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Cortical responses to sensory stimuli are highly variable, and sensory cortex exhibits intricate spontaneous
activity even without external sensory input. Cortical variability and spontaneous activity have been variously
proposed to represent random noise, recall of prior experience, or encoding of ongoing behavioral and cog-
nitive variables. Here, by recording over 10,000 neurons in mouse visual cortex, we show that spontaneous
activity reliably encodes a high-dimensional latent state, which is partially related to the mouse’s ongoing be-
havior and is represented not just in visual cortex but across the forebrain. Sensory inputs do not interrupt
this ongoing signal, but add onto it a representation of visual stimuli in orthogonal dimensions. Thus, visual
cortical population activity, despite its apparently noisy structure, reliably encodes an orthogonal fusion of

sensory and multidimensional behavioral information.

In the absence of sensory inputs, the brain produces struc-
tured patterns of activity, which can be as large or larger
than sensory driven activity [1]. Ongoing activity exists
even in primary sensory cortices, and have been hypoth-
esized to reflect recapitulation of previous sensory expe-
riences, or expectations of possible sensory events. This
hypothesis is supported by studies that found similarities
between sensory-driven and spontaneous firing events [2—
4]. An alternative possibility is that ongoing activity could
be related to behavioral and cognitive states. The firing
of sensory cortical and sensory thalamic neurons corre-
lates with behavioral variables such as locomotion, pupil
diameter, and whisking [5-19]. Continued encoding of
nonvisual variables when visual stimuli are present could
at least in part explain the trial-to-trial variability in re-
sponses to repeated presentation of identical sensory stim-
uli [20].

The influence of trial-to-trial variability on stimulus en-
coding depends on its population-level structure. Vari-
ability that is independent between cells — such as the
Poisson-like variability produced in balanced recurrent
networks [21] — presents little impediment to informa-
tion coding, as reliable signals can still be extracted as
weighted sums over a large enough population. In con-
trast, correlated variability has consequences that depend
on the form of the correlations. If correlated variability
mimics the differences in responses to different stimuli,
it can compromise stimulus encoding [22]. Conversely,
variability in dimensions orthogonal to those encoding
stimuli has no adverse impact on coding [23], and might
instead reflect encoding of signals other than visual in-
puts.

Spontaneous cortical activity reliably encodes a
high-dimensional latent signal

To distinguish between these possibilities, we character-
ized the structure of neural activity and sensory variabil-
ity in mouse visual cortex. We simultaneously recorded
from 11,262 + 2,282 (mean =+ s.d.) excitatory neu-
rons, over nine sessions in six mice using 2-photon imag-
ing of GCaMP6s in an 11-plane configuration [24] (Fig-
ure 1A,B, Movie S1). These neurons’ responses to clas-
sical grating stimuli revealed robust orientation tuning as
expected in visual cortex (Figure S1).

We began by analyzing spontaneous activity in mice free
to run on an air-floating ball. Six of nine recordings were
performed in darkness, but we did not observe differ-
ences between these recordings (shown in red on all plots)
and recordings with gray screen (yellow on all plots).
Mice spontaneously performed behaviors such as running,
whisking, sniffing, and other facial movements, which we
monitored with an infrared camera.

Ongoing population activity in visual cortex was highly
structured (Figure 1C-F). Correlations between neuron
pairs were reliable (Figure S2), and their spread was larger
than would be expected by chance (Figure 1C,D), sug-
gesting structured activity [25]. Fluctuations in the first
principal component (PC) occurred over a timescale of
many seconds (Figure S3), and were coupled to varia-
tions in arousal levels, as indicated by running, whisk-
ing, and pupil area. These arousal-related variables were
strongly correlated with each other (Figure S4A,B), and
together accounted for approximately 50% of the variance
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of the first neural PC (Figure 1E, Figure S4C). Correlation
with the first PC was positive or negative in approximately
similar numbers of neurons (57% =4 6.7% SE positive),
indicating that two large sub-populations of neurons al-
ternate their activity (Figure 1F). The slowness of these
fluctuations implies a different underlying phenomenon
to previously-studied “up and down phases” [3, 12, 26—
28], which alternate at a much faster timescale (100-300
ms instead of 10-20 s) and correlate with most neurons
positively. Indeed, up/down phases could not even have
been detected in our recordings, which scanned the cortex
every 400 ms.

Spontaneous activity had a high-dimensional structure,
more complex than would be predicted by a single factor
such as arousal (Figure 1G). This structure could be visu-
alized by sorting the raster diagram so that nearby neurons
showed strong correlations (see also Figure S5). Position
on this continuum bore little relation to actual distances in
the imaged tissue (Figure S6).

Despite its noisy appearance, spontaneous population ac-
tivity reliably encoded a high-dimensional latent signal
(Figure 1H-K). To show this, we devised a method to
identify dimensions of neural variance that are reliably de-
termined by common underlying signals, termed Shared
Variance Component Analysis (SVCA). The method be-
gins by dividing the recorded neurons into two spatially
segregated sets, and dividing the recorded timepoints into
two equal halves (training and test; Figure 1H). The train-
ing timepoints are used to find the dimensions in each
cell set’s activity that maximally covary with each other.
These dimensions are termed Shared Variance Compo-
nents (SVCs). Activity in the test timepoints is then pro-
jected onto each SVC (Figure 11), and the correlation be-
tween projections from the two cell sets (Figure 1J) pro-
vides an estimate of the reliable variance in that SVC (see
Methods and Appendix). The fraction of reliable vari-
ance in the first SVC was 97% (Figure 11J), implying
that only 3% of the variance along this dimension re-
flected independent noise. The reliable variance fraction
of successive SVCs decreased slowly, with the 50th SVC
showing approximately 50%, and the 512th showing 9%
(Figure 1K). Thus, visual cortical spontaneous activity en-
codes a multidimensional latent signal, and appropriately
weighted sums of 10,000 neurons suffice to accurately ex-
tract ~100 dimensions of it.

The magnitude of reliable spontaneous variance was dis-
tributed across dimensions according to a power law of
exponent 1.14 (Figure 1L). This value is larger than the

power law exponents close to 1.0 seen for stimulus re-
sponses [29], but still indicates a high-dimensional signal.
The first 128 SVCs together accounted for 86% + 1% SE
of the complete population’s reliable variance, and 67%
4 3% SE of the total variance in these 128 dimensions
was reliable. Arousal variables accounted for 11% + 1%
SE of the total variance in these 128 components (16% of
their reliable variance), and primarily correlated with the
top SVCs (Figure 1M,N).

Ongoing neural activity encodes multidimen-
sional behavioral information

Although arousal measures only accounted for a small
fraction of the reliable variance of spontaneous popula-
tion activity, it is possible that a larger fraction could be
explained by higher-dimensional measures of ongoing be-
havior (Figure 2A-C, Movie S2). We extracted a 1,000-
dimensional summary of the motor actions visible on the
mouse’s face by applying principal component analysis to
the spatial distribution of facial motion at each moment in
time [30]. The first PC captured motion anywhere on the
mouse’s face, and was strongly correlated with explicit
arousal measures(Figure S4B), while higher PCs distin-
guished different types of facial motion. We predicted
neuronal population activity from this behavioral signal
using reduced rank regression: for any N, we found the
N dimensions of the video signal predicting the largest
fraction of the reliable spontaneous variance (Figure 2D).

This multidimensional behavior measure predicted ap-
proximately twice as much variance as the simple arousal
variables (Figure 2D-J, Movie S3). To visualize how mul-
tidimensional behavior predicts ongoing population ac-
tivity, we compared a raster representation of raw activ-
ity (vertically sorted as in Figure 1G) to the prediction
based on multidimensional videography (Figure 2F, see
Figure S5 for all recordings). To quantify the quality of
prediction, and the dimensionality of the behavioral sig-
nal encoded in V1, we focused on the first 128 SVCs (ac-
counting for 86% of the population’s reliable variance).
The best one-dimensional predictor extracted from the
facial motion movie captured the same amount of vari-
ance as the best one-dimensional combination of whisk-
ing, running, and pupil (Figure 2G). However, prediction
quality continued to increase with up to 16 dimensions of
videographic information (and beyond, in some record-
ings), suggesting that visual cortex encodes at least 16
dimensions of motor information. These dimensions to-
gether accounted for 21%4 1% SE of the total population
variance (31% = 3% of the reliable variance; Figure 2H),
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substantially more than the three-dimensional model of
neural activity using running, pupil area and whisking
(11% =+ 1% SE of the total variance, 17% + 1% SE of the
reliable variance). Moreover, adding these three explicit
predictors to the video signal increased the explained vari-
ance by less than 1% (Figure 2I), even though the running
signal was not obtained from the video camera. A neu-
ron’s predictability from behavior was not related to its
cortical location (Figure S7). The timescale with which
neural activity could be predicted from facial behavior
was ~1 s (Figure 2J), reflecting the slow nature of these
behavioral fluctuations.

Behaviorally-related activity is spread across the
brain

The high-dimensional spontaneous activity patterns found
in V1 were a reflection of activity patterns spread
across the brain (Figure 3A-E). To show this, we per-
formed large-scale electrophysiological recordings, us-
ing 8 Neuropixels probes [31] to simultaneously record
from frontal, sensorimotor, visual and retrosplenial cor-
tex, hippocampus, striatum, thalamus, and midbrain (Fig-
ure 3A,B). The mice were awake and free to rotate a wheel

nents (PCs) of the motion energy movie. (D)
Schematic of reduced rank regression technique
used to predict neural activity from motion en-
ergy PCs. (E) Cross-validated fraction of suc-
cessive neural SVCs predictable from face mo-
tion (blue), together with fraction of variance
predictable from running, pupil and whisking
(green), and fraction of reliable variance (the
maximum explainable; gray; cf. Figure 1K). (F)
Top: raster representation of ongoing neural ac-
tivity in an example experiment, with neurons ar-
ranged vertically as in Figure 1G so correlated
cells are close together. Bottom: prediction of
this activity from facial videography (predicted
using separate training timepoints). (G) Percent-
age of the first 128 SVCs’ total variance that can
be predicted from facial information, as a func-
tion of number of facial dimensions used. (H)
Prediction quality from multidimensional facial
information, compared to the amount of reliable
variance. (I) Adding explicit running, pupil and
whisker information to facial features provides
little improvement in neural prediction quality.
(J) Prediction quality as a function of time lag
used to predict neural activity from behavioral
traces.
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with their front paws. From recordings in three mice, we
extracted 2,998, 2,768 and 1,958 units stable across ~1
hour of ongoing activity, and binned neural activity into
1.2 s bins, as for the imaging data.

Neurons were on average more strongly correlated with
others in the same area, but substantial inter-area cor-
relations also existed, suggesting non-localized patterns
of neural activity (Figure 3C). All areas contained neu-
rons positively and negatively correlated with the top fa-
cial motion PC, although thalamus and retrosplenial cor-
tex contained predominantly arousal-preferring neurons
(Figure 3D, p<10~8 two-sided Wilcoxon sign-rank test).
Sorting the neurons by correlation again revealed a com-
plex activity structure (Figure 3E). All brain areas con-
tained a sampling of neurons from the entire continuum
(Figure 3E, right), suggesting that a multidimensional
structure of ongoing activity is distributed throughout the
brain. This spontaneous activity spanned at least 128 di-
mensions, with 35% of the variance of individual neurons
reliably predictable from population activity (Figure S8).

Similar to visual cortical activity, the activity of brainwide
populations was partially predictable from facial videog-
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raphy (Figure 3F-H). Predictability of brain-wide activity
again saturated around 16 behavioral dimensions, which
predicted on average 16% of the total variance (42% of
the estimated maximum possible) (Figure 3F). Other ar-
eas showed even stronger behavioral modulation than vi-
sual cortex, with neurons in thalamus predicted best (22%
of total variance, 53% of estimated maximum). The
timescale of videographic prediction was again broad:
neural activity was best predicted from instantaneous be-
havior (17£24ms SE before behavior), but the predicted
variance again decayed slowly over time lags of multiple
seconds (Figure 3G). Taking advantage of the high tem-
poral resolution of electrophysiological recordings, we re-
duced the analysis bin size from 1.2 seconds to 200 ms, re-
vealing an additional sharp peak at short timescales across
all areas (optimal timelag at 80+£18 ms Figure 3H).

Stimulus-evoked and ongoing activity overlap
along one dimension

We next asked how ongoing activity and behavioral in-
formation relates to sensory responses (Figure 4A-B). For
this analysis, we interspersed blocks of visual stimulation
with flashed natural images (presented 1 per second on

activity explainable from orofacial behaviors as
a function of dimensions of reduced rank regres-
sion. Each curve shows average prediction qual-
ity for neurons in a particular brain area. (G)
Explained variance as a function of time lag be-
tween neural activity and behavioral traces. Each
curve shows the average for a particular brain
area. (H) Same as G in 200ms bins.

time from behavior (s)

average) with extended periods of spontaneous activity
(gray screen), while imaging visual cortical population ac-
tivity (Figure 4A). During stimulus presentation, the mice
continued to exhibit the same behaviors as in darkness,
resulting in a similar distribution of facial motion compo-
nents (Figure 4B).

Representations of sensory and behavioral information
were mixed together in the same cell population. There
were not separate sets of neurons encoding stimuli and be-
havioral variables: the fraction of each neuron’s variance
explained by stimuli and by behavior were only slightly
negatively correlated (Figure S9; r = -0.18, p<0.01 Spear-
man’s rank correlation), and neurons with similar stimulus
responses did not have more similar behavioral correlates
(Figure S9; r =-0.005, p > 0.05).

Nevertheless, the subspaces encoding sensory and behav-
ior information overlapped in only one dimension (Fig-
ure 4C-E). The space encoding behavioral variables con-
tained 11% of the total stimulus-related variance, 96% of
which was contained in a single dimension (Figure 4C)
with largely positive weights onto all neurons (85% posi-
tive weights, Figure 4D). Similarly, the space of ongoing
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Figure 4. Neural subspaces encoding stimuli and spontaneous/behavioral variables overlap along one dimension. (A) Principal components
of facial motion energy (top) and firing of ten example V1 neurons (bottom), before, during and after a period of visual stimulus presentation. (B)
Comparison of facial motion energy with and without visual stimulation. Each point represents a single PC in a single experiment; color represents
experiment identity. (C) Overlap of stimulus and behavioral subspaces. X-axis represents successive dimensions of overlap between the subspaces
spanned by mean stimulus responses and facial prediction; y-axis represents fraction of stimulus-related variance in each dimension. (D) Distri-
bution of cells’ weights on the single dimension of overlap between stimulus and behavior subspaces. Each curve represents the distribution of
weights over all cells in an experiment. (E) Illustration of three sets of orthogonal dimensions in the subspace of firing patterns. Activity in multiple
dimensions is driven by visual stimuli but not behavior (shades of magenta); multiple other dimensions are driven by behavior but not by stimuli
(shades of cyan); a single dimension (gray; characterized in panels C,D) is driven by both. (F) Example of neural population activity projected
onto these three sets of dimensions. Top: shades of magenta, projection onto stimulus-related dimensions. Middle: gray, projection onto single
dimension related to both stimuli and behavior; blue, projection onto dimensions related to behavior alone. Bottom: similar analysis for all ongoing
spontaneous dimensions, even if unrelated to facial behavior. (G) Amount of variance of each of the projections illustrated in F, during stimulus
presentation and spontaneous periods. Each point represents summed variances of the dimensions in the subspace corresponding to the symbol
color, for a single experiment. (H) Projection of population responses to repeats of two example stimuli into two dimensions of the stimulus-only
subspace. Red lines: multiplicative gain model. (I) Similar plot for two dimensions of the behavior-only subspace. (J) Fraction of variance in the
stimulus-only subspace explained by three models: constant response on each trial of the same stimulus (avg. model); multiplicative gain that varies
across trials (mult. model); and a model with both multiplicative and additive terms (affine model). (K) The multiplicative gain on each trial can be
predicted by the face motion PCs.
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activity, defined by the top 128 principal components of
spontaneous firing, contained 23% of the total stimulus-
related variance, 86% of which was contained in one di-
mension (85% positive weights). Thus, overlap in the
spaces encoding sensory and behavioral variables arises
only because both can change the mean firing rate of the
population: the precise patterns of increases and decreases
about this change in mean were essentially orthogonal
(Figure 4E).

To visualize how the V1 population integrated sensory
and behavior-related activity, we examined the projection
of this activity onto three orthogonal subspaces: a mul-
tidimensional subspace encoding only sensory informa-
tion (stim-only); a multidimensional subspace encoding
only behavioral information (behav-only); and the one-
dimensional subspace encoding both (stim-behav shared
dimension) (Figure 4F-G; Figure S10). During gray-
screen periods there was no activity in the stim-only sub-
space, but when the stimuli appeared this subspace be-
came very active. Conversely, activity in the behav-only
subspace was present prior to stimulus presentation, and
continued unchanged when the stimulus appeared. The
one-dimensional shared subspace showed an intermediate
pattern: activity in this subspace was weak prior to stim-
ulus onset, and increased when stimuli were presented.
Similar results were seen for the spont-only and stim-
spont spaces (Figure 4F, lower panels). Across all ex-
periments, variance in the stim-only subspace was 119 +
81 SE times larger during stimulus presentation than dur-
ing spontaneous epochs (Figure 4G), while activity in the
shared subspace was 19 + 12 SE times larger; activity
in the face-only and spont-only subspaces was only mod-
estly increased by sensory stimulation (1.4 &+ 0.13 SE and
1.7 £ 0.2 SE times larger, respectively).

To visualize how stimuli affected activity in these sub-
spaces, we plotted population responses to multiple re-
peats of two example stimuli (Figure 4H-K). When pro-
jected into the stim-only space, the resulting clouds were
tightly defined with no overlap (Figure 4H), but in the
behav-only space, responses to the two stimuli were di-
rectly superimposed (Figure 4I). Variability within the
stimulus subspace consisted of changes in the length of
the projected activity vectors between trials, resulting in
narrowly elongated clouds of points, consistent with pre-
vious reports of multiplicative variability in stimulus re-
sponses [32-35]. A model in which stimulus responses
are multiplied by a trial-dependent factor accurately cap-
tured the data, accounting for 89% + 0.1% SE of the vari-
ance in the stimulus subspace (Figure 4J). Furthermore,

the multiplicative gain on each trial could be predicted
from facial motion energy (r = 0.61 £ 0.02 SE, cross-
validated), and closely matched activity in the shared sub-
space (r = 0.73 £ 0.06 SE, cross-validated; Figure 4K).
Although ongoing activity in the behav-only space and vi-
sual responses in the stim-only subspace added indepen-
dently, we did not observe additive variability within the
stim-only space itself: an "affine" model also including an
additive term did not significantly increase explained vari-
ance over the multiplicative model (p > 0.05, Wilcoxon
rank-sum test).

Discussion

Ongoing population activity in visual cortex reliably en-
coded a latent signal of at least 100 linear dimensions, and
possibly many more. The largest dimension correlated
with arousal and modulated about half of the neurons pos-
itively and half negatively. At least 16 further dimensions
were related to behaviors visible by facial videography,
which were also encoded across the forebrain. The di-
mensions encoding motor variables overlapped with those
encoding visual stimuli along only one dimension, which
coherently increased or decreased the activity of the entire
population. Activity in all other behavior-related dimen-
sions continued unperturbed regardless of sensory stimu-
lation. Trial-to-trial variability of sensory responses com-
prised additive ongoing activity in the behavior subspace,
and arousal-dependent multiplicative modulation in the
stimulus subspace, resolving apparently conflicting find-
ings concerning the additive or multiplicative nature of
cortical variability [20, 32-35].

Our data are consistent with previous reports describing
low-dimensional correlates of locomotion and arousal in
visual cortex [5, 7-14], but suggest these results were
glimpses of a much larger set of behavioral and cognitive
variables encoded by ongoing activity patterns. We found
that 16 dimensions of facial motor activity can predict
31% of the reliable spontaneous variance. The remain-
ing dimensions and variance might in part reflect motor
activity not visible on the face or only decodable by more
advanced methods [36-39], or they might reflect internal
cognitive variables such as motivational drives.

The fact that ongoing and visually-evoked activity over-
lap in only one dimension at first appears to contradict
previous reports showing similarity of sensory responses
to ongoing activity [2—-4]. We suggest three possible ex-
planations for this apparent discrepancy. First, our exper-
iments looked at a slower timescale than most previous
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studies, which binned the data at 100 ms [3], or even 2
ms [4]. Second, even a single dimension of common rate
fluctuation is sufficient for some previously-applied sta-
tistical methods to report similar population activity [40].
Third, we found that encoding of non-sensory variables
continued throughout stimulus presentation. Thus, simi-
lar firing patterns during stimulation and ongoing activity
need not imply recapitulation of sensory events, just that
cortex continues to encode nonsensory variables during
sensory stimulation.

The brainwide representation of behavioral variables sug-
gests that information encoded nearly anywhere in the
forebrain is combined with behavioral state variables into
a mixed representation. We found that these multidimen-
sional signals are present both during ongoing activity
and during passive viewing of a stimulus. Recent evi-
dence indicates that they may also be present during a
decision-making task [41]. What benefit could this ubiqg-
uitous mixing of sensory and motor information provide?
The most appropriate behavior for an animal to perform
at any moment depends on the combination of available
sensory data, ongoing motor actions, and purely internal
variables such as motivational drives. Integration of sen-
sory inputs with motor actions must therefore occur some-
where in the nervous system. Our data indicate that it hap-
pens as early as primary sensory cortex. This is consis-
tent with neuroanatomy: primary sensory cortex receives
innervation both from neuromodulatory systems carrying
state information, and from higher-order cortices which
can encode fine-grained behavioral variables [6]. This
and other examples of pervasive whole-brain connectiv-
ity [42-46] may coordinate the brain-wide encoding of
behavioral variables we have reported here.
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Supplementary Materials

Materials and methods

All experimental procedures were conducted according to the UK Animals Scientific Procedures Act (1986). Experi-
ments were performed at University College London under personal and project licenses released by the Home Office
following appropriate ethics review.

All two-photon calcium imaging data is available at https://figshare.com/articles/Recordings_
of_ten_thousand_neurons_in_visual_cortex_during_spontaneous_behaviors/6163622,
in the form of processed deconvolved calcium traces together with the behavioral traces.  All of the
code used to analyze the data and produce the figures is available at www.github.com/MouseLand/
stringer-pachitariu-et-al-2018a.

Preparation for two-photon calcium imaging in visual cortex

The imaging methods were similar to those described elsewhere [11]. Briefly, surgeries were performed in seven
adult mice (P35-P125) in a stereotaxic frame and under isoflurane anesthesia (5% for induction, 0.5-1% during the
surgery). We used mice bred to express GCaMP6s in excitatory neurons (I EMX-CRE x Ai94 GCaMP6s mouse, 3
CamKII x tetO GCaMP6s mice, and 1 Rasgrf-CRE x Ai94 GCaMP6s mouse), or mice bred to express tdTomato in
GAD+ inhibitory neurons (2 GAD-Cre x tdTomato mice), allowing inhibitory neurons to be identified and excluded
from further analysis. We did not observe epileptiform activity in any of these mice [47].

Before surgery, Rimadyl was administered as a systemic analgesic and lidocaine was administered locally at the
surgery site. During the surgery we implanted a head-plate for later head-fixation, made a craniotomy of 3-4 mm
in diameter with a cranial window implant for optical access, and, in Gad-Cre x tdTomato transgenics, performed
virus injections with a beveled micropipette using a Nanoject II injector (Drummond Scientific Company, Broomall,
PA 1) attached to a stereotaxic micromanipulator. We used AAV2/1-hSyn-GCaMP6s, acquired from University of
Pennsylvania Viral Vector Core. Injections of 50-200 nl virus (1-3 x1012 GC/ml) were targeted to monocular V1,
2.1-3.3 mm laterally and 3.5-4.0mm posteriorly from Bregma. To obtain large fields of view for imaging, we typically
performed 4-8 injections at nearby locations, at multiple depths (~500 pum and ~200 pm). Rimadyl was then used as
a post-operative analgesic for three days, delivered to the mice via their drinking water.

Data acquisition

We optically recorded neural activity in head-fixed awake mice implanted with 3-4 mm cranial windows centered
over visual cortex, obtaining ~10,000 neurons in all recordings. The recordings were performed using multi-plane
acquisition controlled by a resonance scanner, with planes spaced 30-35 pm apart in depth. 10 or 12 planes were
acquired simultaneously at a scan rate of 3 or 2.5 Hz. The mice were free to run on an air-floating ball and were
surrounded by three computer monitors. Spontaneous activity was recorded in darkness (monitors off), or with a gray
background or presented visual stimuli on these monitors arranged at 90° angles to the left, front and right of the
animal, so that the animal’s head was approximately in the geometric center of the setup.

For each mouse imaged, we typically spent the first imaging day finding a suitable recording location, where the
following three conditions held:

o the GCaMP signal was strong, in the sense that clear transients could be observed in large numbers of cells
e alarge enough field of view could be obtained for 10,000 neuron recordings,
o the receptive fields of the neuropil were clearly spatially localized on our three monitors.

In animals for which there was a choice over multiple valid recording locations, we chose either: 1) a horizontally
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and vertically central retinotopic location or 2) a lateral retinotopic location, at 90° from the center, but still centered
vertically. We did not observe differences related to retinotopic location (central or lateral), and thus pooled data
across recording locations. We also did not observe significant differences between recordings obtained from GCaMP
transgenic animals and from virus injections, nor between recordings made in complete darkness or with a gray screen.
Thus, we pooled data over all conditions.

Visual stimuli

We presented 96 repetitions of 32 flashed natural images, covering all three screens. The images were manually se-
lected from the ImageNet database ([48]), from ethologically-relevant categories: "birds", "cat", "flowers", "hamster",
"holes", "insects", "mice", "mushrooms", "nests", "pellets", "snakes", "wildcat". We chose images if the subjects
tended to fill out the image (less than 50% of the image was a uniform background), and if the images contained a bal-
anced mixture of low an high spatial frequencies. The images were flashed for 0.5 sec with a randomized inter-stimulus
interval between 0.3 sec and 1.1 sec, during which a gray screen was presented.

Calcium imaging processing

The pre-processing of all raw calcium movie data was done using a toolbox we developed called Suite2p, using the
default settings [24]. The software is available at www.github.com/cortex—-lab/Suite2P.

Briefly, Suite2p first aligns all frames of a calcium movie using 2D rigid registration based on regularized phase
correlation, subpixel interpolation, and kriging. For all recordings we validated the inferred X and Y offset traces,
to monitor any potential outlier frames that may have been incorrectly aligned. In a few recordings, a very small
percentage (<0.01%) of frames that had registration artifacts were removed and the extracted traces were replaced with
interpolated values at those frames. In all recordings, the registered movie appeared well-aligned by visual inspection.
Next, Suite2p performs automated cell detection and neuropil correction. To detect cells, Suite2p computes a low-
dimensional decomposition of the data, which is used to run a clustering algorithm that finds regions of interest (ROIs)
based on the correlation of the pixels inside them. The extraction of ROIs stops when the pixel correlations of new
potential ROIs drops below a threshold parameter, which is set as a fraction of the correlation in the high SNR ROIs;
thus, it does not require the number of clusters to be set a priori. A further step in the Suite2p GUI classifies ROIs
as somatic or not. This classifier learns from user input, reaching 95% performance on this data [24], thus allowing
us to skip the manual step altogether for most recordings. We note that the 5% errors might be attributable to human
labelling error, or to dendritic signals from backpropagating APs, reflecting the spiking of deeper cells. Thus, there is
little risk of ROIs measuring signals other than neuronal action potentials.

We took great care to compensate cellular fluorescence traces for the surrounding neuropil signal [49]. This contami-
nation is typically removed by subtracting out from the ROI signal a scaled-down version of the neuropil signal around
the ROI; the scaling factor was set to 0.7 for all neurons. Importantly, for computing the neuropil signal, we excluded
all pixels that Suite2p attributed to an ROI, whether somatic or dendritic. After neuropil subtraction, we subtracted a
running baseline of the calcium traces with a sliding window of 60 seconds to remove long timescale drift in baseline,
then applied non-negative spike deconvolution using the OASIS algorithm with a fixed timescale of calcium indicator
decay of 2 seconds [50, 51]. To further ensure out-of-focus fluorescence could not contribute to our results, we ex-
cluded neurons whose signal might span two planes by excluding neurons in sequential planes that had a greater than
a 0.6 correlation (in 1.2 second bins) with each other, and whose centers were within 5 ym of each other in XY.

In addition, we ensured the cell sets used for reliable variance estimation (Figure 1H) were spatially non-overlapping:
we segregated the field of view into 16 strips in XY (encompassing all Z) of width 60 pm, and put cells from the odd
strips in one group and the cells in the even strips in the other group. This ensured that no cells from different groups
were at the same XY position but at a different depth. For peer prediction analyses (Figure S8), we excluded all peer
cells within 70 pm of the target (Euclidean distance in three-dimensional space).

12


www.github.com/cortex-lab/Suite2P
https://doi.org/10.1101/306019
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/306019; this version posted December 28, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

Facial videography

Infrared LEDs (850nm) were pointed at the face of the mouse to enable infrared video acquisition in darkness. The
videos were acquired at 30Hz using a camera with a zoom lens and an infrared filter (850nm, 50nm cutoff). The
wavelength of 850nm was chosen to avoid the 970nm wavelength of the 2-photon laser, while remaining outside the
visual detection range of the mice.

Running speed was not monitored videographically, but rather by optical mice placed orthogonally to the air floating
ball on which the mouse stood.

Automated extraction of orofacial behaviors of mice

We developed a toolbox with a GUI for videographic processing of orofacial movements of mice. The software is
termed FaceMap, and is available at www.github.com/MouselLand/FaceMap. The processing time taken by
the software scales linearly with the number of frames, and runs 4x faster than real-time on 30 Hz videos.

Motion processing of regions of interest

To extract defined behavioral variables (e.g. pupil diameter, whisking), we used a graphical user interface which allows
manual selection of face areas. The user can choose any region of the frame in which to compute the total absolute
motion energy, the SVDs of the absolute motion energy or the SVDs of the raw frames.

The absolute motion energy at each time 7' is computed as the absolute value of the difference between consecutive
frames, resulting in a matrix M of size Npixels X Niimepoints- 1he whisker signal used in the current study (Figure 1F)
was defined to be the total motion energy summed over all pixels in a manually-defined region covering the whisker
pad.

SVD computation for large matrices

To extract a high-dimensional representation of the facial signal, the toolbox applies singular value decomposition
(SVD) to the raw movie, the motion energy movie, or both. The computation is identical in both cases.

The movie matrices are too large to decompose in their raw form. To compute their SVD, we first split the movie
M into temporal segments M, of length ~1 minute, and compute the SVD of each segment individually. Since the
number of pixels is very large (> 1 million), we compute the SVD of of each movie segment by computing the top
200 eigenvectors V; of its time by time covariance matrix. We then compute the spatial projections of the segment
onto these components, U; = M, V,. Each matrix U, consists of the left singular vectors of M;, scaled by the
singular values and is thus a 200-dimensional summary of the segment M, related via an orthogonal projection. To
estimate the SVD of the entire movie, we concatenate the U; for all segments of the movie, and re-compute the SVD:
[U;...U,] = USV ". The matrix U represents the spatial components of the full movie, and we project the the movie
onto the top 1000 components of it, to obtain their temporal profiles: W poion = U™.

Pupil processing

To compute pupil area, the user first defines a region of interest using the FaceMap interface. The minimum value in
this region is subtracted from all pixels for robustness across illumination changes. The darkest pixels in this region,
identified by a user-selected threshold, correspond to the pupil. We estimate the pupil center as the center of mass
of these dark pixels: X = > xR(x)/ ), R(x), where x is the two-dimensional pixel location, R(x) is that pixel’s
darkness level relative to the threshold, and the sum runs over all pixels x darker than the threshold. We compute the
covariance of a 2D Gaussian fit to the region of interest: Y (x —X)(x — X) " /Nx, where the sum runs over all pixels
darker than the threshold and Ny is the number of such pixels. For robustness, this process is iterated 4 times after
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re-selecting only pixels that are 2 standard deviations away from the center, and recomputing the Gaussian covariance
fit. The final result is an outline of the pupil defined by an ellipse 2 standard deviations from the center of mass.

8-probe Neuropixels recordings

Neuropixels electrode arrays [31] were used to record extracellularly from neurons in three mice. The mice were: 73
days old, male, and Drdla-Cre(-/-) (mouse 1); 113 days old, female, and TetO-GCaMP6s;Camk2a-tTa (mouse 2); 99
days old, male, and Ai32;Pvalb-Cre (mouse 3). In all cases, a brief (<1 hour) surgery to implant a steel headplate
and 3D-printed plastic recording chamber (~12mm diameter) was first performed. Following recovery, mice were
acclimated to head-fixation in the recording setup. During head-fixation, mice were seated on a plastic apparatus with
forepaws on a rotating rubber wheel. Three computer screens were positioned around the mouse at right angles. On
the day of recording, mice were again briefly anesthetized with isoflurane while eight small craniotomies were made
with a dental drill. After several hours of recovery, mice were head-fixed in the setup. Probes had a silver wire soldered
onto the reference pad and shorted to ground; these reference wires were connected to a Ag/AgCl wire positioned on
the skull. The craniotomies as well as the wire were covered with saline-based agar, which was covered with silicone
oil to prevent drying. Each probes was mounted on a rod held by an electronically positionable micromanipulator
(uMP-4, Sensapex Inc.) and was advanced through the agar and through the dura. Once electrodes punctured dura,
they were advanced slowly (~10 pm/sec) to their final depth (4 or 5 mm deep). Electrodes were allowed to settle
for approximately 15 minutes before starting recording. Recordings were made in external reference mode with LFP
gain=250 and AP gain=500, using SpikeGLX software. The mice were in a light-isolated enclosure and, during the
part of the recording considered here, the computer screens were black. Data were preprocessed by re-referencing to
the common median across all channels [52].

Spike sorting the Neuropixels data

We spike sorted the data using a modification of Kilosort [53], termed Kilosort2, that tracks drifting clusters. Code will
be made publicly available at or before the time of publication. Without the modifications, the original Kilosort and
similar algorithms can split clusters according to drift of the electrode, which would confound our behavioral-related
analyses. Kilosort2 tracks neurons across drift levels and for longer periods of time (~1 hour in our case). To further
mitigate the effect of drift we used a conservative threshold, excluding from further analysis units whose maximal
firing rate was more than twice their minimal firing rates, after smoothing with a Gaussian filter of standard deviation
500 seconds. This excluded ~20% of the units on average. The final single units used were from several cortical areas
(visual: 628, sensorimotor: 475, frontal: 664, retrosplenial: 161), hippocampal formation (1371), striatum (353),
thalamus (2882), midbrain (885).

Correlations

Pairwise correlations were computed after binning activity at 1.2-1.3 s (3 or 4 frames respectively for 12 and 10 plane
recordings; 1.2 s bins for Neuropixels recordings). To compute shuffled correlations (Figure 1C), we circularly shifted
each neuron’s activity in time by a random number of bins (at least +1000), and correlated all the shifted traces with
all the original traces.

Arranging rasters by correlation

To visualize high-dimensional structure in raw data, raster plots were sorted vertically along a 1d continuum so that
nearby neurons were most correlated. To do this, the binned activity of each neuron was first z-scored, and electrode
data was high-pass filtered (100 s Gaussian kernel; this was not necessary for 2p data as traces had already been
high-passed in preprocessing). Neurons were sorted using a generalization of scaled k-means clustering, where the
clusters are ordered along a 1D axis to have similar means to their nearby clusters. Neurons were initially ordered
based on their weights onto the first principal component of population activity, and divided into 30 equal-sized
clusters along this ordering. On each iteration, we computed the mean activity of each cluster, smoothed it across
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clusters with a Gaussian window, then reassigned each neuron to the cluster whose smoothed activity it was most
correlated with. This process was repeated for 75 iterations. The width of the Gaussian smoothing window was held
at 3 clusters for the first 25 iterations, then annealed to 1 over the following 50 iterations. On the final pass, we
upsampled the neurons’ correlations with each cluster by a factor of 100 via kriging interpolation with a smoothing
constant of 1 cluster. This allowed us to determine sub-integer assignments of neurons to clusters, resulting in a
continuous distribution of neurons along a 1D axis. The algorithm is available, implemented in Python and MATLAB
at www.github.com/MouseLand/RasterMap. We ran the MATLAB version on the data here.

Although the electrode data was high-pass filtered to compute sorting, we display the original raw activity in Figure 3E.

Shared Variance Component Analysis

The SVCA method gives an asymptotically unbiased lower-bound estimate for the amount of a neural population’s
variance reliably encoding a latent signal. A mathematical proof of this is given in the appendix; here, we describe
how the algorithm was implemented for the current study.

We first split the population into two spatially segregated populations. To do so, we divided the XY plane into 16
non-overlapping strips of width 60 pm, and assigned the neurons in the even strips to one group, and the neurons in
the odd strips to the other group, regardless of the neuron’s depth. Thus, there did not exist neuron pairs in the two sets
that had the same XY position but a different depth, avoiding a potential confound that a neuron could be predicted
from its own out-of-focus fluorescence.

Neural population activity was binned at 1.2-1.3 s resolution (see above), and each neuron’s mean activity was sub-
tracted from its firing trace. We divided the recording into training and test timepoints (alternating periods of 72 s
each), thereby obtaining four neural activity matrices: Fiain, Fiests Girain, and Giese 0f 8i2€ Nyeurons X Niimepoints, Where
F and G represent activity of the two cell sets. We compute the covariance matrix between the two cell sets on the
training timepoints as

Ctrain = FtrainGtijn/Ntimepoints

We then compute the top 1024 left and right singular vectors of C, yielding Npeurons-dimensional vectors uy, and vy, for
k = 1...1024. These vectors are the shared variance components (SVCs) for each population. The amount of reliable
variance in each SVC (Figure 1L) is then estimated by the covariance of the SVC projections over the test samples:

Q T T
Sy = u Ftesthestvk/Mimepoints

To obtain the fraction of reliable variance (Figure 1K), we normalize this reliable variance by the arith-
metic mean of the variances of the test set data for each cell set on the corresponding projections, Sy i
(uthestF;erstuk + VthestG;erstvk) /2

Predicting neural activity from behavioral variables

To estimate the fraction of neural variance that could be predicted from explicitly-computed arousal variables (Fig-
ure 1M,N), we resampled their traces into the same 1.2-1.3 s bins as the neural data. The arousal variables (either
single traces of running, whisking, pupil area or all three together) defined predictor matrices X, and Xieg for the
training and test sets. We predicted the SVCs of neural activity U T Fain and VT Gpain from the training-set behavior
traces by unregularized multivariate linear regression, obtaining weight matrices A and B that minimized the squared
errors ||UTFtrain — AXiain H2 and ||VTGmin — BXain ||2 We then used these weight matrices to predict activity in
the test set, and computed the covariance matrix of the residual error of each SVC:

T
S res = (uthest - akXtest) (V;Glest - katest) /Nsamples
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Sk.res Tepresents the amount of variance along SVC k that cannot be predicted by the behavioral traces, and (§k —
Skres)/ S r represents the fraction of reliable variance that can be so predicted. To compute the fraction of total variance
explainable by behavioral traces (Figure 1M,N; Figure 2E,G-J), we normalize instead by the total test-set variance:

(Sk - Sk,res)/Sk,lot~

To predict the fraction of neural variance that could be predicted from unsupervised videographic analysis (Figure 2),
we took a similar approach, but computed the weight matrices A and B by reduced-rank regression. Reduced-rank
regression is a form of regularized linear regression, with the prediction weights matrix restricted to a specific rank
[54], reducing the number of parameters and making it more robust to overfitting. Figure 2E shows the fraction of
total variance in successive dimensions that can be predicted by rank-16 prediction, while Figure 2G shows how the
predicted fraction of variance in the first 128 dimensions depends on the rank of the predictor.

Peer prediction analysis

The shared variance component analysis described above — like a related algorithm for estimating reliable stimulus
coding [29] — provides unbiased estimates, but requires thousands of simultaneously-recorded neurons per brain area.
Because this many neurons were not available in our Neuropixels recordings, we turned to another method to estimate
the reliable variance in these data. This method is an adaptation of the previously-described "peer prediction" method
[55, 56]. Peer prediction analysis attempts to predict each neuron individually from the other simultaneously recorded
cells (the neuron’s "peers"). In contrast, SVCA finds the dimensions of activity in a large population that can be most
reliably predicted from a held-out set of neurons. Because a substantial fraction of a single neuron’s variance arises
from independent noise, which is averaged out when projecting onto the SVCA dimensions, peer prediction gives
systematically lower values of variance explained than SVCA.

To apply peer prediction to our data, we again binned neural activity with 1.2-1.3 s resolution, and divided these
timepoints into a training set and a test set, consisting of alternating blocks of duration 72 s. Each neuron took a turn
as target for prediction from the activity of simultaneously recorded "peer" cells, defined to be any cells on all other
probes and cells on the same probe greater than 5 sites away (40 um) for neuropixels recordings; for 2p recordings
we used all neurons greater than 70 pm from the cell in 3D distance, in order to avoid potential optical contamination
from the target neuron. We denote peer cell activity in the training and test sets by Neepis X Niimepoints matrices Fiin
and Fyg, respectively, and target cell activity in the training and sets as 1 X Nimepoints VECIOTS Girain and Gresr. We
first computed the singular value decomposition of peer cell activity on the training set: Fyin = USV . We then
predicted the target neuron activity by ridge regression from n singular value components of peer cell activity, where
n took values n = 1,2, 4,8, 16, ...,512,1024. The prediction weights were thus

Wn = [(gtrainvnsn) ((Vnsn)T(VnSn) + AI)il} U'I

where U,,, V,,, S,, are matrices containing the top n singular vectors. Then the prediction of the single neuron activity
on the test set was ", = Wy, ey, and the fraction of variance explained was 1 — ||gest — 8% ||° / lgest||>. We chose
A to be 10 by hand.

Subspaces of stimulus and behavioral activity

The stimulus subspace (Figure 4) was defined as the space spanned by the trial-averaged responses of each of the 32
stimuli presented. We computed the Nyeyrons X Nsimuii matrix of trial-averaged responses R from one third of the
stimulus responses, saving the other two thirds of the stimulus responses for variance estimation.

The behavior subspace was defined via the reduced-rank regression prediction method described above. We performed
the regression on one-half of the spontaneous activity, leaving the other half of the spontaneous activity for variance
estimation. This method produces a weight matrix of size Nyeyrons X NracePcs, that factorizes as a product of two
matrices of sizes Nyeyrons X 7 and 7 X Np,cepcs, Where 7 is the rank of prediction. We defined the behavior space as the
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space spanned by the first 32 columns of the former matrix, and we define a Nyeyrons X 32 matrix Ep whose columns
contain an orthonormal basis for this space.

To determine dimensions inside the behavioral subspace that contain stimulus information, we found the sequence
of orthogonal directions e; maximizing the sum of squared projections (the power) of the trial-averaged stimulus
responses R:

e = argmax(HeiTRHZ) such that ||e;||* = 1,e; € Span(Eg), and e; orthogonal to e; . .. €;_1

The solution to this maximization problem is given by the left singular vectors of ER. To determine the amount of
stimulus variance in shared dimension ¢ (Figure 4C), we projected test data onto e; and quantified the stimulus-related
variance in this projection using the unbiased method of [29] on the remaining two thirds of stimulus responses. We
call ey the "shared stim-behav" dimension, because it contains significant stimulus variance, as opposed to es, €3, ...
which contain very little (Figure 4C). A histogram of the weights of e; on all neurons are plotted in Figure 4D.

The behav-only subspace was defined by projecting out the shared dimension e; from all columns of Ep. The stim-
only subspace was defined by projecting out from all rows of R the top right singular vector of the matrix ELR.
Timecourses of neural activity projected into these subspaces is plotted in Figure 4F. To quantify the amount of
variance in each subspace (stim-only, behav-only, stim-behav) (Figure 4G), computed the total projected variance as
the sum of squared projection lengths along each axis of an orthonormal basis.

An identical analysis was used to define the stimulus-spontaneous shared dimension, and spontaneous-only subspace,
by replacing the subspace of the top 32 behavioral components with the subspace of the top 128 principal components
of activity computed in one half of the spontaneous period.

To account for trial-to-trial variability in the stimulus subspace, we fit a multiplicative gain model. A gain parameter g;
was fit for each trial ¢, and the activity of dimension n in response to the stimulus o, shown on this trial was modelled
as fn,gt(l + giav,). Here, f,w represents the mean activity of dimension n to stimulus o, and «, represents the
susceptibility of this dimension to gain fluctuations. Note that the mean of g; across trials from the same stimulus is 0
by definition. We used an alternating optimization method to obtain the best fit g given «, then o given g, repeating
for 100 iterations. We also evaluated an affine model, allowing both the gain and offset of each neuron’s responses to
change on a trial by trial basis: fn,gt (1 4+ gia) + a¢ By, Here, a; is an additive offset on trial ¢, with each neuron
scaling this offset by a factor 3,,. The vector 8 can therefore describe directions of additive variability inside the
stimulus subspace.

Mathematical Appendix
Proof that SVCA is an asymptotically unbiased estimate of reliable variance

Here we describe the SVCA method in more detail, and prove that the reliable variance it estimates has an expectation
that is a lower bound for the true value, with bias vanishing in the limit of many neurons and stimuli.

The key to the SVCA method is to split spontaneous neuronal activity into a reliable component — which coherently
and deterministically encodes an unobservable state variable — and an unreliable component, which is random and
independent between neurons. The unreliable component is sometimes referred to as "Poisson noise", as it would occur
in a model where neurons fired a number of spikes drawn from a Poisson distribution whose rate deterministically
encoded the state variable. Such behavior can also occur in networks where strong and balanced excitation and
inhibition lead to chaotic variations in spike counts even in deterministic simulations [12, 21, 57].

As we show in the main text, spontaneous activity encodes details of ongoing facial behavior — but the reliable com-
ponent of spontaneous activity can also represent internal cognitive variables that cannot be directly measured. SVCA
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allows one to estimate the amount of neuronal population variance that coherently and reliably encodes an unobserv-
able state variable, distinguishing it from the variance that is independently variable between neurons.

Formally, we consider the reliable component of spontaneous population activity to represent a state variable s, which
is drawn from a set of possible states S according to a probability distribution IP (s). We model the activity of neuron n
at timepoint ¢ as the sum of a reliable response f(n, s;) that depends deterministically on the state s; at this timepoint,
plus a noise term ¢,, ; which is independent between neurons, and independent of the state s;:

fut) = f(n» St) + €nt

To estimate the variance of reliable population activity, we divide the recorded neurons into two sets of size N and
M. We denote the responses of the first set on trial ¢ by f,,(¢) forn = 1... N, and the second set by g,,(¢) with m =
1... M, summarizing their activity in random vectors f(t) € R and g(t) € RM. Define the expected N x M cross-
covariance matrix of these vectors as C, with entries C, ., = Ey, ¢, [fn(t)gm (t)] which is equal to E,[f(n, s)g(m, s)]
by independence of the noise terms. We write its singular value decomposition as C = ZZ aiuiviT , Where the o; are

non-increasing real numbers, and the u; and v; are orthonormal systems in RY and RM respectively.

To estimate the amount of reliable variance in an optimal k-dimensional subspace, we compute the first k left and
right singular vectors 1i; and V; from the covariance matrix estimated from training timepoints, and estimate the

k-dimensional reliable variance as .
T k
N 1 . R
Sar=2> > f(t)-tiglt) ¥
t=1 i=1

where the first sum runs over test set trials £. Because the training and test sets are independent, and because € is
independent of s,

el

k k
Bt [Si] = Bo | S f(s) -t g(s) 93| = > ) €
i=1 i=1

Now, because 01; and V; are orthonormal systems, Zle ﬁiT Cv; < Zle o, with equality when @; and v; are the
first k singular vectors of C, which they approach when the number of training timepoints becomes large. Thus, the
expectation of Sgk is a lower bound for Zle o0;, that becomes accurate in the limit of a large number of training
timepoints.

Finally, we show that as the number of recorded neurons increases, Zle o; converges to the reliable variance of the
entire population’s top & dimensions. Recall that the singular values of C are square roots of the eigenvalues of CC .
Concatenating the reliable rate vectors into 7' x N and T' x M matrices F and G so C = FTG, we see that 02-2 is the
it" eigenvalue of FT GG " F, which is also the i*" eigenvalue of GG "FF T by cyclic permutability of eigenvalues.
No matter how many neurons we record from, FF' and GG are both 7' x T matrices, and we next consider their
limit as the number of neurons becomes large.

To do so, we consider the neurons to be drawn from a hypothetically infinite population of neurons A according to a
probability distribution P(n). As the number N of neurons sampled from this distribution becomes large, the (1, t5)*"
entry of the matrix %FFT converges to

Ktl,tg = En [f(n’ Stl)f(n7 stz)]

%GG—r converges to the same limit as the number of neurons M in the second set becomes large. Thus, the k first
singular values of C tend to the k first eigenvalues of K, whose sum is the amount of reliable variance in the optimal
k-dimensional subspace of population activity.
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Figure S1. Robust orientation tuning in recorded V1 neurons. (A) Orientation tuning curve, showing population-averaged responses as a
function of angle relative to each cell’s preferred orientation (obtained from held-out responses). Stimuli were Gabor drifting gratings of spatial and
temporal frequency of .05 cpd and 2 Hz. Each row shows responses a single recording session from a single mouse. (B) Orientation tuning curves
of the 400 most tuned neurons in each experiment (as assessed by orientation selectivity index), arranged horizontally by preferred orientation
(computed from held-out responses). (C-E) Orientation tuning curves of 400 neurons taken from the 75th, 50th, and 25th percentile of orientation
selectivity, displayed similarly.
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Figure S2. Correlation matrices are structured and consistent across time. (A,B) Pseudocolor representation of spontaneous correlation
matrices for a subset of cells, computed independently from two halves of recording. (C) Scatter plot showing correlations of each cell pair in a
single recording, for two independent halves. (D) Histogram showing Pearson correlation coefficient of of pairwise correlations (as in C), for all
recordings.
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Figure S3. Temporal autocorrelation of ongoing neural activity. Each panel shows data for one recording; within each plot, each curve shows
the temporal autocorrelation of a single principal component of ongoing population activity (1.2 second bins; log x-scale). Second plot on top row
is for the example recording shown in Figure 1.
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A running Figure S4. Correlations between arousal variables. (A) Time

pupil area \ courses of running speed, pupil area, whisker motion energy, and

first PC of motion energy, for a 160 s segment of an example ex-

periment scaled to have the same maximum and minimum. (B)

Pearson correlations for each pair of these variables. Each line

denotes an individual experiment, black denotes average. (C) Cor-
relation of the first neural PC with each behavioral variable.
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Figure S5. Additional examples of predicting high-dimensional neural population activity from facial videography. For each panel, the
top plot shows a raster diagrams sorted vertically to place correlated neurons together (cf. Figure 1G). Bottom plots show predictions from facial
videography (cf. Figure 2F).
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Figure S7. Predictability of neural activity from facial motion is spatially uniform in V1 recordings. (A) Percentage of single-neuron variance
explained by facial motion, averaged over cells as a function of cortical depth (16-dimensional reduced rank regression, cross-validated, 1.2 second
bins). Each line represents a different experiment. Note that single-neuron prediction explains a lower percentage of variance than SVC prediction
(Figure S8). (B) Neurons were split into two groups: low variance explained (<3%) and high variance explained (>10%). The average vertical
distance between neurons in the same group ("same variance") was similar to the distance between neurons with different variance levels ("diff
variance") (115 pm vs 117 pm, p > 0.05 Wilcoxon rank-sum test). The lack of difference indicates that predictability from facial motion does not
depend systematically on cortical depth. (C) Fraction of variance explained as a function of XY position in V1, for an example recording plane.
Each dot represents a cell, of size proportional to the explained variance; crosses indicate cells of negative explained variance on the test set. (D)
Same as B, but for XYZ distance. The lack of difference (516 um vs 525 pm, p > 0.05 Wilcoxon rank-sum test) indicates that variance explained
does not depend systematically on XYZ position.
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Figure S8. Explaining single neuron variance using peer prediction and behavioral variables. Shared variance component analysis — like a
related algorithm for estimating reliable stimulus coding [29] — requires thousands of simultaneously-recorded neurons per brain area. Because this
many neurons were not available in our Neuropixels recordings, we instead estimated the reliable variance predictable from facial behavior using
an adaptation of the "peer prediction" method [55, 56]. (A) In this method, each neuron takes a turn as target cell, and principal component analysis
is applied to the activity of its simultaneously recorded “peers” by ridge regression, excluding spatially neighboring neurons. The activity of the
target cell is predicted from these principal components, and prediction quality is assessed via cross-validation. (B) Average single neuron variance
explained by peer prediction as a function of the number of principal components, for each brain area (neurons pooled across 3 mice). (C) Similar
analysis for two-photon calcium imaging in V1. The peak predictability of 20.2% = 1.7% of variance explained is obtained when predicting from
256 peer PCs; because the independent noise in a single neuron’s activity cannot be predicted from other neurons, this is substantially lower than the
97% reliability of the first SVC, and the 67% reliability of the first 128 SVCs together. (D) Predicting single neuron activity from arousal variables;
because the independent noise in a single neuron’s activity cannot be predicted from behavior, predictability is lower than when predicting SVCs
(cf. Figure 1N). (E) Predicting single neuron activity from multidimensional behavior information using reduced rank regression (cf. Figure 2G).
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Figure S9. Mixed representation of stimuli and behavior in visual cortex. (A) Comparison of variance explained by stimuli and by behavior
videography for single neurons. X- and y-coordinates represent each neuron’s rank order from least to most predictable by stimulus and behavior,
respectively. The extremely weak correlation (r = -0.18, p<0.01 Spearman’s rank correlation) indicates that the strength with which a neuron is
modulated by stimuli is essentially unrelated to the strength with which it is modulated by behavior. (B) Comparison of tuning to behavior and to
stimuli. Each point represents a neuron, and the x- and y-coordinates represent its rank in two separate 1D embeddings computed from stimulus
responses, and from behavioral coefficients of the face prediction model (16D), respectively. (C) Pairwise comparison of visual-tuning similarity
(x- axis) and behavioral-tuning similarity (y- axis). Each point represents a pair of cells; tuning similarities are defined as the pairwise distance in
the 1D embeddings on the x- and y-axes of panel B. The lack of correlation (r = -0.005, p > 0.05) indicates that neurons which are tuned for similar
stimuli are no more likely to be tuned for similar behavioral features.
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Figure S10. Short-timescale view of projections onto activity subspaces, corresponding to a zoom into Figure 4F.
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Movie S1. Spontaneous neural activity of 10,000+ neurons in visual cortex of awake mice. Two-photon calcium
imaging of 11 planes spaced 35 pum apart. Movie speed is 10x real-time.

Movie S2. Multi-dimensional spontaneous behaviors. Movie speed is 5x real-time.

Movie S3. Spontaneous behaviors are correlated with spontaneous neural activity. Video of mouse face recorded
simultaneously with neural activity. Movie speed is 10x real-time.
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