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Genetic studies of accelerometer-based sleep measures in 85,670 individuals
yield new insights into human sleep behaviour
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ABSTRACT

Sleep is an essential human function but its regulation is poorly understood.
Identifying genetic variants associated with quality, quantity and timing of sleep will
provide biological insights into the regulation of sleep and potential links with
disease. Using accelerometer data from 85,670 individuals in the UK Biobank, we
performed a genome-wide association study of 8 accelerometer-derived sleep traits,
5 of which are not accessible through self-report alone. We identified 47 genetic
associations across the sleep traits (P<5x10®) and replicated our findings in 5,819
individuals from 3 independent studies. These included 26 novel associations for
sleep quality and 10 for nocturnal sleep duration. The majority of newly identified
variants were associated with a single sleep trait, except for variants previously
associated with restless legs syndrome that were associated with multiple sleep
traits. Of the new associated and replicated sleep duration loci, we were able to fine-
map a missense variant (p.Tyr727Cys) in PDE11A, a dual-specificity 3',5'-cyclic
nucleotide phosphodiesterase expressed in the hippocampus, as the likely causal
variant. As a group, sleep quality loci were enriched for serotonin processing genes
and all sleep traits were enriched for cerebellar-expressed genes. These findings

provide new biological insights into sleep characteristics.
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INTRODUCTION

Sleep is an essential human function, but many aspects of its regulation remain
poorly understood. Adequate sleep is important for health and wellbeing, and
changes in sleep quality, quantity and timing are strongly associated with several
human diseases and psychiatric disorders'®. Identifying genetic variants influencing
sleep traits will provide new insights into the molecular regulation of sleep in humans
and help to establish the genetic contribution to causal links between sleep and

associated chronic diseases, such as diabetes and obesityﬁ'm.

Genome-wide association studies (GWAS) are an important first step towards the
discovery of new biological mechanisms of complex traits. Previous large-scale
genetic studies of sleep traits have relied on self-reported measures. For example,
using questionnaire data from 47,180 individuals, the CHARGE consortium identified
the first common genetic variant, near PAX8, robustly associated with sleep
duration™*. Subsequent studies in up to 128,286 individuals using the interim data

1213 and a

release of the UK Biobank identified two additional sleep duration loci
parallel analysis of the full UK Biobank release of 446,118 individuals identified a
total of 78 associated loci (Dashti et al., BioRxiv 2018,
https://doi.org/10.1101/274977). Genetic associations have also been identified for
other self-reported sleep traits including chronotype!?***®
sleepiness™®'®*® (Jansen et al. BioRxiv 2018, https://doi.org/10.1101/214973 and

Lane et al. BioRxiv 2018: https://doi.org/10.1101/257956).

, insomnia, and daytime

Although the reported associations revealed relevant pathways related to
mechanisms underlying sleep regulation, in large scale studies self-report measures
are typically based on a limited number of questions that only approximate a limited
number of sleep traits and may be subject to bias related to an individual's
perception and recall of sleeping patterns*®>%. Polysomnography (PSG) is regarded
as the “gold standard” method of quantifying nocturnal sleep traits, but it is
impractical to perform in large cohorts. Additionally, PSG is relatively burdensome for
the participant making it less suitable for measuring sleep over multiple nights and
capturing inter-daily variability. Research-grade activity monitors (accelerometers),
also known as actigraphy devices, provide cost-effective estimates of sleep using
validated algorithms®*?°. However, accelerometer-based studies have often involved
much smaller sample sizes than those required for GWAS and have generally

26,27

focussed on day-time activity™“". The UK Biobank study is a unique resource
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collecting vast amounts of clinical, biomarker, and questionnaire data on ~500,000
UK residents. Of these, 103,000 participants wore activity monitors continuously for
up to 7 days. This provides an unprecedented opportunity to derive accelerometer-
based estimates of sleep quality, quantity and timing and to assess the genetics of

sleep traits.

In this study we identify genetic variants associated with objective measures of sleep
and rest-activity patterns and use them to further understand the biology of sleep.
We used accelerometer data from the UK Biobank to extract estimates of sleep
characteristics using a heuristic method previously validated using independent PSG

datasets®?°

. We analysed a total of 8 accelerometer-based measures of sleep
quality (sleep efficiency and the number of nocturnal sleep episodes), timing (sleep-
midpoint, timing of the least active 5 hours (L5), and timing of the most active 10
hours (M10)), and duration (diurnal inactivity and nocturnal sleep duration and
variability) by performing a GWAS in 85,670 UK Biobank participants and assess
replication of the findings in 3 independent studies. Our analysis primarily focuses on
traits that cannot be captured, or are unavailable, from self-report sleep measures,
and are likely to be underpowered for GWAS in studies with PSG data due to limited

sample sizes.

RESULTS

Measures of sleep quality and quantity are not correlated with sleep timing

Descriptive statistics and correlations between the eight accelerometer-derived
phenotypes are shown in Supplementary Tables 1 and 2. We observed little
observational correlation (R) between measures of sleep timing and measures of
nocturnal sleep duration and quality (-0.10 < R < 0.12). These negligible or limited
correlations between timing and duration are consistent with data from chronotype
and self-report sleep duration measures (R = -0.01). We also observed limited
correlation between sleep duration and sleep quality as represented by the number
of nocturnal sleep episodes (R = 0.14) but observed a stronger correlation between
sleep duration and sleep efficiency (R = 0.57). The correlations between self-reported
sleep duration and accelerometer-derived sleep duration was 0.19 and between self-

reported chronotype (“morningness”) and L5 timing was -0.29.

Accelerometer-derived estimates of sleep patterns are heritable
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To estimate the proportion of variance attributable to genetic factors for a given trait,
we used BOLT-REML to estimate SNP-based heritability (h’sne) (Table 1). hgne
estimates ranged from 2.8% (95% CI 2.0%, 3.6%) for variation in sleep duration
(defined as the standard deviation of accelerometer-derived sleep duration across all
nights), to 22.3% (95% CI 21.5%, 23.1%) for number of nocturnal sleep episodes.
For sleep duration, we observed higher heritability using the accelerometer-derived
measure (h%sp = 19.0%, 95% CI 18.2%, 19.8%) in comparison to self-report sleep
duration (h%syp = 8.8%, 95% CI 8.6%, 9.0%). The heritability estimates for sleep and
activity timings (maximum h2snp = 11.7%, 95% CI 10.9%, 12.5%) were lower than for
self-report chronotype (h’sne = 13.7%, 95% CI 13.3%, 14.0%) (Jones et al. BioRxiv
2018, https://doi.org/10.1101/303941).

Low genetic correlation between self-reported and accelerometer-derived
sleep duration

To quantify the genetic contribution, overlap between accelerometer-derived and
self-reported sleep traits, we performed genetic correlation analyses using LD-score
regression as implemented in LD-Hub®. We observed strong genetic correlations
between L5, M10 and sleep midpoint timing and chronotype (rc>0.79) and weaker
genetic correlation between objective versus self-reported sleep duration (rs=0.43).
This observation suggests differences in the genetic contribution to variation in self-

reported versus objective sleep duration.

Forty-seven genetic associations identified across the accelerometer-derived
sleep traits

To identify genetic loci associated with accelerometer-derived sleep traits, we
performed a genome-wide association analysis of 11,977,111 variants in up to
85,670 individuals for the 8 accelerometer-derived sleep traits. We identified 47
genetic associations across 7 of the phenotypes at the standard GWAS threshold
(P<5x10®). Among these associations, 20 reached a more stringent threshold of
P<8x10™°. We estimate that this threshold reflects a better type 1 error rate to
account for the approximate number of independent genetic variants analysed
(Jones et al. BioRxiv 2018, https://doi.org/10.1101/303941) against all 8
accelerometer-based traits (Table 2 and Supplementary Figs 1-2). Twenty-six
associations were observed for sleep quality measures, including 21 variants
associated with number of nocturnal sleep episodes and 5 associated with sleep
efficiency (8 and 2 at P<8x10°, respectively). An additional 8 genetic associations

were identified for sleep and activity timing. These included 6 associated with L5
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timing, 1 associated with M10 timing, and 1 associated with mid-point sleep. Only 3
associations with L5 timing were detected at P<8x10™°. Finally, for sleep duration we
observed 13 associations — 11 for sleep duration and 2 associated with diurnal
inactivity (6 and 1 at P<8x10™°, respectively). Of these 47 associations reaching
P<5x10® and the 20 associations reaching P<8x10™°, 31 and 9 were not previously
reported in studies based on self-report measures, respectively (Table 2). The
variance explained by all the discovered loci ranged from 0.04% for sleep midpoint
timing to 0.8% for number of nocturnal sleep episodes. The lambda GC observed
across these analyses ranged from 1.03 (sleep duration variability) to 1.14 (number
of nocturnal sleep episodes), while LD-Score intercepts ranged from 1.03 (diurnal
inactivity) to 1.07 (sleep midpoint timing). These results suggest that any inflation of
test statistics observed is more likely to due to the polygenicity of the phenotype

tested over and above population stratification.

Replication of 47 genetic associations in 5,819 individuals

We attempted to replicate our findings in up to 5,819 adults from the Whitehall
(N=2,144), ColLaus (N=2,257), and Rotterdam Study (subsample from RS-I, RS-II
and RS-11l, N=1,418) who had worn similar wrist-worn tri-axial accelerometer devices
for a comparable duration as the UK Biobank participants. Individual study and meta-
analysis results for the three replication studies are presented in Supplementary
Table 3. Of the 20 associations reaching P<8x10™°, 18 were directionally consistent
in the replication cohort meta-analyses (Ppinoma = 3x10™). Of the additional 27
signals, 18 were directionally consistent in the replication meta-analysis (Pyinomia =
0.03). For traits with more than one SNP associated at P<5x10® in the UK Biobank,
we combined the effects of each SNP (aligned to the trait increasing allele) and
tested them in the replication data. In the combined effects analysis, we observed
overall associations with sleep duration (P=0.008), sleep efficiency (P=3x10%),
number of nocturnal sleep episodes (P=2x10°), and sleep timing (P=0.034)

(Supplementary Tables 3 and 4).

Variants associated with sleep quality include known restless legs syndrome,
sleep duration, and cognitive decline associated variants
Of the 5 variants associated with sleep efficiency, one was the strongly associated

PAX8 sleep duration signal*

and one was a restless legs syndrome/insomnia
associated signal (MEIS1)*"3!. Of the 20 loci associated with number of nocturnal

sleep episodes, one is represented by the APOE variant (rs429358). This variant is a
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proxy for the APOE &4 risk allele that is strongly associated with late-onset
Alzheimer's disease and cognitive decline®. The €4 allele is associated with a
reduced number of nocturnal sleep episodes (-0.13 sleep episodes; 95% CI: -0.16, -
0.11; P=4x10®). This finding is strengthened by additional analyses of the €2, €3 and
g4 APOE Alzheimer's disease risk alleles, with an overall reduction in the number of
nocturnal sleep episodes observed with higher risk haplotypes (F(5, 72578)=5.36,
P=0.001) (Supplementary Table 5). This finding is inconsistent with the
observational association between cognitive decline in older age and poorer sleep
quality®*2°. We also noted that the APOE ¢4 risk allele was nominally associated
(P<0.05) with sleep timing (L5, -1.8 minutes per allele, P=4x10®; sleep-midpoint (-0.6
minutes per allele; P=0.002), sleep duration (-1.1 minutes per allele, P=7x10%), and
diurnal inactivity (-1.0 minutes per allele, P=2x10). Apart from the APOE variant
(rs429358), which had double the effect size in the older half of the cohort
(Supplementary Table 5), there were minimal differences in effect sizes in a range
of sensitivity analyses, including removing individuals on sleep or depression
medication, adjustments for BMI and lifestyle factors, and splitting the cohort by

median age (Supplementary Table 6 and Supplementary Methods).

Six association signals identified for accelerometer-derived measures of sleep
timing

We identified 6 loci associated with L5 timing, of which 3 have not previously been
associated with self-report chronotype but have been associated with restless legs
syndrome®!. The index variants at these 3 loci are in strong to modest LD with the
previously reported variants associated with restless legs syndrome (rs113851554,
MEIS1, LD r® = 1.00; rs12991815, C1D, LD r* = 0.96; rs9369062, BTBDY, LD r* =
0.49). The three variants that reside in loci previously associated with self-report
chronotype are in strong to modest linkage disequilibrium with those previously
reported*?***® (rs1144566, RSG16, LD r*> > 0.91; rs12927162 TOX3, LD r? = 1.00;
rs4882315, ALG10B, LD r’* = 0.58). The variant rs1144566 is a missense coding
change (p.His137Arg) in exon 5 of RSG16, a known circadian rhythm gene which
contains the variants strongly associated with self-report chronotype'®. In a parallel
self-report chronotype study in the UK Biobank, rs1144566 represented the strongest
association, with the T allele having a morningness odds ratio of 1.26 (P=2x10"%%)
(Jones et al. BioRxiv 2018, https://doi.org/10.1101/303925). In addition, variants in
the region of TOX3 have previously been associated with restless legs syndrome>'.
However, our lead SNP (rs12927162) was not in LD with the previously reported
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index variant at this locus (rs45544231, LD r* = 0.004). There were minimal
differences in effect sizes when we performed a range of sensitivity analyses,
including removing individuals on depression medication, adjustments for BMI and
lifestyle factors and splitting the cohort by median age (Supplementary Table 6 and

Supplementary Methods).

Ten novel sleep duration loci identified from accelerometer-derived sleep
duration GWAS

We identified 11 loci associated with accelerometer-derived sleep duration, including
ten not previously reported to be associated with self-report sleep duration, despite
the 5-fold increase in sample size available for a parallel self-report sleep duration
GWAS study (Dashti et al. BioRxiv 2018, https://doi.org/10.1101/274977; Figure 1
and Supplementary Table 7). This lower overlap in signals is consistent with the
lower genetic correlation between self-reported and objective sleep duration than
between chronotype and objective measures of sleep and activity timing. The lead
variants representing the ten new sleep duration loci all had the same direction and
larger effects in the accelerometer data compared to self-report data, with effect
sizes ranging from 1.3 to 5.9 minutes compared to 0.1 to 0.8 minutes (self-report
P<0.05), with the MEIS1 locus having the strongest effect. Two of the ten new sleep
duration signals (rs113851554 in MEIS1 and rs9369062 in BTBD9) have previously
been associated with restless legs syndrome. The one variant previously detected
based on self-report sleep duration, near PAX8, was the first variant to be associated
with sleep duration through GWAS™. The minor PAX8 allele effect size was
consistent across accelerometer-derived measures of sleep duration (2.7 minutes
per allele, 95% CI: 2.1 to 3.3, P=3x10%") and self-report sleep duration (2.4 minutes
per allele, 95% CI: 2.1 to 2.8, P=7x10™). We observed similar effect sizes in a
subset of 72,510 unrelated Europeans from the UK Biobank, when removing
individuals on depression medication and after adjusting for BMI and lifestyle factors.
To confirm that associations were not influenced by age-related differences in sleep,
we confirmed that there was also no difference in effect sizes between younger and
older individuals (above and below the median age of 63.7 years) (Supplementary
Table 6).

Fine-mapping analysis identifies multiple likely causal variants
To identify credible SNP sets likely to contain causal variants within 500Kb of lead
SNPs (log,, Bayes Factor > 2) for each trait with a genetic association (P<5x10®) we

used FINEMAP*" (Supplementary Table 8). Two loci contained a coding variant with
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a probability greater than 80% for being the causal variant. The first variant
(rs17400325, MAF = 4.2%) was a missense variant (p.Tyr727Cys) in PDE11A, a
phosphodiesterase highly expressed in the hippocampus that was associated with
sleep duration and sleep efficiency. The other was the missense APOE variant
representing the e4 allele, known to predispose to Alzheimer’'s disease, which was
associated with the number of nocturnal sleep episodes. Of the remaining loci, 5 fine-
mapped variants are eQTLs in the Genotype-Tissue Expression (GTEX) project®®. Of
these only the fine-mapped variant at the CLUAP1 locus was the lead variant for the
corresponding eQTL (Supplementary Table 8). CLUAPL1 is a gene previous
associated with photoreceptor maintenance that is associated with number of

nocturnal sleep episodes®.

Associated loci are enriched for genes expressed in the cerebellum and
serotonin pathway-related genes

We used MAGMA?® to assess tissue enrichment of genes at associated loci across
the sleep traits. All traits showed an enrichment of genes in the cerebellum
(Supplementary Figures 3 and 4). Loci associated with number of nocturnal sleep
episodes were enriched for genes involved in serotonin pathways (Pgonterroni=0.0003)

(Supplementary Table 9).

Multiple sleep traits have genetic variants previously associated with restless
legs syndrome

We observed most variants to be associated with either sleep quality, duration, or
timing, but not combinations of these sleep characteristics. However, the variant
rs113851554 at the MEIS1 locus was associated with sleep quality (sleep efficiency),
duration, and timing (L5). In addition, the variant rs9369062 at the BTBD9 locus was
associated with both sleep duration and L5 timing. Both variants have previously
been reported as associated with restless legs syndrome (Figure 2). To follow up
this observation, we performed Mendelian Randomisation using 20 variants
associated with restless legs syndrome in the discovery stage of the most recent and
largest genome-wide association study®’. We tested these 20 variants against all 8
activity-monitor derived sleep traits and showed a clear causative association of
restless legs syndrome with all sleep traits. We also observed a causative
association of restless legs syndrome with self-report sleep duration and chronotype,
suggesting that variants associated with restless legs syndrome were not artefacts of

the accelerometer-derived measures of sleep (Supplementary Table 10).
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Waist-hip-ratio (adjusted for BMI) and educational attainment causally
influence sleep outcomes.

Given genetic correlations are generally similar to observational correlations*, we
used genetic correlations to prioritise traits for subsequent Mendelian Randomisation
analyses. Using LD-Hub*® we tested for genetic correlation between the 8 activity
monitor derived measures and 234 published GWAS studies across a range of
diseases and traits. After adjustment for the number of genetic correlations tested (8
x 234), we observed genetic correlations between sleep traits and obesity and
educational attainment related traits (Supplementary Table 11). After adjusting for
the number of tests in the bi-directional MR analysis (99), we observed evidence that
higher waist-hip-ratio (adjusted for BMI) is causally associated with lower sleep
duration (Pyw = 5x10'6) and lower sleep efficiency (Pyw = 3x10'4). In addition, we
observed higher educational attainment to be causally associated with lower sleep
duration (Pw = 5x10°) (Supplementary Table 12). We observed no evidence of
causal effects of accelerometer-based sleep traits on outcomes tested
(Supplementary Table 13).

Estimates of the effects on accelerometer-derived and self-report-derived sleep
traits are correlated

We compared effects of variants associated with self-reported sleep duration and
chronotype identified in parallel GWAS analyses. Overall, we observed directional
consistency with the accelerometer-derived measures. In a parallel GWAS of self-
reported sleep duration in 446,118 individuals from the UK Biobank, we identified 78
associated loci at P<5x10® (Dashti et al. BioRxiv 2018,
https://doi.org/10.1101/274977). Sixty-seven (85.9%) of these SNPs were
directionally consistent between the self-report and activity monitor derived sleep
duration GWAS (Ppinomiar = 6x10™; Figure 3 and Dashti et al. BioRxiv 2018,
https://doi.org/10.1101/274977). Furthermore, in a parallel report (Jones et al.
BioRxiv 2018, https://doi.org/10.1101/303925) we have shown that of the 341 lead
variants at self-reported chronotype loci, 310 (90.9%) had a consistent direction of
effect for accelerometer-derived midpoint-sleep (Ppinomia = 5%x10°%), 316 (92.7%) with
L5 timing (Ppinomia = 3x10°°) and 310 (90.9%) with M10 timing (Ppinomia = 5x107°;
Jones et al. BioRxiv 2018, https://doi.org/10.1101/303925). Figure 4 shows a scatter

plot of self-reported associated chronotype effects against L5 timing effects.

DISCUSSION
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Our analysis presents the first large-scale GWAS of multiple sleep traits estimated
from accelerometer data using our validated activity-monitor sleep algorithm??°. We
have identified 47 genetic associations at P<5x10® across 7 traits representing sleep
duration, quality and timing. These loci included 10 novel variants for sleep duration

and 26 for sleep quality not detected in larger studies of self-reported sleep traits.

Of the novel associated loci, a low frequency (MAF=4.2%) missense variant
(p.Tyr727Cys) at the PDE11A locus (rs17400325) was associated with sleep
duration and sleep efficiency. The variant was associated with sleep duration
(P=0.004) in the meta-analysis of the replication cohort. Fine-mapping provided a
high probability (>90%) that this is the causal variant at the locus. This variant has
previously been associated with migraine and near-sightedness in a scan of 42 traits
from 23andMe*. In the UK Biobank the variant was not associated with migraine
(P=0.44), consistent with the latest migraine meta-analysis where it was not amongst
the associated loci*’, but was associated with myopia (P=9x10™°). The allele which
associates with reduced risk of myopia is associated with increased sleep efficiency
and duration. Protein truncating variants in PDE11A have been suggested to cause
adrenal hyperplasia*; however, one of these variants (R307X, rs76308115) is
present at 0.5% frequency in the UK Biobank (with 11 rare allele homozygotes) and
is not associated with sleep efficiency (P=0.99) or duration (P=0.54). This suggests
that if Tyr727Cys PDE11A is the causal variant at this locus then it is an activating
mutation. PDE11A is expressed in the hippocampus and it has been suggested as a

potential biological target for interventions in neuropsychiatric disorders™.

Our analysis identified variants in loci that were enriched for genes involved in the
serotonin pathway - the strongest pathway associated with sleep quality.
Serotonergic transmission plays an important role in sleep cycles*®*’. High levels of
serotonin are associated with wakefulness and lower levels with sleep. Furthermore,
serotonin is synthesized by the pineal gland as a processing step for melatonin
production, a key hormone in circadian rhythm regulation and sleep timing. Melatonin
is frequently taken as a dietary supplement in the United States with its use more
than doubling between 2007 and 20122, although clinical trial results for sleep and
circadian rhythm disorders are mixed®®. In addition, excess melatonin levels can also
lead to disturbed sleeping and other health issues with the American Academy of

Sleep Medicine recommending avoiding melatonin for chronic insomnia®.
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A subset of variants previously associated with restless legs syndrome were
associated with sleep duration, quality and timing measures. This observation is
unlikely to be an artefact caused by limb movements during sleep because we found
that the same variants are associated with self-report measures of sleep duration,
chronotype and insomnia. Therefore, it seems likely that we are detecting how
restless legs syndrome can influence sleep. In the UK Biobank, restless legs
syndrome was only identified through the Hospital Episodes Statistics (HES) data
using the ICD-10 code “G25.8” (“Other specified extrapyramidal and movement
disorders”), the parent category of the more specific “G25.81" code (“Restless legs
syndrome”). Under the assumption that all individuals reporting “G25.8” had restless
legs, we observed 38 individuals within our accelerometer subset. Removing these
individuals did not change our conclusions. Studies with more in-depth phenotyping
of sleep disorders are needed to more fully evaluate the contribution of RLS to sleep

traits.

Our Mendelian Randomization analysis also provides some evidence of a causative
effect of higher waist-hip-ratio (adjusted for BMI) on lower sleep duration and lower
sleep efficiency. This suggests that fat distribution plays a role in sleep, although
there was also a nominal causative association with BMI which also suggests a
general role of overall adiposity. We also observed evidence of a causative
association between higher educational attainment and lower sleep duration. Both
the adiposity and educational attainment MR results were robust to a range of MR
sensitivity analyses (Supplementary Table 12). We did not observe evidence of a
causal effect of accelerometer-derived sleep variables on genetically correlated
traits. This may be due to the relatively limited power because of the relatively small

number of genetic instruments available.

Our data provide strong evidence that some accelerometer-derived measures of
sleep provide higher precision than self-report measures, whilst for others there is
little gain through objective measurement with questionnaire data being just as
effective. For example, of the 11 accelerometer-based sleep duration loci we
identified, only one (the PAX8 variant) had been previously identified in self-reported
sleep duration GWAS despite these studies having much larger sample sizes.
Variants with nominal evidence of association with self-reported sleep duration had
weaker effects. This difference may be due to reporting biases related to the UK
Biobank questionnaire (e.g. response was in hourly increments) and due to asking

participants to include nap-time in their sleep duration. In contrast the accelerometer


https://doi.org/10.1101/303925
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/303925; this version posted September 13, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

derived estimates of L5 timing, the least active 5 hours of the day, correlated well
with self-report estimates. These data suggest that the answer to the very simple
qguestion “are you a morning or evening person” provides similar power as wearing
accelerometers for 7 days and nights. In a parallel GWAS analysis, the PAX8 variant
was also associated with self-report insomnia (Lane et al. BioRxiv 2018:
https://doi.org/10.1101/257956). In addition, five of the loci were nominally
associated (P<0.05) with either self-report sleep-duration or insomnia. At least two of
the sleep duration signals have been previously associated with mental health

disorders including schizophrenia and migraine****.

The Alzheimer’s disease risk allele at the APOE locus was seen to have apparently
paradoxical associations with sleep related traits. Given the well-established
association between the ¢4 allele and greater risk of Alzheimer’s disease, we would
not expect associations between this allele and higher sleep quality considering
previously observed associations of sleeping patterns with cognitive decline and
Alzheimer's disease”. A similar paradoxical association was also reported recently in
a study of over 2,300 men aged over 65 with overnight PSG data that showed the
total time in stage N3 sleep was higher for individuals carrying two copies of &4
compared with those carrying one or zero copies®. Furthermore, a recent genetic
study of physical activity also identified a paradoxical association between the &4
allele and increased levels of physical activity (Klimentidis et al, BioRxiv 2017,
https://doi.org/10.1101/179317). The more likely explanations for these associations
we suggest are ascertainment and survival bias. The UK Biobank participants ranged
from 44 to 79 years of age when wearing the accelerometer devices. Older UK
Biobank participants, with the highest risk of cognitive decline with an e4/g4
haplotype and agreeing to an accelerometer-based experiment could be protected
from cognitive decline because of selection bias due to other factors®. Consistent
with this potential bias, the 4 allele association with reduced numbers of nocturnal
sleep episodes is stronger in older age. For example, when splitting individuals by
median age, the per allele effect on number of sleep episodes was twice that of the

older versus younger group.

There are some limitations to this study. First, a sleep diary was not collected by the
UK Biobank participants, a traditional tool to guide the start and end timing of
nocturnal sleep episodes, commonly used in actigraphy studies. We have developed

and used an open source method to overcome the lack of a sleep diary that has
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been validated against polysomnography?*°

to estimate sleep onset and waking up
time. However, as no sleep diary data exists it is hard to define bedtime prior to
sleep, resulting in the inability to characterise phenotypes such as sleep onset
latency (the time between going to bed and falling asleep). Second, the activity
monitors were worn up to 10 years from when baseline data was collected. Despite
this, the correlation between self-report and activity measures of sleep duration was
consistent with previous studies, and the correlation did not differ based on time
between baseline (self-report time) and accelerometer wear when splitting by time-
difference deciles (r = -0.03, P = 0.94). Third, due to relatively small sample sizes of
replication studies, we had limited power to replicate associations identified in the UK
Biobank. The variance explained by individual variants in the UK Biobank ranged
from 0.03% to 0.19%, for which we had <63% power to detect at a statistical
threshold of P=0.001 (accounting for 47 tests) in the meta-analysis of 4,401
individuals. However, we observed an enrichment for directional consistency in effect
estimates in the replication meta-analysis and in combined-effects analyses identified
associations for sleep duration, sleep efficiency, number of nocturnal sleep episodes
and sleep timing. Finally, the UK Biobank participants are not representative of the
UK population, as participants had a higher socio-economic status overall and were
healthier, on average, given the prevalence of diseases amongst the participants®*°>*.
This was particularly true of the participants who took part in the activity monitor

study.

In conclusion, we have performed the first large-scale GWAS of objective sleep
measures. We demonstrate that self-report measures are good proxies for objective
sleep measures, but use of objectively measures of sleep quality allowed us to
identify additional loci not identified by previous self-report GWAS studies including

potential new therapeutic targets for poor sleep.
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METHODS

Data availability
The full set of GWAS summary statistics for all eight accelerometer-based measures

are available at http://www.t2diabetesgenes.org/data/.

UK Biobank participants

The study population was drawn from the UK Biobank study — a longitudinal
population-based study of individuals living in the UK>*. Analyses were based on
individuals estimated to be of European ancestry. European ancestry was defined
through the projection of UK Biobank individuals into the principal component space
of the 1000 Genomes Project samples® and subsequent clustering based on a K-

means approach, centering on the means of the first 4 principal components.

Genetic Data

Imputed genetic data was downloaded from the UK Biobank (Bycroft, et al. BioRxiv
2017, https://doi.org/10.1101/166298). We limited our analysis to 11,977,111 genetic
variants imputed using the Haplotype Reference Consortium imputation reference
panel with a minimum minor allele frequency (MAF) > 0.1% and imputation quality
score (INFO) > 0.3.

Activity-monitor Devices

A triaxial accelerometer device (Axivity AX3) was worn between 2.8 and 9.7 years
after study baseline by 103,711 individuals from the UK Biobank for a continuous
period of up to 7 days. Details of data collection and processing have been
previously described®. Of these 103,711 individuals, we excluded 11,067 individuals
based on activity-monitor data quality. This included individuals flagged by UK
Biobank as having data problems (field 90002), poor wear time (field 90015), poor
calibration (field 90016), or unable to calibrate activity data on the device worn itself
requiring the use of other data (field 90017). Individuals were also excluded if
number of data recording errors (field 90182), interrupted recording periods (field
90180), or duration of interrupted recoding periods (field 90181) was greater than the
respective variable’s 3" quartile + 1.5xIQR. Phenotypes determined using the SPT-
window (all phenotypes except L5 and M10 timing) had additional exclusions based
on short (<3 hours) and long (>12 hours) mean sleep duration and too low (<5) or too
high (>30) mean number of sleep episodes per night (see below). These additional

exclusions were to ensure that individuals with extreme (outlying), and likely
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incorrect, sleep characteristics were not included in any subsequent analyses. A

maximum of 85,670 individuals remained for our analyses.

Accelerometer data processing and sleep measure derivations

We derived 8 measures of sleep quality, quantity and timing. All measures were
derived by processing raw accelerometer data (.cwa). We first converted the .cwa
files available from the UK Biobank to .wav files using “omconvert” for signal

57 and interpolation®. The .wav files were

calibration to gravitational acceleration
processed with the open source R package GGIR*
(http://doi.org/10.5281/zenodo.1175883 (Version v1.5-17)) to infer accelerometer
non-wear time®®, and extract the z-angle across 5-second epochs from the time-
series data for subsequent use in estimating the sleep period time window®® and

sleep episodes within it?.

Sleep period time window (SPT-window). The SPT-window was estimated using a
validated algorithm previously described®® and implemented in the GGIR R package.
Briefly, for each individual, median values of the absolute change in estimated z-
angle (representing the dorsal-ventral direction when the wrist is in the anatomical
position) across 5-minute rolling windows were calculated across a 24-hour period,
chosen to make the algorithm insensitive to accelerometer orientation. The 10"
percentile was incorporated into the threshold distinguishing movement from non-
movement. Bouts of inactivity lasting =30 minutes are recorded as inactivity bouts.
Inactivity bouts that are <60 minutes apart are combined to form inactivity blocks.

The start and end of the longest block defined the start and end of the SPT-window.

Sleep duration and variability. Sleep episodes within the SPT-window were defined
as periods of at least 5 minutes with no change larger than 5° associated with the z-
axis of the activity-monitor, as motivated and described in van Hees et al. (2015).
The summed duration of all sleep episodes was used as indicator of sleep duration
within the SPT-window. The total duration over the activity-monitor wear-time was
averaged. Individuals with an average sleep duration <3 hours or >12 hours were
excluded from all analyses. In addition, the standard deviation of sleep duration was
also calculated and put forward for statistical analysis for individuals with 7 days of

accelerometer wear.
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Sleep efficiency. This was calculated as sleep duration (defined above) divided by
the time elapsed between the start of the first inactivity bout and the end of the last

inactivity bout (which equals the SPT-window duration).

Number of nocturnal sleep episodes within the SPT-window.
This was defined as the number of sleep episodes within the SPT-window.
Individuals with an average number of nocturnal sleep episodes <5 or >30 were

excluded from all analyses.

Least active 5 hours (L5) timing. The mid-point of the least-active 5 hours (L5) of
each day were defined as the 5-hour period with the minimum average acceleration.
These periods were estimated using a rolling 5-hour time window. The midpoint was
defined as the number of hours elapsed since the previous midnight (for example,
7pm = 19 and 2am = 26). Days with <16 hours of valid-wear time (as estimated by

GGIR) were excluded from L5 estimates.

Most-active 10 hours (M10) timing. The mid-point of the most-active 10 hours (M10)
of each day were defined as the 10-hour period with the maximum average
acceleration. These periods were estimated using a rolling 10-hour time window. The
midpoint was defined as the number of hours elapsed since the previous midnight.
Days with <16 hours of valid-wear time (as estimated by GGIR) were excluded from

M10 estimates.

Sleep-midpoint timing. Sleep midpoint was calculated for each sleep period as the
midpoint between the start of the first detected sleep episode and the end of the last
sleep episode used to define the overall SPT-window (above). This variable is

represented as the number of hours from the previous midnight.

Diurnal inactivity. Diurnal inactivity was estimated by the total daily duration of
estimated bouts of inactivity that fell outside of the SPT-window. This measure
captures very inactive states such as napping and wakeful rest but not inactivity such
as sitting and reading or watching television, which are associated with a low but

detectable level of movement.

Comparison against self-reported sleep measures
We performed analyses of self-reported measures of sleep. Self-reported measures

analysed included a) the number of hours spent sleeping over a 24-hour period
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(including naps); b) insomnia; c) chronotype — where “definitely a ‘morning’ person”,
“more a ‘morning’ than ‘evening’ person”, “more an ‘evening’ than a ‘morning’
person”, “definitely an ‘evening’ person” and “do not know”, were coded as 2, 1, -1, -2

and 0 respectively, in our continuous variable.

Statistical Analysis

Genome-wide association analyses. We performed all association tests in the UK
Biobank using BOLT-LMM v2.3*°, which applies a linear mixed model (LMM) to
adjust for the effects of population structure and individual relatedness, and enables
the inclusion of all related individuals in our white European subset, boosting our
power to detect associations. This meant a sample size of up to 85,670 individuals,
as opposed to a maximal set of 72,696 unrelated individuals. Prior to association
testing, phenotypes were first adjusted for age at accelerometry, sex, study centre,
and season when activity monitor worn (categorical). All phenotypes except sleep
duration variation were also adjusted for the number of measurements used to
calculate each participant's measure (number of L5/M10 measures for L5/M10
timing, number of days for diurnal inactivity and number of nights for all other
phenotypes). At runtime, association tests included genotyping array (categorical;
UKBileve array, UKB Axiom array interim release and UKB Axiom array full release)

as a covariate.

SNP-based heritability analysis. We estimated the pseudo-heritability of the eight
derived accelerometer traits using BOLT-REML (version 2.3.1)*°. We used 524,307
high-quality genotyped single nucleotide polymorphisms (SNPs) (bi-allelic; MAF
>1%: HWE P>1x10°; non-missing in all genotype batches, total missingness <1.5%
and not in a region of long-range LD’ to build the relatedness model and thus to
estimate heritability. For LD structure information, we used the default 1000
Genomes ‘LD-Score’ table provided with the BOLT-REML software.

Gene-set, tissue expression enrichment, and overlap with GWAS-catalog analyses.

Gene-set analyses and tissue expression analyses were performed using MAGMA*
as implemented in the online Functional Mapping and Annotation of Genome-Wide
Association Studies (FUMA) tool®*. Analysis of differentially expressed genes was
based on data from GTEx v6 RNA-seq data®’. Enrichment analyses of the overlap
with associations previously reported through GWAS was also implemented
through FUMA. Enrichment P-values for the proportion of overlapping genes

present was based on the NIH GWAS catalog®.
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Fine-mapping association signals

Fine-mapping analyses were performed using FINEMAP v1.2*" using the
software’s shotgun stochastic search function and by setting the maximum number
of causal SNPs at each locus to 20. At each locus, we included only those with
P<0.01 and within 500Kb either side of the index variant to limit the number of
SNPs in the analysis. We constructed the LD matrix by calculating the Pearson
correlation coefficient for all SNP-SNP pairs using SNP dosages derived from the
unrelated European subset of the full UK Biobank imputed genotype probabilities
(N=379,769). We considered a SNP to be causal if it's log., Bayes factor was
greater than 2, as recommended in  the FINEMAP  manual

(http://www.christianbenner.com/index_v1.2.html).

Alamut annotation and eQTL mapping

We performed variant annotation of our fine-mapped loci using Alamut Batch v1.8
(Interactive Biosoftware, Rouen, France) using all default options and genome
assembly GRCh37. For each annotated variant, we retained only the canonical
(longest) transcript and reported the variant location, coding effect and the
predicted local splice site effect. To investigate whether the fine-mapped SNPs
were eQTLs, we searched for our SNPs in the single-tissue cis-eQTL dataset (v7),
available at the GTEx portal (https://www.gtexportal.org/home/datasets) for
significant SNP-gene eQTL associations. We reported a SNP as an eQTL for a

gene if the SNP-gene association was significant for at least one tissue.

Replication of findings. Associations reaching P<5x10® were followed up in the
CoLaus, Whitehall and Rotterdam studies. The GENEActiv accelerometer was
used by the ColLaus and Whitehall studies and worn on the wrist by the
participants. In the CoLaus study, 2,967 individuals wore the accelerometer for up
to 14 days. Of these, 10 were excluded because of insufficient data, 234 excluded
as non-European, and a further 148 were excluded due to an average sleep
duration of less than 3 hours or more than 12 hours. A total of 2,575 individuals
remained for analysis of which 2,257 had genetic data. In the Whitehall study,
2,144 were available for analysis, with the GENEActiv accelerometer worn for up
to 7 days having performed the same exclusions. The Rotterdam Study used the
Actiwatch AW4 accelerometer device (Cambridge Technology Ltd.). Genetic
association analysis was based on imputed data (where available) and performed

using standard multiple linear regression. Overall summary statistics were
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obtained through inverse-variance based meta-analysis implemented in METAL®*.
Combined variant effects on respective traits were subsequently calculated using
the ‘metan’ function in STATA using the betas and standard errors obtained

through the primary meta-analysis of the three replication studies.

Sensitivity Analysis. To assess whether stratification was responsible for any of the
individual variant associations in a subset of the cohort, we performed multiple
sensitivity analyses in unrelated European subsets of the UK Biobank using STATA.
The sensitivity analyses carried out were: 1) males only, 2) females only 3)
individuals younger than the median age (at start of the activity monitor wear period),
4) individuals older than the median age, 5) adjustment for body mass index (BMI)
(UK Biobank data field 21001), 6) adjusting for BMI and lifestyle factors and 7)
excluding individuals working shifts, taking medication for sleep or psychiatric
disorders, self-reporting a mental health or sleep disorder, or diagnosed with
depression, schizophrenia, bipolar disorder, anxiety disorders or mood disorder in
the HES data (see Supplementary Methods). The sensitivity analyses were
performed by regressing the phenotype against the variant dosage, adjusting for the
same covariates as described for the BOLT-LMM GWAS and additionally adjusting
for the first 5 principal components to account for population structure. All exclusions
and adjustments were made using baseline records (taken at the assessment

centre).

Mendelian Randomisation (MR). We performed two-sample MR, using the inverse
variance weighted approach® as our main analysis method, and MR-Egger®,
weighted median estimation®® and penalised weighted median estimation®® as
sensitivity analyses in the event of unidentified pleiotropy of our genetic instruments.
MR results may be biased by horizontal pleiotropy, i.e. where the genetic variants
that are robustly related to the exposure of interest independently influence the
outcome, through association with another risk factor for the outcome. IVW assumes
that there is either no horizontal pleiotropy (under a fixed effect model) or, if
implemented under a random effects model after detecting heterogeneity amongst
the causal estimates, that (i) the strength of association of the genetic instruments
with the risk factor is not correlated with the magnitude of the pleiotropic effects, and
(i) the pleiotropic effects have an average value of zero. MR-Egger provides
unbiased causal estimates if just the first condition above holds, by estimating and
adjusting for non-zero mean pleiotropy. The weighted median approach is valid if

less than 50% of the weight in the analysis stems from variants that are pleiotropic
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(i.e. no single SNP that contributes 50% of the weight or a number of SNPs that
together contribute 50% should be invalid because of horizontal pleiotropy). Given
these different assumptions, if all methods are broadly consistent, our causal

inference is strengthened.

In an effort to reduce the number of genetic instruments violating the above
assumptions, we used a newly-described method (Bowden et al. BioRxiv 2017,
http://dx.doi.org/10.1101/159442) to quantify, using a new iterative weighting method,

each instrument’s contribution to heterogeneity of the causal IVW estimate. High
heterogeneity in Cochran’s Q statistic, which should follow a y2_, distribution for n
instruments, indicates that either invalid (horizontally-pleiotropic) instruments have
been included or that MR modelling assumptions have been violated. We therefore
excluded variants with an extreme Cochran’s Q greater than the Bonferroni corrected

threshold (Qsyp > )(12_0.05/,1!1) prior to performing MR analysis.
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Tables and Figures

Table 1. Pseudo-heritability estimates of derived sleep variables from BOLT-

REML

Sleep variable h, 95% ClI
Sleep duration 0.190 0.182-0.198
Sleep duration variability (SD) 0.028 0.020 - 0.036
Number of nocturnal sleep episodes 0.223 0.215-0.231
Sleep efficiency 0.130 0.122 -0.138
L5 timing 0.117 0.109 - 0.125
M10 timing 0.087 0.079 — 0.095
Sleep midpoint timing 0.101 0.093 -0.109
Diurnal Inactivity 0.148 0.134-0.161
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Table 2. Summary statistics for 47 genetic associations identified in the UK Biobank reaching P<5x10®

E/O EA
TRAIT SNP Chr BP (hg19) Allele Freq BETA SE P Gene Region
L5 timing rs1144566 1 182,569,626 CcIT 0.970 0.096 0.014 8E-12 RGS16/RNASEL
L5 timing rs113851554 2 66,750,564 TIG 0.057 0.133 0.011 2E-35 MEIS1*
L5 timing rs12991815 2 68,071,990 CIG 0.424 0.029 0.005 2E-09 C1D*
L5 timing rs9369062 6 38,437,303 AIC 0.708 0.039 0.005 9E-14 BTBD9*
L5 timing rs4882315 12 38,458,906 T/IC 0.507 0.027 0.005 2E-08 CPNES/ALG10B
L5 timing rs12927162 16 52,684,916 G/A 0.277 0.029 0.005 3E-08 TOX3*
M210 timing rs1973293 12 38,679,575 CIT 0.481 0.029 0.005 1E-09 CPNES8/ALG10B
Sleep duration rs2660302 1 98,520,219 AIT 0.811 0.041 0.006 9E-12 DPYD
Sleep duration rs113851554 2 66,750,564 GIT 0.943 0.110 0.011 2E-25 MEIS1*
Sleep duration rs62158170 2 114,082,175 G/A 0.217 0.054 0.006 3E-21 PAX8
Sleep duration rs17400325 2 178,565,913 T/IC 0.958 0.066 0.012 2E-08 PDE11A
Sleep duration rs72828540 6 19,102,286 T/IC 0.752 0.041 0.005 1E-13 LOC101928519
Sleep duration rs9369062 6 38,437,303 C/IA 0.292 0.033 0.005 2E-10 BTBD9*
Sleep duration rs2975734 8 10,090,097 CIG 0.561 0.027 0.005 1E-08 MSRA
Sleep duration rs13282541 8 41,723,550 CIT 0.739 0.032 0.005 4E-09 ANK1
Sleep duration rs2880370 8 105,987,057 AIT 0.670 0.028 0.005 2E-08 LRP12/ZFPM2
Sleep duration rs800165 12 67,645,219 CIT 0.343 0.028 0.005 3E-08 CAND1
Sleep duration rs10138240 14 63,353,479 GIC 0.514 0.029 0.005 7E-10 KCNH5
Sleep midpoint rs11892220 2 231,691,067 T/IA 0.339 0.029 0.005 3E-08 CAB39
Sleep efficiency rs113851554 2 66,750,564 GIT 0.943 0.101 0.011 5E-22 MEIS1*
Sleep efficiency rs62158169 2 114,081,827 T/IC 0.216 0.032 0.006 2E-08 PAX8
Sleep efficiency rs17400325 2 178,565,913 T/IC 0.958 0.074 0.012 2E-10 PDE11A
Sleep efficiency rs13094687 3 52,450,043 G/A 0.315 0.029 0.005 1E-08 PHF7
Sleep efficiency rs13080973 3 138,596,050 G/A 0.202 0.032 0.006 3E-08 FOXL2
No. sleep episodes rs12714404 2 282,462 TIG 0.283 0.037 0.005 1E-12 ACP1/SH3YL1
No. sleep episodes rs310727 3 4,336,589 T/IC 0.475 0.026 0.005 3E-08 SUMF1/SETMAR
No. sleep episodes rs55754932 3 87,847,754 C/IA 0.284 0.037 0.005 2E-12 HTR1F
No. sleep episodes rs9864672 3 137,076,353 T/IC 0.522 0.029 0.005 2E-10 IL20RB/SOX14
No. sleep episodes rs4974697 4 2,473,092 TIA 0.390 0.026 0.005 5E-08 RNF4
No. sleep episodes rs7377083 4 102,708,997 AIC 0.430 0.029 0.005 2E-09 BANK1
No. sleep episodes rs749100 5 63,307,862 AIG 0.582 0.033 0.005 9E-12 HTR1A/RNF180
No. sleep episodes rs9341399 6 73,773,644 CIT 0.936 0.066 0.010 6E-12 KCNQ5
No. sleep episodes rs1889978 6 124,771,233 CIT 0.485 0.027 0.005 5E-09 NKAIN2
No. sleep episodes rs2141277 7 39,099,178 AIG 0.478 0.026 0.005 1E-08 POUG6F2
No. sleep episodes rs10233848 7 103,122,645 G/A 0.293 0.035 0.005 2E-11 RELN
No. sleep episodes rs1124116 10 99,371,147 AIG 0.730 0.031 0.005 2E-09 HOGA1/MORN4
No. sleep episodes rs4755731 11 43,685,168 G/A 0.431 0.028 0.005 3E-09 HSD17B12
No. sleep episodes rs3751837 16 3,583,173 CIT 0.781 0.033 0.006 4E-09 CLUAP1
No. sleep episodes rs8045740 16 20,262,776 GIT 0.868 0.052 0.007 6E-14 GPR139
No. sleep episodes rs11078917 17 37,746,359 AIC 0.279 0.029 0.005 3E-08 NEUROD2
No. sleep episodes rs11082030 18 35,501,739 T/IC 0.725 0.030 0.005 8E-09 CELF4
No. sleep episodes rs8098424 18 52,458,218 G/A 0.619 0.027 0.005 1E-08 RAB27B
No. sleep episodes rs76753486 19 42,684,264 T/IC 0.084 0.047 0.008 2E-08 DEDD2/ZNF526
No. sleep episodes rs429358 19 45,411,941 T/IC 0.848 0.036 0.007 4E-08 APOE
No. sleep episodes rs12479469 20 61,145,196 A/G 0.342 0.031 0.005 4E-10 MIR133A2
Diurnal inactivity rs17805200 9 13,764,434 CcIT 0.272 0.031 0.005 5E-09 MPDZ/NFIB
Diurnal inactivity rs7155227 14 63,365,094 T/G 0.523 0.033 0.005 2E-12 KCNH5

CHR=chromosome; BP=base-pair position (GRCh37/hg19); EA/OA=effect allele/other allele, EA Freq=effect allele frequency;
SE=standard error; L5 timing=midpoint of least active 5 hours; M10 timing=midpoint of most active 10 hours; No. sleep

episodes=number of nocturnal sleep episodes; * locus previously reported for Restless Legs Syndrome®".
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Figure 1. Comparisons of betas for 11 genetic variants associated with
accelerometer-derived sleep duration against betas from a parallel GWAS of self-

report sleep duration.
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Figure 2. Comparison of betas for genetic variants associated with a) either L5
timing or sleep duration, b) either sleep duration or the number of nocturnal sleep
episodes, and c) either L5 timing or sleep quality (number of nocturnal sleep
episodes or sleep efficiency). Variants previously associated with restless legs
syndrome are highlighted in red. Betas represent standard deviations of the inverse-

normal distribution of each trait.
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Figure 3. Comparisons of betas for 78 genetic variants associated with self-report
sleep duration in a parallel GWAS effort (Dashti et al, BioRvix, 2018,
https://doi.org/10.1101/274977).
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Figure 4. Correlations of genetic effect estimates based on self-report chronotype
meta-analysis versus activity monitor midpoint sleep estimated from L5 timing for a)
351 variants identified from self-report chronotype GWAS and b) 6 variants identified

for L5 timing from accelerometer derived estimates
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Supplementary Tables

Supplementary Table 1. Descriptive statistics of sleep and activity measures
derived from accelerometer data. Units for L5 timing, M10 timing, sleep duration,
sleep duration variation (SD), sleep midpoint and diurnal inactivity are in hours. Sleep

efficiency is a ratio and number of sleep episodes is a count.

Supplementary Table 2: Spearman’s rank correlation statistics for activity monitor
derived sleep traits and self-report hours slept and self-report chronotype (coded for

increased morningness).

Supplementary Table 3. Association statistics for the 47 signals discovered in UKB
Biobank in the Whitehall and CoLaus and Rotterdam 1, Il, and Il replication cohorts.
Meta-analysis of the results across the studies are also provided. Grey cells indicate

data unavailable from particular study.

Supplementary Table 4. Analysis of the combined genetic effects from
Supplementary Table 3 within the Whitehall, CoLaus and Rotterdam replication

studies.

Supplementary Table 5. Averages of the mean number of nocturnal sleep episodes
detected within individuals in the UK Biobank split by APOE Alzheimer's disease risk

haplotypes and lower/upper age groups.

Supplementary Table 6. Results from sensitivity analyses performed for the 47
signals reaching P<5x10® in the UK Biobank. All analyses were performed in a set of
unrelated European where individuals from related pairs were removed at random.
Association tests were carried out for all phenotypes on both the raw scale and
inverse-normalised scale. Sensitivity analysis included: 1) in males only, 2) in
females only, 3) in those lower than median age at actigraphy (63.7 years), 4) in
those greater than or equal to the median age, 5) in all European unrelated but
adjusting for BMI in addition to standard adjustments, 6) in all European unrelated
but also adjusting for BMI and lifestyle factors, and 7) excluding those reporting shift
work, having self-report or hospital-recorded mental health or sleep disorders, and
those taking anxiolytic, antipsychotic, antidepressant or sleep medication. Lifestyle
adjustments for analysis (6) and exclusions for analysis (7) are described in greater

detail in the Supplementary Methods.
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Supplementary Table 7. Association result cross-tabulation against other traits for
the 47 SNPs representing genetic associations reaching P<5x10® in UK Biobank.
Cross-tabulation also includes results based on the latest self-report chronotype
meta-analyses (Jones et al.,, BioRxiv 2018, https://doi.org/10.1101/303925), self-
report Insomnia GWAS (Lane et al., BioRxiv 2018, https://doi.org/10.1101/257956)
and sleep duration GWAS in UK Biobank are also provided.

Supplementary Table 8. Fine-mapped loci with at least one "plausible" variant

(log10 Bayes' Factor > 2) with variant annotations from GTEx and Alamut.

Supplementary Table 9. MAGMA Gene-Set Analysis for SNPs associated with
disturbed sleep based on number of nocturnal sleep episodes reaching Bonferroni

significance.

Supplementary Table 10. Results from Mendelian Randomization (MR) analyses of
Restless Legs Syndrome exposure against multiple outcomes using 4 methods: 1)
using Inverse-variance (IV) weighted MR, 2) Egger MR, 3) Weighted Median (WM)
MR. 4) Penalised-weighted mean (PWM).

Supplementary Table 11. Genetic correlation results for the 8 accelerometer-
derived sleep traits against 234 LD Hub phenotypes, ordered by P-value. P-values

reaching Bonferroni significance (P<0.05/(8*234)) in bold.

Supplementary Table 12. Mendelian Randomization analyses testing causality of

seven genetically correlated traits on accelerometer-based sleep outcomes.

Supplementary Table 13. Mendelian Randomization analyses testing causality of
four accelerometer-based sleep exposures on genetically correlated traits. Sleep
exposures with <3 genome-wide associations at P<5x10® or with <3 genetic
instruments available in published datasets (highlighted grey) were excluded from

this analysis.
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