to negative emotional
stimuli (Gamer, et a., 2010; Kirsch, et a., 2005), the suppression of EED-associated
amygdala activity was observed irrespective of valence. A similar pattern of OXT-induced
valence-independent suppression of amygdala activity has previously been suggested to
reflect reduced uncertainty of a socia stimulus which in turn motivates approach behavior
(Domes, et al., 2007a). In line with this interpretation, the valence-independent EED-
associated amygdala suppression may reflect that OX T’ s approach-facilitating properties
(Arakawa, et al., 2010) promote EE regardless of whether the emotions expressed by the
protagonist are positive or negative, which isaso in line with a rodent study reporting an
overall reduction of amygdala EEG power following OXT (Sobota, et al., 2015). Other
studies have found that OXT’ s modulation of amygdala responses dependent upon sex (Gao,
eta., 2016, Luo, et a., 2017) and it is generally considered that the salience of cues as well
astheir context may play an important role in determining OXT’s effects (Shamay-Tsoory
and Abu-Akel, 2016). In the present study, neither sex nor valence influenced amygdala
reactivity. This possibly reflects the fact that both salience and context are broadly similar for
EE responses in the two sexes.

OXT also differentially atered the functional connectivity between the right amygdala and
bilateral insulain a valence-dependent manner. In EED trias, the strength of the functional
connectivity between the right amygdala and insula following OXT was significantly
increased during positive valence stimuli but decreased during negative ones. A few previous
studies have also reported OXT effects on functional connectivity between the insulaand
amygdala (Gao, et al., 2016; Hu, et a., 2015; Rilling, et al., 2012; Striepens, et al., 2012) and
these two regions are key hubs of the brain salience network (Uddin, 2015). Thus, in the
current context OXT may have acted to increase the salience of both positive and negative
valence stimuli during EED trials by differentially atering the functional connectivity
between the amygdala and insula. Rilling et al., (2012) have also previously suggested that

13
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the stronger the functional coupling between amygdala and insula, the more able the
amygdalaisto elicit subjective feeling states in response to salient social stimuli.

The effect of OXT on increasing functional connectivity between the right amygdala and
bilateral PCC for positive valence stimuli and decreasing it for negative onesin EED trials
may similarly reflect amodulatory influence on salience processing. A previous study has
reported that OXT enhanced functional connectivity between amygdala and PCC during
exposure to infant laughter (Riem, et al., 2012), suggesting that it increased the incentive
salience of infant laughter. In our current study, the consistent patterns of functional
connectivity changes elicited by OXT for positive and negative valence stimuli for amygdala
functional connectivity with the insula and PCC may indicate that these three regions
comprise an integrated network mediating valence-dependent OXT effects.

Both the behavioral and neura effects of OXT were modified to some extent by trait autism
scores, as measured by the ASQ. In both experiments OXT tended to produce a negative
correlation between EE and ASQ scores, whereas this correlation was absent in the PLC
group. However, this effect of OXT only achieved significance in Exp 1, which included only
male participants, and indicates that increased EE scores were more evident in individuals
with lower ASQ scores. For the neural associations functional connectivity between the
amygdala and insula was positively associated with total ASQ scores for positive valence EE
trialsin the PLC group, but this was absent in the OXT group. Thisindicates that OXT
effects on functional connections between the right amygdala and left insula (for positive
valence stimuli) were also strongest in individuals with lower ASQ scores. Thus overall,
while both behavioral and neural OXT effects on EE were modified by ASQ scores, the
extent to which these findings represent support for possible therapeutic use in ASD remains
unclear. Indeed, arecent study on OXT enhancement of behavioral and neural responses to
affective touch also reported stronger effects in individuals with lower ASQ scores (Scheele,
eta., 2014).

There are several limitations which should be acknowledged in the current study. Firstly, we
were unable to directly compare behavioral and neural responses during the MET task in
Caucasian as well Chinese participants, so we cannot totally exclude the possibility that some
cultural differencesin responseto OXT during empathic processing may exist. Secondly, we
only investigated effects using the MET paradigm and it is possible that OXT effects on CE
as well as EE would have been found using other paradigms. Lastly, the absence of sex-
differencesin OXT effects in the current study might have been contributed to by our
Chinese male and female participants exhibiting similar EE scores, in contrast to Caucasian
participants (Hurlemann, et a., 2010), and also similar ASQ scores.

In summary, in the current study we have shown that in the MET paradigm, OXT enhances
EE but not CE in Chinese participants, similar to Caucasian ones, and additionally that this
occurs in female as well as male participants. Furthermore, we have shown for the first time
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that this EE effect of OXT is associated with decreased amygdala responses and differentially
altered functional connectivity between the amygdala and insulaand PCC for positive and
negative valence stimuli. Finally, we have shown that both behavioral and neura effects of
OXT are modified to some extent by trait autism scores, although behavioral and functional
connectivity effects were strongest in individuals with lower scores.
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Fig. 1 Behavioral resultsfor Exp 1 (A) and Exp 2 (B). (A) In Exp 1, OXT significantly
increased EED ratings. To allow for a better comparison with Exp 2, effects of OXT on
positive and negative EED trials, as well as on EEI are aso shown; (B) In Exp 2, OXT
increased both EED and EEI ratings; an effect of oxytocin on negative EED drove the
significant treatment by valence interaction. (*P < 0.05)
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Fig. 2 Regression plots for ASQ score and EED and EEI ratings. Exp 1 (A) and Exp 2 (B) in
OXT and PLC groups.
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Fig. 3 EE differences between Exp 1 and Exp 2 in the placebo treated subjects.
Examining the placebo treated male subjects from the two experiments revealed that EE was
significantly increased in the MRI environment (Exp 2, 40 1U) compared to the behavioral

testing room (Exp 1, 24 1U).
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= 0.06) and EEl trials. (* P < 0.05)
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893  Fig. 5 Effects of OXT on bilateral amygdala responses. (A) Region of interest analysis results
894  for left and right amygdala responses during EED trials; (B) Regression plots show

895  correlations between left and right amygdala responses and EED scoresin OXT and PLC

896 groups. *P<0.05
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899 Fig. 6 Effects of OXT effect on right amygdala functional connectivity. Effects of

900 treatment on functional connectivity of the right amygdala, indicating val ence-dependent

901 effects of OXT on the coupling of the right amygdala with the left (A) and right (B) insula, as
902 well astheleft (C) and right (D) PCC (*P < 0.05). (Pos: Positive; Neg: Negative).
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906 Fig. 7 Regression plots for correlations of ASQ scores with amygdala responses and

907  functional connectivity during EE trialsin OXT and PLC groups. (A) Correlation between
908 right amygdala-left PCC functional connectivity during negative EED trials and total ASQ
909 score; (B) Correlation of right amygdala functional connectivity with left insula cortex during
910 positive EE trials and total ASQ score. In all cases, significant positive correlations during

911 PLC administration are absent in the OXT group.
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