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Partially methylated domains are hypervariable in breast cancer1

and fuel widespread CpG island hypermethylation2
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SUMMARY49

Global loss of DNA methylation and CpG island (CGI) hypermethylation are regarded as50

key epigenomic aberrations in cancer. Global loss manifests itself in partially methylated51

domains (PMDs) which can extend up to megabases. However, the distribution of PMDs52

within and between tumor types, and their effects on key functional genomic elements53

including CGIs are poorly defined. Using whole genome bisulfite sequencing (WGBS) of54

breast cancers, we comprehensively show that loss of methylation in PMDs occurs in a55

large fraction of the genome and represents the prime source of variation in DNA56

methylation. PMDs are hypervariable in methylation level, size and distribution, and57

display elevated mutation rates. They impose intermediate DNA methylation levels58

incognizant of functional genomic elements including CGIs, underpinning a CGI59

methylator phenotype (CIMP). However, significant repression effects on cancer-genes are60

negligible as tumor suppressor genes are generally excluded from PMDs. The genomic61

distribution of PMDs reports tissue-of-origin of different cancers and may represent tissue-62

specific ‘silent’ regions of the genome, which tolerate instability at the epigenetic,63

transcriptomic and genetic level.64

65

Global loss of methylation was among the earliest recognized epigenetic alterations of cancer66

cells1. It is now known to occur in large genomic blocks that partially lose their default67

hypermethylated state, termed partially methylated domains (PMDs)2–6. PMDs have been68

described for a variety of cancer types and appear to represent repressive chromatin domains that69

are associated with nuclear lamina interactions, late replication and low transcription. PMDs are70

not exclusive to cancer cells and have also been detected in normal tissues2,7–12, but are less71

pronounced in pluripotent cells and brain tissue12–14. PMDs can comprise up to half of the72

genome3,4,12, and it has been suggested that PMDs in different tissues are largely identical3,12.73

PMDs have been shown to harbor ‘focal’ sites of hypermethylation that largely overlap with74

CGIs3. Questions remain as to what instigates such focal hypermethylation, whether loss of75

methylation inside PMDs is linked to repression of cancer-relevant genes and whether the76

genomic distribution of PMDs is invariant throughout primary tumors of the same type, perhaps77

determined by tissue-of-origin. In breast cancer, PMDs have been detected in two cultured78
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cancer cell lines5, but their extent and variation in primary tumors is hitherto unknown. A major79

limitation of most DNA methylation studies is that only a small subset of CpGs are interrogated.80

This prevents accurate determination of the extent and location of PMDs. Few samples of a81

certain tissue/tumor have typically been analyzed using whole-genome bisulfite sequencing82

(WGBS). Thus, observations cannot be extrapolated to individual cancer types. Here, we83

analyzed DNA methylation profiles of 30 primary breast tumors at high resolution through84

WGBSs. This allowed us to delineate breast cancer PMD characteristics in detail. We show that85

PMDs define breast cancer methylomes and are linked to other key epigenetic aberrations such86

as CGI hypermethylation.87

88

RESULTS89

Primary breast tumors display variable loss of DNA methylation90

To study breast cancer epigenomes we performed WGBS encompassing ~95% of annotated91

CpGs (Suppl. Fig. 1A, Suppl. Table 1). For 25/30 of these tumors we previously analyzed their92

full genomes15,16 and transcriptomes17, respectively. Of the 30 tumors, 25 and 5 are ER-positive93

and ER-negative, respectively (Suppl. Fig. 1B).94

To globally inspect aberrations in DNA methylation patterns we generated genome-wide and95

chromosome-wide methylome maps by displaying mean methylation in consecutive tiles of 1096

kb (see Methods). These maps revealed extensive inter-tumor variation at genome-wide scale97

(Fig. 1A). At chromosome level, we observed stably hypermethylated regions next to regions98

that were hypomethylated to various extents and across tumors (Fig. 1B). Chromosomes 1 and X99

were exceptionally prone to methylation loss, the latter of which may be related to epigenetic100

aberrations of the inactive X-chromosome in breast cancer observed by others18. At megabase101

scale (Fig. 1C) DNA methylation profiles showed that the widespread loss of methylation102

occurred in block-like structures previously defined as PMDs2. Across primary breast tumor103

samples, DNA methylation levels and genomic sizes of PMDs differ extensively between tumors104

and PMDs do appear as separate units in some tumors and as merged or extended in others,105

underscoring the high variation with which methylation loss occurs. Despite this variation,106

however, we observed common PMD boundaries as well.107
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Given the variation between tumors, we asked whether the patterns of methylation loss were108

associated with distribution of copy-number variations (CNVs) throughout the genome. We109

found no evidence for such association (Pearson R=0.17), although we noticed that chromosomes110

with the most pronounced loss of methylation (chr1, chrX, chr8-p) frequently contained111

amplifications (Suppl. Fig. 1C). Next, we asked whether loss of methylation was associated with112

aberrant expression of genes involved in writing, erasing, or reading the 5-methylcytosine113

modification. However, we found no such correlation (Suppl. Fig. 1D). Finally, we assessed114

whether mean PMD methylation was associated with the fraction of aberrant cells within the115

sample (ASCAT19). However, no such correlation was evident (Pearson R = -0.03, Suppl. Fig.116

1E).117

To provide a reference for the observed patterns of methylation loss we compared WGBS118

profiles of primary breast tumors to that of 72 normal tissues (WGBS profiles from Roadmap119

Epigenomics Project and10, Suppl. Fig. 2A,B). In sharp contrast to breast cancer, most normal120

tissues were almost fully hypermethylated (except for pancreas and skin), with heart, thymus,121

embryonic stem cell(-derived), induced pluripotent stem cells and brain having the highest levels122

of methylation. Importantly, inter-tissue variation was much lower as compared to breast tumors123

(p < 2.2e-16, MWU-test on standard deviations). The variation observed among breast tumors124

was also present when we reproduced Fig. 1ABC using only ‘solo-WCGW’ CpGs (CpGs125

flanked by an A or T on both sides), which were recently shown to be more prone to PMD126

hypomethylation12 (Suppl. Fig. 3). Thus, breast tumors show widespread loss of DNA127

methylation in PMDs, and the extent and patterns appear to be hypervariable between tumor128

samples. In line with this, principal component analysis confirmed that methylation inside PMDs129

is the primary source of variation across full-genome breast cancer DNA methylation profiles130

(Fig. 1D): the first principal component (PC1) is strongly associated with mean PMD131

methylation (p=6.8e-07, ref.20, see Methods). The second-largest source of variation, PC2, is132

associated with ER status (p=1.9e-06, Fig. 1D, see Methods) and to a lesser extent with133

‘intrinsic’ AIMS subtypes (Absolute assignment of breast cancer Intrinsic Molecular Subtypes,134

Suppl. Fig. 4A)21,22, although the latter is likely confounded with ER status. Successive PCs were135

not significantly associated with any clinicopathological feature. It should be noted that with 30136

tumors only very strong associations can achieve statistical significance. Taken together, breast137

tumor whole-genome DNA methylation profiles reveal global loss of methylation in features138
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known as PMDs, the extent of which is hypervariable across tumors and represent the major139

source of variation between tumors.140

141

Distribution and characteristics of breast cancer PMDs142

We set out to further characterize breast cancer PMDs and their variation (see Methods: data143

access). The genome fraction covered by PMDs varies greatly across our WGBS cohort of 30144

tumors, ranging between 10% and 50% across tumors, covering 32% of the genome on average145

(Fig. 2A). We define ‘PMD frequency’ as the number of tumors in which a PMD is detected. A146

PMD frequency of 30 (PMDs common to all 30 cases) occurs in only a very small fraction of the147

genome (2%), while a PMD frequency of 1 (representing the union of all PMDs from 30 cases)148

involves 70.2% of the genome (Fig. 2B). Similar results were obtained with PMDs called on149

only solo-WCGW CpGs12 (Suppl. Fig. 4BC), and comparison of these ‘solo-CpG’ PMDs with150

‘all-CpG’ PMDs revealed high overlap (92%) between their individual unions (Suppl. Fig. 4D).151

We further compared our PMD calling with ‘aggregate PMD calling’ based on cross-sample152

standard deviation (s.d.) of methylation in 100-kb genomic bins12. This method segments the153

genome according to common PMDs across multiple samples, and we found that our PMDs are154

all contained within this aggregate PMD track (Suppl. Fig. 4EF).155

Given the inter-tumor variation of PMDs we tested to which extent PMD distribution is random156

by counting PMD borders in 30-kb genomic tiles (Fig. 2C). Randomly shuffled PMDs yield a157

normal distribution centered at a PMD frequency of four. In contrast, observed PMDs show a158

skewed distribution: the mode was for a PMD frequency of 0 suggesting that many tiles (23,492,159

25%) do not coincide with any PMD borders. The majority of tiles (62%) had a low PMD border160

frequency (1-10). The tail represents low numbers of tiles with up to maximal PMD frequency of161

30. We conclude that PMD distribution is not random: part of the genome appears not to tolerate162

PMDs while PMDs occur in a large fraction of the genome with varying frequencies.163

PMDs have been shown to coincide with lamin-associated domains (LADs)3,4: large repressive164

domains that preferentially locate to the nuclear periphery23. LADs are characterized by low gene165

density and late replication23,24. Accordingly we found that PMDs show reduced gene densities166

(Fig. 2E), have high LaminB1 signals (associated with LADs23, Fig. 2D), are late replicating167
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(ENCODE data, Fig. 2D) and have a low frequency of (Hi-C) 3D loops25, an indicator of lower168

levels of transcription. Finally, we observed a local increase in binding of the transcription factor169

CTCF at the borders of PMDs (Fig. 2D) as shown in previous reports3,23,26–28.170

We previously analyzed the full transcriptomes (RNA-seq) in a breast cancer cohort of 266171

cases17 from which our WGBS cohort is a subset. We determined the mean expression of genes172

as a function of PMD frequency in the overlapping subset of 25 tumors. Genes inside PMDs are173

expressed at consistently lower levels than genes outside of PMDs (Fig. 2F, p < 2.2e-16, t-test),174

with a tendency towards lower expression in highly-frequent PMDs (p < 2.2e-16, linear175

regression). Given the variable nature of DNA methylation patterns of PMDs, we also176

determined the variation (s.d.) in gene expression as a function of PMD frequency and found177

higher variation for genes inside PMDs (Fig. 2F, p < 2.2e-16, MWU-test). When extending this178

analysis to the full set of 266 cases from the transcriptome cohort we observed the same (Suppl.179

Fig. 5A, p < 2.2e-16, t-test for expression; p < 2.2e-16, MWU-test for variation). Given the180

observed variability of DNA methylation and gene expression inside PMDs, we asked whether181

genetic stability, i.e. the number of somatic mutations, was also altered within PMDs. In the 25182

overlapping cases between our WGBS cohort and the WGS cohort15, substitutions, insertions,183

and deletions occur more frequently within than outside PMDs (p < 0.0005 for each mutation184

type, logistic regression), with a (slight) increase in highly frequent PMDs (p < 2.2e-16 for185

substitutions, p = 0.37 for insertions, p = 1.6e-05 for deletions, logistic regression, Fig. 2G). In186

contrast, rearrangements are more abundant outside of PMDs (p = 1.1e-09, logistic regression),187

in keeping with the hypothesis that regions with higher transcriptional activity are more188

susceptible to translocations29. We extended this analysis to the full cohort of 560 WGS tumor189

samples15, which confirmed these observations while showing much stronger effects in highly190

frequent PMDs (p < 2.2e-16 for all mutation types and rearrangements, logistic regression, Suppl.191

Fig. 5B). Taken together, breast cancer PMDs share key features of PMDs including low gene192

density, low gene expression, and colocalization with LADs, suggesting that they reside in the193

‘B’ (inactive) compartment of the genome30. Importantly, in addition to epigenomic instability,194

breast cancer PMDs also tolerate transcriptomic variability and genomic instability.195
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Relationship between CpG island methylation and PMDs in breast cancer196

To determine how PMDs affect methylation of functional genomic elements we accordingly197

stratified all CpGs from all tumors and assessed the methylation distribution in these elements198

(Fig. 2H). We found that the normally observed near-binary methylation distribution is lost199

inside PMDs; the hypermethylated bulk of the genome and hypomethylated CGIs/promoters200

acquire intermediate levels of DNA methylation inside PMDs. DNA methylation deposition201

inside PMDs thus appears incognizant of genomic elements, resulting in intermediate202

methylation levels regardless of the genomic elements’ functions. Among all elements, the effect203

of incognizant DNA methylation deposition is most prominent for CGIs as they undergo the204

largest change departing from a strictly hypomethylated state. This has been described also as205

focal hypermethylation inside PMDs3.206

We further focused on methylation levels of CGIs. When indiviual PMDs are regarded, CGIs207

inside of them lose their strictly hypomethylated state and become more methylated to a degree208

that varies between tumors (Fig. 3A). Across all tumors and all CGIs, this effect is extensive (Fig.209

3B,C), affecting virtually all CGIs inside PMDs: on average 92% of CGIs lose their210

hypomethylated state and gain some level of methylation (Fig. 3B, left panel). Outside of PMDs211

only 25-30% of the CGIs is hypermethylated, although to a higher level (Fig. 3B, right panel).212

Thus, incognizant deposition of DNA methylation inside PMDs results in extensive213

hypermethylation of virtually all PMD-CGIs.214

Concurrent hypermethylation of CGIs in cancer has been termed CIMP31, and in breast cancer215

this phenomenon has been termed B-CIMP32–34. To determine whether CIMP is directly related216

to PMD variation we defined B-CIMP as the fraction of CGIs that are hypermethylated (>30%217

methylated), and determined its association with the fraction of CGIs inside PMDs. Regression218

analysis (see Methods) showed that this association is highly significant (Fig. 3F, p=2.1e-08,219

R2=0.51, n=30). The fraction of hypermethylated CGIs is generally higher than the fraction of220

hypermethylated CGIs in PMDs, suggesting that CGI hypermethylation is not solely dependent221

on PMD occurrence. However, CGI methylation levels outside PMDs are far more stable than222

inside PMDs (Fig. 3E), which likely represents an invariably methylated set of CGIs (Suppl.223

Table 2).224
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We applied the same regression analysis to 14 other tumor types (TCGA35, BLUEPRINT36,225

refs.37,38, Fig. 3G). Although sample sizes were small, we found significant CIMP-PMD226

associations for lung adenocarcinoma (LUAD), rectum adenocarcinoma (READ), uterine corpus227

endometrial carcinoma (UCEC) and bladder urothelial carcinoma (BLCA). We did not find228

significant associations for other tumor types (ALL, BL, ALL, CLL, FL, LUSC, lung, TPL,229

STAD, MCL, BLCA, see Fig. 4B for their abbreviations) and glioblastoma (GBM), even though230

for the latter G-CIMP has been previously described39. Taken together, we conclude that PMD231

occurrence is an important determinant for CIMP in breast cancer and a subset of other tumor232

types.233

234

PMD demethylation effects on gene expression235

To assess whether widespread hypermethylation of CGI-promoters within PMDs instigates gene236

repression we analyzed expression as a function of gene location inside or outside of PMDs.237

Overall, CGI-promoter genes showed a mild but significant downregulation when inside PMDs238

(p=4.5e-12, t-test), while strong downregulation was specifically restricted to low-frequency239

PMDs (Fig. 3H). For non-CGI-promoter genes this trend was very weak or absent (Suppl. Fig.240

6A). As healthy controls were not included in transcriptome analysis of our cohort17 we used241

gene expression (RNA-seq) profiles from breast tumors (769) and normal controls (88) from242

TCGA. Similar to our cohort (see Fig. 2F) we found that overall gene expression for the TCGA243

tumors is lower inside PMDs, with lowest expression for genes inside high-frequent PMDs (Fig.244

3I, p < 2.2e-16, linear regression). However, the expression of genes in tumor PMDs is very245

similar to healthy control samples (p = 0.807, linear regression). To analyze this in more detail246

we selected normal/tumor matched pairs (i.e. from the same individuals, n=86) and analyzed the247

fold change over the different PMD frequencies (Fig. 3J). As in our cohort, downregulation is248

restricted to genes with low PMD-frequency (p < 2.2e-16 for PMD frequency 1-3, linear249

regression). No obvious changes occur in high-frequency PMD genes, nor in non-CGI-promoter250

genes (Suppl. Fig. 6B). Taken together, widespread cancer-associated repression of all genes251

inside PMDs is limited: downregulation is restricted to low-frequency (i.e. the more variable)252

PMDs and affects only CGI-promoter genes, which undergo widespread hypermethylation inside253

PMDs.254
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Given the widely accepted model of hypermethylated promoter-CGIs causing repression of255

tumor suppressor genes (TSGs) we determined whether breast cancer PMDs overlap with these256

genes to instigate such repression. For non-TSGs as a reference we found that 64% (14,037) are257

located outside of PMDs (Fig. 3K), while 36% are located inside, (see also Fig. 2E). Strikingly,258

TSGs (Cancer Gene Census) overlap poorly with PMDs: most TSGs (218/254, 86%) are located259

outside of PMDs. Only 14% overlap with mostly low-frequency PMDs, implying exclusion of260

TSGs from PMDs (p=8.8e-16, hypergeometric test). When we specifically focused on breast261

cancer-related TSGs (Cancer Gene Census), this exclusion was even stronger: practically all262

(27/28, 96%) breast cancer TSGs are located outside of PMDs (p=3.5e-06, hypergeometric test).263

Similarly, from our previously identified set of genes containing breast cancer driver mutations15:264

86/93 (92%) were located outside of PMDs (p=2.0e-11, hypergeometric test). Alltoghether, only265

31 breast cancer-mutated genes were not excluded from PMDs. We assessed whether these genes266

are downregulated in tumors when inside PMDs. 24/31 (74%) genes were downregulated (Suppl.267

Fig. 7A,B), and an overall negative correlation between CGI-promoter methylation and268

expression was evident (Suppl. Fig. 7C). For 16 out of these 24 genes we confirmed that269

significant downregulation also takes place in cancer relative to normal in an independent breast270

cancer expression dataset (TCGA, Suppl. Fig. 7D and data not shown). Among the271

downregulated genes in PMDs are EGFR (epidermal growth factor receptor) and PDGFRA272

(platelet-derived growth factor receptor α) that have tumor promoting mutations (Suppl. Fig.273

7A,B,C). Paradoxically, both genes are significantly downregulated in our as well as the TCGA274

breast cancer dataset (Suppl. Fig. 7D). Taken together, despite the large number of275

hypermethylated CpG islands inside breast cancer PMDs (13,013 CGIs; 47%, Fig. 3D), these276

CGIs do not generally co-occur with TSGs and other breast cancer-relevant genes. Repression of277

these genes through classical promoter-hypermethylation in PMDs does not occur at large scale,278

and is likely limited to a few genes.279

We next identified genes that are downregulated when inside PMDs regardless of any280

documented TSG function or mutation in breast cancer. 400 genes were downregulated at least281

2.5 log2-fold (Suppl. Table 3). Gene set enrichment analysis showed that these genes were282

involved in processes such as signaling and adhesion (Suppl. Fig. 8A). In addition, there is a283

significant enrichment of genes downregulated in luminal B breast cancer (and upregulated in284

basal breast cancer)40. This suggests that PMDs are involved in downregulation of luminal B-285
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specific genes. Examples of luminal B-downregulated genes include CD3G, encoding the286

gamma polypeptide of the T-cell receptor-CD3 complex (gene sets ‘signaling’ and ‘adhesion’),287

and RBP4, encoding retinol binding protein 4 (gene set ‘signaling’) (Suppl. Fig. 8B).288

Stratification of tumors according to low and high median expression of the 400 PMD-289

downregulated genes revealed significant differences in overall survival of the corresponding290

patients (p=2.6e-03, chi-square test, Suppl. Fig. 8C), suggesting clinical significance of PMD-291

associated gene repression. Taken together, downregulation of genes inside PMDs occurs rarely292

and is restricted to low-frequency PMDs. However, these rare cases include genes relevant to293

breast cancer given the overlap with previously identified luminal B breast cancer-relevant genes294

and differential overall survival. We finally focused on expression changes of X-linked genes,295

since the X-chromosome is exceptionally prone to methylation loss (Fig. 1A, Suppl. 3A). To296

assess whether this is associated with altered expression of genes involved in the process of X-297

inactivation (XCI) we regarded XIST and genes encoding PRC2 subunits. Multivariate298

regression revealed that expression of XIST, EED, and EZH1/2 is associated with the fraction of299

chrX inside PMDs (p = 4.8e-05, Suppl. Fig. 6CD). To further analyze the effect of PMDs on300

expression on X-linked genes we stratified X-linked genes according their consensus X-301

inactivation status (E, escape; S, subject to XCI; VE, variably escaping; PAR, pseudoautosomal302

region)41. Notably, among these categories, escape (E) genes are strongly affected when inside303

PMDs (Fig. 3L), suggesting a specific sensitivity of escape genes to become repressed when304

inside PMDs. This was unrelated to altered copy number status of these genes (Suppl. Fig. 6E,305

see also Suppl. Fig. 1C). Taken together, the fraction of chrX inside PMDs is associated with306

expression levels of key XCI inactivation genes, and escape genes are specifically sensitive to307

repression inside X-linked PMDs.308

309

PMDs are not unique to cancers, but reduced DNA methylation in PMDs is a feature of310

many cancers311

To assess the generality of PMD occurrence in cancer, we extended our analysis to other cancer312

types and normal tissues. We performed PMD detection in a total of 320 WGBS profiles (133313

tumors and 187 normals, from TCGA35, BLUEPRINT36, the Roadmap Epigenomics Project314

(http://www.roadmapepigenomics.org), refs.10,37,38). Although PMDs are detectable in virtually315

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/305193doi: bioRxiv preprint 

https://doi.org/10.1101/305193
http://creativecommons.org/licenses/by/4.0/


12

all tumors and normal tissues (see Methods: data access), mean DNA methylation inside PMDs316

is much lower in tumors as compared to normal tissues (Fig. 4A, Suppl. Fig. 9A, p < 2.2e-16, t-317

test). PMD methylation levels are not tumor tissue-type specific, as most types display the same318

range of PMD methylation. However, some tumor tissue types have exceptional low methylation319

inside PMDs (bladder urothelial carcinoma (BLCA), lung), or lack any loss of methylation320

(glioblastoma multiforme (GBM), acute lymphoblastic leukemia (ALL), and acute myeloid321

leukemia (ALL)). Thus, regardless of these extreme cases, absolute levels of PMD methylation322

do not typify tumor tissue origin, underscoring the variable nature of methylation within PMDs.323

To assess whether CGI hypermethylation in PMDs is as extensive in these additional tumor types324

as in breast cancer, we analyzed CGI methylation of these 103 additional tumor samples (Suppl.325

Fig. 9B, see Methods: data access). As in breast cancer, extensive hypermethylation of CGIs326

inside PMDs was consistent in most tumor types, with levels of hypermethylation in Burkitt’s327

lymphoma (BL)37 being among the highest of all tested tumors Possibly, these differences are328

linked to tumor cellularity of the samples. In two GBM and some AML samples, CGI329

hypermethylation was not restricted to PMDs, which is suggestive of inaccurate PMD detection330

due to high methylation inside these tumors’ PMDs (see Fig. 4A). Importantly, these results331

extend the observed tendency of CGI hypermethylation inside PMDs to other tumors.332

Lastly, to assess whether the distribution of tumor PMDs reflects tissue of origin we scored the333

presence of PMDs in genomic tiles of 30 kb and subsequently clustered the resulting binary334

profiles. The analysis showed that the majority of tumors of the same type clustered together,335

although not fully accurately (Fig. 4B), suggesting that the genomic distribution of PMDs is336

linked to tissue of origin. Thus, even though methylation levels of PMDs are mostly independent337

of tissue-of-origin (Fig. 4A), the distribution of PMDs associates with tissue of origin, likely338

reflecting differences in the genomic parts that tolerate PMDs.339

340

DISCUSSION341

In this study we analyzed breast cancer DNA methylation profiles to high resolution. The main342

feature of breast cancer epigenomes is the extensive loss of methylation in PMDs and their343

hypervariability. Directly linked to this is the concurrent CGI hypermethylation, which inside344
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PMDs affects 92% of all CGIs. Although various features of PMDs have been described before,345

our study is the first to include a larger WGBS cohort from one tumor type, while integrating346

WGBS data from other tumor types. PMDs may be regarded as tissue-type-specific inactive347

constituents of the genome: the distribution shows tissue-of-origin specificity, gene expression348

inside PMDs is low and they are late replicating. Inside PMDs the accumulation of breast cancer349

mutations is higher than outside of them. The resulting domain-like fluctuation in mutation350

density is likely related to the fluctuating mutational density along the genome in cancer cells351

observed by others42–44. The phenomena observed in breast cancer extend to tumors of at least 16352

additional tissue types underscoring the generality of our findings. We conclude that loss of353

methylation in PMDs and concurrent CGI hypermethylation is a general hallmark of most tumor354

types with the exception of AML, ALL and GBM.355

The phenomena that we describe for breast cancer have remained elusive in genome-scale356

studies that only assessed subsets of the CpGs; the sparsity of included CpGs does not allow357

accurate PMD detection. Typical analysis strategies include tumor stratification by clustering of358

the most highly variable CpGs which at least in our breast cancer cohort are located in PMDs. In359

effect such approaches are biased towards CGIs due to their design and consequently, the360

hypermethylation groups represent tumors in which PMDs are highly abundant (e.g.39,45–53). It is361

very likely that for some tumor types hypermethylation groups associate with clinicopathological362

features, amongst which a positive association with tumor cellularity is recurrent46,50–52. This363

suggests that PMDs are more pronounced in tumor cells than in the non-tumor tissue of a cancer364

sample. This makes hypermethylated CGIs useful diagnostic markers but less likely informative365

as prognostic markers informing about tumor state, progression and outcome.366

Since PMDs are domains in which instability at the genetic, epigenetic, and transcriptome level367

is tolerated, they may provide plasticity that is beneficial for the heterogeneity of tumor cells.368

369
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METHODS370

Data access and code availability371

Tables containing CpG methylation values (bigwig), genomic coordinates and mean methylation372

values of PMDs and CGIs are available via DOI 10.5281/zenodo.1467025 or DOI373

10.17026/dans-276-sda6. Raw data for whole-genome bisulfite sequencing of the 30 breast374

tumor samples of this study is available from the European Genome-phenome Archive375

(https://www.ebi.ac.uk/ega) under dataset accession EGAD00001001388. All code for analyses376

of this study is available on https://github.com/abbrinkman/brcancer_wgbs.git.377

Sample selection, pathology review and clinical data collection378

Sample selection, pathology review and clinical data collection for this study has been described379

in15.380

Processing of whole-genome bisulfite sequencing data381

WGBS library preparation, read mapping, and methylation calling was done as described382

before54. The genome build used for mapping of bisulfite sequencing reads, and throughout this383

study was hg19 (GRCh37).384

Principal component analysis of WGBS data385

For principal component analysis (PCA) of WGBS profiles, CpGs with coverage of at least 10386

were used. Subsequently, the top 5% most variable CpGs were selected. We used the387

FactoMineR package20 for R to perform PCA, to determine association of principal components388

with clinicopathological features, and to perform the corresponding significance testing.389

Detection of PMDs390

Detection of partially methylated domains (PMDs) in all methylation profiles throughout this391

study was done using the MethylSeekR package for R55. Before PMD calling, CpGs overlapping392

common SNPs (dbSNP build 137) were removed. The alpha distribution55 was used to determine393

whether PMDs were present at all, along with visual inspection of WGBS profiles. After PMD394
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calling, the resulting PMDs were further filtered by removing regions overlapping with395

centromers (undetermined sequence content).396

Mean methylation in PMDs and genomic tiles397

Wherever mean methylation values from WGBS were calculated in regions containing multiple398

CpGs, the ‘weighted methylation level’56 was used. Calculation of mean methylation within399

PMDs or genomic tiles involved removing all CpGs overlapping with CpG island(-shores) and400

promoters, as the high CpG densities within these elements yield unbalanced mean methylation401

values, not representative of PMD methylation. For genome/chromosome-wide visualizations402

(Fig. 1), 10-kb tiles were used. For visualization, the samples were ordered according403

hierarchical clustering of the tiled methylation profiles, using ‘ward.D’ linkage and [1-Pearson404

correlation] as a distance measure.405

Clustering on PMD distribution406

For each sample, the presence of PMDs was binary scored (0 or 1) in genomic tiles of 5 kb.407

Based on these binary profiles, a distance matrix was calculated using [1-Jaccard] as a distance408

metric, which was used in hierarchical clustering using complete linkage.409

Tumor suppressor genes and driver mutations410

For overlaps with tumor suppressor genes, Cancer Gene Census411

(http://cancer.sanger.ac.uk/census, October 2017) genes were used. Overlaps with genes412

containing breast cancer driver mutations were determined using the list of 93 driver genes as413

published previously by us15.414

CIMP415

To determine the association between B-CIMP (fraction of CGIs that are hypermethylated,416

>30% methylated) and PMD occurrence we used beta-regression using the ‘betareg’ package in417

R57.418

Survival analysis419

Survival analysis of patient groups stratified by expression of genes downregulated in PMDs. For420

each tumor sample of our breast cancer transcriptome cohort (n=266,17), the median expression421
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of all PMD-downregulated genes (Suppl. Table 3) was calculated. The obtained distribution of422

these medians was used to stratify patient groups, using a two-way split over the median of this423

distribution. Overall survival analysis using these groups was done using the ‘survival’ package424

in R, with chi-square significance testing.425

426

ACKNOWLEDGEMENTS427

This work has been funded through the ICGC Breast Cancer Working group by the Breast428

Cancer Somatic Genetics Study (BASIS), a European research project funded by the European429

Community’s Seventh Framework Programme (FP7/2010-2014) under the grant agreement430

number 242006; the Triple Negative project funded by the Wellcome Trust (grant reference431

077012/Z/05/Z). For contributions towards specimens and collections: Tayside Tissue Bank,432

OSBREAC consortium, Icelandic Centre for Research (RANNIS), Swedish Cancer Society,433

Swedish Research Council, Fondation Jean Dausset-Centre d’Etudes du polymorphisme humain,434

Icelandic Cancer Registry, Brisbane Breast Bank, Breast Cancer Tissue and Data Bank and435

ECMC (King’s College London), NIHR Biomedical Research Centre (Guy’s and St Thomas’s436

Hospitals), Breakthrough Breast Cancer, Cancer Research UK. We thank E.M. Janssen-Megens,437

K. Berentsen, H. Kerstens and K.J. Francoijs for technical support. We thank H. Kretzmer and R.438

Siebert for providing processed data files of the lymphoma dataset. Funding to A.B.B. was439

through the Dutch Cancer Foundation (KWF) grant KUN 2013-5833. SN-Z is personally funded440

by a CRUK Advanced Clinician Scientist Award (C60100/A23916). M.S. was supported by the441

EU-FP7-DDR response project. L.B.A. is supported through a J. Robert Oppenheimer442

Fellowship at Los Alamos National Laboratory. A.L.R. is partially supported by the Dana-443

Farber/Harvard Cancer Center SPORE in Breast Cancer (NIH/NCI 5 P50 CA168504-02). J.A.F.444

was funded through an ERC Advanced Grant (ERC-2012-AdG-322737) and ERC Proof-of-445

Concept Grant (ERC-2017-PoC-767854). A.S. was supported by Cancer Genomics Netherlands446

(CGC.nl) through a grant from the Netherlands Organisation of Scientific research (NWO). We447

received additional support from the Dutch national e-infrastructure (SURF Foundation). Finally,448

we would like to acknowledge all members of the ICGC Breast Cancer Working Group.449

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/305193doi: bioRxiv preprint 

https://doi.org/10.1101/305193
http://creativecommons.org/licenses/by/4.0/


17

FIGURE LEGENDS450

Figure 1 | Visualization of inter-tumor variation at genome-wide scale.451

(A), Genome-wide and (B), chromosome-wide maps of WGBS DNA methylation profiles from452

30 breast tumor samples. Mean methylation is displayed in consecutive tiles of 10 kb (see453

Methods). Ordering of tumor samples is according clustering of the tiled profiles. (C), WGBS454

DNA methylation visualization at megabase-scale. Pink coloring indicates common methylation455

loss (PMDs), although tumor-specific PMD borders vary. A scale bar (100 kb) is shown at the456

top of each panel. CpG islands are indicated in green. (D), Principal component analysis of457

WGBS DNA methylation profiles (see Methods). Each tumor sample is represented with its458

estrogen-receptor (ER) status (point shape) and mean PMD methylation (point color).459

Figure 2 | Characterization of breast cancer PMDs.460

(A), Fraction of the genome covered by PMDs. Each dot represents one tumor sample, the461

boxplot summarizes this distribution. (B), Fraction of the genome covered by PMDs that are462

common between breast tumors. PMD frequency: the number of tumors in which a genomic463

region or gene is a PMD. (C), Breast cancer PMDs are not distributed randomly over the genome.464

The genome was dissected into 30-kb tiles, PMD frequency (number of boundaries) was465

calculated for each tile. The same analysis was done after shuffling the PMDs of each tumor466

sample. (D), Average profiles of LaminB23, repliSeq (DNA replication timing, ENCODE), 3D467

chromatin interaction loops (HiC27, and CTCF (ENCODE) over PMD borders. If available, data468

from the breast cancer cell line (MCF7) and mammary epithelial cells (HMEC) was used,469

otherwise data from fibroblasts (IMR90, Tig3) was used. (E), Gene distribution inside PMDs470

(top, as a fraction of all annotated genes; bottom, as gene coding density). (F), Gene expression471

inside PMDs. Gene expression (top) and standard deviation (bottom) for the 25 overlapping472

cases of our WGBS and the transcriptome cohorts17 was plotted as a function of PMD frequency.473

(G), Somatic mutations inside PMDs. Substitutions, insertions, deletions, and rearrangements474

were calculated for the 25 overlapping cases of our WGBS and the breast tumor full genomes475

cohorts15, and plotted as a function of PMD frequency. (H), Distribution of DNA methylation476

over functional genomic elements, inside and outside PMDs. CpGs were classified according477
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PMD status and genomic elements, and the distribution of DNA methylation within each element478

was plotted.479

Figure 3 | CpG island hypermethylation inside PMDs.480

(A), Example of a genomic region with CGI hypermethylation inside PMDs. Red bars, PMDs for481

each tumor sample; below, CGI methylation for each tumor sample (same ordering). Green bars,482

CGIs. (B), Distribution of CGI methylation, represented as the fraction of all CGIs (x-axis). Each483

horizontal bar represents one tumor sample. (C), Average profile of methylation over all CGIs484

inside (red) or outside (black) PMDs, over all 30 tumor samples. Black/red lines, median;485

grey/pink area, 1st and 3rd quartiles. (D), Number of CGIs inside and outside of breast cancer486

PMDs. CGIs are classified as ‘in’ when inside a PMD in at least one tumor sample. (E),487

Variation of CGI methylation (standard deviation) as a function of PMD frequency. (F),488

Regression analysis of B-CIMP (y-axis) as a function of the fraction CGIs inside PMDs (x-axis).489

B-CIMP is defined as the genome-wide fraction of hypermethylated CGIs (>30% methylation).490

(G), Summary of regression analysis as in (F), including additional cancer types. n, the number491

of samples for each type. For abbreviations of cancer type names, see Fig. 4B. (H), Expression492

change of CGI-promoter genes inside vs. outside of PMDs, as a function of PMD frequency. (I),493

Gene expression levels as a function of PMD frequency in an independent breast cancer dataset494

(TCGA). PMD frequency for each gene was taken from our own dataset. (J), Expression change495

of CGI-promoter genes of tumor vs. normal, as a function of PMD frequency. From the TCGA496

breast cancer dataset, matched tumor/normal pairs were selected. PMD frequency for each gene497

was taken from our own dataset. (K), Tumor-suppressor genes (TSGs) are excluded from PMDs.498

For each TSG its PMD frequency was determined and the resulting distribution was plotted.499

Main plot, relative distribution; inset, absolute number of genes. ‘Non-TSGs’, genes not500

annotated as TSGs; ‘TSGs all cancers’, genes annotated as TSGs regardless of cancer type;501

‘TSGs breast cancer’, genes annotated as TSG in breast cancer; ‘Nik-Zainal breast cancer driver502

mutations’, genes with driver mutations in breast cancer15. (L), Expression of X-linked genes503

when inside or outside PMDs. Genes were grouped according their consensus X-inactivation504

status (E, escape; S, subject to XCI; VE, variably escaping; PAR, pseudoautosomal region)41.505
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Figure 4 | PMD methylation in normal tissues and tumors of various tissues.506

(A), Mean PMD methylation of normal tissues and tumors of various tissue types. Each dot507

represents one sample. (B), Hierarchical clustering of tumor samples based on genomic508

distribution of their PMDs. For breast tumors (this study) the ER status is indicated.509

Supplemental Figure 1510

(A), CpG coverage in WGBS DNA methylation profiles of 30 breast tumor samples used in this511

study (see also Suppl. Table 1). (B), Clinicopathological features of the 30 tumor samples. (C),512

Mean copy-number profiles of 25/30 tumor samples used in this study. Copy-number data was513

taken from our previous work15. (D), Association between mean PMD methylation and514

expression of genes involved in writing, erasing, or reading the 5-methylcytosine modification.515

Each dot represents one tumor sample. Linear regression was used to determine the variation516

explained (R2) and the p-value of the association. Expression data was taken from our previous517

work17.(E), Mean PMD methylation (y-axis) is not associated with the fraction of aberrant cells518

(ASCAT19, x-axis).519

Supplemental Figure 2520

Visualization of inter-tumor variation at genome-wide scale, as in main Figure 1, but including521

WGBS data from 72 additional, non-tumor tissues (Roadmap Epigenomics Project and ref.10).522

(A), Genome-wide and (B), chromosome-wide maps. Mean methylation is displayed in523

consecutive tiles of 10 kb (see Methods). For breast tumors of this study, the ER-status is524

indicated at the right (A).525

Supplemental Figure 3526

(A), Genome-wide and (B), chromosome-wide maps of WGBS DNA methylation profiles from527

30 breast tumor samples. Exactly as in Fig. 1AB, but using only solo-WCGW CpGs12. Mean528

methylation is displayed in consecutive tiles of 10 kb (see Methods). Ordering of tumor samples529

is the same as in Fig. 1. (C), WGBS DNA methylation visualization at megabase-scale, exactly530

as in Fig. 1C, but using only solo-WCGW CpGs. Pink coloring indicates common methylation531

loss (PMDs) as in Fig. 1, although tumor-specific PMD borders vary. A scale bar (100 kb) is532

shown at the top of each panel. CpG islands are indicated in green.533
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Supplemental Figure 4534

(A), Association between principal component 1 and 2 scores (PC1, PC2, see Fig. 1D) and major535

pathological subtypes. Significance testing was done as described in ref.20. Left panels, ER-status;536

right panels, AIMS ‘intrinsic’ subtypes21. (B,C), The same analysis as in Fig. 2AB, but using537

PMDs detected with only solo-WCGW CpGs12. (B), Fraction of the genome covered by PMDs.538

Each dot represents one tumor sample, the boxplot summarizes this distribution. (C), Fraction of539

the genome covered by PMDs that are common between breast tumors. PMD frequency: the540

number of tumors in which a genomic region is a PMD. (D), Venn-diagram showing the overlap541

between the union of all breast cancer PMDs (‘all-CpGs’) and the union of all breast cancer solo-542

WCGW PMDs. (E), Bimodal distribution of cross-sample standard deviation of mean543

methylation in 100 kb genomic windows. Only solo-WCGW CpGs were used to calculate544

window means. As described in12, a mixed gaussian was fitted to determine a cutoff for genome545

segmentation. (F), Overlaps between the cross-sample s.d. based PMDs (E) and PMDs called on546

individual samples in this study, using all CpGs.547

Supplemental Figure 5548

(A), Gene expression as a function of PMD frequency, as in main Figure 2F, but here extended549

to all 266 cases of the breast tumor (RNA-seq) transcriptomes cohort17. Top, gene expression;550

bottom, standard deviation. (B), Somatic mutations plotted as a function of PMD frequency, as in551

main Figure 2G, but here extended to all 560 cases of the breast tumor full genomes cohort15.552

Supplemental Figure 6553

(A), Expression change of non-CGI-promoter genes inside vs. outside of PMDs, as a function of554

PMD frequency. (B), Expression change of non-CGI-promoter genes of tumor vs. normal, as a555

function of PMD frequency. From the TCGA breast cancer dataset, matched tumor/normal pairs556

were selected. PMD frequency for each gene was taken from our own dataset. (C,D),557

Multivariate linear regression was performed with expression levels of genes involved in XCI as558

explanatory variables and PMD abundance on chrX as response variable. The variable559

importance of each XCI gene is plotted in (C), and their expression levels in two PMD560

abundance bins is plotted in (D). (E), Expression of X-linked genes when inside or outside561

PMDs. Genes were grouped according their consensus X-inactivation status (E, escape; S,562

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 15, 2018. ; https://doi.org/10.1101/305193doi: bioRxiv preprint 

https://doi.org/10.1101/305193
http://creativecommons.org/licenses/by/4.0/


21

subject to XCI; VE, variably escaping; PAR, pseudoautosomal region)41 and further stratified563

over their copy-number status (gain, loss, unchanged) as determined previously15.564

Supplemental Figure 7565

(A), Expression change of TSGs/breast cancer driver mutated genes when inside PMDs. 31 of566

such genes are located inside PMDs in a subset of tumor samples. ‘TSGs all cancers’, genes567

annotated as TSGs regardless of cancer type; ‘TSGs breast cancer’, genes annotated as TSG in568

breast cancer; ‘Nik-Zainal breast cancer driver mutations’, genes with driver mutations in breast569

cancer15. (B), Examples of genes from panel (A) being repressed when inside PMDs. Blue line,570

DNA methylation (WGBS); green bars, CGIs; red bars, PMDs. Gene expression (RNA-seq) of571

the corresponding gene is represented at the right of each panel. (C), Pearson correlation between572

CGI-promoter methylation and expression. Gene classes are indicated as in panel (A). (D),573

Expression changes (RNA-seq) of genes in panel (B), breast tumor vs. normal. Data is from an574

independent cohort (TCGA). Left panels, non-matched normal (n=88) and tumor samples575

(n=769); right panels, matched normal/tumor samples (n=86). p-values were calculated using a t-576

test.577

Supplemental Figure 8578

(A), Gene set enrichment analysis (GSEA) of genes downregulated when inside PMDs (>2.5579

log2-fold, 400 genes, Suppl. Table 3). (B), Examples of downregulated genes inside PMDs.580

CD3D encodes the gamma polypeptide of the T-cell receptor-CD3 complex (gene sets581

‘signalling’, ‘adhesion’, and ‘breast cancer luminal B down’); RBP4 encodes retinol binding582

protein 4 (gene set ‘signalling’, and ‘breast cancer luminal B down’). Blue line, DNA583

methylation (WGBS); green bars, CGIs; red bars, PMDs. Gene expression (RNA-seq) of the584

corresponding gene is represented at the right of each panel. (C), Overall survival of patient585

groups stratified according expression of the 400 PMD-downregulated genes (see Methods).586

Supplemental Figure 9587

(A), Boxplot summarizing mean PMD methylation of normal tissues and tumors of various588

tissues (summary of Fig. 4B). (B), Distribution of CGI methylation, represented as the fraction of589

all CGIs (x-axis). Each horizontal bar represents one tumor sample (WGBS). Top panel, tumor590
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samples other than breast cancer (TCGA, BLUEPRINT, the Roadmap Epigenomics Project,591

refs.10,37,38, abbreviations are given on the right); bottom panel, repeated from main Figure 3B for592

comparison.593

Supplemental Table 1594

Quality metrics and global methylation values from whole-genome bisulfite sequencing (WGBS)595

of 30 breast tumor samples from this study.596

Supplemental Table 2597

PMD frequency of all annotated CpG islands. For each CGI, PMD frequency indicates the598

number of tumors in which the CGI is inside a detected PMD.599

Supplemental Table 3600

Genes that are downregulated when inside PMDs. 400 genes are downregulated at least 2.5 log2-601

fold.602

603
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Supplementary Figure 1
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Supplemetary Figure 2
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Supplementary Figure 4
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Supplementary Figure 5
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Supplementary Figure 6
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Supplementary Figure 7
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Supplementary Figure 8
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Supplementary Figure 9
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