

1 **Hif-1alpha induced expression of Il-1beta protects against mycobacterial
2 infection in zebrafish.**

3

4 ^{1,2}Nikolay V. Ogryzko, ^{1,3}Amy Lewis, ³Heather L. Wilson, ⁴Annemarie H. Meijer,
5 ^{1,3}Stephen A. Renshaw and ^{1,3,*}Philip M. Elks

6

7 ¹The Bateson Centre, University of Sheffield, Western Bank, Sheffield, UK.

8 ²MRC Centre for Inflammation Research, University of Edinburgh, Little France
9 Crescent, Edinburgh, UK.

10 ³Department of Infection and Immunity and Cardiovascular Disease, University of
11 Sheffield, Western Bank, Sheffield, UK.

12 ⁴Institute of Biology, Leiden University, Leiden, The Netherlands.

13

14 *Corresponding author:

15 Email: p.elks@sheffield.ac.uk (PME)

16

17 Running Title: Hif-1 α induced il-1 β protects against TB

18

19

20

21

22

23

24

25

26 **Abstract**

27 Drug resistant mycobacteria are a rising problem worldwide. There is an
28 urgent need to understand the immune response to TB to identify host targets that, if
29 targeted therapeutically, could be used to tackle these currently untreatable
30 infections. Here, we use an IL-1 β fluorescent transgenic line to show that there is an
31 early innate immune pro-inflammatory response to well-established zebrafish models
32 of inflammation and *Mycobacterium marinum* (Mm) infection. We demonstrate that
33 host-derived hypoxia signalling, mediated by the Hif-1 α transcription factor, can
34 prime macrophages with increased levels of IL-1 β in the absence of infection,
35 upregulating neutrophil antimicrobial nitric oxide production, leading to greater
36 protection against infection. Our data link Hif-1 α to proinflammatory macrophage IL-
37 1 β transcription *in vivo* during early mycobacterial infection and importantly highlight
38 a host protective mechanism, via antimicrobial nitric oxide, that decreases disease
39 outcomes and that could be targeted therapeutically to stimulate the innate immune
40 response to better deal with infections.

41 **Keywords:** Hif-1 α /IL-1 β /mycobacterium/hypoxia/zebrafish

42

43 **Introduction**

44 Pulmonary tuberculosis (TB) is a major world health problem caused by the
45 bacillus *Mycobacterium tuberculosis* (Mtb) (World Health Organization, 2016). It is a
46 current priority for infectious disease research due to increasing rates of multi- and
47 totally-drug resistant strains causing high levels of mortality, especially in the
48 immunocompromised (Koul *et al*, 2011). Mycobacteria are specialised at evading
49 killing mechanisms of the immune system to survive. Mycobacteria and immune cells
50 create a highly organised niche, called the granuloma, in which Mtb can proliferate or

51 enter a latent phase, protected from the immune system (Podinovskaia *et al*, 2013;
52 Ramakrishnan, 2012). In human Mtb infection, bacteria first encounter cells of the
53 innate immune system in and around the lungs, either macrophages in the alveolar
54 space or neutrophils in the surrounding capillary vasculature, before the involvement
55 of adaptive immunity and granuloma formation (Lerner *et al*, 2015; Jasenosky *et al*,
56 2015). These initial phagocytosis events are followed by the attraction of other innate
57 immune cells which signal to draining lymph nodes to activate the adaptive immune
58 response, signs of which only become apparent 3 to 8 weeks after infection in
59 humans (Jasenosky *et al*, 2015). Although granuloma formation is reasonably well
60 characterised, the initial interactions of the bacteria with the host innate immune cells
61 are less well defined *in vivo*.

62 Mtb, like many other bacterial and pathogenic microbes, triggers a pro-inflammatory
63 immune response via the activation of TLRs (Toll-like receptors) (Mortaz *et al*, 2015).
64 The activation of the innate immune cells via TLR signalling is a critical early host
65 response to many invading pathogens for successful clearance of infection and, in
66 the absence of TLR signalling, mycobacteria grow unchecked to cause systemic
67 infection (van der Vaart *et al*, 2013). Although mycobacteria can hijack host
68 leukocytes to create a niche for their growth, in zebrafish models many of the initial
69 Mm inoculum are neutralised by macrophages and neutrophils before infection can
70 take hold (Hosseini *et al*, 2016; Cambier *et al*, 2013). Early mycobacterial interaction
71 with host leukocytes is critical for the pathogen, and manipulation of the macrophage
72 by the bacteria is required for establishment of a permissive niche in which the
73 bacteria can grow and build its host derived protective structure, the granuloma
74 (Meijer, 2016; Guirado *et al*, 2013). Indeed the control of the macrophage by Mm
75 may happen early in infection, as there is a phase of infection from 6 hours to 1 day

76 post infection in the zebrafish model that is characterised by a dampening of the
77 cytokine transcriptional response (Benard *et al*, 2016). Greater understanding of the
78 diverse phenotype of macrophages immediately after infection may allow therapeutic
79 tuning to provide maximal early control of mycobacteria during infection (McClean &
80 Tobin, 2016; Dorhoi & Kaufmann, 2015). Recent studies in optically translucent
81 zebrafish infection models have indicated that initial interactions between Mm and
82 macrophages and neutrophils are more complex than originally thought, with
83 successive rounds of bacterial internalisation and leukocyte cell death leading to
84 granuloma formation (Hosseini *et al*, 2016; Cambier *et al*, 2017; Elks *et al*, 2015).
85 The immune molecular mechanisms involved in these early processes are poorly
86 understood.

87 We have previously demonstrated in a zebrafish/Mm model of TB that the initial
88 immune response to infection can be enhanced by stabilising host-derived Hif-1 α
89 (hypoxia inducible factor-1 alpha), leading to reduced bacterial burden (Elks *et al*,
90 2013). Hif-1 α is a major transcriptional regulator of the cellular response to hypoxia,
91 that has been implicated in the activation of macrophages and neutrophils during
92 infection and inflammatory processes (Cramer *et al*, 2003; Elks *et al*, 2011).
93 Stabilisation of Hif-1 α in zebrafish upregulated pro-inflammatory neutrophil nitric
94 oxide (NO) production leading to lower mycobacterial burden (Elks *et al*, 2013,
95 2014a). The mechanisms by which pro-inflammatory cytokines associated with this
96 NO increase are regulated by Hif-1 α signalling is not known.

97 IL-1 β is a critical macrophage-derived activator of immune cells with wide-ranging
98 and complex effects on immune signalling and downstream pathways. IL-1 β has
99 been shown to be upregulated in the onset and formation of Mm and Mtb
100 granulomas (Di Paolo *et al*, 2015; Bourigault *et al*, 2013; Novikov *et al*, 2011). We

101 hypothesised that IL-1 β would be activated in specific immune cell populations early
102 in Mm infection, (within 1-day post-infection, pre-granuloma formation) and that Hif-
103 1 α acts via altered expression of this important pro-inflammatory mediator to confer
104 protection against mycobacterial infection. Here, using the zebrafish Mm model and
105 fluorescent transgenic lines, we show that that *il-1 β* is transcriptionally upregulated in
106 macrophages early during *in vivo* infection. Stabilisation of Hif-1 α upregulates *il-1 β*
107 transcription in macrophages in the absence of infection. *il-1 β* signalling is required
108 for protective NO production by neutrophils and a subsequent decrease in infection.
109 Our data indicate that protective Hif-1 α mediated NO is at least partially regulated by
110 the key pro-inflammatory mediator IL-1 β , increasing our understanding of the
111 mechanism of action of the potential therapeutic target, Hif-1 α , as a host-derived
112 factor in TB.

113

114 **Results**

115

116 ***il-1 β :GFP* is upregulated in macrophages during early and later stage Mm
117 infection**

118 IL-1 β is a major macrophage-derived pro-inflammatory cytokine that is upregulated in
119 both inflammation and infection. The initial phase of Mm infection in zebrafish is
120 characterised by a short period of greatly increased pro-inflammatory signalling
121 (before 1 day post-infection, dpi) where the immune system reacts to Mm infection.
122 This is followed by a lag-phase of decreased activity which allows for granuloma
123 formation between 2-3dpi, before cytokine levels rise again in formed larval
124 granulomas at 4dpi (Benard *et al*, 2016; Hosseini *et al*, 2016). However, the levels of
125 pro-inflammatory cytokines have only been previously studied at a transcriptional

126 level in whole embryos or FACS sorted cells, rather than detecting levels *in situ*, over
127 time, in an intact organism (Benard *et al*, 2016).

128 We hypothesised that $Il-1\beta$ is a major pro-inflammatory cytokine that would be
129 upregulated by both mycobacterial infection and $Hif-1\alpha$ stabilisation. We have
130 previously shown upregulation of $il-1\beta$ message after induction of inflammation via
131 tailfin transection by qPCR and wholmount *in situ* hybridisation (WISH) in the
132 zebrafish (Ogryzko *et al*, 2014a). $il-1\beta$ is one of the most readily detectable pro-
133 inflammatory cytokines during early granuloma stages of Mm infection and at 1 dpi
134 (Figure 1A) (Van Der Vaart *et al*, 2014). At 1dpi transcription is upregulated 1.7 fold
135 measured by qPCR, compared to PVP injection controls (Figure 1A). Macrophage
136 expression of $il-1\beta$ is greatly under-represented measured in this way on the
137 wholebody level due to the small proportion of cells that contribute to the immune
138 lineage. Therefore, to investigate $il-1\beta$ expression on a cellular level *in vivo*, we
139 developed a BAC (bacterial artificial chromosome) derived $il-1\beta$ promoter driven GFP
140 line, *TgBAC(il-1\beta:GFP)SH445*, to assess $il-1\beta$ expression in real-time during
141 mycobacterial infection. We sought to examine $il-1\beta:GFP$ expression in our well-
142 established inflammation assay before investigating its expression during
143 mycobacterial infection. Both wholmount *in situ* hybridisation (WISH) of $il-1\beta$ and $il-$
144 $1\beta:GFP$ do not exhibit any immune cell expression under basal conditions (Figure
145 S1A-B and Figure 1B). $il-1\beta:GFP$ recapitulates $il-1\beta$ WISH expression in response to
146 tail transection, with upregulation observed in cells in and around the caudal
147 haematopoietic region (CHT), consistent with immune cell expression, (Figure S1A
148 and B) (Ogryzko *et al*, 2014a), although, as expected, the synthesis of GFP occurs
149 over a longer timescale than that of $il-1\beta$ mRNA detected by WISH. Neutrophils are

150 the first cells to respond to tailfin transection with increased *il-1 β :GFP*, with
151 fluorescence first observed at 1hpw (hours post-wounding) and still present at 6hpw
152 (Figure S1C). Having demonstrated that the *il-1 β :GFP* is responsive to inflammation
153 in similar cells over a similar timespan as the *in situ* hybridisation, we sought to
154 investigate its regulation during mycobacterial infection.

155 We used the *TgBAC(il-1 β :GFP)sh445* line to show that GFP is expressed in cells
156 proximal to Mm infection sites at pre-granuloma phases (1dpi) (Figure 1B) and in
157 larval granulomas (4dpi) (Figure 1C). Many of these cells contained Mm and had the
158 appearance of activated immune cells with a dynamic branched phenotype (Figure
159 1B and Movie S1). The earliest timepoint at which *il-1 β :GFP* could be detected by
160 confocal microscopy was between 6 and 8 hours post infection, (Figure 2A),
161 consistent with rapid transcriptional activation of the *il-1 β* promoter after infection and
162 similar to the timing of macrophage *il-1 β :GFP* expression after tailfin transection
163 (Figure 2B). *il-1 β :GFP* was predominantly upregulated in infected macrophages at
164 1dpi (Figure 2C) consistent with their containment of phagocytosed Mm (Figure 1B).
165 These data demonstrate that, during early stages of infection, *il-1 β* is transcriptionally
166 activated in infected macrophages as part of an early pro-inflammatory response.

167

168 **Stabilisation of Hif-1 α upregulates *il-1 β :GFP* at early stages of infection**

169 We have previously shown that stabilisation of Hif-1 α induces neutrophil pro-
170 inflammatory nitric oxide production (Elks *et al*, 2013, 2014a). We hypothesised that
171 this may be a part of an increased pro-inflammatory profile in innate immune cells,
172 therefore we tested whether Hif-1 α is upregulating a pro-inflammatory program in the
173 absence of infection using the *il-1 β :GFP* transgenic line. Dominant active Hif-1 α

174 significantly increased *il-1 β :GFP* expression in the absence of Mm infection at 2dpf,
175 while dominant negative Hif-1 α caused no difference in *il-1 β :GFP* expression (Figure
176 3A and B). These data indicate that *il-1 β* expression is part of a pro-inflammatory
177 response to increased Hif-1 α levels that could aid the host response to Mm
178 challenge.

179

180 **Inhibition of *il-1 β* increases Mm burden and inhibits the Hif-1 α nitric oxide
181 response**

182 IL-1 β is a major pro-inflammatory cytokine that in many infections is instrumental in
183 coordinating the immune response (Cohen, 2014; Ogryzko *et al*, 2014b). We sought
184 to test whether IL-1 β was important in early Mm infection. When IL-1 β was blocked
185 using a well-characterised and validated *il-1 β* morpholino, the morphants showed
186 significantly increased infection compared to control morphants (Figure 4A and B).

187 We have previously shown that stabilisation of Hif-1 α induces pro-inflammatory
188 neutrophil nitric oxide production, via inducible nitric oxide synthase (iNOS) (Elks *et*
189 *al*, 2013, 2014a). DA Hif-1 α was not sufficient to reduce Mm infection levels when *il-*
190 *1 β* expression was blocked (Figure 4A and B) suggesting that the *il-1 β* response to
191 Mm infection is critical to control infection. These results were supported by
192 generation of an *il-1 β* null mutant (*il-1 β ^{SH446}*/ *il-1 β ^{SH446}*) (Figure S2), in which DA Hif-
193 1 α also did not decrease infection, while in wildtype siblings infection was reduced
194 (Figure 4C and D).

195 NO production is found primarily in neutrophils after Mm infection in zebrafish larvae
196 (Figure S3) (Elks *et al*, 2013, 2014b). We have previously demonstrated that
197 inhibiting production of nitric oxide by Nos2 can block the antimicrobial effect of DA

198 Hif-1 α (Elks *et al*, 2013). Blocking IL-1 β production also significantly dampened the
199 neutrophil nitric oxide response after Mm infection at 1dpi (Figure 5A and B). As we
200 have previously observed, DA Hif-1 α upregulated NO in the absence of infection
201 (PVP) an effect that is dampened by introduction of the bacteria (Mm) through
202 currently unknown mechanisms, (Figure 5C and D) (Elks *et al*, 2013). Here, we find
203 that *il-1 β* MO blocked the increased production of nitrotyrosine by DA Hif-1 α in the
204 absence of bacteria (PVP) (Figure 5C and D). These results show that Hif-1 α
205 activation of Nos2 may, at least in part, be acting through *il-1 β* activation (Figure 6)
206 and hint at a much more complex regulation of pro-inflammatory signalling by Hif-1 α
207 than simply acting on Hif responsive elements (HREs) in the promoter of Nos2.

208

209 **Discussion**

210 Antimicrobial resistance is a rising problem in TB infections worldwide and there is
211 an urgent need to understand the regulation of host-immunity by TB so that we can
212 target host-derived factors to help tackle disease. Our data identify an early pro-
213 inflammatory response, involving macrophage *il-1 β* expression, that is important for
214 the onset of early disease, but ultimately fails to control infection leading to
215 granuloma formation. Using a well-established zebrafish Mm model of TB, we show
216 that manipulation of Hif-1 α can stimulate this pro-inflammatory network, aiding the
217 host fight against infection, moving towards early clearance of infection. Specifically,
218 we identify that Hif-1 α driven IL-1 β contributes to the NO response, a response we
219 have previously shown to be host protective (Elks *et al*, 2013, 2014a).

220 Here, we took advantage of a novel transgenic zebrafish line to understand the
221 dynamics and cell specificity of *il-1 β* production in inflammation and mycobacterial
222 infection, with a focus on the understudied early stages (<1dpi) of the innate immune

223 response to TB infection. We confirmed that the *il-1 β :GFP* expression of our line was
224 faithful to *il-1 β* transcription by following its expression in a well-characterised tailfin
225 transection model of inflammation and comparison to *in situ* hybridisation data
226 (Ogryzko *et al*, 2014a; Renshaw & Loynes, 2006). Furthermore, the expression
227 pattern of our BAC transgenic line closely matches another recently published BAC
228 promoter driven *il-1 β* transgenic (Hasegawa *et al*, 2017). The *il-1 β :GFP* line also
229 displayed some GFP signal in muscle and epithelial cells in the tail. Similar GFP
230 expression can be seen when driven by NF- κ B response elements (Kanther *et al*,
231 2011) but not by WISH, suggesting this might be off-target expression resulting from
232 the promoter region missing some negative regulatory elements, however, it could
233 also be specific expression that is at too low a level to be detectable by *in situ*
234 hybridisation. Although previous studies have shown *il-1 β :GFP* to be upregulated in
235 leukocytes at a tailfin transection (Hasegawa *et al*, 2017), we combined the *il-*
236 *1 β :GFP* line with leukocyte specific transgenics to show that neutrophils are the first
237 to respond at the wound, with macrophages both migrating to and upregulating *il-*
238 *1 β :GFP* at later timepoints.

239 The Mtb granuloma is widely studied, both in terms of immunohistochemistry of
240 human granulomas, and in mammalian models (Ulrichs & Kaufmann, 2006; Flynn *et*
241 *al*, 2011; Via *et al*, 2008). These studies have demonstrated that the granuloma is
242 rich in pro-inflammatory cytokine production. This pro-inflammatory environment has
243 been observed in human TB, with IL-1 β found to be in high levels in pleural fluid from
244 TB patients with granulomas present (Orphanidou *et al*, 1996). Here we observe that
245 the pro-inflammatory response is present at pre-granuloma stages. Lack of a pro-
246 inflammatory response has been linked to poor treatment outcomes indicating that
247 this host response is important even in the presence of antimycobacterial agents

248 (Waitt *et al*, 2015). The upregulation of proinflammatory cytokines in mycobacterial
249 infection has also been shown in the zebrafish/Mm larval model of TB granulomas,
250 but previous studies have mainly relied on immunohistochemistry and/or
251 transcriptomics data from either wholebody larvae or FACs sorted immune cell
252 populations (Benard *et al*, 2016; Marjoram *et al*, 2015). Using live cell imaging we
253 found that *il-1 β* transcription was upregulated at the granuloma formation stage,
254 however we also demonstrated that it is upregulated before the granuloma stage
255 within 6-8 hours hpi. Upon infection *il-1 β :GFP* expression was predominantly
256 upregulated in infected macrophages indicating that within the first 24 hours of
257 infection there is a macrophage pro-inflammatory response. Murine and human cell
258 studies have indicated that macrophages are able to produce IL-1 β a few hours after
259 mycobacterial challenge indicating that an early response is also present in
260 mammalian systems, at least on a cellular level (Di Paolo *et al*, 2015; Robinson &
261 Nau, 2008). Our observations are in line with our previous observation of Hif-1 α
262 signalling early after infection (detected using a *phd3:GFP* transgenic line), which
263 was also observed in infected macrophages at 1dpi (Elks *et al*, 2013), indicating that
264 *il-1 β* , alongside Hif-1 α signalling, is part of an immediate pro-inflammatory
265 macrophage response. As with Hif-1 α , our data indicate that Mm triggered *il-1 β* is
266 not sufficient to control infection with subsequent widespread granuloma formation at
267 later stages, however if primed with high *il-1 β* and NO via Hif-1 α the immune
268 response is boosted leading to lower infection, towards early infection clearance.
269 We have previously demonstrated that stabilisation of Hif-1 α can aid the zebrafish
270 host to control Mm infection, at least in part by priming neutrophils with increased
271 nitrotyrosine generated by the Nos2 enzyme (Elks *et al*, 2013). If the Nos2 enzyme is
272 blocked either pharmacologically or genetically the protective effect of Hif-1 α

273 stabilisation is lost (Elks *et al*, 2013). Here, we show that stabilisation of Hif-1 α
274 upregulates pro-inflammatory macrophage *il-1 β* expression in the absence of an
275 infection challenge. If IL-1 β activity is repressed then Hif-1 α induced reduction in
276 bacterial burden is abrogated, alongside the Hif-1 α dependent increase in NO
277 production. These data show regulation of both Nos2 and IL-1 β by Hif-1 α , and that
278 Hif-1 α driven NO production is partially dependent on IL-1 β induction. Both human
279 NOS-2 and IL-1 β have HREs (HIF responsive elements) in their promoters and
280 direct regulation by HIF- α signalling has been previously demonstrated *in vitro*
281 (Zhang *et al*, 2006; Charbonneau *et al*, 2007). The link between HIF-1 α and IL-1 β
282 has been previously demonstrated in murine macrophages via inflammatory
283 activation by succinate, in the absence of infection (Tannahill *et al*, 2013). In a
284 murine model of *Mycobacterium tuberculosis* it was found that HIF-1 α is critical for
285 IFN- γ -dependent control of *M. tuberculosis* infection, but it has not previously been
286 demonstrated that HIF-1 α is important for innate defense of macrophages against *M.*
287 tuberculosis (Braverman *et al*, 2016). Our data do not rule out direct regulation of
288 Nos2 by Hif-1 α , as blocking IL-1 β is likely to have wider spread immune effects,
289 however they do suggest that Nos2 is partially upregulated by IL-1 β in the stabilised
290 Hif-1 α context. These observations, alongside our finding that blocking IL-1 β ,
291 primarily observed in macrophages, can block Hif-1 α induced neutrophil nitrotyrosine
292 production, indicate a close interplay between macrophages and neutrophils during
293 early mycobacterial infection that is not yet fully understood.

294 IL-1 β is an important pro-inflammatory component and is one of the cytokines that
295 has been shown to be transcriptionally depressed during the 6 hour to 1dpi period of
296 Mm/zebrafish pathogenesis (Benard *et al*, 2016). Although this depression was not

297 detectable using the *il-1 β :GFP* line, presumably due to the early transcriptional
298 response post-infection coupled with the stability of the GFP protein, our data
299 indicate that increased *il-1 β* transcription due to Hif-1 α stabilisation during this early
300 stage of Mm infection is protective to the host. Alongside transcription, the
301 processing of IL-1 β by caspases plays a crucial role in immune cell pyroptosis
302 mediated by the inflammasome (Malik & Kanneganti, 2017). Recent findings in the
303 Mm/zebrafish model indicate that neutrophils and macrophages can efficiently
304 phagocytose bacteria and undergo rounds of cell death and re-uptake during the
305 initial days of infection (Hosseini *et al*, 2016). Although here we show a role for early
306 pro-inflammatory *il-1 β* transcription during Mm infection, the role of IL-1 β processing
307 and inflammasome induced pyroptosis/cell death in these early Mm immune
308 processes remain undetermined.

309 In conclusion, our data demonstrate an early pro-inflammatory response of Mm
310 infected macrophages *in vivo*. By stabilising Hif-1 α , macrophage IL-1 β can be primed
311 in the absence of infection and is protective upon Mm infection via neutrophil nitric
312 oxide production. Therapeutic strategies targeting these signalling mechanisms
313 could decrease the level of initial mycobacteria in patients and act to block the
314 development of active TB by reactivation of macrophage pro-inflammatory stimuli.
315 Furthermore, our findings may have important implications in other human infectious
316 diseases in which the pathogen is able to circumvent the proinflammatory immune
317 response to allow its survival and proliferation. Therapies that target host-derived
318 signalling pathways such as these would be beneficial against multidrug resistant
319 strains and could act to shorten the currently long antibiotic therapies required to
320 clear TB from patients.

321

322 **Materials and Methods**

323

324 **Zebrafish and bacterial strains**

325 Zebrafish were raised and maintained on a 14:10-hour light/dark cycle at 28 degrees
326 C, according to standard protocols (Nusslein-Volhard C, 2002), in UK Home Office
327 approved facilities at The Bateson Centre aquaria at the University of Sheffield.
328 Strains used were Nacre (wildtype), *Tg(mpeg1:mCherry-F)ump2Tg*, *TgBAC(il-*
329 *1β:eGFP)sh445* *Tg(mpeg1:mCherryCAAX)sh378* and *Tg(lyz:Ds-RED2)nz50*
330 (Marjoram *et al*, 2015; Bojarczuk *et al*, 2016; Nguyen-Chi *et al*, 2015; Hall *et al*,
331 2007).

332 Mm infection experiments were performed using *M. marinum* M (ATCC #BAA-535),
333 containing a psMT3-mCherry or psMT3 mCrimson vector (van der Sar *et al*, 2009).
334 Injection inoculum was prepared from an overnight liquid culture in the log-phase of
335 growth resuspended in 2% polyvinylpyrrolidone40 (PVP40) solution (CalBiochem) as
336 previously described (Cui *et al*, 2011). 100-150 colony forming units (CFU) were
337 injected into the caudal vein at 28-30hpf as previously described (Benard *et al*,
338 2012).

339

340 **Generation of *TgBAC(il-1α:eGFP)sh445* transgenic and *il-1β^{SH446}*/ *il-1β^{SH446}*
341 mutant zebrafish**

342 An eGFP SV40 polyadenylation cassette inserted at the *il-1β* ATG start site of
343 zebrafish BAC CH-211-147h23 using established protocols (Renshaw *et al*, 2006).
344 Inverted Tol2 elements were inserted into the chloramphenicol coding sequence and
345 the resulting modified BAC was used to generate *TgBAC(il-1β:eGFP)sh445*.

346 *il-1-/-* (*il-1 β^{SH446} /il-1 β^{SH446}*) mutant embryos were generated by CRISPR-Cas9
347 mediated mutagenesis targeted around an Mwo1 restriction site in the third exon of
348 *il-1 β* using the method described by Hruscha et al (2013) and the template sequence
349 5'-
350 AAAGCACCGACTCGGTGCCACTTTTCAAGTTGATAACGGACTAGCCTTATTTA
351 ACTTGCTATTCTAGCTCTAAA**ACTGAGCATGTCCAGCACCTCGGCTATAGTGA**
352 GTCGTATTACGC-3' (*il-1 β* target sequence in bold). PCR with *il-1gF* 5'-
353 TAAGGAAAAACTCACTTC-3' and *il-1gR* 5'ATACGTGGACATGCTGAA3' and
354 subsequent Mwo1 digestion were used for genotyping.

355

356 **Morpholino knockdown of *il-1 β***

357 The *il-1b β* morpholino (Genetools) was used as previously reported (López-Muñoz et
358 *al*, 2011). A standard control morpholino (Genetools) was used as a negative
359 control.

360

361 **Confocal microscopy of transgenic larvae**

362 1dpi and 4dpi transgenic zebrafish larvae infected with fluorescent Mm strains were
363 mounted in 0.8-1% low melting point agarose (Sigma-Aldrich) and imaged on a Leica
364 TCS-SPE confocal on an inverted Leica DMi8 base and imaged using 20x or 40x
365 objective lenses.

366 For quantification purposes acquisition settings and area of imaging (in the caudal
367 vein region) were kept the same across groups. Corrected total cell fluorescence
368 was calculated for each immune-stained cell using Image J as previously described
369 (Elks *et al*, 2013, 2014a).

370

371 **Tailfin transection**

372 Inflammation was induced in zebrafish embryos by tail transection at 2 or 3dpf as
373 described previously (Renshaw & Loynes, 2006). Embryos were anesthetised by
374 immersion in 0.168 mg/mL Tricaine (Sigma-Aldrich), and tail transection was
375 performed using a microscalpel (World Precision Instruments).

376

377 **qPCR of *il-1β***

378 SYBR green qPCR was performed on 1dpi Mm infected (or PVP control) embryos as
379 previously described (Van Der Vaart *et al*, 2014). The following primers were used:
380 *il-1β*, accession number NM_212844, forward primer:
381 GAACAGAATGAAGCACATCAAACC, reverse primer:
382 ACGGCACTGAATCCACCCAC, *ppial* control, accession number AY391451, forward
383 primer: ACAC TGAAACACGGAGGCAAG, reverse primer:
384 CATCCACAAACCTTCCCGAACAC.

385

386 **Bacterial pixel count**

387 Mm mCherry infected zebrafish larvae were imaged at 4dpi on an inverted Leica
388 DMi8 with a 2.5x objective lens. Brightfield and fluorescent images were captured
389 using a Hamamatsu OrcaV4 camera. Bacterial burden was assessed using
390 dedicated pixel counting software as previously described (Stoop *et al*, 2011).

391

392 **RNA injections**

393 Embryos were injected with dominant *hif-1ab* variant RNA at the one cell stage as
394 previously described (Elks *et al*, 2011). *hif-1α* variants used were dominant active

395 (DA) and dominant negative (DN) *hif-1α* (ZFIN: *hif1ab*). Phenol red (PR) (Sigma
396 Aldrich) was used as a vehicle control.

397

398 **Anti-nitrotyrosine antibody staining**

399 Larvae were fixed in 4% paraformaldehyde in PBS overnight at 4°C and nitrotyrosine
400 levels were immune-labelled using a rabbit polyclonal anti-nitrotyrosine antibody
401 (Merck Millipore 06-284) and were detected using an Alexa Fluor conjugated
402 secondary antibody (Invitrogen Life Technologies) as previously described (Elks *et*
403 *al*, 2013, 2014a).

404

405 **Statistical analysis**

406 All data were analysed (Prism 7.0, GraphPad Software) using unpaired, two-tailed t-
407 tests for comparisons between two groups and one-way ANOVA (with Bonferroni
408 post-test adjustment) for other data. P values shown are: * $P < .05$, ** $P < .01$, and
409 *** $P < .001$.

410

411 **Funding**

412

413 This work was supported by a Sir Henry Dale Fellowship jointly funded by the
414 Wellcome Trust and the Royal Society (grant number 105570/Z/14/Z) awarded to
415 (P.M.E.). (S.A.R.) is funded by an MRC Programme Grant (MR/M004864/1).
416 (A.H.M.) is funded by a Smart Mix Program of the Netherlands Ministry of Economic
417 Affairs and the Ministry of Education, Culture and Science. (N.V.O. and H.L.W.) are
418 funded by British Heart Foundation (BHF) project grant (PG/13/80/30443) and

419 Biotechnology and Biological Sciences Research Council (BBSRC) project grant
420 (BB/L000830/1).

421

422 **Acknowledgements**

423 The authors would like to thank the Bateson Centre Aquarium Team at the University
424 of Sheffield for fish care. We gratefully thank Georges Lutfalla (Montpellier
425 University) for providing the *Tg(mpeg1:mCherry-F)ump2Tg* line, Lalita
426 Ramakrishnan (University of Washington, Seattle) for *M. marinum* strains and Astrid
427 van der Sar (VU University Medical Center, Amsterdam) for the pSMT3-mCherry
428 vector.

429

430 **Author Contributions**

431 Conceived and designed the experiments: PME, SAR, NVO. Performed the
432 experiments: PME, NVO, AL. Analysed the data: PME, NVO, HW, AHM, SAR. Wrote
433 the paper: PME, NVO, SAR.

434

435 **Conflict of Interest**

436 The authors declare that they have no conflict of interest.

437

438 Benard EL, Rougeot J, Racz PI, Spaink HP & Meijer AH (2016) Transcriptomic Approaches in
439 the Zebrafish Model for Tuberculosis—Insights Into Host- and Pathogen-specific

440 Determinants of the Innate Immune Response. *Adv. Genet.* **95**: 217–251

441 Benard EL, van der Sar AM, Ellett F, Lieschke GJ, Spaink HP & Meijer AH (2012) Infection of
442 zebrafish embryos with intracellular bacterial pathogens. *J Vis Exp* Available at:

443 <http://www.ncbi.nlm.nih.gov/pubmed/22453760>

444 Bojarczuk A, Miller KA, Hotham R, Lewis A, Ogryzko N V., Kamuyango AA, Frost H, Gibson

445 RH, Stillman E, May RC, Renshaw SA & Johnston SA (2016) *Cryptococcus neoformans*

446 Intracellular Proliferation and Capsule Size Determines Early Macrophage Control of

447 Infection. *Sci. Rep.* **6**: 21489 Available at: <http://www.nature.com/articles/srep21489>

448 Bourigault M-L, Segueni N, Rose S, Court N, Vacher R, Vasseur V, Erard F, Le Bert M, Garcia I,

449 Iwakura Y, Jacobs M, Ryffel B & Quesniaux VFJ (2013) Relative contribution of IL-1 α , IL-

450 1 β and TNF to the host response to *Mycobacterium tuberculosis* and attenuated M.

451 bovis BCG. *Immunity, Inflamm. Dis.* **1**: 47–62 Available at:

452 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4217540/>&tool=pmcentrez

453 &rendertype=abstract

454 Braverman J, Sogi KM, Benjamin D, Nomura DK & Stanley SA (2016) HIF-1 α Is an Essential

455 Mediator of IFN- γ -Dependent Immunity to *Mycobacterium tuberculosis*. *J. Immunol.*

456 **197**: 1287–1297 Available at:

457 <http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.1600266>

458 Cambier CJ, O'Leary SM, O'Sullivan MP, Keane J & Ramakrishnan L (2017) Phenolic

459 Glycolipid Facilitates Mycobacterial Escape from Microbicidal Tissue-Resident

460 Macrophages. *Immunity*

461 Cambier CJ, Takaki KK, Larson RP, Hernandez RE, Tobin DM, Urdahl KB, Cosma CL &

462 Ramakrishnan L (2013) Mycobacteria manipulate macrophage recruitment through

463 coordinated use of membrane lipids. *Nature* **505**: 218–222 Available at:

464 <http://www.nature.com/doifinder/10.1038/nature12799>

465 Charbonneau M, Harper K, Grondin F, Pelmus M, McDonald PP & Dubois CM (2007)

466 Hypoxia-inducible factor mediates hypoxic and tumor necrosis factor alpha-induced

467 increases in tumor necrosis factor-alpha converting enzyme/ADAM17 expression by

468 synovial cells. *J. Biol. Chem.* **282**: 33714–24 Available at:
469 <http://www.jbc.org/content/282/46/33714.full>

470 Cohen P (2014) The TLR and IL-1 signalling network at a glance. *J. Cell Sci.* **127**: 2383–2390
471 Available at: <http://jcs.biologists.org/cgi/doi/10.1242/jcs.149831>

472 Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N, Haase VH, Jaenisch R,
473 Corr M, Nizet V, Firestein GS, Gerber HP, Ferrara N & Johnson RS (2003) HIF-1alpha is
474 essential for myeloid cell-mediated inflammation. *Cell* **112**: 645–657 Available at:
475 <http://www.ncbi.nlm.nih.gov/pubmed/12628185>

476 Cui C, Benard EL, Kanwal Z, Stockhammer OW, van der Vaart M, Zakrzewska A, Spaink HP &
477 Meijer AH (2011) Infectious disease modeling and innate immune function in zebrafish
478 embryos. *Methods Cell Biol* **105**: 273–308 Available at:
479 <http://www.ncbi.nlm.nih.gov/pubmed/21951535>

480 Dorhoi A & Kaufmann SHE (2015) Versatile myeloid cell subsets contribute to tuberculosis-
481 associated inflammation. *Eur. J. Immunol.* **45**: 2191–2202

482 Elks PM, Brizee S, van der Vaart M, Walmsley SR, van Eeden FJ, Renshaw SA & Meijer AH
483 (2013) PLOS Pathogens: Hypoxia Inducible Factor Signaling Modulates Susceptibility to
484 Mycobacterial Infection via a Nitric Oxide Dependent Mechanism. *PLoS Pathog.* **9**:
485 e1003789 Available at:
486 <http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1003789>
487
488 Elks PM, van Eeden FJ, Dixon G, Wang X, Reyes-Aldasoro CC, Ingham PW, Whyte MK,
489 Walmsley SR & Renshaw SA (2011) Activation of hypoxia-inducible factor-1alpha (Hif-
490 1alpha) delays inflammation resolution by reducing neutrophil apoptosis and reverse
491 migration in a zebrafish inflammation model. *Blood* **118**: 712–722 Available at:

492 <http://www.ncbi.nlm.nih.gov/pubmed/21555741>

493 Elks PM, Renshaw SA, Meijer AH, Walmsley SR & van Eeden FJ (2015) Exploring the HIFs,
494 buts and maybes of hypoxia signalling in disease: lessons from zebrafish models. *Dis.*
495 *Model. Mech.* **8**: 1349–1360 Available at:
496 <http://dmm.biologists.org/cgi/doi/10.1242/dmm.021865>

497 Elks PM, Van Der Vaart M, Van Hensbergen V, Schutz E, Redd MJ, Murayama E, Spaink HP &
498 Meijer AH (2014a) Mycobacteria counteract a TLR-mediated nitrosative defense
499 mechanism in a zebrafish infection model. *PLoS One* **9**:
500 Elks PM, Van Der Vaart M, Van Hensbergen V, Schutz E, Redd MJ, Murayama E, Spaink HP &
501 Meijer AH (2014b) Mycobacteria counteract a TLR-mediated nitrosative defense
502 mechanism in a zebrafish infection model. *PLoS One* **9**:
503 Flynn JL, Chan J & Lin PL (2011) Macrophages and control of granulomatous inflammation in
504 tuberculosis. *Mucosal Immunol* **4**: 271–278 Available at:
505 <http://www.ncbi.nlm.nih.gov/pubmed/21430653>

506 Guirado E, Schlesinger LS & Kaplan G (2013) Macrophages in tuberculosis: Friend or foe.
507 *Semin. Immunopathol.* **35**: 563–583

508 Hall C, Flores M V, Storm T, Crosier K & Crosier P (2007) The zebrafish lysozyme C promoter
509 drives myeloid-specific expression in transgenic fish. *BMC Dev Biol* **7**: 42 Available at:
510 <http://www.ncbi.nlm.nih.gov/pubmed/17477879>

511 Hasegawa T, Hall CJ, Crosier PS, Abe G, Kawakami K, Kudo A & Kawakami A (2017) Transient
512 inflammatory response mediated by interleukin-1 β is required for proper regeneration
513 in zebrafish fin fold. *Elife* **6**:
514 Hosseini R, Lamers GEM, Soltani HM, Meijer AH, Spaink HP & Schaaf MJM (2016)
515 Efferocytosis and extrusion of leukocytes determine the progression of early

516 mycobacterial pathogenesis. *J. Cell Sci.* **129**: 3385–3395 Available at:
517 <http://jcs.biologists.org/lookup/doi/10.1242/jcs.135194>

518 Jasenosky LD, Scriba TJ, Hanekom WA & Goldfeld AE (2015) T cells and adaptive immunity to
519 *Mycobacterium tuberculosis* in humans. *Immunol. Rev.* **264**: 74–87

520 Kanther M, Sun X, Mhlbauer M, MacKey LC, Flynn EJ, Bagnat M, Jobin C & Rawls JF (2011)
521 Microbial colonization induces dynamic temporal and spatial patterns of NF-??B
522 activation in the zebrafish digestive tract. *Gastroenterology* **141**: 197–207

523 Koul A, Arnoult E, Lounis N, Guillemont J & Andries K (2011) The challenge of new drug
524 discovery for tuberculosis. *Nature* **469**: 483–490 Available at:
525 <http://www.nature.com/doifinder/10.1038/nature09657>

526 Lerner TR, Borel S & Gutierrez MG (2015) The innate immune response in human
527 tuberculosis. *Cell. Microbiol.* **17**: 1277–1285

528 López-Muñoz A, Sepulcre MP, Roca FJ, Figueras A, Meseguer J & Mulero V (2011)
529 Evolutionary conserved pro-inflammatory and antigen presentation functions of
530 zebrafish IFN?? revealed by transcriptomic and functional analysis. *Mol. Immunol.* **48**:
531 1073–1083

532 Malik A & Kanneganti T-D (2017) Inflammasome activation and assembly at a glance. *J. Cell
533 Sci.* **130**: 3955–3963 Available at:
534 <http://jcs.biologists.org/lookup/doi/10.1242/jcs.207365>

535 Marjoram L, Alvers A, Deerhake ME, Bagwell J, Mankiewicz J, Cocchiaro JL, Beerman RW,
536 Willer J, Sumigray KD, Katsanis N, Tobin DM, Rawls JF, Goll MG & Bagnat M (2015)
537 Epigenetic control of intestinal barrier function and inflammation in zebrafish. *Proc.
538 Natl. Acad. Sci. U. S. A.* **112**: 2770–5 Available at:
539 www.ncbi.nlm.nih.gov/pubmed/25730872

540 McClean CM & Tobin DM (2016) Macrophage form, function, and phenotype in
541 mycobacterial infection: Lessons from tuberculosis and other diseases. *Pathog. Dis.* **74**:
542 Meijer AH (2016) Protection and pathology in TB: learning from the zebrafish model. *Semin.*
543 *Immunopathol.* **38**: 261–273
544 Mortaz E, Adcock IM, Tabarsi P, Masjedi MR, Mansouri D, Velayati AA, Casanova JL & Barnes
545 PJ (2015) Interaction of Pattern Recognition Receptors with *Mycobacterium*
546 *Tuberculosis*. *J. Clin. Immunol.* **35**:
547 Nguyen-Chi M, Laplace-Builhe B, Travnickova J, Luz-Crawford P, Tejedor G, Phan QT,
548 Duroux-Richard I, Levraud JP, Kissa K, Lutfalla G, Jorgensen C & Djouad F (2015)
549 Identification of polarized macrophage subsets in zebrafish. *Elife* **4**:
550 Novikov A, Cardone M, Thompson R, Shenderov K, Kirschman KD, Mayer-Barber KD, Myers
551 TG, Rabin RL, Trinchieri G, Sher A & Feng CG (2011) *Mycobacterium tuberculosis*
552 triggers host type I IFN signaling to regulate IL-1 β production in human macrophages. *J.*
553 *Immunol.* **187**: 2540–7 Available at:
554 <http://www.ncbi.nlm.nih.gov/pubmed/21784976> [http://dmm.biologists.org/cgi/doi/10.1242/dmm.013029](http://www.ncbi.nlm.nih.gov/entrez/
555 .gov/entrez.fcgi?artid=PMC3159798
556 Nusslein-Volhard C DR (2002) <i>Zebrafish: A Practical Approach</i> 1st ed. Oxford: Oxford
557 University Press
558 Ogryzko N V., Hoggett EE, Solaymani-Kohal S, Tazzyman S, Chico TJA, Renshaw SA & Wilson
559 HL (2014a) Zebrafish tissue injury causes upregulation of interleukin-1 and caspase-
560 dependent amplification of the inflammatory response. <i>Dis. Model. Mech.</i> 7: 259–264
561 Available at: <a href=)
562 Ogryzko N V., Renshaw SA & Wilson HL (2014b) The IL-1 family in fish: Swimming through
563 the muddy waters of inflammasome evolution. *Dev. Comp. Immunol.* **46**: 53–62

564 Orphanidou D, Gaga M, Rasidakis A, Dimakou K, Toumbis M, Latsi P, Pandalos J,

565 Christacopoulou J & Jordanoglou J (1996) Tumour necrosis factor, interleukin-1 and

566 adenosine deaminase in tuberculous pleural effusion. *Respir. Med.* **90**: 95–98

567 Di Paolo NC, Shafiani S, Day T, Papayannopoulou T, Russell DW, Iwakura Y, Sherman D,

568 Urdahl K & Shayakhmetov DM (2015) Interdependence between Interleukin-1 and

569 Tumor Necrosis Factor Regulates TNF-Dependent Control of *Mycobacterium*

570 tuberculosis Infection. *Immunity* **43**: 1125–1136 Available at:

571 <http://www.sciencedirect.com/science/article/pii/S107476131500494X%5Cnhttp://w>

572 [ww.sciencedirect.com/science/article/pii/S107476131500494X/pdfft?md5=b6007f686](http://www.sciencedirect.com/science/article/pii/S107476131500494X/pdfft?md5=b6007f686)

573 c768807c7cd489777f7ab49&pid=1-s2.0-S107476131500494X-

574 main.pdf%5Cnhttp://linkinghub.elsevier.com/ret

575 Podinovskaia M, Lee W, Caldwell S & Russell DG (2013) Infection of macrophages with

576 *Mycobacterium tuberculosis* induces global modifications to phagosomal function. *Cell.*

577 *Microbiol.* **15**: 843–859

578 Ramakrishnan L (2012) Revisiting the role of the granuloma in tuberculosis. *Nat. Rev.*

579 *Immunol.* Available at: <http://www.nature.com/doifinder/10.1038/nri3211>

580 Renshaw S & Loynes C (2006) A transgenic zebrafish model of neutrophilic inflammation.

581 *Blood...* **108**: 3976–3978 Available at:

582 <http://bloodjournal.hematologylibrary.org/content/108/13/3976.short>

583 Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW & Whyte MK (2006) A

584 transgenic zebrafish model of neutrophilic inflammation. *Blood* **108**: 3976–3978

585 Available at: <http://www.ncbi.nlm.nih.gov/pubmed/16926288>

586 Robinson CM & Nau GJ (2008) Interleukin-12 and interleukin-27 regulate macrophage

587 control of *Mycobacterium tuberculosis*. *J. Infect. Dis.* **198**: 359–366

588 van der Sar AM, Spaink HP, Zakrzewska A, Bitter W & Meijer AH (2009) Specificity of the
589 zebrafish host transcriptome response to acute and chronic mycobacterial infection
590 and the role of innate and adaptive immune components. *Mol Immunol* **46**: 2317–2332
591 Available at: <http://www.ncbi.nlm.nih.gov/pubmed/19409617>
592 Stoop EJ, Schipper T, Huber SK, Nezhinsky AE, Verbeek FJ, Gurcha SS, Besra GS,
593 Vandenbroucke-Grauls CM, Bitter W & van der Sar AM (2011) Zebrafish embryo screen
594 for mycobacterial genes involved in the initiation of granuloma formation reveals a
595 newly identified ESX-1 component. *Dis Model Mech* **4**: 526–536 Available at:
596 <http://www.ncbi.nlm.nih.gov/pubmed/21372049>
597 Tannahill GM, Curtis AM, Adamik J, Palsson-Mcdermott EM, McGettrick AF, Goel G, Frezza
598 C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus
599 M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, et al (2013) Succinate is an
600 inflammatory signal that induces IL-1 β through HIF-1 α . *Nature* **496**: 238–242
601 Ulrichs T & Kaufmann SH (2006) New insights into the function of granulomas in human
602 tuberculosis. *J Pathol* **208**: 261–269 Available at:
603 <http://www.ncbi.nlm.nih.gov/pubmed/16362982>
604 Van Der Vaart M, Korbee CJ, Lamers GEM, Tengeler AC, Hosseini R, Haks MC, Ottenhoff
605 THM, Spaink HP & Meijer AH (2014) The DNA damage-regulated autophagy modulator
606 DRAM1 links mycobacterial recognition via TLP-MYD88 to authophagic defense. *Cell*
607 *Host Microbe* **15**: 753–767
608 van der Vaart M, van Soest JJ, Spaink HP & Meijer AH (2013) Functional analysis of a
609 zebrafish myd88 mutant identifies key transcriptional components of the innate
610 immune system. *Dis. Model. Mech.* Available at:
611 <http://www.ncbi.nlm.nih.gov/pubmed/23471913>

612 Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, Taylor K, Klein E, Manjunatha U, Gonzales

613 J, Lee EG, Park SK, Raleigh JA, Cho SN, McMurray DN, Flynn JL & Barry 3rd CE (2008)

614 Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates.

615 *Infect Immun* **76**: 2333–2340 Available at:

616 <http://www.ncbi.nlm.nih.gov/pubmed/18347040>

617 Waitt CJ, Banda P, Glennie S, Kampmann B, Squire SB, Pirmohamed M & Heyderman RS

618 (2015) Monocyte unresponsiveness and impaired IL1 β , TNF α and IL7 production are

619 associated with a poor outcome in Malawian adults with pulmonary tuberculosis. *BMC*

620 *Infect. Dis.* **15**: 513 Available at: <http://www.biomedcentral.com/1471-2334/15/513>

621 World Health Organization (2016) Multidrug-Resistant Tuberculosis (MDR-TB). *Burden, Glob.*

622 *Treat. Enroll. O N Mdr-tb Outcomes, Treat.:* 2015–2016

623 Zhang W, Petrovic JM, Callaghan D, Jones A, Cui H, Howlett C & Stanimirovic D (2006)

624 Evidence that hypoxia-inducible factor-1 (HIF-1) mediates transcriptional activation of

625 interleukin-1?? (IL-1??) in astrocyte cultures. *J. Neuroimmunol.* **174**: 63–73

626

627 **Figure Legends**

628

629 **Figure 1. *TgBAC(il-1 β :GFP)sh445* is upregulated by Mm in infected**

630 **macrophages at early and later stage infection**

631 A) Graph showing relative wholebody *il-1 β* mRNA expression by SYBRgreen qPCR
632 in Mm infected 1dpi larvae (Mm) and mock injected controls (PVP). Data shown are
633 mean \pm SEM, n=3 independent experiments.

634 (B) Fluorescent confocal micrographs of 1dpi larvae, prior to granuloma formation.

635 Unchallenged *TgBAC(il-1 β :GFP)sh445* has no detectable expression in immune

636 cells and low detectable levels in the yolk (dotted line) and some muscle cells. *il-1 β*
637 expression was detected by GFP levels, in green, using the *TgBAC(il-1:eGFP)sh445*
638 transgenic line. Mm mCherry is shown in the red channel. Increased levels of *il-*
639 *1 β :GFP* expression were detectable in cells associated with infection. Infected
640 macrophages with *il-1 β -GFP* levels have an activated, branched phenotype (white
641 arrowheads).

642 (C) Fluorescent confocal micrographs of 4dpi larvae. *il-1 β* expression was detected
643 by GFP levels, in green, using the *TgBAC(il-1:eGFP)sh445* transgenic line. Mm
644 mCherry is shown in the red channel. Increased levels of *il-1 β :GFP* expression were
645 detectable in immune cells that are in the blood vessels (Ci and blown up in Ciii,
646 blood vessel indicated by solid white lines) and in early tissue granulomas (Cii and
647 blown up in Civ).

648

649

650 **Figure 2. *il-1 β :GFP* is activated 6-8 hours after challenge in macrophages.**

651 (A) Fluorescent confocal micrographs of a timelapse between 6 to 8 hours post Mm
652 infection. Mm mCherry is shown in the red channel and *il-1 β :GFP* in the green
653 channel with the microscope settings set to detect low GFP levels. Arrowheads
654 indicate the emergence of *il-1 β :GFP* expression in an infected cell.

655 (B) Fluorescent confocal micrographs of *TgBAC(il-1 β :GFP)sh445* crossed to
656 *Tg(mpeg1:mCherryCAAX)sh378* line labelling macrophages. The tailfin was
657 transected at 3dpf and fluorescence imaging was performed at the wound at 1 hour
658 post wound (1hpw) and 6hpw. Red macrophages are not positive for *il-1 β :GFP*
659 expression at 1hpw and the first detectable *il-1 β :GFP* expression is found in the
660 macrophages at 6hpw.

661 (C) Fluorescent confocal micrographs of 1dpi caudal vein region of infection. *il-1 β*
662 expression was detected by GFP levels, in green, using the *TgBAC(il-1 β :eGFP)sh445*
663 transgenic line. Macrophages are shown in red using a
664 *Tg(mpeg1:mCherryCAAX)sh378* line. Mm Crimson is shown in the blue channel
665 (right panels) with a PVP control (left panels). Without infection there is little overlap
666 of *il-1 β :GFP* and *mpeg:mCherry*, while in infected larvae macrophages have higher
667 levels of *il-1 β :GFP*. Arrowheads indicate infected macrophages with high levels of *il-1 β :GFP*.
668 Dotted lines indicate the yolk extension of the larvae where there is non-specific fluorescence.
669

670

671 **Figure 3. *il-1 β :GFP* is upregulated in the absence of infection by DA Hif-1 α**
672 (A) Fluorescent confocal micrographs of 1dpi caudal vein region of infection. *il-1 β :GFP*
673 expression was detected by GFP levels, in green, using the *TgBAC(il-1 β :eGFP)sh445*
674 transgenic line. Larvae were injected at the 1 cell stage with dominant
675 negative (DN) or dominant active (DA) Hif-1 α or phenol red (PR) control. Non-
676 infected larvae are in the left panels (PVP) and Mm Crimson infected larvae are in
677 the right panels (Mm). Dotted lines indicate the yolk extension of the larvae where
678 there is non-specific fluorescence.

679 (B) Corrected fluorescence intensity levels of *il-1 β :GFP* confocal z-stacks in
680 uninfected larvae (PVP, empty bars) and infected larvae (Mm, filled bars) at 1dpi.
681 Dominant active Hif-1 α (DA1) had significantly increased *il-1 β :GFP* levels in the
682 absence of Mm bacterial challenge compared to phenol red (PR) and dominant
683 negative Hif-1 α (DN1) injected controls. Data shown are mean \pm SEM, n=24-48 cells
684 from 4-8 embryos representative of 3 independent experiments.

685

686

687 **Figure 4. *il-1 β* knockdown abrogates the protective effect of DA Hif-1 α on**
688 **bacterial burden**

689 (A) Stereo-fluorescence micrographs of Mm mCherry infected 4dpi larvae after
690 injection with DA Hif-1 α (DA1) and the *il-1 β* morpholino (II-1 MO), using the standard
691 control morpholino and phenol red (Control) as a negative control.

692 (B) Bacterial burden of larvae shown in (A). Data shown are mean \pm SEM, n=46-50
693 as accumulated from 3 independent experiments.

694 (C) Stereo-fluorescence micrographs of Mm mCherry infected 4dpi larvae of *il-1 β*
695 knockout (il-1 β -) and sibling wildtype controls (WT) after injection of DA Hif-1 α (DA1)
696 or phenol red (PR) as a negative control.

697 (D) Bacterial burden of larvae shown in (C). Data shown are mean \pm SEM, n=16-20
698 as accumulated from 3 independent experiments.

699

700

701 **Figure 5. *il-1 β* knockdown abrogates DA Hif-1 α dependent nitrotyrosine**
702 **production**

703 (A) Example fluorescence confocal z-stacks of the caudal vein region of embryos
704 stained with Alexa-633 labelled anti-nitrotyrosine antibody (red), imaged at 1dpi in
705 the presence or absence of Mm infection. One-cell stage embryos were injected with
706 phenol red (PR). One-cell stage embryos we co-injected with *il-1 β* morpholino or (il-1
707 MO) or standard control morpholino (Cont MO). At 1dpi larvae were either infected
708 with Mm mCherry (Mm), or PVP as a non-infected control (Mm channel not shown in
709 these panels).

710 (B) Example fluorescence confocal z-stacks of the caudal vein region of embryos
711 stained with Alexa-633 labelled anti-nitrotyrosine antibody (red), imaged at 1dpi in
712 the presence or absence of Mm infection. One-cell stage embryos were injected with
713 dominant active Hif-1 α (DA). One-cell stage embryos we co-injected with *il-1 β*
714 morpholino or (il-1 MO) or standard control morpholino (Cont MO). At 1dpi larvae
715 were either infected with Mm mCherry (Mm), or PVP as a non-infected control (Mm
716 channel not shown in these panels).

717 (C) Corrected fluorescence intensity levels of anti-nitrotyrosine antibody confocal z-
718 stacks of phenol red (PR) control injected embryos in the presence or absence of
719 Mm infection at 1dpi. Control morpholino is shown in the clear bars and *il-1 β*
720 morpholino (il-1 MO) in the filled bars. Data shown are mean \pm SEM, n=54-59 cells
721 from 10-12 embryos accumulated from 3 independent experiments.

722 (D) Corrected fluorescence intensity levels of anti-nitrotyrosine antibody confocal z-
723 stacks of dominant active Hif-1 α (DA1) injected embryos in the presence or absence
724 of Mm infection at 1dpi. Control morpholino is shown in the clear bars and il-1
725 morpholino (il-1 MO) in the filled bars. Data shown are mean \pm SEM, n=54-59 cells
726 from 10-12 embryos accumulated from 3 independent experiments.

727

728

729 **Figure 6. Hif-1 α stabilisation leads to upregulation of *il-1 β* and increased
730 neutrophil nitric oxide production that is protective against infection.**

731 During normal (control) Mm infection Hif-1 α , Il-1 β and NO transcript levels rise after
732 infection, but are not sufficient to control infection (Elks *et al*, 2013). When Hif-1 α is
733 stabilised, Il-1 β and subsequent neutrophil NO upregulation occurs in the absence of

734 infection, priming the immune response to better deal with infection leading to lower
735 burden.

736

737 **Figure S1. *TgBAC(il-1 β :GFP)sh445* recapitulates *il-1 β* wholemount *in situ***
738 **hybridisation pattern following sterile tailfin transection.**

739 (A) Wholemount *in situ* hybridisation of *il-1 β* in tailfin injured 2dpf embryos.
740 (B) Fluorescent confocal micrographs of *TgBAC(il-1 β :GFP)sh445* expression after
741 tailfin injury. Upper and lower panels show the same individual embryo 0 and 12hpi.
742 (C) Fluorescent confocal micrographs of *TgBAC(il-1 β :GFP)sh445* crossed to
743 *Tg(lyz:Ds-RED2)nz50* labelling neutrophils at 1 hour post wound (1hpw) and 6hpw.

744

745

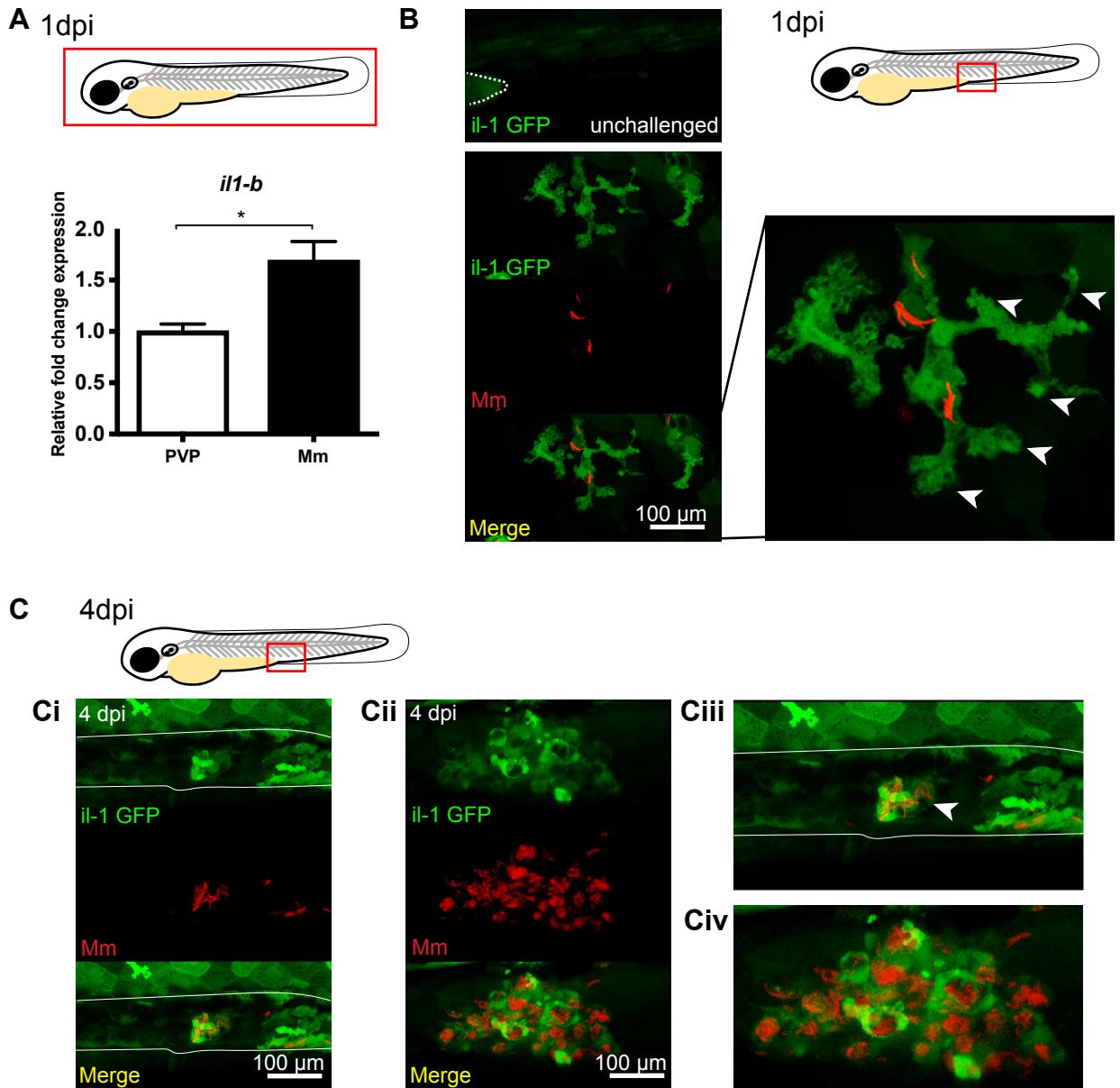
746 **Figure S2. CRISPR-Cas9 *il-1 β SH446* mutant.**

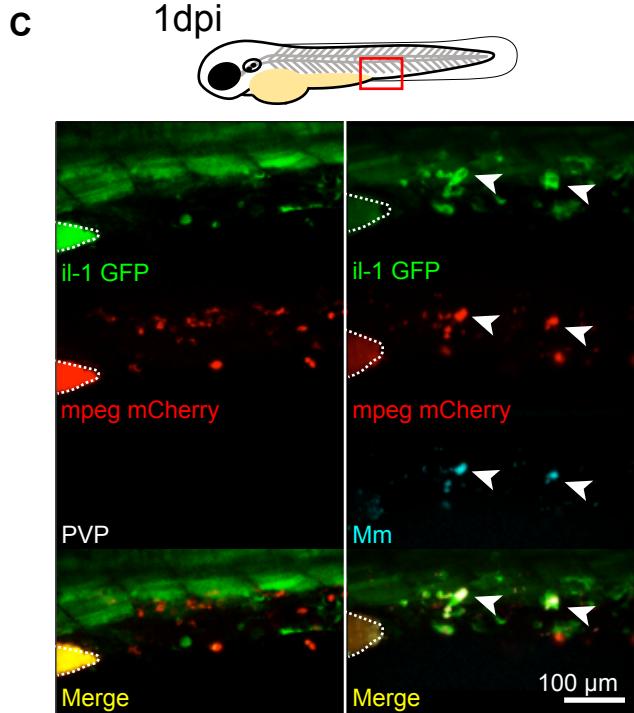
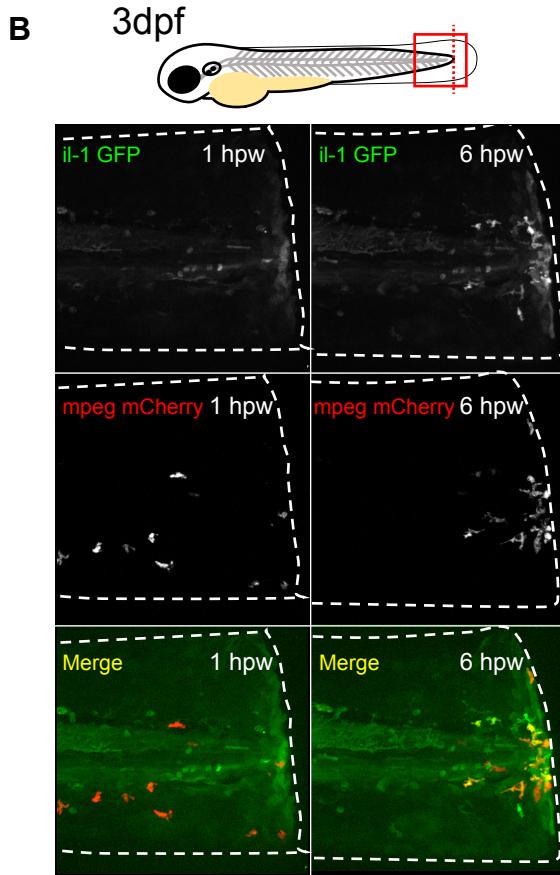
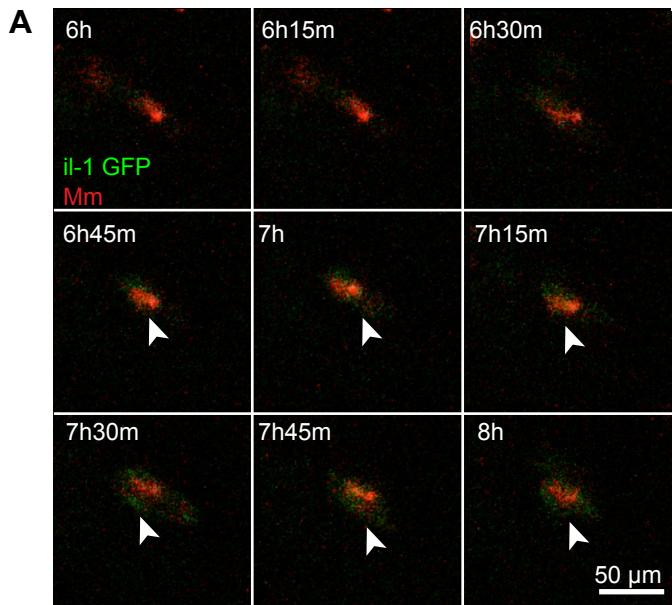
747 (A) Screenshot of Ensembl zebrafish *il-1 β* coding sequence with CRISPR-Cas9
748 target indicated in the fourth exon.
749 (B) DNA alignment of WT *il-1 β* sequence and *il-1 β SH446* showing the 44 base pair
750 deletion caused by CRISPR-Cas9.
751 (C) Amino acid alignment of WT *il-1 β* sequence and *il-1 β SH446* with arrowhead
752 showing the premature stop and removal of the putative IL-1 β cleavage site.
753 (D) Sequencing trace showing position of CRISPR-Cas9 induced deletion.

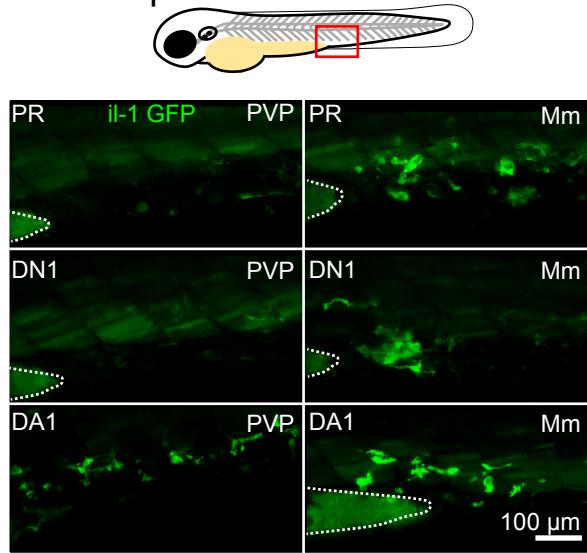
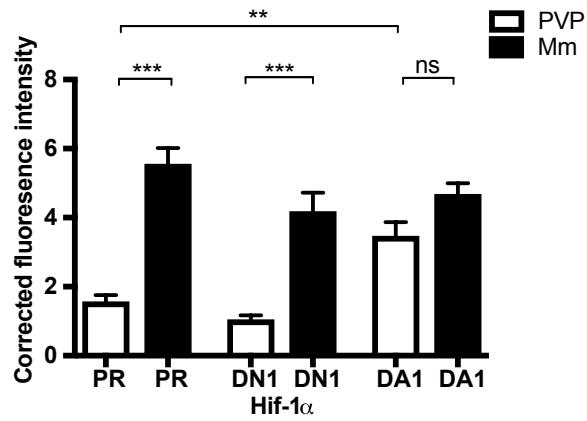
754

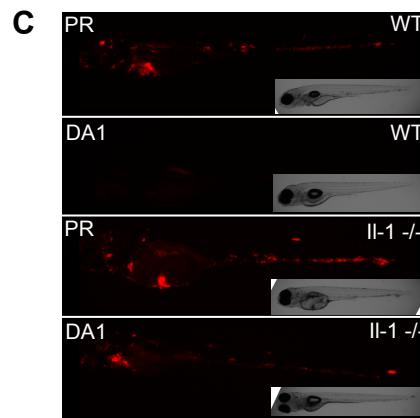
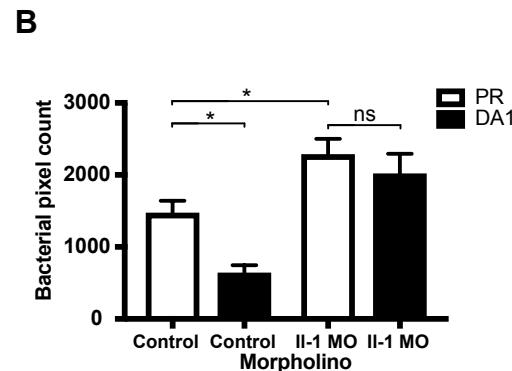
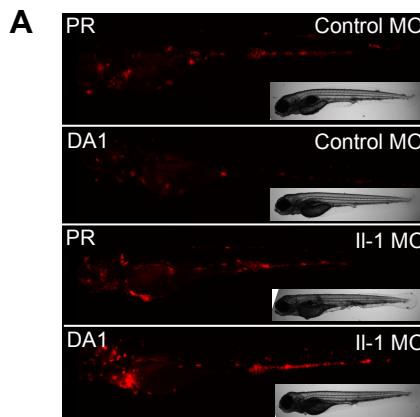
755

756


757 **Figure S3. Anti-nitrotyrosine signal is predominantly found in neutrophils after**
758 **Mm infection.**




759 (A) Example fluorescence confocal z-stacks of the caudal vein region of
760 *Tg(mp_x:GFP)i114* embryos (green neutrophils) stained with Alexa-633 labelled anti-
761 nitrotyrosine antibody (cyan), imaged at 1dpi in the presence of Mm mCherry
762 infection (red).



763





764 **Supplemental Movie 1. *Il-1 β :GFP* expression in activated immune cells after
765 Mm infection.**

766 (A) Fluorescent confocal videotimelapse of *il-1 β :GFP* in immune cells containing Mm
767 infection (*il-1 β :GFP* in green and Mm mCrimson in red).

Figure 1

Figure 2

Figure 3**A 1dpi****B**

Figure 4

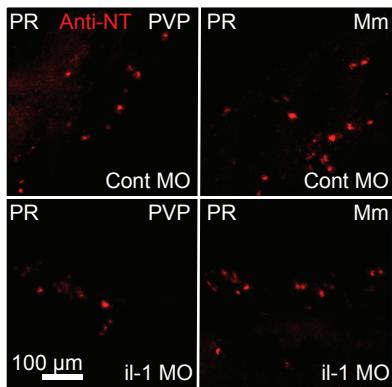
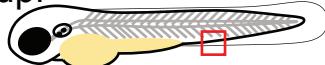
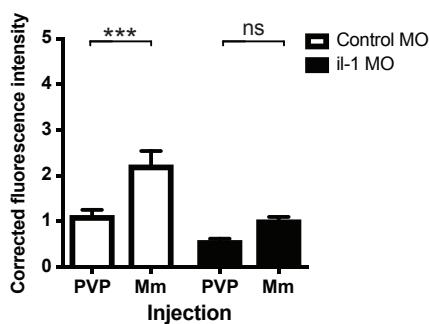
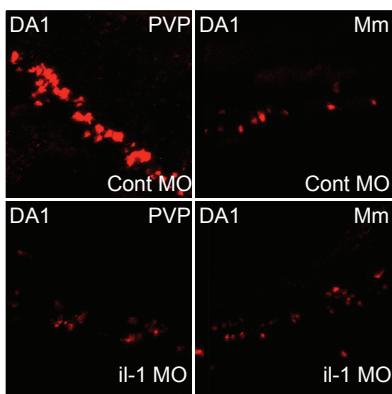
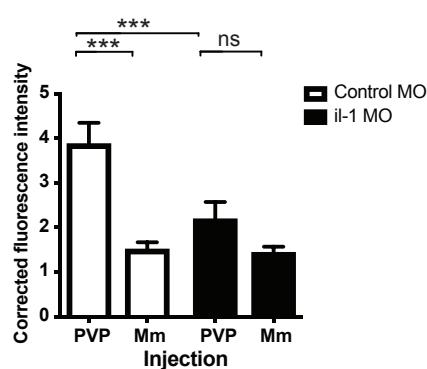
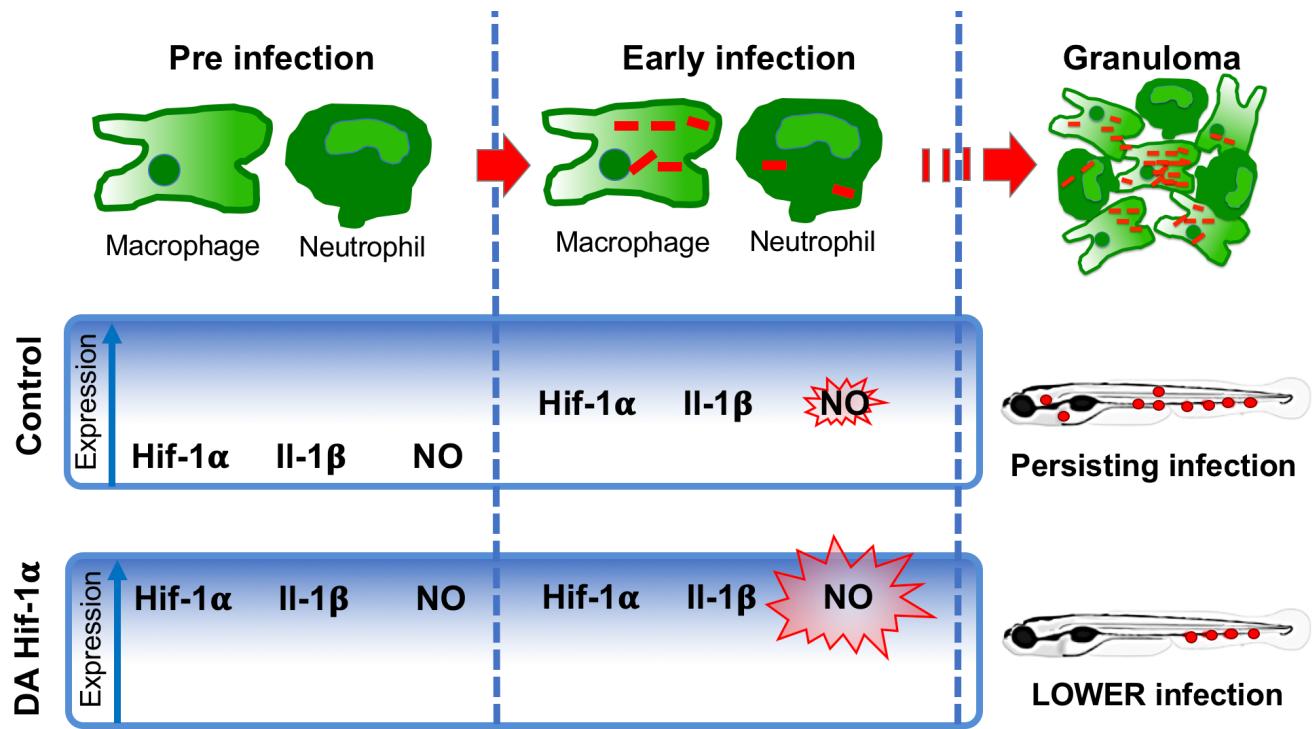






Figure 5**A** 1dpi**B****C****D**

Figure 6

