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 2

Abstract 26 

 Drug resistant mycobacteria are a rising problem worldwide. There is an 27 

urgent need to understand the immune response to TB to identify host targets that, if 28 

targeted therapeutically, could be used to tackle these currently untreatable 29 

infections. Here, we use an Il-1β fluorescent transgenic line to show that there is an 30 

early innate immune pro-inflammatory response to well-established zebrafish models 31 

of inflammation and Mycobacterium marinum (Mm) infection. We demonstrate that 32 

host-derived hypoxia signalling, mediated by the Hif-1α transcription factor, can 33 

prime macrophages with increased levels of Il-1β in the absence of infection, 34 

upregulating neutrophil antimicrobial nitric oxide production, leading to greater 35 

protection against infection. Our data link Hif-1α to proinflammatory macrophage Il-36 

1β transcription in vivo during early mycobacterial infection and importantly highlight 37 

a host protective mechanism, via antimicrobial nitric oxide, that decreases disease 38 

outcomes and that could be targeted therapeutically to stimulate the innate immune 39 

response to better deal with infections.  40 

Keywords: Hif-1α/Il-1β/mycobacterium/hypoxia/zebrafish 41 

 42 

Introduction 43 

 Pulmonary tuberculosis (TB) is a major world health problem caused by the 44 

bacillus Mycobacterium tuberculosis (Mtb) (World Health Organization, 2016).  It is a 45 

current priority for infectious disease research due to increasing rates of multi- and 46 

totally-drug resistant strains causing high levels of mortality, especially in the 47 

immunocompromised (Koul et al, 2011). Mycobacteria are specialised at evading 48 

killing mechanisms of the immune system to survive. Mycobacteria and immune cells 49 

create a highly organised niche, called the granuloma, in which Mtb can proliferate or 50 
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enter a latent phase, protected from the immune system (Podinovskaia et al, 2013; 51 

Ramakrishnan, 2012). In human Mtb infection, bacteria first encounter cells of the 52 

innate immune system in and around the lungs, either macrophages in the alveolar 53 

space or neutrophils in the surrounding capillary vasculature, before the involvement 54 

of adaptive immunity and granuloma formation (Lerner et al, 2015; Jasenosky et al, 55 

2015). These initial phagocytosis events are followed by the attraction of other innate 56 

immune cells which signal to draining lymph nodes to activate the adaptive immune 57 

response, signs of which only become apparent 3 to 8 weeks after infection in 58 

humans (Jasenosky et al, 2015). Although granuloma formation is reasonably well 59 

characterised, the initial interactions of the bacteria with the host innate immune cells 60 

are less well defined in vivo. 61 

Mtb, like many other bacterial and pathogenic microbes, triggers a pro-inflammatory 62 

immune response via the activation of TLRs (Toll-like receptors) (Mortaz et al, 2015). 63 

The activation of the innate immune cells via TLR signalling is a critical early host 64 

response to many invading pathogens for successful clearance of infection and, in 65 

the absence of TLR signalling, mycobacteria grow unchecked to cause systemic 66 

infection (van der Vaart et al, 2013). Although mycobacteria can hijack host 67 

leukocytes to create a niche for their growth, in zebrafish models many of the initial 68 

Mm inoculum are neutralised by macrophages and neutrophils before infection can 69 

take hold (Hosseini et al, 2016; Cambier et al, 2013). Early mycobacterial interaction 70 

with host leukocytes is critical for the pathogen, and manipulation of the macrophage 71 

by the bacteria is required for establishment of a permissive niche in which the 72 

bacteria can grow and build its host derived protective structure, the granuloma 73 

(Meijer, 2016; Guirado et al, 2013). Indeed the control of the macrophage by Mm 74 

may happen early in infection, as there is a phase of infection from 6 hours to 1 day 75 
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post infection in the zebrafish model that is characterised by a dampening of the 76 

cytokine transcriptional response (Benard et al, 2016). Greater understanding of the 77 

diverse phenotype of macrophages immediately after infection may allow therapeutic 78 

tuning to provide maximal early control of mycobacteria during infection (McClean & 79 

Tobin, 2016; Dorhoi & Kaufmann, 2015). Recent studies in optically translucent 80 

zebrafish infection models have indicated that initial interactions between Mm and 81 

macrophages and neutrophils are more complex than originally thought, with 82 

successive rounds of bacterial internalisation and leukocyte cell death leading to 83 

granuloma formation (Hosseini et al, 2016; Cambier et al, 2017; Elks et al, 2015). 84 

The immune molecular mechanisms involved in these early processes are poorly 85 

understood. 86 

We have previously demonstrated in a zebrafish/Mm model of TB that the initial 87 

immune response to infection can be enhanced by stabilising host-derived Hif-1α 88 

(hypoxia inducible factor-1 alpha), leading to reduced bacterial burden (Elks et al, 89 

2013). Hif-1α is a major transcriptional regulator of the cellular response to hypoxia, 90 

that has been implicated in the activation of macrophages and neutrophils during 91 

infection and inflammatory processes (Cramer et al, 2003; Elks et al, 2011). 92 

Stabilisation of Hif-1α in zebrafish upregulated pro-inflammatory neutrophil nitric 93 

oxide (NO) production leading to lower mycobacterial burden (Elks et al, 2013, 94 

2014a). The mechanisms by which pro-inflammatory cytokines associated with this 95 

NO increase are regulated by Hif-1α signalling is not known. 96 

IL-1β is a critical macrophage-derived activator of immune cells with wide-ranging 97 

and complex effects on immune signalling and downstream pathways. IL-1β has 98 

been shown to be upregulated in the onset and formation of Mm and Mtb 99 

granulomas (Di Paolo et al, 2015; Bourigault et al, 2013; Novikov et al, 2011). We 100 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/306506doi: bioRxiv preprint 

https://doi.org/10.1101/306506
http://creativecommons.org/licenses/by/4.0/


 5

hypothesised that IL-1β would be activated in specific immune cell populations early 101 

in Mm infection, (within 1-day post-infection, pre-granuloma formation) and that Hif-102 

1α acts via altered expression of this important pro-inflammatory mediator to confer 103 

protection against mycobacterial infection. Here, using the zebrafish Mm model and 104 

fluorescent transgenic lines, we show that that il-1β is transcriptionally upregulated in 105 

macrophages early during in vivo infection. Stabilisation of Hif-1α upregulates il-1β 106 

transcription in macrophages in the absence of infection. il-1β signalling is required 107 

for protective NO production by neutrophils and a subsequent decrease in infection. 108 

Our data indicate that protective Hif-1α mediated NO is at least partially regulated by 109 

the key pro-inflammatory mediator Il-1β, increasing our understanding of the 110 

mechanism of action of the potential therapeutic target, Hif-1α, as a host-derived 111 

factor in TB.  112 

 113 

Results 114 

 115 

il-1β:GFP is upregulated in macrophages during early and later stage Mm 116 

infection  117 

Il-1β is a major macrophage-derived pro-inflammatory cytokine that is upregulated in 118 

both inflammation and infection. The initial phase of Mm infection in zebrafish is 119 

characterised by a short period of greatly increased pro-inflammatory signalling 120 

(before 1 day post-infection, dpi) where the immune system reacts to Mm infection. 121 

This is followed by a lag-phase of decreased activity which allows for granuloma 122 

formation between 2-3dpi, before cytokine levels rise again in formed larval 123 

granulomas at 4dpi (Benard et al, 2016; Hosseini et al, 2016). However, the levels of 124 

pro-inflammatory cytokines have only been previously studied at a transcriptional 125 
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level in whole embryos or FACS sorted cells, rather than detecting levels in situ, over 126 

time, in an intact organism (Benard et al, 2016).  127 

We hypothesised that Il-1β is a major pro-inflammatory cytokine that would be 128 

upregulated by both mycobacterial infection and Hif-1α stabilisation. We have 129 

previously shown upregulation of il-1β message after induction of inflammation via 130 

tailfin transection by qPCR and wholemount in situ hybridisation (WISH) in the 131 

zebrafish (Ogryzko et al, 2014a). il-1β is one of the most readily detectable pro-132 

inflammatory cytokines during early granuloma stages of Mm infection and at 1 dpi 133 

(Figure 1A) (Van Der Vaart et al, 2014). At 1dpi transcription is upregulated 1.7 fold 134 

measured by qPCR, compared to PVP injection controls (Figure 1A). Macrophage 135 

expression of il-1β is greatly under-represented measured in this way on the 136 

wholebody level due to the small proportion of cells that contribute to the immune 137 

lineage. Therefore, to investigate il-1β expression on a cellular level in vivo, we 138 

developed a BAC (bacterial artificial chromosome) derived il-1β promoter driven GFP 139 

line, TgBAC(il-1β:GFP)SH445, to assess il-1β expression in real-time during 140 

mycobacterial infection. We sought to examine il-1β:GFP expression in our well-141 

established inflammation assay before investigating its expression during 142 

mycobacterial infection. Both wholemount in situ hybridisation (WISH) of il-1β  and il-143 

1β:GFP do not exhibit any immune cell expression under basal conditions (Figure 144 

S1A-B and Figure 1B). il-1β:GFP recapitulates il-1β  WISH expression in response to 145 

tail transection, with upregulation observed in cells in and around the caudal 146 

haematopoietic region (CHT), consistent with immune cell expression,  (Figure S1A 147 

and B) (Ogryzko et al, 2014a), although, as expected, the synthesis of GFP occurs 148 

over a longer timescale than that of il-1β mRNA detected by WISH. Neutrophils are 149 
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the first cells to respond to tailfin transection with increased il-1β:GFP, with 150 

fluorescence first observed at 1hpw (hours post-wounding) and still present at 6hpw 151 

(Figure S1C). Having demonstrated that the il-1β:GFP is responsive to inflammation 152 

in similar cells over a similar timespan as the in situ hybridisation, we sought to 153 

investigate its regulation during mycobacterial infection. 154 

We used the TgBAC(il-1β:GFP)sh445 line to show that GFP is expressed in cells 155 

proximal to Mm infection sites at pre-granuloma phases (1dpi) (Figure 1B) and in 156 

larval granulomas (4dpi) (Figure 1C). Many of these cells contained Mm and had the 157 

appearance of activated immune cells with a dynamic branched phenotype (Figure 158 

1B and Movie S1). The earliest timepoint at which il-1β:GFP could be detected by 159 

confocal microscopy was between 6 and 8 hours post infection, (Figure 2A), 160 

consistent with rapid transcriptional activation of the il-1β promoter after infection and 161 

similar to the timing of macrophage il-1β:GFP expression after tailfin transection 162 

(Figure 2B). il-1β:GFP was predominantly upregulated in infected macrophages at 163 

1dpi (Figure 2C) consistent with their containment of phagocytosed Mm (Figure 1B). 164 

These data demonstrate that, during early stages of infection, il-1β is transcriptionally 165 

activated in infected macrophages as part of an early pro-inflammatory response. 166 

 167 

Stabilisation of Hif-1α upregulates il-1β:GFP at early stages of infection 168 

We have previously shown that stabilisation of Hif-1α induces neutrophil pro-169 

inflammatory nitric oxide production (Elks et al, 2013, 2014a). We hypothesised that 170 

this may be a part of an increased pro-inflammatory profile in innate immune cells, 171 

therefore we tested whether Hif-1α is upregulating a pro-inflammatory program in the 172 

absence of infection using the il-1β:GFP transgenic line. Dominant active Hif-1α 173 
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significantly increased il-1β:GFP expression in the absence of Mm infection at 2dpf, 174 

while dominant negative Hif-1α caused no difference in il-1β:GFP expression (Figure 175 

3A and B). These data indicate that il-1β expression is part of a pro-inflammatory 176 

response to increased Hif-1α levels that could aid the host response to Mm 177 

challenge. 178 

 179 

Inhibition of il-1β increases Mm burden and inhibits the Hif-1α nitric oxide 180 

response 181 

Il-1β is a major pro-inflammatory cytokine that in many infections is instrumental in 182 

coordinating the immune response (Cohen, 2014; Ogryzko et al, 2014b). We sought 183 

to test whether Il-1β was important in early Mm infection. When Il-1β was blocked 184 

using a well-characterised and validated il-1β morpholino, the morphants showed 185 

significantly increased infection compared to control morphants (Figure 4A and B).  186 

We have previously shown that stabilisation of Hif-1α induces pro-inflammatory 187 

neutrophil nitric oxide production, via inducible nitric oxide synthase (iNOS) (Elks et 188 

al, 2013, 2014a). DA Hif-1α was not sufficient to reduce Mm infection levels when il-189 

1β expression was blocked (Figure 4A and B) suggesting that the il-1β response to 190 

Mm infection is critical to control infection. These results were supported by 191 

generation of an il-1β null mutant (il-1βSH446/ il-1βSH446) (Figure S2), in which DA Hif-192 

1α also did not decrease infection, while in wildtype siblings infection was reduced 193 

(Figure 4C and D). 194 

NO production is found primarily in neutrophils after Mm infection in zebrafish larvae 195 

(Figure S3) (Elks et al, 2013, 2014b). We have previously demonstrated that 196 

inhibiting production of nitric oxide by Nos2 can block the antimicrobial effect of DA 197 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/306506doi: bioRxiv preprint 

https://doi.org/10.1101/306506
http://creativecommons.org/licenses/by/4.0/


 9

Hif-1α (Elks et al, 2013). Blocking Il-1β production also significantly dampened the 198 

neutrophil nitric oxide response after Mm infection at 1dpi (Figure 5A and B). As we 199 

have previously observed, DA Hif-1α upregulated NO in the absence of infection 200 

(PVP) an effect that is dampened by introduction of the bacteria (Mm) through 201 

currently unknown mechanisms, (Figure 5C and D) (Elks et al, 2013). Here, we find 202 

that il-1β MO blocked the increased production of nitrotyrosine by DA Hif-1α in the 203 

absence of bacteria (PVP) (Figure 5C and D). These results show that Hif-1α 204 

activation of Nos2 may, at least in part, be acting through il-1β activation (Figure 6) 205 

and hint at a much more complex regulation of pro-inflammatory signalling by Hif-1α 206 

than simply acting on Hif responsive elements (HREs) in the promoter of Nos2.  207 

 208 

Discussion 209 

Antimicrobial resistance is a rising problem in TB infections worldwide and there is 210 

an urgent need to understand the regulation of host-immunity by TB so that we can 211 

target host-derived factors to help tackle disease. Our data identify an early pro-212 

inflammatory response, involving macrophage il-1β expression, that is important for 213 

the onset of early disease, but ultimately fails to control infection leading to 214 

granuloma formation. Using a well-established zebrafish Mm model of TB, we show 215 

that manipulation of Hif-1α can stimulate this pro-inflammatory network, aiding the 216 

host fight against infection, moving towards early clearance of infection. Specifically, 217 

we identify that Hif-1α driven Il-1β contributes to the NO response, a response we 218 

have previously shown to be host protective (Elks et al, 2013, 2014a).  219 

Here, we took advantage of a novel transgenic zebrafish line to understand the 220 

dynamics and cell specificity of il-1β production in inflammation and mycobacterial 221 

infection, with a focus on the understudied early stages (<1dpi) of the innate immune 222 
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response to TB infection. We confirmed that the il-1β:GFP expression of our line was 223 

faithful to il-1β transcription by following its expression in a well-characterised tailfin 224 

transection model of inflammation and comparison to in situ hybridisation data 225 

(Ogryzko et al, 2014a; Renshaw & Loynes, 2006). Furthermore, the expression 226 

pattern of our BAC transgenic line closely matches another recently published BAC 227 

promoter driven il-1β transgenic (Hasegawa et al, 2017). The il-1β:GFP line also 228 

displayed some GFP signal in muscle and epithelial cells in the tail. Similar GFP 229 

expression can be seen when driven by NF-kB response elements (Kanther et al, 230 

2011) but not by WISH, suggesting this might be off-target expression resulting from 231 

the promoter region missing some negative regulatory elements, however, it could 232 

also be specific expression that is at too low a level to be detectable by in situ  233 

hybridisation. Although previous studies have shown il-1β:GFP to be upregulated in 234 

leukocytes at a tailfin transection (Hasegawa et al, 2017), we combined the il-235 

1β:GFP line with leukocyte specific transgenics to show that neutrophils are the first 236 

to respond at the wound, with macrophages both migrating to and upregulating il-237 

1β:GFP at later timepoints. 238 

The Mtb granuloma is widely studied, both in terms of immunohistochemistry of 239 

human granulomas, and in mammalian models (Ulrichs & Kaufmann, 2006; Flynn et 240 

al, 2011; Via et al, 2008). These studies have demonstrated that the granuloma is 241 

rich in pro-inflammatory cytokine production. This pro-inflammatory environment has 242 

been observed in human TB, with IL-1β found to be in high levels in pleural fluid from 243 

TB patients with granulomas present (Orphanidou et al, 1996). Here we observe that 244 

the pro-inflammatory response is present at pre-granuloma stages. Lack of a pro-245 

inflammatory response has been linked to poor treatment outcomes indicating that 246 

this host response is important even in the presence of antimycobacterial agents 247 
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(Waitt et al, 2015). The upregulation of proinflammatory cytokines in mycobacterial 248 

infection has also been shown in the zebrafish/Mm larval model of TB granulomas, 249 

but previous studies have mainly relied on immunohistochemistry and/or 250 

transcriptomics data from either wholebody larvae or FACs sorted immune cell 251 

populations (Benard et al, 2016; Marjoram et al, 2015). Using live cell imaging we 252 

found that il-1β transcription was upregulated at the granuloma formation stage, 253 

however we also demonstrated that it is upregulated before the granuloma stage 254 

within 6-8 hours hpi. Upon infection il-1β:GFP expression was predominantly 255 

upregulated in infected macrophages indicating that within the first 24 hours of 256 

infection there is a macrophage pro-inflammatory response. Murine and human cell 257 

studies have indicated that macrophages are able to produce IL-1β a few hours after 258 

mycobacterial challenge indicating that an early response is also present in 259 

mammalian systems, at least on a cellular level (Di Paolo et al, 2015; Robinson & 260 

Nau, 2008). Our observations are in line with our previous observation of Hif-1α 261 

signalling early after infection (detected using a phd3:GFP transgenic line), which 262 

was also observed in infected macrophages at 1dpi (Elks et al, 2013), indicating that 263 

il-1β, alongside Hif-1α signalling, is part of an immediate pro-inflammatory 264 

macrophage response. As with Hif-1α, our data indicate that Mm triggered il-1β is 265 

not sufficient to control infection with subsequent widespread granuloma formation at 266 

later stages, however if primed with high il-1β  and NO via Hif-1α the immune 267 

response is boosted leading to lower infection, towards early infection clearance. 268 

We have previously demonstrated that stabilisation of Hif-1α can aid the zebrafish 269 

host to control Mm infection, at least in part by priming neutrophils with increased 270 

nitrotyrosine generated by the Nos2 enzyme (Elks et al, 2013). If the Nos2 enzyme is 271 

blocked either pharmacologically or genetically the protective effect of Hif-1α 272 
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stabilisation is lost (Elks et al, 2013). Here, we show that stabilisation of Hif-1α 273 

upregulates pro-inflammatory macrophage il-1β expression in the absence of an 274 

infection challenge. If Il-1β activity is repressed then Hif-1α induced reduction in 275 

bacterial burden is abrogated, alongside the Hif-1α dependent increase in NO 276 

production. These data show regulation of both Nos2 and Il-1β by Hif-1α, and that 277 

Hif-1α driven NO production is partially dependent on Il-1β induction. Both human 278 

NOS-2 and IL-1β have HREs (HIF responsive elements) in their promoters and 279 

direct regulation by HIF-α signalling has been previously demonstrated in vitro 280 

(Zhang et al, 2006; Charbonneau et al, 2007). The link between HIF-1α and IL-1β  281 

has been previously demonstrated in murine macrophages via inflammatory 282 

activation by succinate, in the absence of infection (Tannahill et al, 2013). In a 283 

murine model of Mycobacterium tuberculosis it was found that HIF-1α is critical for 284 

IFN-γ–dependent control of M. tuberculosis infection, but it has not previously been 285 

demonstrated that HIF-1α is important for innate defense of macrophages against M. 286 

tuberculosis (Braverman et al, 2016). Our data do not rule out direct regulation of 287 

Nos2 by Hif-1α, as blocking Il-1β is likely to have wider spread immune effects, 288 

however they do suggest that Nos2 is partially upregulated by Il-1β in the stabilised 289 

Hif-1α context. These observations, alongside our finding that blocking Il-1β, 290 

primarily observed in macrophages, can block Hif-1α induced neutrophil nitrotyrosine 291 

production, indicate a close interplay between macrophages and neutrophils during 292 

early mycobacterial infection that is not yet fully understood.  293 

IL-1β is an important pro-inflammatory component and is one of the cytokines that 294 

has been shown to be transcriptionally depressed during the 6 hour to 1dpi period of 295 

Mm/zebrafish pathogenesis (Benard et al, 2016). Although this depression was not 296 
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detectable using the il-1β:GFP line, presumably due to the early transcriptional 297 

response post-infection coupled with the stability of the GFP protein, our data 298 

indicate that increased il-1β transcription due to Hif-1α stabilisation during this early 299 

stage of Mm infection is protective to the host. Alongside transcription, the 300 

processing of Il-1β by caspases plays a crucial role in immune cell pyroptosis 301 

mediated by the inflammasome (Malik & Kanneganti, 2017). Recent findings in the 302 

Mm/zebrafish model indicate that neutrophils and macrophages can efficiently 303 

phagocytose bacteria and undergo rounds of cell death and re-uptake during the 304 

initial days of infection (Hosseini et al, 2016). Although here we show a role for early 305 

pro-inflammatory il-1β transcription during Mm infection, the role of Il-1β processing 306 

and inflammasome induced pyroptosis/cell death in these early Mm immune 307 

processes remain undetermined.  308 

In conclusion, our data demonstrate an early pro-inflammatory response of Mm 309 

infected macrophages in vivo. By stabilising Hif-1α, macrophage Il-1β can be primed 310 

in the absence of infection and is protective upon Mm infection via neutrophil nitric 311 

oxide production. Therapeutic strategies targeting these signalling mechanisms 312 

could decrease the level of initial mycobacteria in patients and act to block the 313 

development of active TB by reactivation of macrophage pro-inflammatory stimuli. 314 

Furthermore, our findings may have important implications in other human infectious 315 

diseases in which the pathogen is able to circumvent the proinflammatory immune 316 

response to allow its survival and proliferation. Therapies that target host-derived 317 

signalling pathways such as these would be beneficial against multidrug resistant 318 

strains and could act to shorten the currently long antibiotic therapies required to 319 

clear TB from patients. 320 

 321 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/306506doi: bioRxiv preprint 

https://doi.org/10.1101/306506
http://creativecommons.org/licenses/by/4.0/


 14

Materials and Methods 322 

 323 

Zebrafish and bacterial strains 324 

Zebrafish were raised and maintained on a 14:10-hour light/dark cycle at 28 degrees 325 

C, according to standard protocols (Nusslein-Volhard C, 2002), in UK Home Office 326 

approved facilities at The Bateson Centre aquaria at the University of Sheffield. 327 

Strains used were Nacre (wildtype), Tg(mpeg1:mCherry-F)ump2Tg, TgBAC(il-328 

1β:eGFP)sh445 Tg(mpeg1:mCherryCAAX)sh378 and Tg(lyz:Ds-RED2)nz50 329 

(Marjoram et al, 2015; Bojarczuk et al, 2016; Nguyen-Chi et al, 2015; Hall et al, 330 

2007).  331 

Mm infection experiments were performed using M. marinum M (ATCC #BAA-535), 332 

containing a psMT3-mCherry or psMT3 mCrimson vector (van der Sar et al, 2009). 333 

Injection inoculum was prepared from an overnight liquid culture in the log-phase of 334 

growth resuspended in 2% polyvinylpyrrolidone40 (PVP40) solution (CalBiochem) as 335 

previously described (Cui et al, 2011). 100-150 colony forming units (CFU) were 336 

injected into the caudal vein at 28-30hpf as previously described (Benard et al, 337 

2012). 338 

 339 

Generation of TgBAC(il-1α:GFP)sh445 transgenic and il-1βSH446/ il-1βSH446 
340 

mutant zebrafish 341 

An eGFP SV40 polyadenylation cassette inserted at the il-1β ATG start site of 342 

zebrafish BAC CH-211-147h23 using established protocols (Renshaw et al, 2006). 343 

Inverted Tol2 elements were inserted into the chloramphenicol coding sequence and 344 

the resulting modified BAC was used to generate TgBAC(il-1β:eGFP)sh445.  345 
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il-1-/- (il-1βSH446/il-1βSH446) mutant embryos were generated by CRISPR-Cas9 346 

mediated mutagenesis targeted around an Mwo1 restriction site in the third exon of 347 

il-1β using the method described by Hruscha et al (2013) and the template sequence 348 

5’-349 

AAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTA350 

ACTTGCTATTTCTAGCTCTAAAACTGAGCATGTCCAGCACCTCGGCTATAGTGA351 

GTCGTATTACGC-3’ (il-1β target sequence in bold). PCR with il-1gF 5’-352 

TAAGGAAAAACTCACTTC-3’ and il-1gR 5’ATACGTGGACATGCTGAA3’ and 353 

subsequent Mwo1 digestion were used for genotyping. 354 

 355 

Morpholino knockdown of il-1β 356 

The il-1bβ morpholino (Genetools) was used as previously reported (López-Muñoz et 357 

al, 2011).  A standard control morpholino (Genetools) was used as a negative 358 

control.  359 

 360 

Confocal microscopy of transgenic larvae 361 

1dpi and 4dpi transgenic zebrafish larvae infected with fluorescent Mm strains were 362 

mounted in 0.8-1% low melting point agarose (Sigma-Aldrich) and imaged on a Leica 363 

TCS-SPE confocal on an inverted Leica DMi8 base and imaged using 20x or 40x 364 

objective lenses. 365 

For quantification purposes acquisition settings and area of imaging (in the caudal 366 

vein region) were kept the same across groups. Corrected total cell fluorescence 367 

was calculated for each immune-stained cell using Image J as previously described 368 

(Elks et al, 2013, 2014a).  369 

 370 
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Tailfin transection 371 

Inflammation was induced in zebrafish embryos by tail transection at 2 or 3dpf as 372 

described previously (Renshaw & Loynes, 2006). Embryos were anesthetised by 373 

immersion in 0.168 mg/mL Tricaine (Sigma-Aldrich), and tail transection was 374 

performed using a microscalpel (World Precision Instruments).  375 

 376 

qPCR of il-1β 377 

SYBR green qPCR was performed on 1dpi Mm infected (or PVP control) embryos as 378 

previously described (Van Der Vaart et al, 2014). The following primers were used: 379 

il-1β, accession number NM_212844, forward primer: 380 

GAACAGAATGAAGCACATCAAACC, reverse primer: 381 

ACGGCACTGAATCCACCAC, ppial control, accession number AY391451, forward 382 

primer: ACACTGAAACACGGAGGCAAG, reverse primer: 383 

CATCCACAACCTTCCCGAACAC. 384 

 385 

Bacterial pixel count 386 

Mm mCherry infected zebrafish larvae were imaged at 4dpi on an inverted Leica 387 

DMi8 with a 2.5x objective lens. Brightfield and fluorescent images were captured 388 

using a Hammamatsu OrcaV4 camera. Bacterial burden was assessed using 389 

dedicated pixel counting software as previously described (Stoop et al, 2011). 390 

 391 

RNA injections 392 

Embryos were injected with dominant hif-1αb variant RNA at the one cell stage as 393 

previously described (Elks et al, 2011). hif-1α variants used were dominant active 394 
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(DA) and dominant negative (DN) hif-1α (ZFIN: hif1ab). Phenol red (PR) (Sigma 395 

Aldrich) was used as a vehicle control. 396 

 397 

Anti-nitrotyrosine antibody staining 398 

Larvae were fixed in 4% paraformaldehyde in PBS overnight at 4°C and nitrotyrosine 399 

levels were immune-labelled using a rabbit polyclonal anti-nitrotyrosine antibody 400 

(Merck Millipore 06-284) and were detected using an Alexa Fluor conjugated 401 

secondary antibody (Invitrogen Life Technologies) as previously described (Elks et 402 

al, 2013, 2014a). 403 

 404 

Statistical analysis 405 

All data were analysed (Prism 7.0, GraphPad Software) using unpaired, two-tailed t-406 

tests for comparisons between two groups and one-way ANOVA (with Bonferonni 407 

post-test adjustment) for other data. P values shown are: *P < .05, **P < .01, and 408 

***P < .001. 409 
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Figure Legends 627 

 628 

Figure 1. TgBAC(il-1β:GFP)sh445 is upregulated by Mm in infected 629 

macrophages at early and later stage infection 630 

A) Graph showing relative wholebody il-1β mRNA expression by SYBRgreen qPCR 631 

in Mm infected 1dpi larvae (Mm) and mock injected controls (PVP). Data shown are 632 

mean ± SEM, n=3 independent experiments.   633 

(B) Fluorescent confocal micrographs of 1dpi larvae, prior to granuloma formation. 634 

Unchallenged TgBAC(il-1β:GFP)sh445 has no detectable expression in immune 635 
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cells and low detectable levels in the yolk (dotted line) and some muscle cells. il-1β 636 

expression was detected by GFP levels, in green, using the TgBAC(il-1:eGFP)sh445 637 

transgenic line. Mm mCherry is shown in the red channel. Increased levels of il-638 

1β:GFP expression were detectable in cells associated with infection. Infected 639 

macrophages with il-1β-GFP levels have an activated, branched phenotype (white 640 

arrowheads). 641 

(C) Fluorescent confocal micrographs of 4dpi larvae. il-1β expression was detected 642 

by GFP levels, in green, using the TgBAC(il-1:eGFP)sh445 transgenic line. Mm 643 

mCherry is shown in the red channel. Increased levels of il-1β:GFP expression were 644 

detectable in immune cells that are in the blood vessels (Ci and blown up in Ciii, 645 

blood vessel indicated by solid white lines) and in early tissue granulomas (Cii and 646 

blown up in Civ).  647 

 648 

 649 

Figure 2. il-1β:GFP is activated 6-8 hours after challenge in macrophages. 650 

(A) Fluorescent confocal micrographs of a timelapse between 6 to 8 hours post Mm 651 

infection. Mm mCherry is shown in the red channel and il-1β:GFP in the green 652 

channel with the microscope settings set to detect low GFP levels. Arrowheads 653 

indicate the emergence of il-1β:GFP expression in an infected cell. 654 

(B) Fluorescent confocal micrographs of TgBAC(il-1β:GFP)sh445 crossed to 655 

Tg(mpeg1:mCherryCAAX)sh378 line labelling macrophages. The tailfin was 656 

transected at 3dpf and fluorescence imaging was performed at the wound at 1 hour 657 

post wound (1hpw) and 6hpw. Red macrophages are not positive for il-1β:GFP 658 

expression at 1hpw and the first detectable il-1β:GFP expression is found in the 659 

macrophages at 6hpw. 660 
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(C) Fluorescent confocal micrographs of 1dpi caudal vein region of infection. il-1β 661 

expression was detected by GFP levels, in green, using the TgBAC(il-662 

1β:eGFP)sh445 transgenic line. Macrophages are shown in red using a 663 

Tg(mpeg1:mCherryCAAX)sh378 line. Mm Crimson is shown in the blue channel 664 

(right panels) with a PVP control (left panels). Without infection there is little overlap 665 

of il-1β:GFP and mpeg:mCherry, while in infected larvae macrophages have higher 666 

levels of il-1β:GFP. Arrowheads indicate infected macrophages with high levels of il-667 

1β:GFP. Dotted lines indicate the yolk extension of the larvae where there is non-668 

specific fluorescence. 669 

 670 

Figure 3. il-1β:GFP is upregulated in the absence of infection by DA Hif-1α 671 

(A) Fluorescent confocal micrographs of 1dpi caudal vein region of infection. il-672 

1β:GFP expression was detected by GFP levels, in green, using the TgBAC(il-673 

1:eGFP)sh445 transgenic line. Larvae were injected at the 1 cell stage with dominant 674 

negative (DN) or dominant active (DA) Hif-1α or phenol red (PR) control. Non-675 

infected larvae are in the left panels (PVP) and Mm Crimson infected larvae are in 676 

the right panels (Mm). Dotted lines indicate the yolk extension of the larvae where 677 

there is non-specific fluorescence. 678 

(B) Corrected fluorescence intensity levels of il-1β:GFP confocal z-stacks in 679 

uninfected larvae (PVP, empty bars) and infected larvae (Mm, filled bars) at 1dpi. 680 

Dominant active Hif-1α (DA1) had significantly increased il-1β:GFP levels in the 681 

absence of Mm bacterial challenge compared to phenol red (PR) and dominant 682 

negative Hif-1α (DN1) injected controls. Data shown are mean ± SEM, n=24-48 cells 683 

from 4-8 embryos representative of 3 independent experiments.  684 

 685 
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 686 

Figure 4. il-1β knockdown abrogates the protective effect of DA Hif-1α on 687 

bacterial burden  688 

(A) Stereo-fluorescence micrographs of Mm mCherry infected 4dpi larvae after 689 

injection with DA Hif-1α (DA1) and the il-1β morpholino (Il-1 MO), using the standard 690 

control morpholino and phenol red (Control) as a negative control. 691 

(B) Bacterial burden of larvae shown in (A). Data shown are mean ± SEM, n=46-50 692 

as accumulated from 3 independent experiments. 693 

(C) Stereo-fluorescence micrographs of Mm mCherry infected 4dpi larvae of il-1β 694 

knockout (il-1-/-) and sibling wildtype controls (WT) after injection of DA Hif-1α (DA1) 695 

or phenol red (PR) as a negative control.  696 

(D) Bacterial burden of larvae shown in (C). Data shown are mean ± SEM, n=16-20 697 

as accumulated from 3 independent experiments. 698 

 699 

 700 

Figure 5. il-1β knockdown abrogates DA Hif-1α dependent nitrotyrosine 701 

production 702 

(A) Example fluorescence confocal z-stacks of the caudal vein region of embryos 703 

stained with Alexa-633 labelled anti-nitrotyrosine antibody (red), imaged at 1dpi in 704 

the presence or absence of Mm infection. One-cell stage embryos were injected with 705 

phenol red (PR). One-cell stage embryos we co-injected with il-1β morpholino or (il-1 706 

MO) or standard control morpholino (Cont MO). At 1dpi larvae were either infected 707 

with Mm mCherry (Mm), or PVP as a non-infected control (Mm channel not shown in 708 

these panels). 709 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2018. ; https://doi.org/10.1101/306506doi: bioRxiv preprint 

https://doi.org/10.1101/306506
http://creativecommons.org/licenses/by/4.0/


 30

(B) Example fluorescence confocal z-stacks of the caudal vein region of embryos 710 

stained with Alexa-633 labelled anti-nitrotyrosine antibody (red), imaged at 1dpi in 711 

the presence or absence of Mm infection. One-cell stage embryos were injected with 712 

dominant active Hif-1α (DA). One-cell stage embryos we co-injected with il-1β 713 

morpholino or (il-1 MO) or standard control morpholino (Cont MO). At 1dpi larvae 714 

were either infected with Mm mCherry (Mm), or PVP as a non-infected control (Mm 715 

channel not shown in these panels). 716 

(C) Corrected fluorescence intensity levels of anti-nitrotyrosine antibody confocal z-717 

stacks of phenol red (PR) control injected embryos in the presence or absence of 718 

Mm infection at 1dpi. Control morpholino is shown in the clear bars and il-1β 719 

morpholino (il-1 MO) in the filled bars. Data shown are mean ± SEM, n=54-59 cells 720 

from 10-12 embryos accumulated from 3 independent experiments.   721 

(D) Corrected fluorescence intensity levels of anti-nitrotyrosine antibody confocal z-722 

stacks of dominant active Hif-1α (DA1) injected embryos in the presence or absence 723 

of Mm infection at 1dpi. Control morpholino is shown in the clear bars and il-1 724 

morpholino (il-1 MO) in the filled bars. Data shown are mean ± SEM, n=54-59 cells 725 

from 10-12 embryos accumulated from 3 independent experiments. 726 

 727 

 728 

Figure 6. Hif-1α stabilisation leads to upregulation of il-1β and increased 729 

neutrophil nitric oxide production that is protective against infection. 730 

During normal (control) Mm infection Hif-1α, Il-1β and NO transcript levels rise after 731 

infection, but are not sufficient to control infection (Elks et al, 2013). When Hif-1α is 732 

stabilised, Il-1β and subsequent neutrophil NO upregulation occurs in the absence of 733 
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infection, priming the immune response to better deal with infection leading to lower 734 

burden. 735 

 736 

Figure S1. TgBAC(il-1β:GFP)sh445 recapitulates il-1β wholemount in situ 737 

hybridisation pattern following sterile tailfin transection. 738 

(A) Wholemount in situ hybridisation of il-1β in tailfin injured 2dpf embryos.  739 

(B) Fluorescent confocal micrographs of TgBAC(il-1β:GFP)sh445 expression after 740 

tailfin injury. Upper and lower panels show the same individual embryo 0 and 12hpi. 741 

(C) Fluorescent confocal micrographs of TgBAC(il-1β:GFP)sh445 crossed to 742 

Tg(lyz:Ds- RED2)nz50 labelling neutrophils at 1 hour post wound (1hpw) and 6hpw. 743 

 744 

 745 

Figure S2. CRISPR-Cas9 il-1β SH446 mutant. 746 

(A) Screenshot of Ensembl zebrafish il-1β coding sequence with CRISPR-Cas9 747 

target indicated in the fourth exon. 748 

(B) DNA alignment of WT il-1β sequence and il-1βSH446 showing the 44 base pair 749 

deletion caused by CRISPR-Cas9. 750 

(C) Amino acid alignment of WT il-1β sequence and il-1βSH446 with arrowhead 751 

showing the premature stop and removal of the putative Il-1β cleavage site. 752 

(D) Sequencing trace showing position of CRISPR-Cas9 induced deletion. 753 

 754 

 755 

 756 

Figure S3. Anti-nitrotyrosine signal is predominantly found in neutrophils after 757 

Mm infection. 758 
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(A) Example fluorescence confocal z-stacks of the caudal vein region of 759 

Tg(mpx:GFP)i114 embryos (green neutrophils) stained with Alexa-633 labelled anti-760 

nitrotyrosine antibody (cyan), imaged at 1dpi in the presence of Mm mCherry 761 

infection (red).  762 

 763 

Supplemental Movie 1. Il-1β:GFP expression in activated immune cells after 764 

Mm infection. 765 

(A) Fluorescent confocal videotimelapse of il-1β:GFP in immune cells containing Mm 766 

infection (il-1β:GFP in green and Mm mCrimson in red). 767 
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