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ABSTRACT

Identifying what an object is, and whether an object has been encountered before, is a
crucial aspect of human behavior. Despite this importance, we do not have a complete
understanding of the neural basis of these abilities. Investigations into the neural organization of
human object representations have revealed category specific organization in the ventral visual
stream in perceptual tasks. Interestingly, these categories fall within broader domains of
organization, with distinctions between animate, inanimate large, and inanimate small objects.
While there is some evidence for category specific effects in the medial temporal lobe (MTL), it
is currently unclear whether domain level organization is also present across these structures. To
this end, we used fMRI with a continuous recognition memory task. Stimuli were images of
objects from several different categories, which were either animate or inanimate, or large or
small within the inanimate domain. We employed representational similarity analysis (RSA) to
test the hypothesis that object-evoked responses in MTL structures during recognition-memory
judgments also show evidence for domain-level organization along both dimensions. Our data
support this hypothesis. Specifically, object representations were shaped by either animacy, real-
world size, or both, in perirhinal and parahippocampal cortex, as well as the hippocampus. While
sensitivity to these dimensions differed when structures when probed individually, hinting at
interesting links to functional differentiation, similarities in organization across MTL structures
were more prominent overall. These results argue for continuity in the organization of object

representations in the ventral visual stream and the MTL.
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INTRODUCTION

The ability to identify the objects we encounter in our daily lives, and know which ones
we have seen before, is a crucial aspect of human behavior. What type of object a ‘thing’ is, and
whether it is familiar or novel, can drastically change how we might interact with it, including,
for example, whether to approach or avoid it. Despite the importance of object recognition, and
the relative fluidity with which most humans perform it, a detailed understanding of the neural
functional architecture that supports this ability is still elusive. One promising approach to
understanding the neural architecture of object perception and memory is to explore how object
representations are organized. In particular, it is possible to examine similarities between patterns
of brain activity that different types of objects evoke, and to map this neural representational
geometry to relevant dimensions in perception and behavior.

It is known that some correspondence exists between how objects are represented in the
brain and how we behaviorally categorize them. Important insight has been gained from
functional magnetic resonance imaging (fMRI) investigations of object processing in the ventral
visual stream (VVS). Numerous fMRI studies have revealed regions within the VVS that
preferentially respond to particular stimulus categories with high ecological relevance, including
faces, scenes, bodies, and words (see Op de Beeck et al., 2008, for review). Specifically, in
extrastriate cortex, regions have been reported that prefer one of these categories over other
categories, such as the fusiform face area or the parahippocampal place area (Kanwisher et al.,
1997; Epstein & Kanwisher, 1998; Downing et al., 2001; for a review see Kanwisher & Dilks,
2013). Interestingly, these functionally circumscribed regions are systematically organized
within broader preference zones. Medial aspects of occipito-temporal cortex typically show a
preference for inanimate objects, whereas lateral aspects show a preference for animate objects
(Martin, 2007; Grill-Spector & Weiner, 2014; Sha et al., 2015). In addition to the animacy
dimension, a number of fMRI studies have revealed large-scale organization of the VVS by real-
world size (Konkle & Caramazza, 2013; Konkle, et al., 2012; Cusack et al., 2016). It has been
found that there is a preference zone for large inanimate objects in medial occipito-temporal
cortex and for small inanimate objects in more dorsolateral aspects, but no corresponding size-

based distinction has been found for animate objects in lateral occipito-temporal cortex. This
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pattern of preferences has been referred to as a tripartite organizing schema (Konkle & Oliva,
2012; Konkle & Caramazza, 2013).

Evidence for organization by animacy and real world size has also come from studies
based on multivariate pattern analyses of fMRI data. In this analytical approach, activity is not
averaged across voxels, but the similarity between patterns of activity evoked by different stimuli
or within a given region are compared. If stimuli within a category evoke more similar patterns
of activity than stimuli from different categories, the brain region is considered to contain
representations of that category. Inasmuch as the pattern of activity across voxels can be labeled
a neural representation of an object, one can think of the comparisons between categories as now
existing in “representational geometry”. Interestingly, Kriegeskorte et al. (2008) applied this
approach across using voxels distributed throughout the ventral temporal cortex for a wide
variety of objects, and found a highly consistent category- and domain-based organization, with
evidence for a distinction between animate and inanimate objects, as well as varying degrees of
similarity between categories within these domains (see also Proklova, Kaiser, & Peelen, 2016).
A recent fMRI study with a similar focus on representational similarities has shown that real-
world size is also an organizing dimension of objects across a large swath of temporo-parieto-
occipital cortex, as well as within a number of subregions across the VVS (Julian et al., 2016).

The influence of the category and domain of objects has been most thoroughly
characterized in the posterior and lateral aspects of the VVS. At present, evidence that speaks to
the organization of object representations in medial temporal lobe (MTL) structures is more
limited. While it has long been known that memory functions pertaining to objects rely on the
integrity of MTL structures (Graham et al., 2010; Eichenbaum et al. 2007; Davachi, 2006), the
organization of object representation that supports these functions remains incompletely
understood at present. Furthermore, little is known about similarities and differences in
organization across different MTL structures, including perirhinal cortex (PrC), parahippocampal
cortex (PhC), and the hippocampus (HiP). The more posterior aspect of the PhC has been well
characterized, given that it comprises a significant proportion of the parahippocampal place area,
a functionally-defined region that preferentially responds to scenes and large objects with
navigational relevance (Aguirre et al., 1998; Epstein and Kanwisher, 1998; Epstein & Vass,
2014; Troiani et al., 2012; Konkle & Oliva, 2012). However, it is less clear whether this
characterization holds for PhC as a whole, and, whether it also holds for PrC and HiP. The lack
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of evidence is surprising, given that a more anterior structure in the parahippocampal gyrus,
namely, PrC has been proposed to be the apex of the VVS (Murray and Bussey, 1999; Bussey et
al., 2007). Furthermore, evidence from studies of structural connectivity in non-human primates
as well as functional connectivity studies in humans indicate that both PhC and PrC have strong
connectivity with downstream areas in the VVS and other posterior cortical regions (see
Ranganath & Ritchey, 2012, for a review). As such, it remains an unknown but interesting
possibility that the major dimensions that have been shown to shape representations in the
posterior VVS, i.e., animacy and real-world size, also shape organization of object categories in
PrC and the PhC. To the extent that the HiP receives much of its cortical input from these
structures, it also important to include the HiP in this inquiry.

Research with direct comparisons of visual stimulus responses in PrC and PhC has shown
robust differences for processing of faces, objects, and scenes across both structures. At the
univariate level, PhC shows a scene preference, while PrC, in particular anterior portions, shows
a face preference (Liang et al., 2012; Litman et al., 2010; O’Neil et al., 2013; see Collins and
Olson, 2014, for review). However, evidence suggests this is not a sharp distinction, but an
anterior-posterior gradient from scenes to faces (Liang et al., 2012; Litman et al., 2010). In
MVPA based studies, it has been shown that object, scene, and face information can be
distinguished at the category level in both PhC and PrC. In general scene decoding is higher in
PhC, and face responses can be better decoded from PrC (LaRocque et al., 2013; Huffman &
Stark, 2014, Liang et al., 2012), although Diana et al. (2008), did not find above chance decoding
of objects or faces in PrC. Aside from the evidence that scenes and faces are distinctly
represented in these MTL structures, it is less clear whether other object categories are distinctly
represented, and how this is similar or different across regions. This is in large part due to the
fact that most studies have used mixed groups of objects without any systematic attempt to probe
category based distinctions. In recent work from our lab, Martin et al. (2013; 2016) explored this
issue in the context of recognition memory judgments, using chairs, faces, and buildings as
categorized stimuli. We reported that it was possible to decode the perceived familiarity of faces
from activity patterns in PrC, the familiarity of buildings from patterns in PhC, and familiarity
for chairs from patterns in both structures. While these findings go beyond showing a
distinctions between scenes and faces in the medial temporal lobe (MTL), they do not allow for a

broader characterization of representational space across a wider variety of object categories.
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Our primary interest in the present study was in a comparison of object representations
across the PrC, PhC, and in the HiP. While previous work has revealed some evidence for object
category specificity in PrC and PhC, the HiP has been seen as more “agnostic”, or insensitive to
visual stimulus category (Huffman & Stark, 2014; LaRocque et al., 2013; Diana et al., 2009). It
has been posited that this is because the HiP binds object and spatial information received from
the PrC and PhC (Eichenbaum et al., 2012; Ranganath & Ritchey, 2012). More specifically, if
the HiP represents complex conjunctions of many different kinds of objects and the spatial
backdrop of those objects, it may be difficult to reveal any category specificity (e.g., in a
complex scene there may be objects from many different categories). Interestingly, one study
reported above-chance decoding of scene information from posterior HiP (Liang et al., 2012). At
the univariate level, the HiP often shows more activity for scenes as compared to other stimulus
categories such as objects or faces, which has led to the suggestion that it be considered a part of
the core scene-network (Hodgetts et al., 2016). Furthermore, individuals with hippocampal
damage have been reported to show impairments in vividly recalling scenes, maintaining scenes
in working memory, and constructing scenes in their imagination (Hassabis et al., 2007; Mullally
etal., 2012; Addis et al., 2007).This suggests that the HiP may not be entirely agnostic to the
nature of stimulus categories encountered. As such, it is possible that it may also be sensitive to
stimulus domain.

In the present fMRI study, we addressed whether and how animacy and real-world size
affect the organization of object categories in the MTL. We tested the hypothesis that object-
evoked responses in perirhinal and parahippocampal cortex, as well as the hippocampus, show
evidence for domain-level organization along both dimensions. To this end, we scanned
participants while they performed a continuous recognition memory task on objects from 12
different categories. We chose a continuous recognition memory task because it required
participants to make memory decisions (i.e., “old” or “new”) for specific exemplars from these
categories, thus maximizing the need to disambiguate objects with substantial feature overlap. To
address our questions of interest, we employed representational similarity analyses (RSA). With
these analyses we first asked whether PrC, PhC, and the HiP represent distinct categories of
objects. We then explored whether the categories were organized along an animate/inanimate

divide, and whether or not inanimate objects were organized by their real-world size.
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MATERIALS AND METHODS

Participants

Fifteen individuals participated in the study (20-32 years of age, mean age = 27.5 years; 8 females).
All participants were right-handed with normal or corrected-to-normal vision, and no history of
psychiatric or neurological disorders. Data from two participants were excluded due to technical
difficulties. Participants received financial compensation for their participation, and provided
informed consent according to procedures approved by the University of Western Ontario Health

Sciences Research Ethics Board

Stimuli

Stimuli were color images depicting exemplars from 12 different object categories, including 4
categories of animate objects (faces, bodies, monkeys, and insects), 4 categories of large
inanimate objects (buildings, vehicles, trees, and furniture), and 4 categories of small inanimate
objects (flowers, fruits, musical instruments, and tools). Size and animacy classification was
based on prior research (Konkle et al., 2013) and confirmed through ratings in pilot work in a
separate group of participants for all stimuli employed here. Twenty-eight objects were chosen
from each category, for a total of 336 experimental stimuli. In addition, 3 filler items were
presented in each run, one of which was repeated early on in the run to ensure that participants
would immediately be prepared for repetitions. The second and third filler items were presented
towards the end of the run to increase the proportion of novel stimuli at that stage. Filler items
were chosen from categories other than (and unrelated to) those employed on experimental trials.
Images of objects were obtained from the Konkle lab database (http://konklab.fas.harvard.edu/#)
and through an additional Google image search. Each image was presented in isolation on a
white background bound at 500 x 500 pixels, on a uniform grey background. The size of each
image was bound at a maximum of 500 x 500 pixels, for one dimension, with the other
dimension the corresponding to the appropriate aspect-ratio. Across categories, there were no
significant differences in the area covered by objects in the images, their aspect-ratio, or their

mean luminance (all p > 0.05).
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Experimental procedure

During fMRI scanning, participants performed a continuous recognition memory task that
required recognition of repeated presentation of specific exemplars (Fig. 2). Exemplars were
presented twice, with repetitions always occurring in the same run. Images were presented for
1200 ms, and participants were asked to indicate whether the image was “novel” (1st
presentation), or “old” (2nd presentation) with button presses using their middle or index finger.
To encourage rapid responding and mark the time window for responding, a red border
surrounding the image appeared 600 ms after stimulus onset and stayed on screen until stimulus
offset. Participants were instructed to respond as soon as the red border appeared. Mapping of
responses to buttons was counterbalanced across participants. Each stimulus presentation was
followed by a jittered ITI (2000-6000 ms) during which participants viewed a fixation cross
centered on a grey background. Jitter was distributed such that the average delay between first
and second presentation of items was matched across categories (average time = 84.1 s, range =
19.0-316.0 s). In addition, the average number of images between repetitions was matched across
categories (average number of intervening images =17, range =16-18). Each run consisted of 4
objects from each of the 12 categories, resulting in a total of 8 image presentations per category,
or 96 experimental trials per run. In addition, each run contained 3 filler trials. Across runs,
presentations of objects from each category were preceded and followed by an object from each
of the other categories with roughly equal frequency (8-11 times). Participants completed seven
runs. Three different run orders were created for the purpose of counterbalancing across
participants. Prior to scanning, each participant completed a 5-minute practice task with images
from categories that were unrelated to those used during scanning in order to be familiarized

with task requirements and response deadline.

Image acquisition

MRI data were acquired on a Siemens TIM Trio 3-Tesla scanner with a high-resolution protocol.
Functional MRI volumes were collected using a highly accelerated gradient-echo EPI sequence
(Center for Magnetic Resonance Research, University of Minnesota) with a multiband
acceleration factor 4 and GRAPPA in-plane acceleration of 2. The following parameters were
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used: TR=650 ms, TE=30 ms, slice thickness =2 mm, FOV = 192 mm X 192 mm, flip angle =
54 degree. Each functional volume included 40 slices collected in an interleaved manner. To
optimize MR signal in the anterior temporal lobes, a transverse orientation was chosen for
acquisition, which allowed for inclusion of the entire temporal and occipital lobes, with partial
coverage of frontal and parietal cortices, in all participants. T1-weighted anatomical images were
obtained using an ADNI MPRAGE sequence (192 slices, TR = 2300 ms, TE =2.98 ms, 1 mm
isotropic voxels, FOV = 240 X 256 mm, flip angle = 9 degrees).

Neuroimaging analysis

Pre-processing and Modelling

fMRI data were analyzed using SPM8 (Welcome Institute of Cognitive Neurology;

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/), employing an analysis pipeline as
implemented in the automatic analysis system (aa)

(www.github.com/rhodricusack/automaticanalysis), (Cusack et al., 2015). Functional data were

motion corrected and high pass-filtered to remove low frequency noise (drift); slice-time
correction was not implemented due to the use of a multiband sequence. Four dummy scans at
the start of each session were discarded to allow for T1 relaxation. For each participant, the mean
functional image was then co-registered with the participant-specific anatomical image. Co-
registered images were kept in native space for each participant, and no spatial smoothing was
applied in order to preserve high-spatial resolution for MVPA. Functional data were convolved
using a canonical hemodynamic response function. Categories were modeled, regardless of
whether a trial was a 1% or 2" presentation (12 regressors per run) using a general linear model.
Regressors were constructed from boxcars with a duration of each stimulus presentation
(1200ms), and were convolved with SPM’s canonical hemodynamic response function. Beta
estimates for each category were derived based on 4 exemplars and their repetition in each run.
Regressors of no interest included 6 motion regressors. Beta estimates derived from these models
were used as input for the univariate and multivariate analyses. Medial temporal lobe ROIs were
demarcated manually for each participant on the high-resolution structural images in native
space, using the anatomical protocols published by Pruessner et al. (2000; 2002) with
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adjustments to the posterior border of PhC as specified by Franko et al. (2014). (Fig. 3).

Univariate analyses

Univariate analyses were conducted for the purpose of selecting features (i.e., voxels) to be
included in the multivariate analyses. Towards this end, we contrasted all experimental trials
against baseline (gray screen with a fixation cross), which resulted in robust activation
throughout occipital and temporal cortex (including MTL) in each participant. We then selected
the 20% of voxels with the highest beta values in this contrast (i.e., stimuli > baseline) in each
participant-specific anatomically defined ROI. These voxels were used for all remaining

multivariate analyses (see Kriegeskorte et al., 2008, 2008b for rationale).

Representational similarity analysis

Multivariate analyses were computed on a between-run basis to ensure the different comparisons
did not vary in temporal proximity (Linke et al., 2011). To explore the representational space in
each ROI, for each subject, we first extracted beta values for each category and computed the
Pearson’s correlation for each category compared to each other category. Prior to computing the
correlations, the grand mean (i.e., the cocktail mean) for each run was subtracted across all
voxels for that run (Walther et al. 2015). This resulted in a 12 x 12 representational similarity
matrix (RSM) for each participant, for each ROI, with within category similarity values (across
runs) on the diagonal, and between category information (across runs) on the off diagonal (Fig
5). To test whether the representational space was modulated by category, animacy, and size
within inanimate objects, we created linear models (predefined contrasts) specifying which RSM
correlation values were to be subjected to a t-test that tested models (see Fig. 6). These analyses
were performed on data in single-subject RSMs, with the group statistics calculated from the
average results. For the purpose of visualizing our results, RSMs were then averaged across
participants, resulting in a final group similarity matrix for each ROI (Kriegeskorte, Mur,
Bandettini, 2008). Group-averaged RSMs were ordered in the following way: animate objects,
small inanimate objects, and large inanimate objects. Note that RSM’s are not symmetrical in the

visualization, this is because the upper half of the matrix shows the mean from a subset of across
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run correlations (i.e., cell 1, 2 is condition 1 in the even runs correlated with condition 2 in the
odd runs, whereas cell 2, 1, is condition 1 in the odd runs correlated with condition 2 in the even
runs).

We first asked whether there was evidence of category-level organization in each ROI.
To test for this, we defined a contrast of category representation (see Fig. 6), in other words a
linear model where all within category (diagonal) patterns were more highly correlated than
between category (off diagonal) patterns. In the initial analysis, we tested an omnibus contrast
(i.e., model) that probed for the presence of any category-specific information in each ROI. We
then tested for information relating to each of the 12 categories individually. Specifically, we
tested whether the patterns of activation across voxels were more similar within each category
compared to the 11 other categories, using subject as a random effect.

In our second set of analyses, we asked whether or not the animate vs inanimate object
distinction that has been found to shape the organization of object representations in more
posterior aspects of the VVS (Konkle & Caramazza, 2013; Konkle, et al., 2012) was also an
organizing dimension in the MTL. This analysis was identical to the previously described
analyses, except that for the purpose of evaluating differences in correlations (i.e., within vs
between) we focused on the domains of animate as compared to inanimate objects rather than
individual categories (see Fig. 6). Importantly, in these analyses we removed the diagonal from
our model in order to discard the influence of within category similarities.

In our third and final set of analyses, we asked whether real world size is an organizing
dimension within the domain of inanimate objects in MTL, again as has been reported for object
representations in more posterior aspects of the VVS (Kriegeskorte et al., 2008; Proklova,
Kaiser, and Peelen, 2016). Here, we divided inanimate objects into groups of small or large
objects, large objects included trees, furniture, vehicles and buildings, and small objects
including fruit, flowers, musical instruments, and tools. The analysis was identical to the
previous one except that within versus between similarities were computed across all categories
of large or small inanimate objects (see Fig. 6). As in the analyses on animacy described above,
we did not include the diagonal in testing of this model.

RESULTS
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Behavioral Results

Recognition-memory accuracy, indexed using the discriminability index d’, and reaction times
are shown in Table 1 for all categories. Critically, memory discrimination as measured with d’
was matched across dimensions of interest. Specifically, we found no differences in performance
between animate and inanimate objects (Mean d’ animate = 1.76, SD=0.78, Mean d’ inanimate
=1.94, SD=0.71, t(12) =-1.30, p = .2 (Fig. 4)). There were also no differences based on real-
world size, i.e., between large inanimate and small inanimate objects (Mean d’ large inanimate =
1.96, SD=0.77, Mean d’ small inanimate = 2.00, SD=0.80, t (12) = -.452, p = .7 (Fig. 4). We did
find differences in RTs between animate and inanimate categories (Mean RT animate = 1.01 s,
SD =0.037, Mean RT inanimate = 1.00 s SD = 0.041 t(12) = 2.41, p = 0.02), as well as large
inanimate and small inanimate objects (Mean RT large inanimate = 1.007 s, SD = 0.040, Mean
RT small inanimate = 0.993 s, SD = 0.033, t(12) = -3.49, p = 0.004). Although these RT
differences are statistically significant, we note that they are very small because the task required
responding within a restricted time window (i.e., there was a response deadline that was visually
indicated in the displays). We think it is unlikely that differences of this magnitude are reflected
in the BOLD response we report, in particular given the focus on patterns of activity that have

been de-meaned.

fMRI Results

Category

We first tested a model that probed for the presence of category-specific information by
comparing within versus between category similarity across all categories combined, we
employed Bonferroni correction for the number of ROIs (3) (Fig. 6). We found that all MTL
regions showed sensitivity to category membership (PhC: t(12) = 6.41, p = .00006; PrC: t(12)
=5.01, p =.0006; HiP: t(12) = 3.67, p = .009 (Fig. 6). Next we examined sensitivity to
information about each category individually, asking for each category whether the within
pattern similarity for that category (across runs) was more similar than the between pattern
similarity (for that category compared to all other tested categories across runs). To adjust for the
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larger number of corresponding comparisons, we employed Bonferroni correction in these
analyses. In PhC, we found significant effects for buildings (t(12) = 5.62, p =.001), furniture
(t(12) = 3.85, p =.02), vehicles (t(12) = 4.15, p = .01), and faces (t(12) = 4.23, p =.01). In PrC
we found category related effects for monkeys (t(12) = 4.28, p = 0.01), and a trend towards
significance for faces (t(12) = 3.17, p = 0.08, uncorrected p = 0.007). In the HiP, we only found
one category that showed a trend towards significance, namely buildings (t(12) = 3.37, p = .06,

uncorrected p = 0.005).

Animacy

In our next set of analyses we turned to domain-level organization of object representations
based on groupings of multiple categories. Specifically, we asked whether MTL regions hold
information shared between categories at the domain level of animacy. To address this question,
we probed whether representations for objects within a domain (animate or inanimate,
respectively) share more similarity with each other than they do with representations from the
other domain. In order to remove any impact of category-level effects (as described in the
previous section), we removed the diagonal in this model (Fig. 6). We found that the
representational structure in both PhC and PrC reflected the animacy divide (PhC: t(12) = 3.73, p
=.002; PrC: t(12)= 3.02, p = .02). By contrast, we found no evidence for organization of object
representations by animacy in the HiP (t(12) = 2.04, p = 0.18) (Fig. 6).

Because there is evidence suggesting that PrC is sensitive to feature overlap, and feature
overlap is known to differ across natural kinds versus artifacts (McRae et al., 1997; Devlin et al.,
1998; Moss et al., 1998; Tyler et al., 2000; Tyler & Moss, 2001; McRae and Cree, 2002), we
also explored whether representations in PrC are organized according to a natural versus artifact
divide. Specifically, we compared the categories of flowers, fruits, and trees, with furniture,
tools, vehicles, and buildings. The outcome of this analysis, however, provided no evidence in

support of this domain organization in PrC (t(12) = 1.97, p = 0.21).

Real-world size
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In a further set of analyses, we examined domain-level organization related to the size of
inanimate objects. To address this question, we probed whether representations for objects within
the domain of small or large inanimate objects, respectively, share more similarity with each
other than they do with representations from the other domain. Again, we removed the diagonal
in this model in order to remove any impact of category-level effects (Fig. 6). We found
evidence for size related organization in both the PhC and HiP (PhC: t(12) = 4.14, p = .003; HiP:
t(12) = 4.07, p = .003). By contrast we found no such evidence in PrC (t(12) =2.67, p = 0.06)

(Fig. 6).

Visualization of Representational Geometry

In a final step we visualized the representational space for all object categories in each of the
ROIs examined using hierarchical clustering (Fig 7.). This data driven approach can be useful in
that it can reveal properties that drive the organization of representations without any a priori
hypotheses (Kriegeskorte et al., 2008). In PhC, the most dominant dimension of organization is
that between large inanimate objects and all other categories. In PrC, the most dominant
dimension of organization is animacy. Unlike in PhC, large inanimate objects do not form a
separate grouping. Finally, in HiP the most notable distinction is that between buildings and all

other object categories.

Comparing domain organization within and between MTL structures

Given that we see a different pattern of significant model fits across MTL ROI’s, to further probe
these differences we compared model fits for different domains to each other within each ROI.
Specifically, we tested whether organization by real-world size or animacy was a better fit within
each ROI by computing a within-subjects t-test on the beta-values for the model fits. We found
no significant differences between model fits within any ROI (PhC: t(12) = 0.46, p = 0.65; PrC:
t(12) = 0.56, p = 0.58; HiP: t(12) = 0.71, p = 0.48). We also asked whether organization by
category or domain differed significantly across region when tested against each other.
Specifically, we ran a repeated measures ANOVA with ROI (PhC, PrC, HiP) and model
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(category, animacy, real-world size for inanimate) as factors. We found a main effect of ROI
F(12) = 4.587, p = 0.04, but no interaction (roi x model) F(12) = 0.026, p = 0.97.

Additional analyses

Our main goal in the current study was to explore representational space in MTL structures.
However, we completed two further analyses to better understand the selectivity of our MTL
findings. First, we tested all three models (category membership, animacy, and real-world size)
in a control region where we would not expect to see organization for visual stimuli, namely
primary auditory cortex bilaterally. Second, we tested all three models in two visual cortex ROISs,
a bilateral primary visual cortex ROI, and lateral occipital cortex (LOC), in order to compare and
contrast these regions with the MTL regions. The primary auditory and visual cortex ROI’s were
taken from the MarsBar toolbox (Mathews, 2002), the LOC ROI was taken from Xu et al., 2006.
All ROI’s were transformed from MNI space to native space for each subject, and subsequent
analyses was identical to that previously described. We found no evidence of category or domain
organization in primary auditory cortex (category: t(12) = -0.70, p = 0.50; animacy: t(12) = -
0.23, p = 0.82; real-world size: t(12) = -0.60, p = 0.55, uncorrected). In primary visual cortex, all
three models were significant (category: t(12) = 8.27, p = 0.00001; animacy: t(12) = 6.05, p =
0.0002; real-world size: t(12), p = 0.005). In LOC, we found category organization (t(12) = 8.5, p
=0.00001) as well as animacy (t(12) = 3.65, p = 0.01), but not real-world size (t(12) = 1.76, p
=0.31).

DISCUSSION

In the current study we examined the organization of object representations in MTL
structures, aiming to determine whether dimensions of organization prominent in upstream VVS
are present in the MTL when participants perform a recognition-memory task. Specifically, we
asked (i) whether there is category specificity in object representations in MTL structures (i.e.,
PrC, PhC, HiP), (ii) whether there is domain specificity along an animate-inanimate divide, and
(iii) whether there is specificity in representations for inanimate objects related to real-world

size. We found that similar to VVS representational organization, MTL structures do indeed
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display sensitivity to category membership, animacy, and real-world size for inanimate objects.
While model fits related to these dimensions differed across structures when probed individually,
hinting at interesting links to functional differentiation previously discussed in the literature,
similarities in organization across MTL structures were more prominent overall. Our findings
replicate and extend previous findings pertaining to category specificity in other task contexts.
Critically, they also expand the extant literature by providing first insight into domain-level

organization of object representations in the MTL during recognition memory.

PrC

PrC is the MTL structure that has most extensively been linked to object processing in
prior research. While this has been best characterized with respect to its role in recognition
memory for objects, recent work suggests that object representations in PrC also play a critical
role in perceptual and semantic tasks (Barense et al., 2010; Bussey et al., 2002; Kivisaari et al.,
2012, Clarke & Tyler, 2014; Bruffaerts et al., 2013; Martin et al., 2018; Lsee Graham et al.,
2010, for review). However, the organization of object representations that support judgements
in these tasks has received only limited investigation so far. In terms of category-level
organization, it has been reported that PrC shows specificity for the category of faces in
recognition memory and perceptual tasks (Diana et al., 2007; Martin et al., 2013, 2016; O’Neil et
al. 2013, 2014). The present result extend this prior research by showing that PrC also shows
specificity for another animate category, namely monkeys, in combination with a trend towards
specificity for faces. Beyond this category-level organization, we see a broader organization in
PrC by the domain of animacy.

To our knowledge, domain-level organization has only been explored previously in tasks
that require object naming at the basic (rather than exemplar) level. Specifically, it has been
reported that PrC shows higher levels of activity when participants have to name objects that are
animate as compared to objects that are inanimate (Moss et al., 2005) and there is also evidence
that damage to the PrC differentially affects naming for animate objects (Wright et al., 2015).
This domain-specific pattern of findings has been attributed to the fact that animate objects are
distinct from inanimate objects at the level of feature statistics. Specifically, one important

dimension that differs across animate and inanimate objects is the amount of feature overlap and
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feature distinctiveness amongst members of those domains. It has been argued that overall
animate objects have more feature overlap and less distinctive features than inanimate objects
(McRae et al., 1997; Devlin et al., 1998; Moss et al., 1998; Tyler et al., 2000; Tyler & Moss,
2001; McRae and Cree, 2002). In these studies feature overlap is typically defined based on
listed features that can be classified as perceptual or semantic (Martin et al., 2018), and the level
of representations tapped into by naming are at the basic level (i.e., distinguishing a horse from a
zebra rather than two different horses from each other). Indeed, an fMRI study that employed
RSA to examine object representations in PrC during naming revealed that PrC uniquely holds
information at the individual object level (Clarke & Tyler, 2014; see also Bruffaerts et al., 2013,
Martin 2018 for related findings in PrC based on written words). In the context of the continuous
recognition memory task used in the current study, participants were required to make
discriminations similar, if not more fine-grained, to those required for naming an individual
exemplar. Namely, the task required recognition of prior occurrence of specific exemplars, such
as whether a particular building had been presented previously. Thus, although our study did not
aim to test specific hypotheses about the impact of feature overlap on representational
similarities, one possibility is that the animacy-related organization we report reflects differences
on this dimension between the animate and inanimate objects we employed. Given that natural
but inanimate object categories (such as fruits and vegetables) are also known to have higher
feature overlap than artifacts (such as tools and buildings) (McRae et al., 1997; Devlin et al.,
1998; Moss et al., 1998; Tyler et al., 2000; Tyler & Moss, 2001; McRae and Cree, 2002), we
additionally explored whether PrC might show domain-level organization related to whether an
object is natural or an artifact. This analysis, however, did not provide evidence for such a
distinction. However, given that this could be due to a lower degree of feature overlap in our
natural stimuli subset than our animate subset, further research with explicit modeling of
response patterns based on quantitative estimates of feature overlap is required in order to
determine how feature overlap contributes to the domain level organization we report here.

The sensitivity of PrC to the animate-inanimate distinction may also relate to the long
range connectivity it maintains with other cortical and subcortical regions. The idea that large
scale connectivity may drive differential sensitivity between stimuli of different domains, such as
animate or large inanimate objects, has been fruitful towards understanding VVS organization in

more posterior regions. Using a data-driven approach with resting-state fMRI connectivity data,
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Konkle & Caramazza (2016) identified three distinct resting state networks that ‘route through’
the large domain-preferring tripartite regions of VVS. Specifically, animate-object preferring
regions were more strongly coupled with the anterior temporal lobe, small inanimate-object
preferring regions were more strongly coupled with aspects of parietal cortex, and large
inanimate object preferring regions were more correlated with the posterior medial temporal
lobe, as well as early visual cortex regions differentially involved in processing stimuli in the
peripheral visual fields. Current evidence linking long range connectivity in PrC to processing
information from particular object domains or categories is very limited at present. However, in a
recent study diffusion tensor imaging study microstructure of the inferior longitudinal fasciculus,
which connects the occipital and ventro-anterior temporal lobe, including PrC, specifically
correlated with accuracy on a perceptual discrimination task involving faces but not scenes, as
well category BOLD response to faces in this task (Hodgetts et al., 2015). In addition, several
studies have examined the resting state connectivity profiles that characterize different MTL
structures (Kahn et al., 2008; Libby et al., 2012). At the whole brain level, PrC shows distinct
connectivity with other structures within the anterior temporal lobes, amygdala, and lateral
orbitofrontal cortex. These connectivity findings have led to the suggestion the PrC is part of a
cortical network, referred to as the anterior-temporal network that plays a unique functional role
in memory and cognition (Ranganath & Ritchey, 2012). It has been argued that, relative to a
posterior-medial system of which PhC is a central component, this anterior system is
preferentially involved in object recognition as well as processing the social and emotional
aspects of objects and animate entities, semantic knowledge, and reward learning. Although the
model does not explicitly consider differences between specific object categories or domains, to
the extent that the information processed in the anterior system pertains to ecologically relevant

information, this kind of processing may be more relevant to animate objects.

PhC

The role of the PhC in object processing during naming and recognition memory tasks
has been less explored than that of PrC, including evaluating any function of feature overlap. In
the memory literature, PhC has been primarily implicated in scene recognition and in context
representation in tasks of associative memory (Ranganath & Ritchey, 2012). However, recently,

it has been shown that PhC also plays a role in recognition memory for objects, specifically those
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that have navigational relevance, such as buildings or trees (Martin et al., 2013; Martin et al.,
2018; see also Janzen & van Turennout, 2004). In the current study, we also found category
specificity for buildings and trees, in addition to other large inanimate objects, including
furniture and vehicles. At the domain level, we observed organization by animacy and real-world
size for inanimate objects. This is notable because the PPA (or parahippocampal place area),
which includes the posterior portion of PhC, has also been shown to have higher levels of
activity for inanimate objects, even when contrasted with shape-matched animate objects
(Proklova, Kaiser, and Peelen, 2016). Moreover, a number of studies have demonstrated that the
PPA is more active for large than for small objects (Konkle et al., 2013; Aguirre et al, 1998;
Julian et al., 2016 ), and most similar to our findings, that patterns of activity in the PPA
distinguish between large and small objects (Julian et al., 2016). This sensitivity to real-world
size in the PPA, as well as that in the PhC more broadly that we describe here, appears to be
more reliable than what is observed in PrC, where it reflected only a trend in the current study.
This pattern could suggest that there may be a gradient in terms of coding for real-world size
along the anterior-posterior axis of the parahippocampal gyrus.

As in our discussion pertaining to PrC, it is informative to consider the long-range
connectivity of PhC in relation to the category and domain level organization reported here.
Resting state connectivity studies at the whole brain level have shown that PhC is differentially
connected to the retrosplenial cortex (RSC), posterior cingulate, precuneus, parietal cortex, and
ventromedial prefrontal cortex, the thalamus. In addition, PhC is also more strongly connected to
posterior medial occipital cortex as well as early visual areas (Libby et al., 2012). In light of
these resting-state connectivity findings, it has been suggested that PhC is a component of the
posterior medial network, with a functional role in memory and cognition that differs from that
of the anterior-temporal network that includes PrC. These findings generally align with the
findings reported by Konkle et al. (2016) that cortex in the medial VVVS that prefers large
inanimate object is highly connected to early visual areas tuned to the peripheral visual fields as
well as MTL (although not clearly specified whether it is the posterior portion of the
parahippocampal gyrus, it is distinct from the anterior temporal area more highly connected to
lateral animate VVS cortex). It has been argued that this network is important for representing
context in episodic memory and episodic simulation, as well as in spatial navigation (Ranganath

& Ritchey, 2012). One possibility is that the sensitivity of PhC to the animacy divide we report
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here is linked to differential processing of large inanimate objects that are important for
navigation, or are more likely to serve as episodic context. Compared to animate objects, large
inanimate objects often evoke a stronger sense of surrounding space (Mullally & Maguire,
2011), and when stable, can also serve as landmarks (Martin et al. under review; Janzen & van
Turennout, 2004; Troiani et al., 2013). From this perspective, animacy plays a role in the
organization of object representations in PhC because large inanimate objects share dimensions
important for the general functions of a posterior-medial cortical system. We note, however, that
any such preferential role does not appear to be absolute as PhC also appears to represent faces
as a distinct category as observed in the current study and in other prior research (Huffman &
Stark, 2014; Diana et al., 2008; Liang et al., 2012). At a more general level, such findings
suggest that the organization of object representations in the MTL also resembles that in the
VVS, by virtue of pointing to distributed representations crossing multiple structures rather than

sharply defined functional modules (Haxby et al., 2001).

HiP

Interestingly, we found that the HiP shows no clear-cut categorical representations of
objects, although we observed a trend for the representation of buildings, or organization by
animacy. Similar to PhC, the HiP was sensitive to the distinction between large and small
inanimate objects. The lack of clear cut category-specific representation in our findings is in line
with previous suggestions that the HiP is agnostic to the nature or content of its representations at
the item level. The agnosticity of the HiP has been attributed to its unique role in pattern
separation of episodes (Huffman & Stark, 2014). According to this reasoning, the result of
hippocampal pattern separation is that representations in the HiP are more dissimilar to each
other than those in PrC and PhC, leading to the loss of specificity in organization by category
that is present in these input structures. However, the evidence for domain-level organization
related to size we report here suggests that the HiP may not be entirely insensitive to content.

There is substantial evidence for a role of the HiP in scene perception and construction
(Hodgetts et al., 2016; Lee et al., 2005; Barense et al., 2015; Zeidman et al., 2015; for review see
Murray et al., 2017). For example, it has been demonstrated that the HiP is more active during
perceptual oddity tasks for scenes than for other types of stimuli (Lee et al., 2008). Hodgetts et
al. (2016) found clusters of activity in the HiP that are higher for scenes than for other stimulus
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categories (faces, objects) while participants performed a 1-back task, and these clusters
appeared as reliably as clusters in the traditional scene-processing network (including PhC,
retrosplenial cortex, and transverse occipital sulcus). Based on these results, the authors
suggested that the HiP should be considered as a component of the core scene processing
network. Implied with this argument is the notion that the HiP is not entirely agnostic to stimulus
content. More recent work by this group of researchers has provided some evidence to explain
why some studies find evidence for differential involvements in scene processing and other do
not (Hodgetts et al., 2017). In that fMRI study, conducted with ultra-high resolution, sensitivity
to scene stimuli could be more precisely localized to a specific subfield of the HiP, namely the
subiculum, with other subfields staying agnostic. It is possible that the sensitivity to real-world
size of objects reported here, together with the hint for category specific representations for
buildings in HiP, are a result of similarities between large objects and scenes that are of

particular relevance to processing in the subiculum.

Conclusions

Together, our findings show that stimulus dimensions that influence the organization of
object representations in the VVS also shape this organization in the MTL. Moreover, they
reveal many similarities in organization across PrC, PhC, and the HiP, with only some hints of
differences. A promising direction for future research will be to test for these differences in a
more targeted manner. In addition, it will be important to examine how patterns of large-scale
connectivity can account for the organizational principles in the MTL described, and to
determine how they relate to specific functional and perceptual properties of objects that differ

across domains and categories.
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Figures

Animate

Inanimate

Fig 1. Stimuli. Example objects from the 12 object categories employed. Categories were grouped into
animate: faces, bodies, monkeys, insects, inanimate small: flowers, fruits, tools, musical instruments, and
inanimate large: buildings, trees, vehicles, furniture.
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600 ms
response window

2 = familiar

600 ms
response window

Fig 2. Task: continuous recognition memory. An image depicting an object from one of the twelve categories
was presented on screen for 1200ms. After 600ms a red border popped up around the image, and
participants were required to respond “novel” indicating it was the first time they had seen that image, or
“familiar” indicating that it was the second time they had seen that image.
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Fig 3. Recognition memory performance for domains of interest, as measured with dprime. There were no
significant differences on performance between animate or inanimate objects (p = .2), or between large and
small inanimate objects (p = .7).

B Hippocampus (HiP)

Small Objects

All Animals
Big Objects O Perirhinal cortex (PrC)

B Parahippocampal cortex (PhC)

Fig 4. Left: Tripartite preference zones in posterior occipito-temporal cortex (courtesy of Konkle et al.,2013).
Right: Anatomical regions of interest examined in the medial temporal lobe, for one example participant.
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Fig 5. Representational geometry for object evoked responses in the medial temporal lobe. Representational
similarity matrices for the three MTL structures. Matrices show Pearson’s correlations between patterns of

activity evoked by each object category compared to each other object category. Note that the diagonal

shows within-category correlations across runs (each run had different exemplars from the given category).
The top row shows each RSM without scaling, the bottom row shows each RSM on the same scale. Note that
RSM’s are not symmetrical in the visualization, this is because the upper half of the matrix shows the mean

from a subset of across run correlations (i.e., cell 1,2 is condition 1 in the even runs correlated with

condition 2 in the odd runs, whereas cell 2,1, is condition 1 in the odd runs correlated with condition 2 in the
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Fig 6. Organization of object representations in the MTL. All bar plots show beta fits between model of
organization tested and RSM for each MTL structure. a) model of category representation b) model of
animacy organization ¢) model of real-world size for the inanimate domain.* indicates the model fit was
significant with correction for multiple comparisons.
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Fig 7. Visualization of representational space. Hierarchical clustering for all object categories in each MTL
structure.
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Recognition memory performance by category

category d RT cr's RT hits Sig differences Sig differences
overall RT dprime
face 1.58, sd=0.35 1.037, sd=0.041 .975 sd=0.057
body 1.60, sd=0.61 1.059, sd=0.042 .879, sd=0.045 fruit, tool
monkey 1.69, sd=0.66 1.056, sd=0.047 .980, sd=0.034 fruit, tool
insect 2.18, sd=0.97 1.041 sd=0.038 .972, sd=0.046
flower 1.93, sd=0.86 1.017, sd=0.027 .991, sd=0.070
fruit 2.33, sd=0.95 1.023, sd=0.045 .951, sd=0.038 tree, building tree
musical 1.88, sd=0.59 1.012, sd=0.034 .968, sd=0.046
instrument
tool 1.90, sd=0.58 1.014, sd=0.048 .965, sd=0.047 building
tree 1.62, sd=0.71 1.035, sd=0.042 .994, sd=0.042
2.51, sd=0.86 1.007, sd=0.047 .987, sd=0.063 body, face, fruit,
vehicle furniture, tree,
monkey
furniture 1.71, sd=0.64 1.029, sd=0.042 974, sd=0.040
1.99, sd=0.72 1.036, sd=0.048 .995, sd=0.049
building
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