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Abstract: Astigmatism-based superresolution microscopy is widely used to determine the position 

of individual fluorescent emitters in three-dimensions (3D) with subdiffraction-limited resolutions. 

This point spread function (PSF) engineering technique utilizes a cylindrical lens to modify the 

shape of the PSF and break its symmetry above and below the focal plane. The resulting 

asymmetric PSFs at different z-positions for single emitters are fit with an elliptical 2D-Gaussian 

function to extract the widths along two principle x- and y-axes, which are then compared with a 

pre-measured calibration function to determine its z-position. While conceptually simple and easy 

to implement, in practice, distorted PSFs due to an imperfect optical system often compromise the 

localization precision; and it is laborious to optimize a multi-purpose optical system. Here we 

present a methodology that is independent of obtaining a perfect PSF and enhances the localization 

precision along the z-axis. By utilizing multiple calibration images of fluorescent beads at varying 

z-planes and characterizing experimentally measured background distributions, we numerically 

approximated the probability of observing a certain signal in a given pixel from a single emitter at 

a particular z-plane. We then used a weighted maximum likelihood estimator (WLE) to determine 

the 3D-position of the emitter. We demonstrate that this approach enhances z-axis localization 
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precision in all conditions we tested, in particular when the PSFs deviate from a standard 2D 

Gaussian model.  

Introduction 

Single molecule localization microscopy (SMLM) relies on the temporal isolation of individual 

fluorescence emitters to determine the spatial localizations of individual molecules with high 

precision(1-4). SMLM has been widely used in biology to address the spatial organizations and 

structural dimensions of sub-cellular structures at a resolution ~ 10-fold better than the diffraction 

limit of conventional fluorescence light microscopy(5-8). Localization precision, the error in 

determining the spatial coordinates of a single emitter, is a critical parameter of SMLM. Together 

with sample labeling density(9), localization precision determines the upper bound of achievable 

spatial resolution(10). Two-dimensional (2D) SMLM methods can reach a lateral localization 

precision of 10-40 nm along the x and y dimensions in the focal plane by fitting the single emitter’s 

image to a point spread function (PSF) model. The PSF is usually approximated by using a 

symmetric 2D-Gaussian function in most algorithms(1-3, 11). However, in practice, the true PSF 

of a given imperfect optical system can deviate significantly from the symmetric 2D-Gaussian 

function (12). 

Recent developments in SMLM have allowed the coordinate of an emitter along the third 

dimension, the z-axis of the optical path, to be determined with a precision in the range of 15 – 

100 nm. There are two major approaches(13, 14): interferometry-based methods such as 

interferometric photoactivated localization microscopy (iPALM (15)), and PSF-

engineering/extension-based methods such as astigmatism (AS)(16), double-helix (DH)(17), and 

bi/multi-focal plane (BP) microscopy(18). Among these methods, iPALM uses the interference of 

the same photon emitted from an emitter to reach the highest localization precision along the z-
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dimension at ~ 15 nm. However, the relatively narrow observation depth (<750 nm above the 

coverslip(19)) and complex microscopy setup have limited its broad applications in biology. Multi-

focal plane or PSF-engineering methods determine the z-position of single emitters by comparing 

the image of a single emitter with calibrated PSFs at different z-planes, and in general, can reach 

a z-resolution in the range of 40 – 80 nm. Although the z-axis resolution is about 2-3 times worse 

than the lateral resolution, these PSF-engineering methods are easy and of low cost to implement. 

In particular, astigmatism-based 3D-SMLM only requires adding a cylindrical lens in the emission 

pathway, and hence has seen broad applications within the biological imaging community (16, 17, 

20). 

In an ideal astigmatism-based optical system, the PSF of a freely rotating single fluorescence 

emitter can be mimicked by a 2D-Gaussian function (16) 

𝑃𝑆𝐹(𝑥, 𝑦, 𝑧) = +
,-.(/0)-1(/0)

exp 5− (7870)9

:-.(/0)9
− (;8;0)9

:-1(/0)9
< 	 (1) 

Where the x0, y0, and z0 are the true spatial coordinates of the emitter, and 𝜎?(@0) and 𝜎A(@0) present 

the widths of the Gaussian function along two perpendicular x and y-axes at z0. Here, for simplicity, 

the x and y-axes represent the principle axes of the cylindrical lens respectively. In all astigmatism-

based 3D-SMLM imaging, a calibration curve describing the correlation between the astigmatism 

of an emitter’s PSF and its z-position is first established by imaging a fluorescent bead smaller 

than the diffraction limit at predefined z-planes, and subsequently extracting the astigmatic widths 

of the emitter’s PSF using Equation 1. The extracted widths are fitted as a function of the 

corresponding z-positions using a phenomenological model such as the defocusing function(16) 

or the quadratic function(21, 22). By comparing experimentally measured widths of a single 

emitter with the calibration curves, one can obtain the z position of the emitter with a z-axis 
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localization precision of 40~80 nm under the condition of a nearly perfect optical setup (so that 

the PSF can be approximated by equation 1) (16, 17, 20). However, in practice, it is laborious to 

perfect the optics each time on a multi-purpose microscope, even for experienced users. As such, 

imperfect experimental optical setups lead to distorted PSFs and consequently large deviations of 

measured calibration curves away from these commonly used models, introducing significant 

uncertainties in determining an emitter’s z-position (Fig. S1).  

To reduce the discrepancy between experimentally measured calibration curves and the fitting 

models, Sauer’s group used B-spline to interpolate the calibration curves (Fig. S1), which was able 

to obtain higher accuracy and flexibility than the original fitting functions under various 

experimental conditions(23). Additionally, Shaevitz et al. used a Bayesian interference method to 

measure the probability distribution of astigmatic PSF widths at different z-positions(24). 

Nevertheless, these methods still assumed that each emitter’s PSF could be approximated by an 

elliptical 2D Gaussian function, which doesn’t necessarily hold true in an imperfect optical system 

(Figure 1A). For instance, the maximum intensity position of the PSF can shift, or ‘wobble,’ due 

to coverslip-tilt and non-rotational symmetric aberration of an individual objective or other 

components in microscope(13). Additionally, spherical and other aberrations can distort the PSF 

shape, which introduces bias and compromise the localization precision in the z-position (as well 

as in x-y) (12) (Fig. 1A). 

An analytical description of the PSF, under specific conditions, can be retrieved from the pupil 

function of the imaging setup and has been shown to improve z-axis resolution(25, 26). The pupil 

function is then interpolated or decomposed in Zernike polynomials to calculate the PSF at 

different z-positions.  The 3D phase retrieval (PR) method has been implemented in BP and DH 
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microscopy to approximate the pupil function(25, 27). However, these PDF-retrieval methods are 

tedious to implement and require a thorough understanding of the optical setup.  

In this work, we introduce a different approach using the experimentally measured PSF and a 

numerically weighted maximum likelihood estimation (WLE) to improve the z-axis localization 

precision of single emitters in astigmatism-based SMLM. Our method is based on the principle 

that the PSF of an emitter at different z-positions can be characterized as an experimentally 

measured image independent of any a priori model assumptions such as an elliptical Gaussian 

model. For each experimentally measured image of an emitter, our method numerically determines 

the probability for each pixel to have a particular signal level given its z-position using the image 

of a calibration bead at each z-plane with an experimentally characterized background noise 

distribution. We then weight the importance of the pixels of an emitter by conducting a phase space 

search to minimize the calculated z-distances between repeated localizations from the same 

emitters.  We verified that by maximizing the weighted likelihood, we could reach a comparable 

or higher localization precision when compared to the B-spline based traditional Least Square (LS) 

fitting methodologies for 2D Gaussian PSFs, independent of the optical setup. It shows the highest 

improvement when the experimentally measured PSF deviates significantly from the standard 

elliptical 2D Gaussian model. Thus, the WLE approach alleviates the practical concerns in 

perfecting the optical alignment and enables improved z-axis localization in astigmatism-based 3D 

superresolution imaging.  

Method and Results 

Principle and workflow of WLE 
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To estimate an emitter’s coordinates, least square fitting (LS) and maximum likelihood estimator 

(MLE) based on a ‘known’ PSF, are the most commonly used methods. LS is computationally 

faster than MLE and has produced comparable precision in experiments where high photon counts 

are achievable(28). In SMLM fitting algorithms, LS fitting is often chosen over MLE to increase 

the computational speed and simplify the fitting process. However, when the signal to noise ratio 

(SNR) is low, LS leads to a compromised localization precision.  MLE is more computationally 

intensive compared to LS, but with a ‘correct’ PSF function and a ‘correct’ noise model (11), one 

can theoretically approach the upper bound of the estimation precision, the Crame-Rao 

limitation(29).  

Our approach, termed weighted maximum likelihood estimation (WLE), determines a single 

emitter’s z-position by maximizing the weighted likelihood of having a particular signal for each 

pixel at a particular z-position according to an experimentally determined probability density 

matrix (PDM). WLE is very similar to the MLE approach, but it assigns the information from 

different sources, different pixels in this case, varying degrees of (weighted) importance. The PDM 

was determined by convolving the numerically calibrated point spread function (ncPSF) with 

scaled photon noise and the background noise distribution. In essence, WLE finds a single 

emitter’s z-position by numerically matching its experimentally measured image with that of a 

calibration bead at a known z-position considering the intensity and background distribution of 

each pixel. Below, we describe the five main steps to implement the WLE algorithm (Fig. 1).  

In the first step, we estimated the ncPSF by imaging a bright fluorescent bead (100 nm in diameter) 

at a series of evenly spaced, 10-nm apart, z-planes using a piezo-stage. As a point source, the 

background-free averaged and normalized image represents the ncPSF of the optical system. To 
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increase the signal to noise ratio, we took multiple (N) images at each z-plane. We then computed 

the ncPSF, 𝜑CD(𝑘),	for each kth z-plane as: 

𝜑CD(𝑘) = 〈 +G,HI(J,K)8L(J,K)
∑ [+G,HI(J,K)8L(J,K)]H,I

〉 (2) 

where 𝐼R,CD(𝑛, 𝑘) is the intensity of the pixel at row i and column j in the nth bead image (21 by 

21 pixels in our example and can be varied) at the kth z-plane, and  𝛽(𝑛, 𝑘) is the background 

intensity calculated using averaged intensity values of pixels furthest away from the bead center. 

The mean background intensity 𝛽(𝑛, 𝑘) was subtracted from 𝐼R,CD(𝑛, 𝑘) to obtain the true signal 

intensity at each pixel, which was further normalized by the integrated signal intensity of the 

image after background subtraction. The final ncPSF was obtained by averaging over all N 

images of the bead for the kth z-plane. This estimation of ncPSF is sufficient because of the 

negligible noise level due to the high signal from fluorescent beads and averaging over N images 

allows us to approximate the final background of the mean image as zero (Supporting Material). 

In the second step, we obtained images containing single-molecule emitters from simulation or 

experimentally measured astigmatism-based imaging (Supporting Material). A wavelet-filter 

based algorithm(30) was applied to identify and crop out the local maxima into regions of 

individual emitters with the same size as ncPSF. We then calculated the background noise 

distribution, 𝛽, using the peripheral pixels in the cropped images. Here, we assumed that the noise 

distribution was identical among the pixels in all cropped images, which can be further adjusted 

depending upon whether the background is uniform among pixels. To obtain the PDM, we then 

determined the scaling factor 𝛼(𝑚)	with the following: 

𝛼(𝑚) = ∑ [𝐼W,CDCD (𝑚) − 〈𝛽〉] (3) 
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where 𝐼W,CD(𝑚)  is the intensity of each pixel for the cropped emitter m. Therefore, 𝛼(𝑚)  is 

proportional to the total photon number from each single emitter. Here we assumed that the 

distribution of the scaling factors among different emitters was independent of their z-positions. 

We validated this assumption using experimental data (Fig. S2, Supporting Material). 

In the third step, we determined the PDM, which allowed us to calculate the weighted likelihood. 

We utilized the ncPSF, {𝜑CD(𝑘), 𝑘 = 1,2, … } estimated in Step 1 to generate q calibration emitters 

at each z-plane k, {𝜉CD(𝑞, 𝑘)}, incorporating the previously determined background noise 𝛽 and 

scaling factors 𝛼. Note here that 𝛽 and 𝛼 are randomly sampled variables from their corresponding 

distributions (Supporting Material). To generate the calibration emitters, we first simulated a signal 

for each pixel using the ncPSF multiplied by the scaling factor 𝛼 with Poisson noise (photon noise) 

in each pixel: 𝑃𝑜𝑖𝑠𝑠𝑜𝑛[𝜑CD(𝑘) × 𝛼]. Here we assumed Poisson noise for simplicity, but other 

circumstances could be accommodated. The background noise of each pixel was added by 

randomly sampling the noise distribution 𝛽. For simplicity and computational ease, we generated 

4000 calibration emitters at each z-plane with varying 𝛼 and background noise. In principle, one 

could instead generate the calibration emitters at each z-plane for each specific 𝛼 and incorporate 

the specific background noise distribution of an emitter’s cropped pixels, which will likely increase 

z-axis localization precision even further. Here the experimentally calibrated emitter image, which 

we named ecPSF, is:  

 𝜉CD(𝑞, 𝑘) =
cdCeedJ[fHI(K)×g]hL

g
 (4) 

Here 𝛼, the scaling factor, is randomly sampled from its distribution and has the same value in 

both the denominator and numerator of the equation. We then linearly shifted the centroids of the 
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ecPSFs (estimated using a 2D-Gaussian fitting) so that the “centers” of all the adjusted PSF’s were 

aligned at each z-plane.  

Next, we approximated the probability density distribution to observe the signal, Λj	at pixel (i’,j’) 

for the kth z-plane with 𝜉C′D′(𝑞, 𝑘) : Ψ(Λj|𝑖m, 𝑗m, 𝑘) ≈ PDF(𝜉C′D′(1. . 𝑄, 𝑘)) , where PDF is the 

approximated probability density function for the term within the parentheses and Q is the total 

number of experimental calibration emitters for that z-plane (Supporting Material). Here 

Ψ(Λj|𝑖m, 𝑗m, 𝑘) is what we referred to as the PDM, the probability density matrix, which we then 

used below to calculate the likelihood. 

In the last step, for each single emitter image, we normalized the intensity to the total intensity of 

each image after background subtraction and determined the centroid as in the previous steps. This 

procedure resulted in the adjusted signal Λu(𝑖m, 𝑗′) for the mth emitter. We then determined the 

optimal z-position for the mth emitter by maximizing the following: 𝐿(𝑘) = ∑ω(𝑖m, 𝑗′) ×

log	(Ψ(Λu(im, j′)|im, j′, k))  for the kth z-plane. Here the elements of ω  contain the weighted 

importance for each pixel (Supporting Material, Fig. S3). We determined the weights that resulted 

in the best resolution by performing a phase space search, adjusting each element of ω to minimize 

the distance between repeated localizations of the same emitters (Supporting Material, Fig. S4). 

(We provide a user guide, code and example data allowing one to implement and understand the 

inner workings of WLE (https://github.com/XiaoLabJHU/WLE).)  

Validation of WLE  

To validate the WLE algorithm, we imaged TetraSpeckTM fluorescence beads on a coverslip 

scanning 100 z-planes at 10-nm intervals. For each z-plane, we acquired 200 images and observed 

minimal photobleaching. For astigmatism-based 3D SMLM imaging, it is necessary to adjust the 
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objective correction collar and the position of the cylindrical lens to minimize the spherical 

aberration caused by refractive index mismatch and the cylindrical lens itself. We mimicked these 

adjustments and obtained three sets of calibration PSF images at different settings (PSF I, II and 

III, Fig. 2A). All these experimentally measured PSFs deviated from the perfect 2D-Gaussian 

function (Fig. 2B). Nevertheless, as a comparison, we fit these PSFs using Equation 1 to obtain 

the centroid positions (x0, y0) and the astigmatic PSF widths, 𝜎?(/0) and 𝜎A(/0), at various z-planes 

(Fig. S1A). As shown in Fig. S1A, although the B-spline function fit the correlation between the 

widths and z-plane significantly better than a quadratic function, the correlation shape and the 

corresponding errors varied dramatically for the three different conditions, indicating high levels 

of uncertainty introduced by LS-based 2D-Gaussian fitting due to distorted PSF shapes.  

To evaluate the performance of WLE in comparison with LS-based B-spline and quadratic fitting 

methods, we simulated single emitters for each of these experimental PSFs at various z-planes with 

different signal to noise ratios (SNRs) (Fig. 3, Table S1 and Supporting Material). For LS-based 

B-spline and quadratic fitting methods, we fitted images of single emitters from highest SNR data 

(Table S1) with Equation 1 to obtain the z-positions using different calibration functions (B-spline 

or quadratic (Fig. 3). Here we defined the error, or the localization precision, as the mean absolute 

distance of all emitters from their true locations under each condition. As shown in Fig. 3, for all 

three different optical settings and at different SNR, the quadratic function (purple) performed 

most poorly and reached a plateau of error at ~ 40 to 60 nm for PSF I and III. The B-spline method 

was significantly better than the quadratic method and was able to reach a maximum resolution of 

~10 nm with the highest SNR for all three PSFs, suggesting that it is more reliable and adaptive in 

fitting the calibration curve compared to the quadratic function, as shown previously(23).  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2018. ; https://doi.org/10.1101/304816doi: bioRxiv preprint 

https://doi.org/10.1101/304816
http://creativecommons.org/licenses/by/4.0/


For WLE, we determined the z-position of each simulated emitter by comparing its corresponding 

image with the bead-generated ncPSF and maximizing the weighted likelihood. For PSFs I and II, 

we found that WLE resulted in similar localization precisions compared to B-spline when SNRs 

were low but showed more significant improvement than B-spline when the SNR was high. For 

PSF III, we observed the greatest improvement (~1.5-fold) by WLE compared to B-spline, 

reaching a localization precision of < 10 nm and surpassing all other methodologies for every SNR 

we tested. These results illustrated that WLE consistently performed equally well or better than 

the best-performing LS-based B-spline method under all tested conditions. 

WLE improved z-axis localization precision independent of PSF shape 

Next, we reasoned that the varied levels of improvement of WLE over B-spline (Fig. 3A to C) 

could be due to the deviation of the experimentally measured PSFs from an ideal 2D Gaussian 

function — the larger the deviation, the better WLE outperforms the LS methods. Therefore, we 

quantified the deviation of a PSF from an ideal elliptical 2D Gaussian as the mean of the absolute 

difference between the bead images and a 2D Gaussian fit to the bead images at each z-plane. We 

then plotted the average localization precisions at different z-planes by the three methods against 

the PSF deviation values. As shown in Fig. 4, we observed significant correlations between the 

localization precision and the Gaussian deviation value for the quadratic and B-spline based LS 

fitting methods — the larger the deviation, the worse the localization precision. In contrast, WLE 

showed no correlation, and the determined localization precision stayed essentially flat across the 

different Gaussian Deviation values (Fig. 4, blue). The quadratic method sometimes even showed 

low precisions at low deviation PSF conditions (PSF I), which resulted from the significant 

deviation of the 𝜎?(𝑧�), 𝜎A(𝑧�) from the quadratic calibration function for PSF I. In particular, we 

observed the largest Gaussian Deviation values (> 110) for PSF III, for which the corresponding 
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localization precisions determined by the B-spline and quadratic methods degraded dramatically, 

whereas the WLE error remained approximately constant. In contrast, when we applied WLE and 

B-spline to an ideal elliptical 2D-Gaussian PSF, we obtained equally good localization precisions 

for both methods across different SNR conditions (Fig. S5, Supporting Material). These results 

strongly suggested that the distortion of PSF shape from the ideal 2D-Gaussian caused by 

imperfect optical setups was a major factor leading to the low localization precisions in LS fitting-

based localization, and that the WLE-based localization is independent of the shape of PSF. 

Discussion: 

In this work, we developed a WLE methodology to enhance the localization precision along the z-

axis in astigmatism-based SMLM without an analytical description of the PSF. We validated WLE 

by analyzing simulated data using three experimentally measured PSFs. We found that WLE 

resulted in similar localization precision when compared to the commonly used B-spline fitting 

method when the PSF was approximately Gaussian. WLE surpassed B-spline significantly when 

the PSF deviated from the ideal shape, which is likely the case for real-world astigmatism-based 

SMLM experiments.  

The major advantage of the WLE method is that it does not require a specific predefined PSF 

model or a user-defined noise distribution model. Both can be experimentally measured and 

utilized to generate calibration images, which allows WLE to predict an emitter’s z-position by 

numerically “matching" its image with weighted pixels to calibration images. WLE does not 

require the calculation of a complex pupil function, which facilitates its use by non optics-oriented 

users. Because of its independence of PSF shape, WLE can also be applied to BP or other PSF 

engineering based 3D SMLM methods. An additional novel aspect of WLE is to determine the 
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importance of the information in each pixel (the weight) in an unbiased manner by minimizing the 

z-distance difference between repeated localizations of the same emitters.  

The current WLE algorithm does not correct the PSF change caused by the refractive index 

mismatch. Using an experimentally measured PSF in different z-planes away from the cover glass 

such as fluorescence beads on another inclined surface would solve this problem(31).  

The major disadvantage of WLE is that it is computationally intensive because each emitter’s 

image needs to be analyzed independently. Currently, the construction of a 3D superresolution 

image of ~2000 molecules takes ~150 CPU hours, but the current code can be further optimized 

for speed. With parallel or GPU computation we foresee significant improvement of the 

computational speed of WLE.  
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Figure legends 

Figure 1. Schematics of the WLE workflow. Experimentally measured bead images at different z-

planes and real emitter images were used for localization. 

Figure 2. Deviation of experimentally measured ncPSF from a 2D-Gaussian model. (A) Simulated 

2D-Gaussian PSF image (first column) and TetraSpeckTM beads images (experimental ncPSF) at 

different z-planes (-500, 0, 500 nm) with three different optical setups. PSF2 is adjusted from PSF1 

by shifting the cylindrical lens position along the optical axis while PSF3 is by changing the 

correction collar position of the objective. (B) Numerical deviation of experimental ncPSFs from 

the corresponding best 2D-Gaussian fittings.  

Figure 3. Average localization precision of LS-fitting (purple for quadratic and orange for B-spline) 

and WLE (blue) using synthetic images generated from experimental ncPSFs (Figure 2) at a series 

of signal to noise ratio (SNR). 

Figure 4. The average localization precision of LS-fitting (purple for quadratic and orange for B-

spline) and WLE (blue) at different deviations of the PSF from a 2D-Gassian model. 
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