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Abstract

Using genome-wide data from 697,828 research participants from 23andMe and UK
Biobank, we increase the number of identified loci associated with being a morning person, a
behavioural indicator of a person’s underlying circadian rhythm, from 24 to 351. Using data
from 85,760 individuals with activity-monitor derived measures of sleep timing we show that
the chronotype loci influence sleep timing: the mean sleep timing of the 5% of individuals
carrying the most “morningness” alleles was 25 minutes earlier than the 5% carrying the
fewest. The loci were enriched for genes involved in circadian regulation, cAMP, glutamate
and insulin signalling pathways, and those expressed in the retina, hindbrain, hypothalamus,
and pituitary. We provide evidence that being a morning person is causally associated with
better mental health but does not appear to affect BMI or Type 2 diabetes. This study offers

new insights into the biology of circadian rhythms and links to disease in humans.
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Introduction

Circadian rhythms are fundamental cyclical processes that occur in most living organisms,
including humans. These daily cycles affect a wide range of molecular and behavioural
processes, including hormone levels, core body temperature and sleep-wake patterns'.
Chronotype, often referred to as circadian preference, describes an individual's proclivity for
earlier or later sleep timing and is a physical and behavioural manifestation of the coupling
between internal circadian cycles and the need for sleep, driven by sleep homeostasis.
Significant natural variation exists amongst the human population with chronotype often
measured on a continuous scale?, though individuals are often separated into “morning
people” (or “larks”) who prefer going to bed and waking earlier, “evening people” (or “owls”)
who prefer a later bedtime and later rising time, and “intermediates” who lie between the two
extremes®*. Age and gender, as well as environmental light levels explain a substantial
proportion of variation in chronotype, but genetic variation is also an important

contributor®®"8,

There is evidence that alterations to circadian timing are linked to disease development,
particularly metabolic and psychiatric disorders®'®. Animal model studies have shown that
mutations in, and altered expression of, key circadian rhythm genes can cause obesity,

113 In humans, there

hyperglycaemia and defective beta-cell function leading to diabetes
are many reported associations between disrupted circadian rhythms and disease****, but
the evidence for a causal role of chronotype on disease is limited'®. For example, evening
people have an increased frequency of obesity'’, Type 2 diabetes'® and depression™®
independent of sleep disturbance, and studies of shift workers show an increased risk of
diabetes, depression and other diseases®. However, these associations could be explained
by reverse causality (diseases affecting sleep patterns or dictating job options) or
confounding (common risk factors influencing both chronotype and disease). Genetic
analyses identifying variants robustly associated with putative risk factors, such as
chronotype, can improve causal understanding by providing genetic instruments for use in

21-23 \which minimise the effect of both reverse

Mendelian Randomization (MR) analyses
causality and bias caused by confounding. Identifying genetic variants associated with
chronotype and sleep timing will also provide new insights into the biological processes
underlying circadian rhythms and sleep homeostasis.

Three previous genome-wide association studies (GWAS)?+2°

, using a maximum of 128,286
individuals, identified a total of 24 independent variants associated with self-report
chronotype. In this study, we performed a GWAS meta-analysis of a substantially expanded

set of 697,828 individuals, including 248,098 participants from 23andMe Inc., a personal
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genetics company, and 449,734 participants from UK Biobank®"*®. In addition to confirming
an enrichment of circadian rhythm and brain expressed genes at chronotype-associated loci

and genetic correlation with mental health disorders®>%

, in this substantially enlarged GWAS
study we identify 327 additional chronotype-associated loci and demonstrate that the
chronotype-associated variants are associated with objective measures of sleep timing, but
not sleep duration or quality, in 85,760 UK Biobank participants. By fine-mapping the genetic
associations at all loci, we identify 10 coding variants with a high likelihood of being the
causal variant, providing new targets for biological investigation of chronobiology and go on

to provide evidence of a causal link between chronotype and mental health.

Results

351 loci associated with morning chronotype from a GWAS meta-analysis including
697,828 individuals. We performed a GWAS of self-report chronotype (Table 1) using
11,977,111 imputed variants in 449,734 individuals of European ancestry from the UK
Biobank and meta-analysed with summary statistics from a self-report morningness GWAS
using 11,947,421 variants in 248,098 European-ancestry 23andMe research participants.
We identified 351 independent loci at P<5x10°®, of which 258 reached P<6x10°, a correction
for the significance threshold based on permutation testing (Supplementary Methods). Of
the 351 loci, 24 had been previously reported in earlier GWAS of chronotype®*2° and 327
were novel associations. The primary meta-analysis, based on sample size, and individual
study results are shown in Figure 1 and Supplementary Table 1. Conditional analysis
identified 49 loci with multiple independent signals (Supplementary Table 2). A sensitivity
analysis was performed in the UK Biobank data alone, excluding shift workers and those
either on medication or with disorders affecting sleep (see the Methods section and
Supplementary Methods for details). Effect sizes were similar to those in the full UK

Biobank GWAS (Supplementary Table 1 and Supplementary Figure 1).

Known circadian genes amongst associated loci. Well-documented circadian rhythm
genes were among the most strongly associated loci (Supplementary Table 1). These
genes included the previously reported loci containing RGS16, PER2, PER3, PIGK/AKS5,
INADL, FBXL3, HCRTR2 and HTR6%*%°, and newly associated loci containing known
circadian rhythm genes PER1, CRY1 and ARNTL (Supplementary Figure 2). At the PER3
locus, two highly correlated low frequency missense variants (rs150812083 and
rs139315125, MAF=0.5%), previously reported to be a monogenic cause of familial
advanced sleep phase syndrome®®, were associated with self-reported morningness
(OR=1.44 for minor allele; P=2x10"®) but with a lower magnitude of effect on sleep timing

than expected in the activity-monitor derived measures of chronotype, advancing sleep
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timing (as measured by time of minimum activity) by only 8 minutes (95% CI: 4, 13,

P=4.3x10) as opposed to the average 4.2 hours reported in the previous study?°.

Chronotype associated variants affect objective sleep timing, but not quality or
duration. Self-report assessments of sleep and chronotype can be subject to reporting
bias®*. To assess and quantify the effect of the genetic associations on objective
measures of sleep timing, duration and quality, we tested the association of the chronotype-
associated variants with sleep estimates derived from the UK Biobank activity monitor data.
Derived phenotypes included sleep timing, efficiency and duration. Timing was determined
by timings of midpoint of sleep, the least active 5 hours of the day (L5 timing) and midpoint
of the most active 10 hours of the day (M10 timing). Summary statistics of these derived
phenotypes and their associations with self-report morningness are presented in
Supplementary Table 3, and their associations with the newly identified chronotype SNPs
are provided in Supplementary Table 4. To avoid inflation of associations due to
overlapping samples, we performed an additional GWAS meta-analysis of self-reported
morningness excluding all UK Biobank individuals with activity monitor data. Of the 292 lead
chronotype variants reaching P<5x10°® from this meta-analysis that were available in the UK
Biobank imputed genotype data, 258 had a consistent direction of effect for sleep midpoint
(binomial test P=3.8x10*), 262 with L5 timing (binomial test P=9.3x10™) and 260 with M10
timing (binomial test P=6.4x10°). A genetic risk score (GRS) of these 292 variants was
associated with earlier sleep midpoint, L5 timing and M10 timing (P=4x10"?%, P=1x10"%? and
P=7x10"%* respectively). There was little evidence of association between the chronotype
GRS and the activity monitor sleep phenotypes that estimate sleep duration and
fragmentation (Supplementary Table 5), indicating a specific effect of the chronotype SNPs
on sleep timing and circadian metrics. Limiting the analysis to the 109 lead variants identified
from the independent 23andMe GWAS provided similar results (Supplementary Table 5).
Using the activity-monitor derived estimates of sleeping timing, the 5% of individuals carrying
the most morningness alleles at the 292 associated loci had L5 timing shifted earlier, on
average, by 25.1 minutes (95% CI. 22.5, 27.6) compared to the 5% carrying the fewest
morningness alleles: a mean L5 time of 03:06 rather than 03:32. The data suggests that self-
report chronotype strongly relate to an individual's sleep timing and therefore provide valid

instruments for MR and compelling insights into circadian biology.

Circadian rhythm, neuron development and cell signalling pathways, and brain and
retina expressed genes are strongly enriched at the associated loci. To identify
biological pathways and tissues enriched for genes at the associated loci, we used
MAGMA?** | implemented as part of the FUMA GWAS® platform (Figures 2-3.
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Supplementary Tables 6-7). Because of the variety of methods available and databases
employed, we also performed secondary gene-set and tissue enrichment using the software
packages PASCAL*®, MAGENTA?® and DEPICT?® (Supplementary Tables 8-11). We
identified strong enrichment in circadian rhythm and circadian clock pathways as with
previous morningness GWAS?*?®, We also identified multiple pathways that correspond to
(central) nervous system and brain development, components of neuronal cells such as
synapses, axons and dendrites, as well as neurogenesis. There was clear enrichment in all
types of brain tissue (Figure 4, Supplementary Tables 7 and 11), in behavioural pathways,
containing genes responsible for mediating behavioural responses to internal and external
stimuli, and in retinal tissue (Supplementary Table 11). The genes in the associated loci
were also enriched in multiple pathways relating to the regulation and metabolism of cyclic
nucleotides, such as cAMP and cGMP, as well as pathways involved in G-protein signalling
and activation. The NMDA glutamate signalling pathway was also enriched and MAGMA
mapped genes in this pathway include NRXN1 and RELN, which have been shown to
influence risk of schizophrenia®**°, but for which there is limited evidence of a role in

circadian rhythm regulation.

Fine-mapping identifies likely causal variants and genes

To highlight putative causal variants and genes, we fine-mapped the associated loci using
FINEMAP*'. FINEMAP uses a shotgun stochastic search to identify the most plausible
causal variant configuration given the GWAS association statistics and local LD patterns and
outputs posterior probabilities for each variant configuration being causal. Forty-two loci had
a single variant with a probability of >50% of being causal (Supplementary Table 12).
Annotation of these likely causal variants identified 10 coding variants. These include a low
frequency missense variant in RGS16 (MAF=3%, morningness OR=1.26 for minor allele),
previously associated with chronotype® and the most strongly associated with morningness
in this study, and missense variants in the INADL, HCRTR2, PLCL1 and CLN5 genes, all
four genes having been identified in previous GWAS**?. Fine-mapping also identified
missense variants in PCYOX1 and SKOR2, and a stop gain variant in the MADD gene, as
likely causal variants in these loci, highlighting new candidate genes for chronotype. The
MADD stop gain variant (rs35233100) has previously been associated with levels of
proinsulin®?, providing a potential link between insulin secretion and chronotype. To gain
further insight into additional genes that may play a role in determining chronotype, we
annotated the putative causal variants using the GTEx eQTL database (Supplementary
Table 12). There were 90 variants across 51 loci that were eQTLs for one or more genes,
with a total of 208 mapped genes. As an example, this included a putative causal variant in
the promoter of FBXO3 which represents the strongest eQTL for FBX03. FBXO3 is in the
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ubiquitin-proteosome pathway; protein (de)ubiquitination has been shown to be involved with

the degradation of several core clock genes***

, influencing the build-up up these proteins
and the pace of the circadian clock*>*°. FBXO3 expression has been shown to be altered by

light treatment and to demonstrate rhythmic expression®.

Integration of GWAS and SCN-enrichment data highlights potential circadian clock
genes at associated loci. The suprachiasmatic nucleus is a small region of the brain,
consisting of around 20,000 neurons, that is integral to maintaining circadian rhythms in
humans and is a likely mechanism of action for at least some of the associated genes and
loci. Indeed, the associated loci included many key mammal SCN clock genes including
PER1, PER2, PER3, CRY1, FBXL3 and ARNTL (Supplementary Table 13). To identify new
genes important in setting and modulating circadian rhythms in the SCN, we assessed
expression, enrichment and fluctuation of proximal or eQTL-mapped genes using expression
data from the mouse SCN. We cross-referenced all mapped genes at the fine-mapped loci
against whether there was evidence for enrichment of expression in the SCN compared to

other brain tissue*”*®

and whether the genes demonstrated evidence of fluctuation in
expression over the 24-hour cycle*’ (Supplementary Table 12). We also annotated the
genes against a set of 343 putative clock genes identified from RNAi knockdown
experiments a human cellular clock model*® (Supplementary Table 12). Of the 22.5% of alll
genes tested that were enriched in the SCN*8, 28.0% of the 804 genes mapped using
MAGMA and present in the enrichment analysis, were enriched in the SCN representing a
significant excess (P=2x10). As a negative control, we tested the enrichment of MAGMA-
mapped genes for several unrelated GWAS phenotypes, finding no significant excess of
SCN-enriched genes (all P>0.05) (Supplementary Table 14). Similar enrichment was found
for those chronotype genes fluctuating in the SCN, but no significant excess from the RNAI
knockdown study. Enriched and fluctuating genes from the fine-mapping efforts include
known circadian genes such as FBXL3 and putative genes such as LSM7 and VIP. LSM7
encodes core components of the spliceosomal U6 small nuclear ribonucleoprotein complex
for which some previous studies have suggested a role in circadian timing*®*°. VIP encodes
a vasoactive peptide hormone that lowers arterial blood pressure and relaxes muscles of the
stomach and trachea. Evidence from mouse models indicates that it has a role in generating

and light-entrainment of circadian oscillations®*.

Chronotype is heritable and demonstrates strong genetic correlation with several
psychiatric traits. As a strategy to prioritise traits for subsequent causal analyses, as

previous studies have shown a strong correlation between genetic and phenotypic

52,53

correlations™”°, and to identify genetic overlap between chronotype and other diseases and
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traits, we performed LD score regression analyses against a range of other diseases and
traits where GWAS summary statistics are publicly available (Supplementary Table 15).
We estimated the heritability of chronotype to be 13.7% (95% CI 13.3%, 14.0%), as
calculated by BOLT-REML in the UK Biobank data alone, which is towards the lower end of
previously reported figures (12-21%)%*%°. The most genetically correlated trait was
subjective well-being, which was positively correlated with being a morning person (r=0.17,
P=6x10"°). Psychiatric traits schizophrenia (r¢=-0.11, P=1x10"), depressive symptoms (r¢=-
0.16; P=2x10"°), major depressive disorder (r=-0.19; P=3x107°) and intelligence (rs=-0.11;
P=8x10"®) were all negatively correlated with the morning chronotype. Metabolic traits fasting
insulin (rs=-0.09, P=0.03) and HOMA-IR (rg=-0.12, P=0.009) were negatively correlated with
being a morning person but did not reach our Bonferroni-corrected significance threshold.
BMI (rs=0.007, P=0.74) and T2D (rs=0.02, P=0.60) were not genetically correlated with

morningness.

Mendelian randomisation (MR) analyses provide evidence for a causal link between
chronotype and mental health. Genetic correlations do not allow for magnitudes of
causality to be determined between an exposure and an outcome. We therefore performed
two-sample Mendelian Randomisation (MR) analyses against the five psychiatric traits that
showed evidence of a genetic correlation to estimate causal effects. Because of the
extensive literature on the link between chronotype and metabolic disease and because the
well-known SNP in FTO (rs1558902) previously associated with higher BMI***® was also
associated with being a morning person (OR=1.04, P=4.9x10%), we also performed two-
sample MR against the metabolic phenotypes BMI, type 2 diabetes and fasting insulin levels.
For individual instrument effects on chronotype, log odds ratios (representing liability for
morningness) from the secondary morning person meta-analysis were used, as no effect
sizes were obtained in the primary meta-analysis. With chronotype as an exposure, we
implemented the R package TwoSampleMR®® to report causal associations of chronotype on
these eight outcomes (Supplementary Table 16). We saw evidence that being a morning
person confers a liability to lower risk of schizophrenia and greater subjective well-being,
with a genetically determined unit log odds increase in self-report morningness being
associated with a liability for reduced schizophrenia (odds ratio of 0.89 (0.82, 0.96); IVW
P=0.004) and higher subjective well-being (0.04SD (0.02, 0.06); IVW P=5x10"), and with
good agreement amongst the different MR methods (Figures 5-6). There was suggestive
evidence that morningness decreases the liability of depression: one-unit log odds increase
in morningness was associated with an odds ratio of 0.65 (0.44, 0.95; IVW P=0.03) for major
depressive disorder and 0.02 SD lower (0.002, 0.04; IVW P=0.03) for depressive symptoms

(Supplementary Figures 3-4) but these did not reach our multiple testing threshold of
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Puont=0.005. There was no strong statistical evidence that chronotype was causally
associated with BMI, fasting insulin and risk of type 2 diabetes (IVW P>0.1), as previously

reported®*~2°.

No evidence that schizophrenia or depression influence morningness.

To assess whether our genetically-correlated phenotypes were causally influencing
chronotype, we performed two-sample Mendelian Randomisation analyses with chronotype
as the outcome. Owing to a limited number of genetic instruments, of the original five
genetically-correlated psychiatric phenotypes we were able to test only schizophrenia and
major depressive disorder, in addition to the metabolic phenotypes BMI, insulin secretion
and type 2 diabetes (Supplementary table 17). We observed only weak evidence of liability
effects of type 2 diabetes (IVW P=0.01), insulin secretion (IVW P=0.04) and BMI (IVW
P=0.05) on chronotype. Despite strong genetic correlations with chronotype, we see no
strong evidence that schizophrenia (IVW P=0.07) or major depressive disorder (IVW P=0.62)

causally influence liability for morningness.

Discussion

Using data from 697,828 individuals, we have performed the largest GWAS study of
chronotype and expanded the number of chronotype-associated loci from 24 to 351. Using
activity monitor data from 85,760 we show that these variants are associated with measures
of objective sleep timing. We confirm previously reported enrichment of circadian rhythm
pathways and retina and brain expressed genes at associated loci, and demonstrate further
enrichment of genes in the cAMP, cGMP, NMDA and insulin signalling pathways as well as
those in pituitary gland tissue and the SCN. We fine-map the loci and provide target genes
for other researchers to perform in depth functional investigation into chronobiology. We
have provided more accurate genetic correlation estimates of chronotype with a range of
traits and disease and provide some evidence for a causal link between chronotype and

mental health.

We have found evidence that the natural variation in circadian preference amongst the
human population can be ascribed to several different mechanisms. Given the prominence
of genetic variants in or near multiple core circadian rhythm genes (PER1, PER2, PERS3,
CRY1, FBXL3, ARNTL), we infer that some of the variation is attributed to subtle differences
in the biochemical feedback mechanism of the circadian clock. This is supported by
evidence of the chronotype-associated loci being enriched in the SCN, suggesting that
variants that also subtly affect the modification and regulation of the circadian clock

contribute to the population variation of chronotype. Entrainment of circadian rhythms
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through external stimuli such as light and temperature is well-known but through this study
and previous GWAS efforts, we find that an individual's chronotype is also influenced by
variants in genes important in the correct formation and functioning of retinal ganglion cells
(RGS16 and INADL), highlighting that some natural variation could be explained by better
detection and communication (to the SCN) of external light signals. Variants in genes with
known roles in appetite regulation (FTO), insulin secretion (MADD) and even nicotine and
caffeine metabolism (CYP2A6) point to other processes that impact an individual's
chronotype, though it is unclear whether the effect of these on chronotype are mediated
through the modulation of the circadian clock or by other means, such as through sleep-

wake homeostasis.

Reported observational associations of chronotype with metabolic diseases are particularly
strong®”*®, but we found no evidence for a causal effect of morningness on type 2 diabetes,
BMI or insulin levels and could exclude the observational association effect sizes. One
possibility which future studies should investigate is whether circadian misalignment, rather
than chronotype itself, is more strongly associated with disease outcomes. For example, are
individuals who are genetically evening people but have to wake early because of work

commitments particularly susceptible to obesity and diabetes?

There are clear epidemiological associations reported in the literature between mental health
traits and chronotype, with mental health disorders typically being overrepresented in

evening types>®®

, and in this study we show that morningness is negatively genetically
correlated with both depression and schizophrenia, and positively correlated with wellbeing.
Previous studies have found a link between schizophrenia and circadian dysregulation and

misalignment®%°3

with schizophrenics displaying greater variation in sleep and activity timing
and misaligned melatonin and sleep cycles, but no evidence exists for the effect of
chronotype on schizophrenia risk. Our Mendelian Randomisation analyses support a causal
role of eveningness on increased risk of schizophrenia, though the statistical significance is
not overwhelming strong. We do not find evidence of schizophrenia causally influencing
chronotype. However, several of the mapped genes at the chronotype associated loci are
well known schizophrenia loci such as NRXN1 (as well at NRXN2 and NRXN3) and
RELN®**° and subsequent studies will be necessary to understand the shared biological

mechanisms between chronotype and schizophrenia risk.

Chronotype is influenced by circadian rhythms and innate sleep homeostatic mechanisms
but is also dependent on societal pressures. It is also a self-report measure which means the

interpretation of the phenotype and the genetic association is complicated. In this study,
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however, we show, using objective measures derived from activity monitor data that these
chronotype variants do affect objectives measures of sleep timing, but not other aspects of
sleep including duration and timing, providing evidence that we are identifying biologically

meaningful associations and allowing us to quantity the effect of these variants on sleep

timing.

The response to UK Biobank participation was <5% and this has resulted in selection for
healthier individuals, which may introduced bias into our analyses, including in GWAS and
MR®*. Here GWAS results replicated those of 23andMe, a study that may also suffer from
selection bias but of a different nature to UK Biobank. Adopting two-sample MR we
attempted to maximise statistical power by using publicly available aggregated data based
on consortia of studies that had considerably greater response rates, and avoided winner’'s
curse which can lead to underestimation of causal effects®®>. MR of a binary (or other broad
category) exposure that is derived from an underlying continuous trait, as is the case with
chronotype, may be biased by horizontal pleiotropy from within-category variation in the trait
that cannot be identified by alternative MR methods, such as MR-Egger. As effect sizes for
MR analyses were derived from log odds ratios in the secondary morning person meta-
analysis, there may be the possibility of undetected pleiotropy and so our findings should

therefore be treated with some caution.

In conclusion, we have identified 327 novel loci that regulate circadian rhythms and sleep

timing in humans and provide new insights into the association of chronotype with disease.
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Materials and Methods

Cohorts

The UK Biobank is described in detail elsewhere®’. We used data on 451,454 individuals
from the full UK Biobank data release that we identified as White European and that had
genetic data available. To define a set of White Europeans, we performed Principal
Components Analysis (PCA) in the 1000 Genomes (1KG) reference panel using a subset of
variants that were of a high quality in the UK Biobank. We projected these principal
components into the set of related UK Biobank participants to avoid the relatedness
confounding the principal components. We then adopted a k-means clustering approach to
define a European cluster, initialising the ethnic centres defined by the population-specific
means of the first four 1KG principal components. This analysis was performed only within
individuals self-reporting as “British”, “Irish”, “White” or “Any other white background”.
Because association analyses are performed using linear mixed-model (LMM) method, we

included related individuals.

We used summary statistics from a morning chronotype GWAS performed by 23andMe of
248,100 (Ncase=120,478; Neontro=127,622) participants with a minimum of 97% European
ancestry. GWAS analysis was performed in a maximal set of unrelated participants, where
pairs of individuals were considered related if they shared 700cM IBD of genomic segments,
roughly corresponding to first cousins in an outbred population. The 23andMe cohort is

described in more detail elsewhere®*.

Activity Monitor Data

A subset of the UK Biobank cohort was invited to wear a wrist-worn activity monitor for a
period of one week. Individuals were mailed the device and asked to wear it continuously for
seven days, including while bathing, showering and sleeping. In total, 103,720 participants
returned their activity monitor devices with data covering at least three complete 24-hour
periods. We downloaded the raw activity monitor data (data-field 90001) for these
individuals, in the form of binary Continuous Wave Accelerometer (cwa) files. Further
information, along with details of centrally-derived variables, is available elsewhere®®.
Detailed protocol information can be found online at

http://biobank.ctsu.ox.ac.uk/crystal/docs/PhysicalActivityMonitor.pdf and a sample instruction

letter at http://biobank.ctsu.ox.ac.uk/crystal/images/activity _invite.png (UKB Resources
131600 and 141141, respectively; both accessed January 30™ 2018). We converted the

.cwa files to .wav format using the open-source software “omconvert”, recommended by the
activity monitor manufacturers Axivity, which is available online (see

https://github.com/digitalinteraction/openmovement/tree/master/Software/AX3/omconvert).
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To process the raw accelerometer data, we used the freely available R package “GGIR”
(v1.5-12)°"°8. The list of our GGIR settings is provided in Supplementary File 1 and the full
list of variables produced by GGIR can be found in the CRAN GGIR reference manual (see

https://cran.r-project.org/web/packages/GGIR/GGIR.pdf).

Genotyping and quality control

The 23andMe cohort was genotyped on one of four custom arrays: the first two were
variants of the lllumina HumanHap550+ BeadChip (Ncase=4,966; Neontro=5,564), the third a
variant of the Illumina OmniExpress+ BeadChip (Ncase=53,747; Neontro=61,637) and the fourth
a fully custom array (Ncase=61,765; Ncontro=60,421). Successive arrays contained substantial
overlap with previous chips. These genotypes were imputed to ~15.6M variants using the
September 2013 release of the 1000 Genomes phase 1 reference panel. For analyses, we
used ~11.9M imputed variants with imputation r* = 0.3, MAF = 0.001 (0.1%) and that showed

no sign of batch effects.

The UK Biobank cohort was genotyped on two almost identical arrays. The first ~50,000
samples were genotyped on the UK BILEVE array and the remaining ~450,000 samples
were genotyped on the UK Biobank Axiom array in two groups (interim and full release). A
total of 805,426 directly-genotyped variants were made available in the full release. These
variants were centrally imputed to ~93M autosomal variants using two reference panels: a
combined UK10K and 1000 Genomes panel and the Haplotype Reference Consortium
(HRC) panel. For all analyses, we used ~12.0M Haplotype Reference Consortium (HRC)
imputed variants with an imputation r? = 0.3, MAF = 0.001 (0.1%) and with a Hardy—
Weinberg equilibrium P>1x10™"2. We excluded non-HRC imputed variants on advice from the
UK Biobank imputation team. Further details on the UK Biobank genotyping, quality control

and imputation procedures can be found elsewhere®.
Self-Report Phenotypes

Morning Person (23andMe)

Responses to two identical questions were used to define the dichotomous morning person
phenotype in the 23andMe cohort, with one question having a wider selection of neutral
options. More details are given in Supplementary Table 2 of the 23andMe morning person
GWAS?*. Morning people were coded as 1 (cases; N=120,478) and evening people were
coded as 0 (controls; N=127,622).
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Chronotype (UK Biobank)

The UK Biobank collected a single self-reported measure of Chronotype (“Morning/evening
person (chronotype)”; data-field 1180). Participants were prompted to answer the question
"Do you consider yourself to be?" with one of six possible answers: “Definitely a ‘morning’
person”, “More a ‘morning’ than ‘evening’ person”, “More an ‘evening’ than a ‘morning’
person”, “Definitely an ‘evening’ person”, “Do not know” or “Prefer not to answer”, which we
coded as 2, 1, -1, -2, 0 and missing respectively (distribution summarised in Table 1). Prior
to association testing, we adjusted the phenotype for age, gender and study centre
(categorical). Of the 451,454 white European participants with genetic data, 449,734 were

included in the GWAS (had non-missing phenotype and covariates).

Morning Person (UK Biobank)

In order to provide interpretable odds ratios for our genome-wide significant variants, we also
defined a binary phenotype using the same data-field as for Chronotype. Participants
answering “Definitely an ‘evening’ person” and “More an ‘evening’ than a ‘morning’ person”
were coded as 0 (controls) and those answering “Definitely a ‘morning’ person” and “More a
‘morning’ than ‘evening’ person” were coded as 1 (cases). Participants answering “Do not
know” or “Prefer not to answer” were coded as missing. A total of 403,195 participants were
included in the GWAS (252,287 cases and 150,908 controls).

Activity monitor Phenotypes

Identifying the sleep period window

The software package GGIR®*®° produces quantitative and timing measures relating to both
activity levels and sleep patterns, with a day-by-day breakdown, as well averages across the
period of wear. A new algorithm, implemented in version 1.5-12 of the GGIR R package and

validated using PSG in an external cohort™

, allows for detection of sleep periods without the
use of a sleep diary and with minimal bias. Briefly, for each individual, median values of the
absolute change in z-angle (representing the dorsal-ventral direction when the wrist is in the
anatomical position) across 5-minute rolling windows were calculated across a 24-hour
period, chosen to make the algorithm insensitive to activity monitor orientation. The 10th
percentile was incorporated into the threshold to distinguish movement from non-movement.
Bouts of inactivity lasting =30 minutes are recorded as inactivity bouts. Inactivity bouts that
are <60 minutes apart are combined to form inactivity blocks. The start and end of longest

block defines the start and end of the sleep period time-window (SPT-window).

Activity monitor exclusions and adjustments
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The UK Biobank made multiple activity monitor data-quality variables available. From our
activity monitor phenotypes, we excluded 4,925 samples with a non-zero or missing value in
data field 90002 (“Data problem indicator”). We then excluded any individuals with the “good
wear time” flag (field 90015) set to 0 (No), “good calibration” flag (field 90016) set to 0 (No),
“calibrated on own data” flag (field 90017) set to O (No), “data recording errors” (field 90182)
> 788 (Qz + 1.5xIQR) or a non-zero count of “interrupted recording periods” (field 90180).
Phenotypes determined using the SPT-window (all phenotypes except L5 and M10 timing)
had additional exclusions based on short (<3 hours) and long (>12 hours) mean sleep
duration and too low (<5) or too high (>30) mean number of sleep episodes per night (see
below). These additional exclusions were to ensure that individuals with extreme (outlying),
and likely incorrect, sleep characteristics were not included in any subsequent analyses.
Prior to association testing, we adjusted all phenotypes for age activity monitor worn (derived
from month and year of birth and date activity monitor worn), gender, season activity monitor
worn (categorical; winter, spring, summer or autumn; derived from date activity monitor
worn) and number of valid measurements (SPT-windows for sleep phenotypes, number of

valid days for diurnal inactivity or number of L5 or M10 detections).

Sleep midpoint (UK Biobank)

Sleep midpoint was calculated as the time directly between the start and end of the SPT-
window and is defined as the number of hours elapsed since midnight at the start of the
calendar day on which the STP-window started (e.g. 02:30 = 26.5; 23:45 = 23.75) with a cut-
off at midday (12:00 and 36:00). This takes account of participants whose sleep midpoint
occurs before midnight. Our sleep midpoint phenotype represented the average of each
participant over all their valid SPT-windows. After exclusions and adjustments, 84,810

participants had valid sleep midpoint, covariates and genetic data.

L5 and M10 timing (UK Biobank)

L5 and M10 refer to the least-active five and the most-active ten hours of each day, and are
commonly studied measures relating to circadian activity and sleep. L5 (M10) defines a five-
hour (ten-hour) daily period of minimum (maximum) activity, as calculated by means of a
moving average with a five-hour (ten-hour) window. As with sleep midpoint, we defined our
L5 (M10) timing phenotype as the number of hours elapsed from the previous midnight to
the L5 (M10) midpoint, averaged over all valid wear days. Of the 103,711 participants with
activity monitor data, there were 85,205 and 85,670 with valid L5 and M10 timing measures
respectively, covariates and genetic data. Basic summaries of these and other raw activity

monitor phenotypes are given in Supplementary Table 3.
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Sleep duration (UK Biobank)

Sleep episodes within the SPT-window were defined as periods of at least 5 minutes with no
change larger than 5° associated with the z-axis of the activity monitor, as described
previously®®. The summed duration of all sleep episodes provided the sleep duration for a
given SPT-window. We took both the mean and standard deviation of sleep duration across
all valid SPT-windows to provide a measure of average sleep quantity and a measure of
variability. After exclusions and adjustments, we had 85,449 (84,441) participants with valid

sleep duration mean (SD), covariates and genetic data.

Sleep efficiency (UK Biobank)

This was calculated as a ratio of sleep duration (defined above) to SPT-window duration.
The phenotype represented the mean across all valid SPT-windows and after exclusions
and adjustments, left us with 84,810 participants with valid sleep efficiency, covariates and

genetic data.

Number of sleep episodes (UK Biobank)

This is defined as the number of sleep episodes of at least 5 minutes separated by at least 5
seconds of wakefulness within the SPT-window. The phenotype represents the mean across
all SPT-windows and can be interpreted as a measure of sleep disturbance or
fragmentation. After exclusions and adjustments, we had 84,810 participants with valid sleep

efficiency, covariates and genetic data.

Diurnal inactivity duration (UK Biobank)

The total daily duration of estimated bouts of inactivity that fall outside of the SPT-window.
This comprises the total length of periods of sustained inactivity (>5 minutes) and captures
sleep (naps) but does not include other inactivity such as sitting and reading or watching
television, which typically involve a detectable level of movement. This variable likely
captures some non-sleep rest as it is impossible to separate these without detailed activity
diaries. The phenotype is calculated as the mean across all valid days and, after exclusions
and adjustments, we were left with 84,757 participants with a valid measure, covariates and

genetic data.

Genome-wide association analysis
We performed all association test using BOLT-LMM'* v2.3, which applies a linear mixed

model (LMM) to adjust for the effects of population structure and individual relatedness, and
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allowed us to include all related individuals in our white European subset, boosting our
power to detect associations. This meant a sample size of up to 449,734 individuals, as
opposed to the set of 379,768 unrelated individuals. BOLT-LMM approximates relatedness
within a cohort by using LD blocks and avoids the requirement of building a genetic-
relationship matrix (GRM), with which calculations are intractable in cohorts of this size.
From the ~805,000 directly-genotyped (non-imputed) variants available, we identified
524,307 “good-quality” variants (bi-allelic SNPs; MAF=1%; HWE P>1x10%; non-missing in all
genotype batches, total missingness<1.5% and not in a region of long-range LD"?) that
BOLT-LMM used to build its relatedness model. For LD structure information, we used the
default 1000 Genomes LD-Score table provided with the software. We forced BOLT-LMM to
apply a non-infinitesimal model, which provides better effect size estimates for variants with
moderate to large effect sizes, in exchange for increased computing time. Prior to
association testing, continuous phenotypes were first adjusted for relevant covariates, as
indicated above, and at runtime we included “release” (categorical; UKBILEVE array, UKB
Axiom array interim release and UKB Axiom array full release) as a further covariate. The
binary morning person phenotype was adjusted at runtime for age, gender, study centre and

release.

In the 23andMe morning person GWAS, the summary statistics were generated through
logistic regression (using an additive model) of the phenotype against the genotype,
adjusting for age, gender, the first four principal components and a categorical variable
representing genotyping platform. Genotyping batches in which particular variants failed to
meet minimum quality control were not included in association testing for those variants,
resulting in a range of sample sizes over the whole set of results. A ;. of 1.325 was
reported for this GWAS. Lead variants for the 23andMe only morning person GWAS are
provided in Supplementary Table 18.

Sensitivity Analysis

To avoid issues with stratification, we performed a sensitivity GWAS, in UK Biobank alone,
to assess whether any of the associations were driven by a subset of the cohort with specific
conditions. We excluded those reporting shift or night shift work at baseline, those taking
medication for sleep or psychiatric disorders and those with either with a HES ICD10 or self-
reported diagnosis of depression, schizophrenia, bipolar disorder, anxiety disorders or mood
disorder (see Supplementary Methods for further details). Results for the 341 lead
chronotype variants available in the UK Biobank are provided in Supplementary Table 1

alongside the main meta-analysis results.
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Meta-analysis of GWAS results

Meta-analysis was performed using the software package METAL". To obtain the largest
possible sample size, and thus maximising statistical power, we performed a sample-size
meta-analysis, using the results from the UK Biobank chronotype GWAS and the 23andMe
morning person GWAS. Genomic control was not performed on each set of summary
statistics prior to meta-analysis but instead the meta-analysis chi-squared statistics were
corrected using the LD score intercept (I.psc = 1.0829), calculated by the software LDSC, as
using Agcis considered overly conservative and the LD score intercept better captures
inflation due to population stratification’®. For interpretable results, we reported the odds ratio
from a secondary effect size meta-analysis between our dichotomous UK Biobank morning
person GWAS and the 23andMe morning person GWAS. The primary chronotype sample-
size meta-analysis produced results for 15,880,941 variants in up to 697,828 individuals,
with the secondary effect-size morning person meta-analysis producing results for
15,880,664 variants in up to 651,295 individuals (372,765 cases and 278,530 controls).

Post-GWAS analyses

Pathway analysis and tissue-enrichment

We used MAGENTA®*", DEPICT®, PASCAL®* and MAGMA®* to perform pathway and tissue
enrichment. For MAGENTA and DEPICT, we included all variants from the meta-analysis,
whereas for PASCAL, we included only those with an RSID as the software assigns variants
to genes using their RSID. For the MAGENTA analysis, we used upstream and downstream
limits of 110Kb and 40Kb to assign variants to genes by position, we excluded the HLA
region from the analysis and set the number of permutations for gene-set enrichment
analysis (GSEA) to 10,000. For DEPICT, we used the default settings and the annotation
and mapping files provided with the software. As each of the four pieces of software adopts
a different gene prioritisation method or relies on different databases, we included results
from all four to cover all bases and to allow for better comparison with other studies, where
only a single method may have been used. Briefly PASCAL corrects for the effect of LD
blocks by accounting for the LD structure between associated variants, MAGENTA uses
distance-based mapping but allows the user to set the upstream and downstream distances
for inclusion, DEPICT makes use of large-scale data on gene co-regulation to prioritise
genes before calculating enrichment in its own reconstituted gene sets and MAGMA, the
most recent method (and implemented in the FUMA GWAS? platform), claims greater
statistical power to detect enriched gene sets than methods such as MAGENTA and
PASCAL, without affecting the type 1 error rate. By using multiple methods and looking for
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consistency, we provide more compelling evidence of enrichment in specific pathways and

tissues.

Genetic correlation and heritability analyses
We used the LD Score Regression (LDSC) software, available at

https://github.com/bulik/Idsc/, to quantify the genetic overlap between the trait of interest and

222 traits with publicly available GWA data. Details of methodology are available
elsewhere’™. We considered any correlation as statistically significant if it had a Bonferroni
corrected P<0.05.

Fine-mapping association signals

Fine-mapping analyses were performed using FINEMAP v1.1* using a shotgun stochastic
approach, allowing up to 20 causal SNPs at each locus and by focussing on a 1Mb (£500KDb)
region around each index variant. As FINEMAP assumes a fixed sample size for all variants,
we excluded variants not present in both the UK Biobank and 23andMe data, and to make
the LD calculations more tractable we excluded variants with P>0.01 to limit the total number
of variants at each locus. We constructed an LD matrix for each locus by calculating the
Pearson correlation coefficient for all pairs of variants using dosages derived from the
unrelated European-ancestry subset of the UK Biobank imputed genotype probabilities
(N=379,769). A variant was considered to be causal if its log;o Bayes factor was 2 or larger,
a limit recommended by the FINEMAP documentation

(http://www.christianbenner.com/index_v1.1.html).

Alamut annotation, eQTL mapping and circadian enrichment analyses

We annotated variants identified by FINEMAP as likely to be causal using Alamut Batch v1.8
(Interactive Biosoftware, Rouen, France) with genome assembly GRCh37 and all options set
to default. We retained only the canonical (longest) transcript for each variant and reported
the variant location and coding effect (if applicable) in this transcript. To identify whether
variants were cis-eQTLs for nearby genes, we performed a lookup of our variants in the
GTEX single-tissue cis-eQTL dataset (v7), accessed at the GTEXx portal
(https://Iwww.gtexportal.org/home/datasets) on 13/07/18, for significant associations. A

variant was reported as an eQTL for a gene if the variant-gene association was significant
(g-value = 0.05) for one or more brain or non-brain tissues.
With the aim of highlighting genes that have a role in regulating the internal circadian clock,

we cross-referenced the genes identified by eQTL mapping, in addition to the two nearest
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genes (within 1Mb), with catalogues from three gene expression studies. Firstly, we used
data from an RNAi screen of circadian clock modifiers*®, in which a genome-wide scan was
performed on the effects of single-gene knockouts on the amplitude and period of the
circadian expression. Secondly, we used data from a study of gene expression in SCN
tissue over a 24-hour light/dark cycle®’ to identify whether our genes exhibit fluctuating
expression in SCN tissue and whether the genes show enriched expression in the SCN
compared to other tissues. Finally, we used data from a meta-analysis of gene expression in
the SCN*® to investigate whether the genes were preferentially expressed in the SCN when

compared to other brain tissues.

Mendelian Randomisation analyses
We undertook MR analyses to explore both the effect of chronotype on different outcomes
and the effect of different exposures on chronotype as an outcome. These two-sample MR

analyses can be summarised by:

1. Chronotype exposure using the 351 variants and effect sizes discovered in this meta-
analysis against the five significant psychiatric outcomes from the genetic correlation
analyses and three metabolic outcomes, using summary data from published GWAS
(Supplementary Table 16).

2. Two of the five significant psychiatric exposures from the genetic correlation analyses
and four metabolic exposures, all using variants from published GWAS, against
chronotype as an outcome, using summary data from this meta-analysis
(Supplementary Table 17).

In both analyses, we tested four MR methods:

Inverse-variance weighting (IVW)"
MR-Egger’

Weighted median (WM)"®

Penalised weighted median (PWM)"®

2o T w

Analysis 1 (chronotype exposure) was performed using the R package TwoSampleMR using
aggregated summary statistics available through the MR-Base platform®®. We implemented
the four MR methods listed above and also included the MR-Egger bootstrap to provide
better estimates of the effect sizes and standard errors as compared to the MR-Egger
method. We used data from published GWAS to test the effect of chronotype on the
following exposures: schizophrenia’’, major depressive disorder’®, depressive symptoms’®,

subjective wellbeing’®, PGC cross-disorder traits®, fasting insulin®, BMI°>®? and T2D**#*. To
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provide meaningful effect sizes for MR analyses, we used betas from the secondary effect

size meta-analysis of the dichotomous UK Biobank and 23andMe morning person GWAS.

For analysis 2 (chronotype outcome) we applied the four MR methods listed above, utilising
a custom pipeline. Using data from published GWAS, we tested whether chronotype is
influenced by the following exposures: schizophrenia’’, major depressive disorder’®, insulin
secretion®, favourable adiposity®®, BMI** and T2D?". As with analysis 1, chronotype effect
sizes represented morningness liability and were taken from the secondary morning person

meta-analysis.

We used the inverse variance weighted approach as our main analysis method and MR-
Egger, weighted median estimation and penalised weighted median estimation as sensitivity
analyses in the event of unidentified pleiotropy of our genetic instruments. MR results may
be biased by horizontal pleiotropy, i.e. where the genetic variants that are robustly related to
the exposure of interest (here chronotype) independently influence the outcome, through
association with another risk factor for the outcome. IVW assumes that there is either no
horizontal pleiotropy (under a fixed effect model) or, if implemented under a random effects

model after detecting heterogeneity amongst the causal estimates, that:

i.  The strength of association of the genetic instruments with the risk factor is not
correlated with the magnitude of the pleiotropic effects

ii.  The pleiotropic effects have an average value of zero

MR-Egger provides unbiased causal estimates if just the first condition above holds, by
estimating and adjusting for non-zero mean pleiotropy. However, MR-Egger requires that the
INSIDE (Instrument Strength Independent of Direct Effect) assumption® holds, in that it
needs the pleiotropy of the genetic instruments to be uncorrelated with the instruments’
effect on the exposure. The weighted median approach is valid if less than 50% of the
weight in the analysis stems from variants that are pleiotropic (i.e. no single SNP that
contributes 50% of the weight or a number of SNPs that together contribute 50% should be
invalid because of horizontal pleiotropy). Given these different assumptions, if all methods
are broadly consistent this strengthens our causal inference. Additional care should be taken
interpreting results from binary exposures or outcomes, as these MR methods assume that
horizontal pleiotropy due to within-category variation of dichotomous or categorical traits is
negligible.

Data availability
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Summary statistics for the top 10,000 chronotype meta-analysis variants are provided in
Supplementary Table 13 and the full set of UK Biobank-only chronotype and morning

person GWAS summary statistics can be found at http://www.t2diabetesgenes.org/data/. Full

meta-analysis summary statistics can be requested directly from 23andMe Inc. (see

https://research.23andme.com/collaborate/#publication).
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Chronotype category Ph:or:joi:l\épe N (% i::m) Age (SD) TDI BMI (SD)
Definitely morning 2 107,555 43.6 57.7(7.7) -1.4 27.5(4.8)
More morning than evening 1 144,731 43.9 57.0(7.9) -1.7 27.1(4.6)
Don't know 0 46,538 | 57.1 56.8(8.0) | -1.43 | 27.3(4.7)
More evening than morning -1 115,090 45 56.1(8.2) | -1.41 | 27.4(4.8)
Definitely evening -2 35,818 46.8 55.3(8.3) | -1.05 | 27.9(5.2)
All 449,732 | 45.7 56.8(8.0) | -1.47 | 27.4(4.8)

Table 1. Summary of sex, age, Townsend Deprivation Index (TDI) and BMI by chronotype
categories in the UK Biobank study.
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Figure 1. Manhattan plot of the chronotype meta-analysis GWAS. The solid line indicates the typical genome-wide significance threshold of P
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Figure 2. Reactome gene sets overlapping Chronotype genes identified using positional and eQTL mapping in FUMA’s GENE2FUNC process. Note
that these results may differ to those produced by MAGMA.
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Figure 4. MAGMA tissue expression analysis using gene expression per tissue based on GTEx

RNA-seq data for a) 30 general and b) 53 specific tissue types.
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Figure 5. Scatter plot of Chronotype meta-analysis variants and their effects on schizophrenia
in the PGC GWAS'’ (outcome) versus odds of being a morning person (exposure). Lines
identify the slopes of the five methods tested. Log odds (and SEs) for morningness were taken from
the secondary effect-size meta-analysis.
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Figure 6. Scatter plot of Chronotype meta-analysis variants and their effects on subjective

wellbeing in the SSGAC GWAS' (outcome) versus odds of being a morning person

(exposure). Lines identify the slopes of the five methods tested. Log odds (and SEs) for morningness

were taken from the secondary effect-size meta-analysis.
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Supplementary Figure 1. Scatter plot of UK Biobank chronotype GWAS effect sizes for all 341
lead variants present in UK Biobank, against their effect sizes in the UK Biobank chronotype
sensitivity GWAS. The dashed line indicates identical effect in both analyses.

Supplementary Figure 2. FUMA regional plots identifying LD patterns between chronotype-
associated variants in the a) RGS16, b) PER2, ¢) PERS, d) PIGK/AKS5, €) INADL, f) HCRTR2, g)
HTR6, h) PERL, i) CRY1 and j) ARNTL loci. LD r? of each variant with the lead is indicated by the

colour of the points, with mapped genes highlighted beneath in red.

Supplementary Figure 3. Scatter plot of Chronotype meta-analysis variants and their effects on
major depressive disorder in the PGC GWAS'® (outcome) versus odds of being a morning
person (exposure). Lines identify the slopes of the five methods tested. Log odds (and SEs) for

morningness were taken from the secondary effect-size meta-analysis.

Supplementary Figure 4. Scatter plot of Chronotype meta-analysis variants and their effects on
depressive symptoms in the SSGAC GWAS'® (outcome) versus odds of being a morning
person (exposure). Lines identify the slopes of the five methods tested. Log odds (and SEs) for

morningness were taken from the secondary effect-size meta-analysis.

Supplementary File 1. R wrapper script used to call GGIR to process the converted (wav) UK
Biobank activity monitor files. All settings, except file locations, are identical to those used in this
study.
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