

1 Modelling the influence of the 2 hippocampal memory system on the 3 oculomotor system

4 **Abbreviated title: Simulated dynamics of hippocampal responses in**
5 **oculomotor regions**

6 Jennifer D. Ryan^{1,2*}, Kelly Shen^{1*}, Arber Kacollja¹, Heather Tian¹, John Griffiths¹, Gleb
7 Bezgin³, Anthony R. McIntosh^{1,2}

8 ¹Rotman Research Institute, Baycrest, Toronto, Ontario, M6A2E1

9 ²Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3

10 ³Montreal Neurological Institute, McGill University, Montreal, Quebec, QC H3A 2B4

11 * *equal contribution*

12 Corresponding Authors:

13 Jennifer D. Ryan, PhD

14 Rotman Research Institute

15 Baycrest

16 3560 Bathurst St.

17 Toronto, ON M6A2E1

18 Email: jryan@research.baycrest.org

19 Kelly Shen, PhD

20 Rotman Research Institute

21 Baycrest

22 3560 Bathurst St.

23 Toronto, ON M6A2E1

24 Email: kshen@research.baycrest.org

25 **Keywords:** hippocampus, eye movements, functional dynamics, memory, oculomotor
26 guidance

27 **Conflicts of Interest:** The authors declare no competing financial interests.

28 **Acknowledgments:** The authors wish to thank R. Shayna Rosenbaum for her helpful
29 comments on a previous version of this manuscript. This work was funded by a grant
30 from Natural Sciences and Engineering Research Council of Canada to J.D.R.

31

Abstract

32 Visual exploration is related to activity in the hippocampus (HC) and/or extended medial
33 temporal lobe system (MTL), is influenced by stored memories, and is altered in amnesic
34 cases. An extensive set of polysynaptic connections exists both within and between the
35 HC and oculomotor systems such that investigating how HC responses ultimately
36 influence neural activity in the oculomotor system, and the timing by which such neural
37 modulation could occur is not trivial. We leveraged TheVirtualBrain, a software platform
38 for large-scale network simulations, to model the functional dynamics that govern the
39 interactions between the two systems in the macaque cortex. Evoked responses following
40 the stimulation of the MTL and some, but not all, subfields of the HC resulted in
41 observable responses in oculomotor regions, including the frontal eye fields (FEF),
42 within the time of a gaze fixation. Modeled lesions to some MTL regions slowed the
43 dissipation of HC signal to oculomotor regions, whereas HC lesions generally did not
44 affect the rapid MTL activity propagation to oculomotor regions. These findings provide
45 a framework for investigating how information represented by the HC/MTL may
46 influence the oculomotor system during a fixation and predict how HC lesions may affect
47 visual exploration.

48

Author Summary

49 No major account of oculomotor (eye movement) guidance considers the influence of the
50 hippocampus (HC) and broader medial temporal lobe (MTL) system, yet it is clear that
51 information is exchanged between the two systems. Prior experience influences current
52 viewing, and cases of amnesia due to compromised HC/MTL function show specific
53 alterations in viewing behaviour. By modeling large-scale network dynamics, we show
54 that stimulation of subregions of the HC, and of the MTL, rapidly results in observable
55 responses in oculomotor control regions, and that HC/MTL lesions alter signal
56 propagation. These findings suggest that information from memory may readily guide
57 visual exploration, and calls for a reconsideration of the neural circuitry involved in
58 oculomotor guidance.

59

60

Introduction

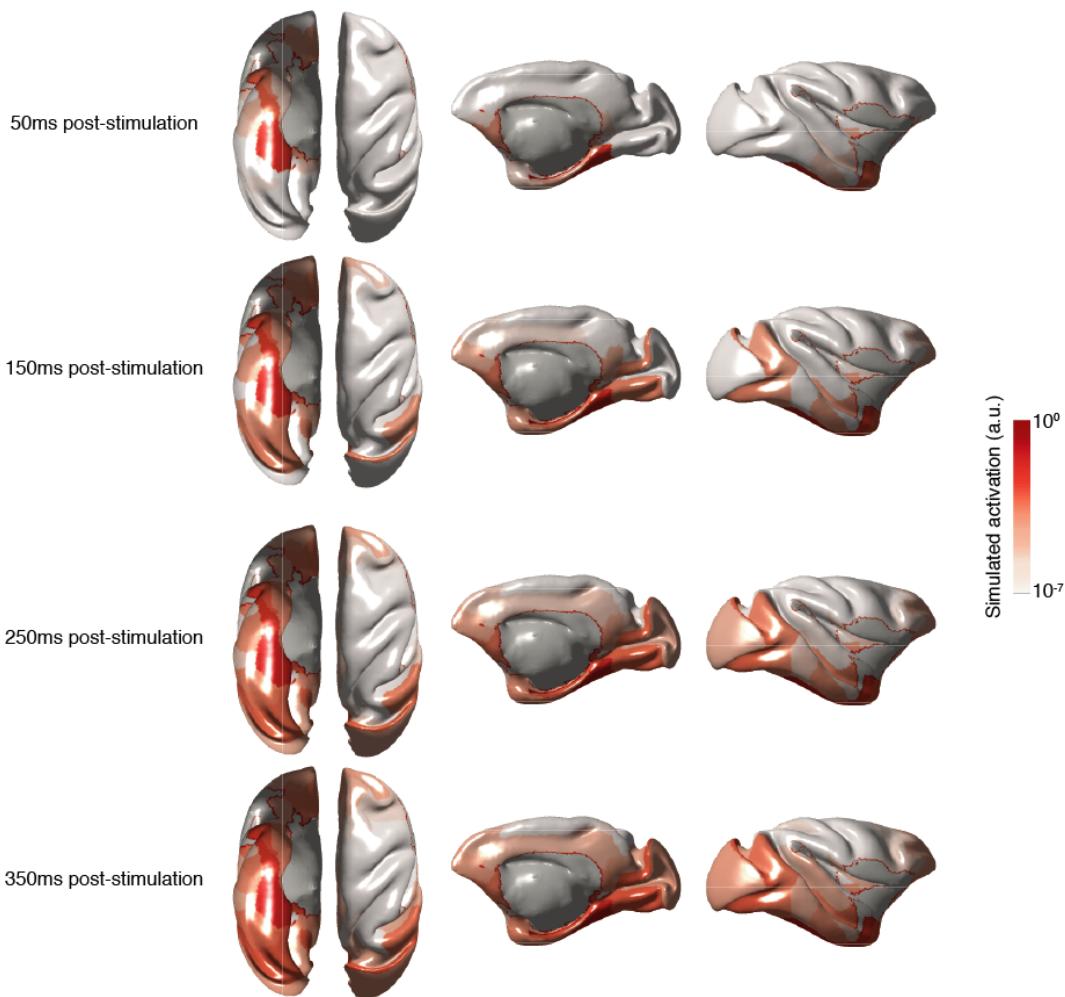
61 Memory influences ongoing active exploration of the visual environment (Hannula et al.,
62 2010). For instance, more viewing is directed to novel versus previously viewed items
63 (Fagan, 1970; Fantz, 1964), and more viewing is directed to areas that have been altered
64 from a prior viewing (Ryan, Althoff, Whitlow, & Cohen, 2000; Smith, Hopkins, &
65 Squire, 2006). A number of studies have implicated a network of subregions within the
66 hippocampus (HC) and/or broader medial temporal lobe (MTL) responsible for the
67 influence of memory on viewing behavior. Amnesic cases who have severe memory
68 impairments due to compromised function of the HC and/or MTL show changes in their
69 viewing behavior compared to neurologically-intact cases (Chau, Murphy, Rosenbaum,
70 Ryan, & Hoffman, 2011; Hannula, Ryan, Tranel, & Cohen, 2007; Olsen et al., 2015;
71 Ryan et al., 2000; Warren, Duff, Tranel, & Cohen, 2010). Similar findings have been
72 observed in older adults who have suspected HC/MTL compromise (Ryan, Leung, Turk-
73 Browne, & Hasher, 2007), and certain viewing patterns have been shown to track with
74 entorhinal cortex (ERC) volumes (Yeung et al., 2017). Visual exploration predicts HC
75 activity during encoding (Z.-X. Liu, Shen, Olsen, & Ryan, 2017), and, conversely,
76 HC/MTL activity predicts ongoing visual exploration that is indicative of memory
77 retrieval (Hannula & Ranganath, 2009; Ryals, Wang, Polnaszek, & Voss, 2015). The
78 relationship between visual sampling and HC activity is weakened in aging, presumably
79 due to decline in HC structure or function (Z. X. Liu, Shen, Olsen, & Ryan, 2018). Such
80 evidence collectively demonstrates that HC/MTL function is related to oculomotor
81 *behavior*. The indirect implication of these studies is that the HC must influence *neural*
82 *activity* in the oculomotor system.

83 Studies in non-human primates have shown that HC/MTL activity is linked to
84 oculomotor behavior. The activity of grid cells in the ERC are tied to eye position
85 (Killian, Jutras, & Buffalo, 2012), while HC/MTL activity is modulated by saccades
86 (Sobotka, Nowicka, & Ringo, 1997) and fixations (Hoffman et al., 2013; Leonard et al.,
87 2015). How HC/MTL activity traverses the brain to influence the oculomotor system has
88 not been shown to date. The oculomotor system is itself a highly recurrent and distributed
89 network (Parr & Friston, 2017) comprised of cortical and subcortical regions responsible
90 for the execution of a saccade (e.g., frontal eye field, FEF; superior colliculus, SC) as
91 well as regions that exert cognitive control over where the eyes should go (e.g.,
92 dorsolateral prefrontal cortex, dlPFC; anterior cingulate cortex, ACC; lateral intraparietal
93 area, area LIP) (Bisley & Mirpour, 2019; Johnston & Everling, 2008). Prior work has
94 speculated as to which regions of the brain may be important for bridging the memory
95 and oculomotor systems (e.g., Meister & Buffalo, 2016; Micic, Ehrlichman, & Chen,
96 2010), but these discussions were limited to regions examined in isolation. There are no
97 known direct connections between hippocampal subfields and the oculomotor system.
98 Yet, by examining whole-cortex connectivity, we have shown that there is an extensive
99 set of polysynaptic pathways spanning extrastriate, posterior parietal, and prefrontal
100 regions that may mediate the exchange of information between the oculomotor and
101 memory systems (Shen, Bezgin, Selvam, McIntosh, & Ryan, 2016). Given the vast
102 anatomical connectivity within and between the memory and oculomotor systems, trying
103 to discern the functional network involved in bridging them is not a trivial problem to
104 tackle. Specifically, the large and complex contribution of recurrent anatomical
105 connections to the functional dynamics of large-scale brain networks must be considered

106 (Spiegler, Hansen, Bernard, McIntosh, & Jirsa, 2016). One crucial question concerning
107 such functional dynamics is whether HC/MTL activity is able to influence the activity
108 related to the preparation of a saccade. In order to impact ongoing visual exploration,
109 HC/MTL activity would likely need to resolve in the oculomotor system within the time
110 of an average duration of a gaze fixation (~ 250-400 ms) (Henderson, Nuthmann, &
111 Luke, 2013).

112 To examine the extent to which HC/MTL activity could influence the oculomotor
113 system, we leveraged a computational modeling and neuroinformatics platform,
114 TheVirtualBrain, and simulated the functional dynamics of a whole-cortex directed
115 macaque network when stimulation is applied to HC and MTL nodes of interest.
116 Critically, we examined whether and when evoked activity culminated in responses in
117 key regions within the oculomotor system. Finally, we observed the extent to which the
118 propagation and timing of such activity was altered following lesions to one or more
119 HC/MTL regions in order to understand the neural dynamics that may underly altered
120 visual exploration in cases of HC/MTL dysfunction, such as in amnesia or aging.

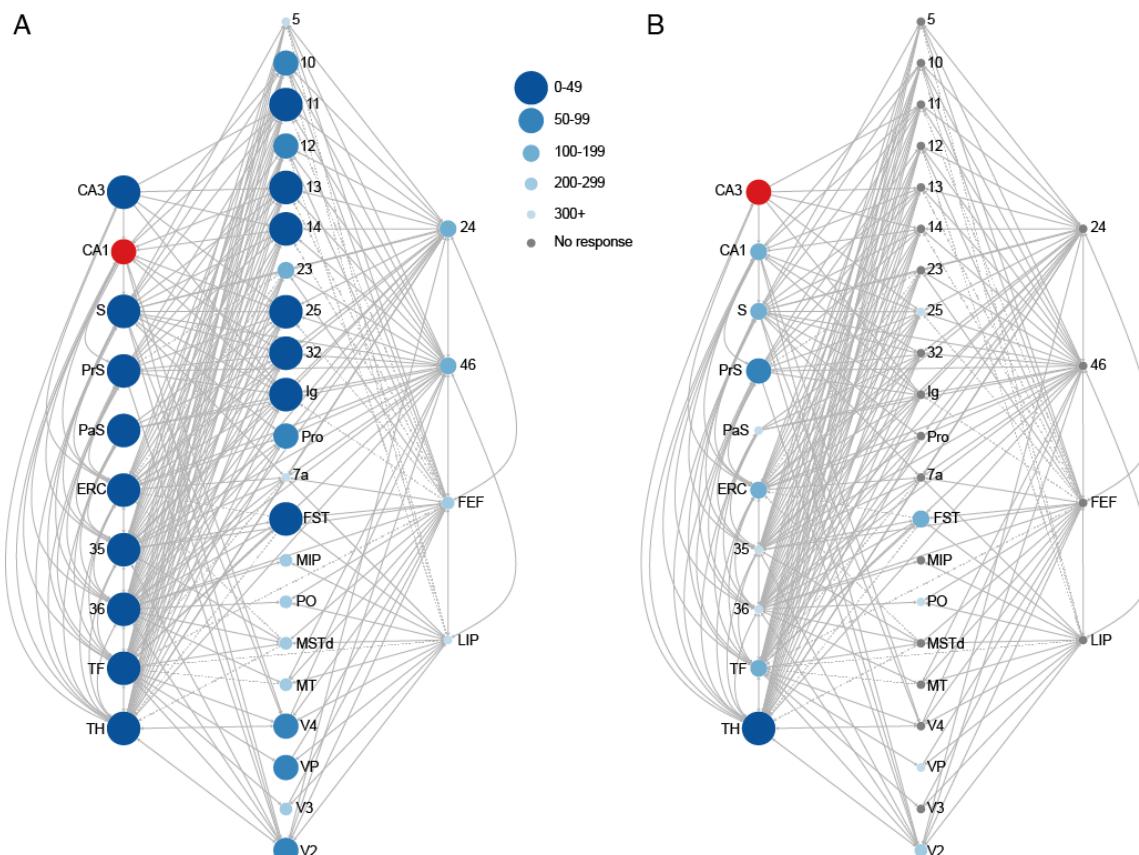
121

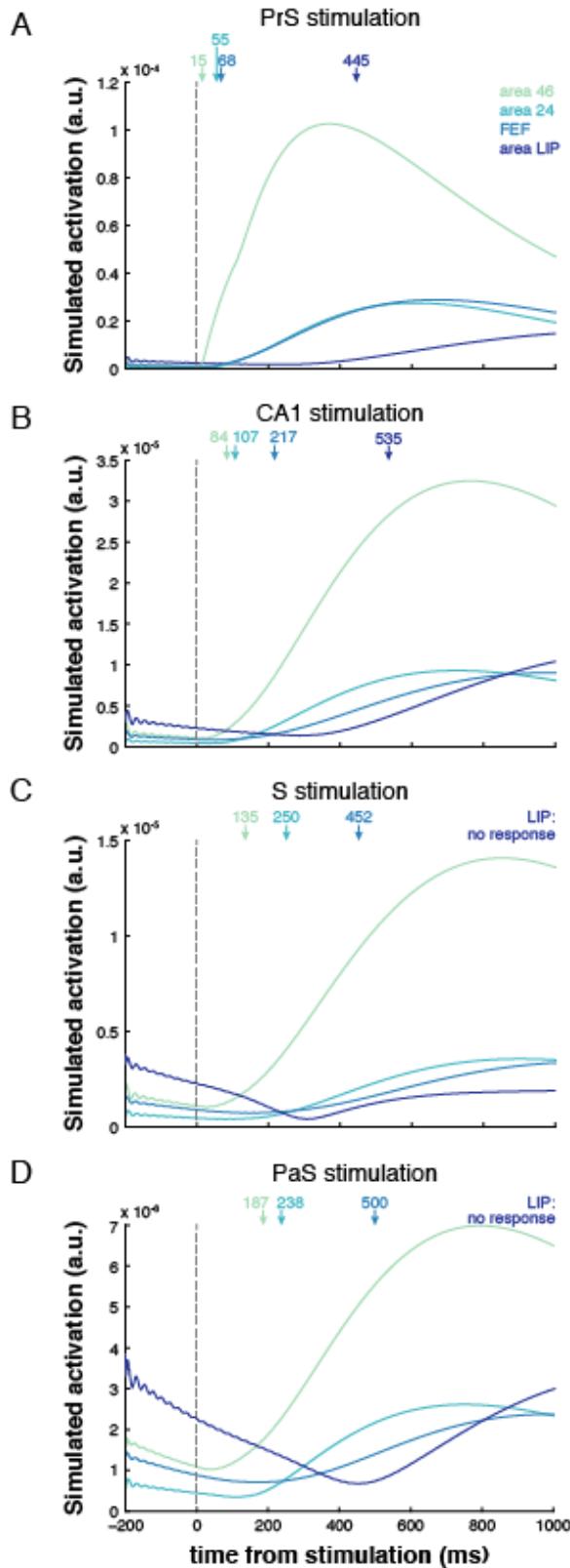

122

Results

123 We modelled the influence of HC/MTL activity on the oculomotor system using a
124 connectome-based approach using TheVirtualBrain (see Methods for details). Following
125 Spiegler and colleagues (Spiegler et al., 2016), we assigned a neural mass model to each
126 node and set each to operate near criticality, which is considered to be the point at which
127 information processing capacity is maximal (G. Deco et al., 2014; Ghosh, Rho, McIntosh,
128 Kötter, & Jirsa, 2008). Nodes were then connected together as defined by a weighted and
129 directed macaque structural connectivity matrix and the distance between them defined
130 by a tract lengths matrix. As we were interested in examining signal propagation *from* the
131 memory system *to* the oculomotor system while taking into account the extensive
132 recurrent connectivity between them, we chose to use the macaque connectome because
133 of the available information from tracer data on the directionality of fiber tracts. Without
134 stimulation, this network exhibits no activity. However, with stimulation, activity
135 dissipates throughout the network according to the spatiotemporal constraints imposed by
136 the connectivity weights and distances. Despite having no spontaneous activity, this
137 model has been shown to exhibit the emergent properties of spontaneous activity
138 (Spiegler et al 2016). That is, with stimulation, the model produces a diverse set of
139 resting-state networks that are typically detected from spontaneous activity in empirical
140 studies. Cortical network dynamics were set via additional parameter tuning such that
141 stimulating V1 resulted in biologically plausible timing of evoked responses in
142 downstream visual cortical regions. Finally, we systematically stimulated HC subfields
143 and MTL regions of interest and detected evoked responses across the rest of the
144 network.

145 HC Subregion Stimulation


146 Stimulation of HC subfields and MTL regions of interest evoked widespread activation
147 across the network, similar to previous surface-based model simulations (Spiegler et al.,
148 2016). Figure 1 shows an example of activity dissipation following CA1 stimulation.
149 Evoked responses were first detected in other HC subfields and MTL regions but then
150 spread to prefrontal and extrastriate cortices, and later to posterior parietal cortex. The
151 full list of activation times for each of the 77 nodes can be found in Supplementary Table
152 2. However, in all subsequent analyses, we present only the results pertaining to our
153 nodes of interest, identified as those along the shortest paths between HC/MTL and
154 oculomotor regions (Shen et al., 2016) or those that have been specifically suggested in
155 the literature to be potentially relevant (Meister & Buffalo, 2016).


156
157 **Figure 1.** Dissipation of activity over time across the cortex following simulated
158 stimulation of CA1. Average above-threshold simulated activation (arbitrary units) for
159 each node for a 10-ms epoch following each time point is plotted on the macaque cortical
160 surface. Activations were log scaled for the purposes of visualization. From left to right:
161 ventral, dorsal, medial and lateral views of the macaque cortical surface.

162 Stimulation of HC subregions CA1, subiculum (S), pre-subiculum (PrS), and
163 para-subiculum (PaS) resulted in observable responses in almost all of the cortical nodes
164 of interest, and within regions 46, 24, and FEF, of the oculomotor system (for CA1
165 example, see Figure 2A). Within our oculomotor regions of interest, activity was first
166 observed in area 46, followed by 24, and FEF, regardless of HC stimulation site.
167 Stimulation of the PrS resulted in the fastest observable responses in these oculomotor

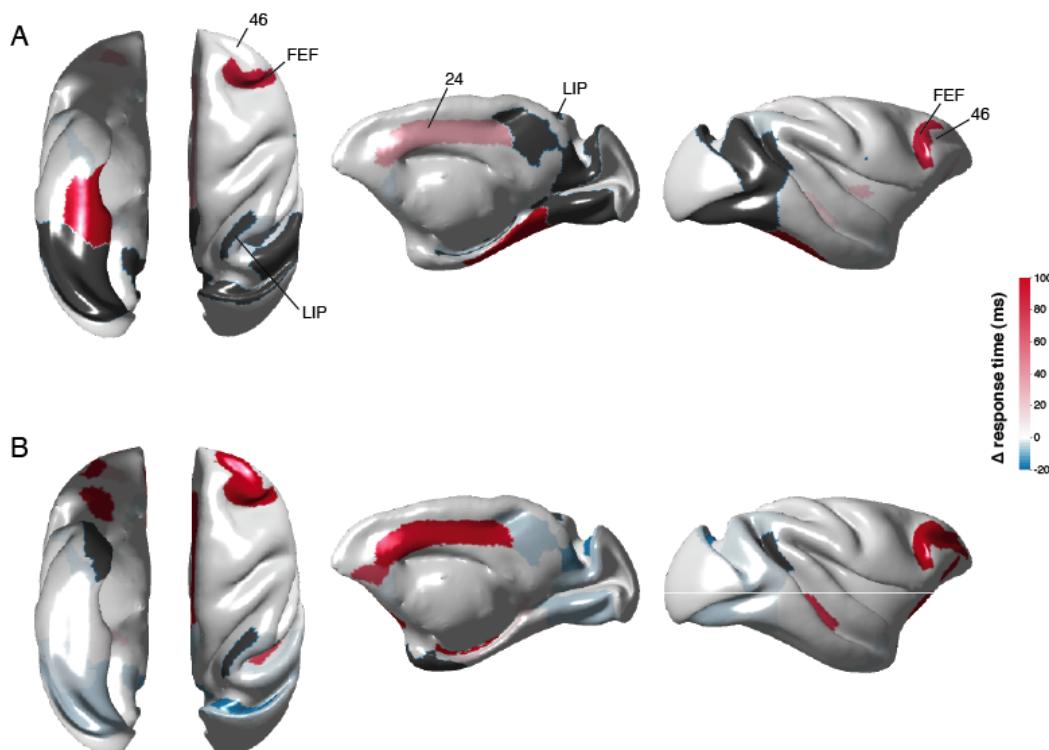
168 areas (under 70 ms; Figure 3A). Stimulation of CA1 resulted in rapid activity that
169 culminated in oculomotor regions in under 220 ms (Figure 3B). Stimulation of either the
170 S or the PaS resolved into area 46 activity by 200 ms, into area 24 by 250 ms, and finally
171 into FEF by 500 ms (Figure 3C-D). Responses in area LIP occurred substantially later
172 than the other oculomotor areas and even later than all other cortical nodes for CA1 and
173 PrS stimulations (> 440 ms; Table 1). No evoked response was detected in area LIP
174 following stimulation of S or PaS. Responses were not observed in the majority of the
175 pre-defined cortical hubs following CA3 stimulation, and activity did not culminate in
176 observable responses in the oculomotor areas (Figure 2B). See Table 1 for activation
177 times for all nodes of interest.

178
179 **Figure 2.** (A) Simulated stimulation of the CA1 (red circle) resulted in observable
180 responses (blue circles) in multiple HC/MTL nodes, intermediary nodes, and in regions

governing oculomotor control, including the frontal eye fields (FEF). (B) Simulated stimulation of the CA3 (red circle) resulted in observable responses (blue circles) limited to HC/MTL nodes. Very few responses were observed in cortical areas and none were observed in oculomotor areas. Size and shade of the circles scale with elapsed time prior to an observed response. Grey lines denote direct structural connections between nodes. For visualization purposes, only regions that contribute to the shortest paths *from* HC/MTL *to* oculomotor nodes are shown. Connections between intermediary nodes (middle column) are not shown. Connections that are unidirectional and *away from* oculomotor areas (i.e., to HC/MTL) are indicated by dashed lines.

Figure 3. Simulated response profiles (envelope of region time series) of oculomotor areas following stimulation of PrS (A), CA1 (B), S (C) and PaS (D). Activation is given in arbitrary units (a.u.). The onsets of the responses for each oculomotor area indicated by arrows. Area LIP did not exhibit a response that exceeded its baseline threshold following S and PaS stimulation.

212 MTL Stimulation


213 Stimulation of any of the broader regions within the MTL (entorhinal cortex, ERC;
214 perirhinal cortex, 35, 36; parahippocampal cortex, TF, TH) resulted in observable
215 responses within oculomotor areas 46, 24, and FEF well under 100ms, faster than the
216 responses observed from HC subfield stimulation. Of the MTL regions, stimulation of
217 area 35/36 resulted in the earliest responses in areas 46, 24, and FEF (within 25 ms).
218 Although evoked responses in area LIP occurred in under ~250 ms for all but ERC
219 stimulations, area LIP again exhibited the most delayed response across all nodes of
220 interest following MTL stimulations. See Table 1 for activation times for all nodes of
221 interest.

222 Cortical Responses

223 HC and MTL region stimulation (except for CA3) resulted in signal propagation across
224 all of our pre-identified cortical regions of interest. When CA3 was stimulated, cortical
225 responses were only observed in areas V2 and 25; no other signal was observed. Notably,
226 responses in areas 5 and 7a were generally observed *following* activity from oculomotor
227 regions, including FEF, suggestive of a possible feedback response. The exception is S
228 stimulation, in which responses in area 5 preceded responses in oculomotor regions by
229 ~100 ms. Responses in V4 also followed oculomotor responses; except in cases of CA1,
230 TF, and TH stimulation. Likewise, responses in area 23 followed oculomotor responses,
231 except in cases of PrS and TH stimulation. See Table 1 for activation times for all nodes
232 of interest.

233 Lesion Models: HC subregions

234 Some models of HC and MTL lesions showed an appreciable effect on activation times
235 while others did not. Only the results for lesions that affected any activation time by at
236 least ± 10 ms are shown. Lesion of CA3 changed neither the pattern nor the timing of
237 observable responses following stimulation of each of the other HC/MTL regions (data
238 not shown). Lesion of CA1 resulted in a lack of signal to V2, V4, area 23, and slowing of
239 signal from the subicular complex to various regions, including oculomotor regions FEF
240 and area 24 (Figure 4A; Supplementary Table 3). Lesion of CA1 also led to small
241 increases in the speed of signal following CA3 stimulation to the subicular complex, and
242 from MTL regions to TF/TH, and to other regions within the subicular complex (all less
243 than 10 ms).

244

245 **Figure 4.** Changes in simulated activation times following HC lesions. Subiculair
246 stimulation following CA1 (A) and ERC (B) lesions. Only nodes of interest are presented
247 on the brain surface plots. Activation time differences were computed by subtracting the
248 pre-lesion activation times from the post-lesion ones. Absence of response following a
249 lesion indicated in grey. From left to right: ventral, dorsal, medial and lateral views of the
250 macaque cortical surface.

251 Lesions to either the S or PaS produced little change to either the pattern or timing
252 of responses following stimulation of the other HC/MTL regions (data not shown).

253 Lesions to the PrS produced moderate changes (<20 ms) in timing: there was some
254 slowing of activity propagation from PaS to some cortical regions, including oculomotor
255 regions, and some speeding of signal propagation within the HC subfields and to TF/TH
256 (Supplementary Table 4).

257 A combined lesion to all HC subfields (CA3/CA1/S/PaS/PrS) did not
258 considerably change the pattern of signal propagation from the MTL cortices to
259 oculomotor regions. In cases where speeding/slowing was observed, the timing
260 differences were less than 15 ms, and mostly less than 10ms. Signal from the MTL
261 cortices still culminated within the oculomotor regions well under 50 ms (except for ERC
262 -> FEF at 79 ms, and LIP whose responses remained >140 ms) (Supplementary Table 5).

263 Lesion Models: MTL regions

264 Lesion of the ERC resulted in considerable slowing of observable signal in areas 24, 46
265 and FEF (30-340ms) following S (Figure 3B) or PaS stimulation (Supplementary Table
266 6). TF and/or TH lesions resulted in slowing (10-400ms) of signal following CA1, S, and
267 PaS stimulation to one or more of areas 24, 46 and FEF, and a lack of response in FEF
268 following PaS stimulation (only the combined TF/TH is shown; Supplementary Table 7).

269 Area 35 and/or 36 lesions also resulted in slowing (10-90ms) of signal following CA1, S,
270 and PaS stimulation to one or more of areas 24, 46 and FEF, although not as severe as the

271 slowing observed following TF/TH lesions (only the combined 35/36 lesion is shown;
272 Supplementary Table 8).

273 Other Cortical Lesions
274 In our original stimulations, signals in regions 5, 7a, 23, and V4 were predominantly
275 observed following observable responses in oculomotor areas 24, 46 and FEF, suggesting
276 these cortical areas are receiving feedback signals rather than primarily serving as hubs to
277 transfer signal from the HC/MTL to the oculomotor regions. To explore this in more
278 depth, we simulated a combined lesion of 5/7a/23/V4 and examined signal propagation.
279 Following this combined cortical lesion, stimulation of each of the HC/MTL regions
280 (except for CA3) continued to result in observable signal in areas 24, 46 and FEF.
281 Interestingly, while area LIP exhibited the slowest overall responses in the intact
282 simulations, the combined cortical lesion led to substantial speeding of signal to LIP from
283 HC (200-270 ms faster) and MTL (80-300 ms faster) regions owing to speeded responses
284 in intermediary visual cortical and parietal areas (Supplementary Table 9).

285

Discussion

286 A preponderance of evidence has demonstrated a correlation between HC/MTL neural
287 activity and oculomotor behavior (Hannula et al., 2010; Killian, Potter, & Buffalo, 2015;
288 Z.-X. Liu et al., 2017), but research had not shown whether HC/MTL activity can reach
289 the oculomotor system in time to influence the preparation of a saccade. The HC is well
290 connected anatomically to the oculomotor system through a set of polysynaptic pathways
291 that span MTL, frontal, parietal, and visual cortices (Shen et al., 2016) but the existence
292 of anatomical connections does not provide conclusive evidence of the functional
293 relevance of specific pathways. By considering the functional dynamics and recurrent
294 interactions of the large-scale network involved in the HC/MTL guidance of eye
295 movements, we show that propagation of evoked HC/MTL neural activity results in
296 neural activity observable in areas 24 (ACC), 46 (dlPFC) and FEF, which are important
297 for the cognitive and motoric control of eye movements, respectively (Johnston &
298 Everling, 2008). Critically, the culmination of neural signal in these oculomotor regions
299 occurred within the time of a typical gaze fixation (~250-400 ms; Buswell, 1935;
300 Henderson et al., 2013): within 200 ms following HC subfield stimulation (except for
301 CA3), and within 100 ms following stimulation of each MTL region. Our findings
302 suggest that the underlying neural dynamics of the memory and oculomotor systems
303 allow for representations mediated by the HC/MTL to guide visual exploration – what is
304 foveated and when – on a moment-to-moment basis.

305 The lack of responses in the FEF following CA3 stimulation is not surprising,
306 given that there are no known direct connections, and fewer polysynaptic pathways,
307 between the CA3 and the oculomotor regions investigated here (Shen et al., 2016). These

308 functional and anatomical differences align well with the purported representational
309 functions of CA3 versus CA1. Foveated information may be bound into detailed memory
310 representations via the auto-associative network of the CA3 (*pattern separation*; Norman
311 & O'Reilly, 2003; Yassa & Stark, 2011), whereas CA1 would enable the comparison of
312 stored information to the external visual world (*pattern completion*; Rolls, 2013; Yassa &
313 Stark, 2011).

314 Stimulation of the subiculum and parasubiculum resulted in relatively slower
315 responses observed in each of the oculomotor regions, whereas stimulation of
316 presubiculum resulted in rapid responses observed in the oculomotor regions. The
317 subiculum and parasubiculum may largely provide information that supports the grid cell
318 mapping of the ERC (Boccara et al., 2010; Peyrache, Schieferstein, & Buzsáki, 2017;
319 Tang et al., 2016). These regions may then function as a 'pointer' by providing online
320 information of an individual's location in space (Tang et al., 2016). This slowly changing
321 spatial layout may not then require a rapid influence on the oculomotor system, but
322 instead, may allow for the presubiculum, which has cells that are responsive to head
323 direction (Robertson, Rolls, Georges-François, & Panzeri, 1999) to precisely locate and
324 foveate visual objects. These functional distinctions are speculative, and remain to be
325 tested.

326 Stimulation of each of the MTL cortices resulted in observable responses in each
327 of areas 24, 46 and FEF that were faster than any of the responses observed following HC
328 subregion stimulation. The MTL cortices are intermediary nodes that may permit the
329 relatively rapid transfer of information from HC to the oculomotor system. The unique
330 representational content supported by each region may influence ongoing visual

331 exploration in a top-down manner. The PRC provides lasting information regarding the
332 features of objects (Erez, Cusack, Kendall, & Barense, 2016; Graham, Barense, & Lee,
333 2010), the PHC provides information regarding the broader spatial environment
334 (Alvarado & Bachevalier, 2005; Eichenbaum, Yonelinas, & Ranganath, 2007; Sato &
335 Nakamura, 2006), and the ERC may provide information regarding the relative spatial
336 arrangements of features within (Yeung et al., 2017), and among objects within the
337 environment (Buckmaster, 2004; Yeung et al., 2019). Signal from the MTL may be used
338 to accurately, and rapidly, prioritize gaze fixations to areas of interest.

339 HC subfield lesions only minimally altered the timing of activity from MTL to
340 oculomotor regions; the relatively rapid propagation of signal from MTL to FEF (<
341 100ms) was preserved. Lesions to MTL regions resulted in slowing of signal from some
342 HC subfields to oculomotor regions. This pattern of results suggests that different
343 patterns of visual exploration (i.e., rate, area) may occur in cases of HC/MTL damage
344 depending on the location of the lesion. Lesions restricted to HC subfields may result in
345 an increase in the rate of gaze fixations due to the intact, rapid responses from the MTL
346 to oculomotor regions. This is consistent with prior work in which a developmental
347 amnesic case with HC subfield volume reductions showed an increase in gaze fixations
348 compared to control participants (Olsen et al., 2015). Similarly, older adults, who had
349 functional changes in the HC, showed increases in visual exploration (Z.-X. Liu et al.,
350 2017). ERC and PHC lesions may slow the use of information regarding the broader,
351 ongoing spatial environment; this could result in the need to continually revisit regions to
352 re-establish the relations within and among objects, and with their broader environment,
353 and thus an increased area of visual exploration and/or increase between-object gaze

354 transitions would be observed. Such behavior has been shown by older adults, which may
355 be related to structural and/or functional changes in the ERC (Chan, Kamino, Binns, &
356 Ryan, 2011; Yeung et al., 2017, 2019).

357 A future question for investigation is how distinct types of representations from
358 the HC/MTL are integrated and prioritized to influence visual exploration, including
359 saccade timing and the ordering of gaze fixations to distinct targets. Alternatively, the
360 functionally distinct representations of the HC/MTL may not actually be integrated
361 within the oculomotor system; rather, each may guide visual exploration at different
362 moments, as time unfolds, as new information in the visual world is sampled, and as task
363 demands are enacted and ultimately met. In either case, multiple memory ‘signals’ are
364 evident within patterns of gaze fixations, including memory for single stimuli (Althoff &
365 Cohen, 1999; Smith & Squire, 2017), memory for the relative spatial (and non-spatial)
366 relations within (Yeung et al., 2017), and among objects (Hannula et al., 2007; Ryan et
367 al., 2000; Smith et al., 2006). Dissociations in these memory signals can be observed
368 within single gaze patterns in neuropsychological cases (Ryan & Cohen, 2003).

369 Memory may influence visual exploration through multiple routes. Responses
370 emanating from the HC/MTL that ultimately resulted in observable responses in the
371 ACC, dlPFC, and FEF traversed through multiple frontal, visual, and parietal nodes. Yet,
372 despite previous speculation for the involvement of area LIP in bridging the memory and
373 oculomotor systems (Meister & Buffalo, 2016), we found no evidence that the functional
374 dynamics operating within the constraints of the macaque connectome could support this
375 notion. Additionally, responses were observed *following* responses in the oculomotor
376 regions in regions 5, 7a, 23 (posterior cingulate), and V4, suggesting that they may

377 receive feedback from oculomotor regions, rather than serving as hubs that relay
378 information between the HC/MTL and oculomotor systems (Meister & Buffalo, 2016).
379 Area 5 has been implicated in mapping visual and body-centered frames of reference to
380 support visually-guided reaching (Seelke et al., 2012). Cells in area 7a are responsive to
381 eye position and saccades (Bremmer, Distler, & Hoffmann, 1997). The posterior
382 cingulate is part of the default mode network (Buckner, Andrews-Hanna, & Schacter,
383 2008; Vincent, Kahn, Van Essen, & Buckner, 2010) that is active during internally
384 directed cognitions. Neurons in V4 of the macaque are known to integrate visual and
385 oculomotor information, and show remapping of space towards that of a saccade target,
386 thereby bridging pre- and post-saccade spatial representations (Neupane, Guitton, &
387 Pack, 2016). Information from the HC/MTL may guide gaze selection and execution, and
388 the resulting spatial selections are continually updated throughout cortex to promote
389 ongoing exploration, and feed back into memory.

390 Here, we have discussed the interactions between the oculomotor and HC/MTL
391 systems within the broader context of ‘memory’, due to the wealth of data showing the
392 influence of memory on visual exploration, and the changes to visual exploration that
393 occur due to dysfunctions of memory, such as in amnesia. However, it is important to
394 note that the lasting representations that are mediated by the HC and MTL may be used in
395 service of cognitive operations beyond memory, to include perception, attention,
396 problem-solving, etc. (Cohen, 2015; Graham et al., 2010). Open questions remain
397 regarding when, during formation, the representations that are mediated by the HC/MTL
398 may be stable enough to influence active vision (Chau et al., 2011; Ryan, J.D., Cohen,
399 2004; Wynn, Ryan, & Moscovitch, 2019). Likewise, while the results from the model

400 here suggest that information emanating from the HC/MTL may influence activity in
401 oculomotor regions within the time of a gaze fixation, there may be differences in the
402 prioritization and timing by which, and even whether, the distinct HC/MTL
403 representations influence ongoing visual exploration depending on the task that is
404 presented to the viewer. Additional empirical evidence is needed to explore these issues.

405 It should be noted that future work also remains to examine signal propagation
406 across subcortical-cortical pathways. The present work did not include such pathways
407 because although CoCoMac does contain tracer data regarding the presence/absence of
408 thalamic connections, it does not provide connection weights, which are critical to
409 constraining the dynamics of the model. We have validated the tractography
410 methodologies used here for estimating cortical connection strengths against available
411 tracer data (Shen et al., 2019); however, validated methods for tractography in subcortical
412 regions in macaques do not currently exist. Nonetheless, a lack of subcortical
413 considerations does not diminish the evidence of the rapid communication between the
414 hippocampal and oculomotor systems via cortical routes, within the time window of a
415 typical gaze fixation.

416 There may be a number of different models that could have adequately addressed
417 our questions of interest here. Testing the performance of multiple models was beyond
418 the scope of the current investigation; rather, our goal was to provide insights to guide
419 theory and future empirical studies regarding how neural responses from the HC and
420 MTL may influence neural responses within regions of the oculomotor system. However,
421 it remains unclear which of our model parameters were necessary for our observations of
422 rapid signal propagation between the systems, limiting the biological interpretation

423 regarding relevant model parameters. In particular, although our model of choice
424 exhibits some of the emergent properties of spontaneous activity (i.e., resting-state
425 networks; Spiegler et al 2016), it remains to be seen how the presence of spontaneous
426 activity may affect signal propagation between the memory and oculomotor systems.
427 Future work examining the effects of model parameters (e.g., adding local noise to
428 generate spontaneous activity) or model type (e.g., comparison to diffusion models) is
429 still needed.

430 Neuropsychological, neuroimaging, and neurophysiological studies provide
431 important information regarding the representational content that is supported by distinct
432 regions of the brain. A network analysis approach can be instrumental in revealing the
433 broad dynamics by which such representational content governs behavior (Mišić, Goñi,
434 Betzel, Sporns, & McIntosh, 2014; Vlachos, Aertsen, & Kumar, 2012). Memory for
435 objects and their spatial relations provide rapid guidance for gaze prioritization and
436 accurate targeting for saccade. Disruptions to the HC/MTL result in an altered rate and
437 pattern of visual exploration (Hannula et al., 2007; Olsen et al., 2015), consistent with the
438 dynamics of our lesion models. The contribution of HC/MTL is not considered in most
439 models of oculomotor guidance and control (Hamker, 2006; Itti & Koch, 2000)
440 (Belopolsky, 2015). The present work therefore calls for a reconsideration of the neural
441 architecture that supports oculomotor guidance: the HC/MTL provides information to
442 guide visual exploration across space and time. Exciting empirical research shows that
443 functional activity and neural oscillations in the HC/MTL are modified through gaze
444 behavior (Hoffman et al., 2013; Killian et al., 2015; Leonard et al., 2015; Z.-X. Liu et al.,
445 2017). Empirical research is now needed to explore the predictions made by the model

446 here; namely, that the information and signal emanating from the HC/MTL directly
447 influences activity within the oculomotor system and can determine the targets of
448 saccades and foveation.

449

Methods

450 Large-scale network dynamics were simulated using TheVirtualBrain (TVB;
451 thevirtualbrain.org) software platform. The connectome-based model represented each
452 node of the network as a neural mass, all coupled together according to a structural
453 connectivity matrix which constrains the spatial and temporal interactions of the system
454 (Breakspear, 2017; Gustavo Deco, Jirsa, & McIntosh, 2011).

455 **Data**

456 A macaque network with 77 nodes of a single hemisphere was defined using the FV91
457 parcellation (Felleman & Van Essen, 1991) and its structural connectivity was queried
458 using the CoCoMac database of tract tracing studies (cocomac.g-node.org) (Bakker,
459 Wachtler, & Diesmann, 2012; Stephan et al., 2001). A review of the extant literature was
460 also performed to ensure the accuracy of anatomical pathways within and across MTL
461 and oculomotor systems (Shen et al., 2016). Self-connections were not included in the
462 connectivity matrix.

463 As CoCoMac only provides categorical weights for connections (i.e., weak,
464 moderate or strong), we ran probabilistic tractography on diffusion-weighted MR
465 imaging data from 10 male adult macaque monkeys (9 *Macaca mulatta*, 1 *Macaca*
466 *fascicularis*, age 5.8 ± 1.9 years) using the FV91 parcellation to estimate the fibre tract
467 capacities and tract lengths between regions. Image acquisition, preprocessing and
468 tractography procedures for this particular dataset have been previously described (Shen
469 et al., in press., 2019). Fiber tract capacity estimates (i.e., ‘weights’) between each ROI
470 pair were computed as the number of streamlines detected between them, normalized by
471 the total number of streamlines that were seeded. Connectivity weight estimates were

472 averaged across animals and applied to the tracer network, keeping only the connections
473 that appear in the tracer network. The resulting structural connectome was therefore
474 directed, as defined by the tracer data, and fully weighted, as estimated from
475 tractography. Tract lengths were also estimated using probabilistic tractography.

476 ***Node dynamics***

477 The dynamics of each node in the macaque network were given by the following generic
478 2-dimensional planar oscillator equations:

$$\begin{aligned}\dot{V}_i &= \tau(-fV_i^3 + eV_i^2 + gV_i + \alpha W_i + \xi \sum_{j=1}^N w_{ij}V_j(t - \Delta_{ij}) + \gamma I \\ 479 \dot{W}_i &= \tau^{-1}(cV_i^2 + bV_i - \beta W_i + a)\end{aligned}$$

480 where the fast variable V represents mean subthreshold neural activity (i.e., local field
481 potential) at node i , W is a slower timescale recovery variable; the differential time
482 constants of V vs. W are controlled by the time scale separation parameter τ .

483 The local coupling is scaled by g , while the global connectivity scaling factor ξ
484 acts on all incoming connections to each node, which are also weighted individually by
485 the connectivity weights matrix w (as described above). Exogenous stimulation currents
486 of interest in the present study enter the system through the input variable I . Transmission
487 between network nodes was constrained according to the conduction delays matrix $\Delta =$
488 L/v , where L is a matrix of inter-regional tract lengths and v is axonal conduction
489 velocity. As in Spiegler et al. (Spiegler et al., 2016), cubic, quadratic, and linear
490 coefficients for V and W were set such that the dynamics reduce to a classic Fitzhugh-
491 Nagumo system. Additional model parameters are listed in Supplementary Table 1.

492 Brain dynamics operate near criticality (Ghosh et al., 2008). In this state, the
493 nodes will naturally oscillate with constant magnitude. Setting the local parameter g so
494 that the system operates near criticality will allow the node to respond with a strong
495 amplitude, and a longer lasting oscillation. If far from the critical point, the amplitude
496 responses will be weak, slow, and fade quickly, and if spreading within a network, the
497 excitation will decay quickly as it travels. Given our network's structure, re-entry points
498 allow a node to be re-stimulated, making the excitation last longer and travel farther
499 through the network (Spiegler et al., 2016). Following Spiegler et al. (Spiegler et al.,
500 2016), we set the model parameter g was to -0.1 such that the system operated close to
501 the criticality by dampening local excitability. The system of delay-differential equations
502 shown above were solved numerically using a Heun Deterministic integration scheme,
503 with step size $dt=0.1$ ms.

504 ***Model tuning & stimulation parameters***

505 Simulations were run for 7000 ms, with stimulus onset occurring after 5000 ms to allow
506 for settling of the initial transient resulting from randomly specified initial conditions. A
507 single pulsed stimulus was used, with duration of 100 ms. To determine when nodes
508 became active following stimulation, we first computed the envelope of each node's
509 timeseries using a Hilbert transform. Each node's baseline activity was taken as the mean
510 amplitude of the envelope in the 200 ms prior to stimulation. The activation threshold of
511 each node was defined as the baseline activity ± 2 std and activation time of each node
512 was taken as the time its envelope amplitude surpassed the activation threshold.

513 To create a biologically realistic model, we stimulated V1 to find activation times
514 of the following areas: V1, V2, V3, V4, middle temporal and medial superior temporal.

515 Conduction velocity (v) was set to 3.0 m/s, and was within the range of conduction
516 velocities estimated in empirical studies of the macaque brain (Caminiti et al., 2013;
517 Girard, Hupé, & Bullier, 2001). Activation times following V1 stimulation were
518 compared to available empirical data (Schmolesky et al., 2017) and relevant model
519 parameters were adjusted accordingly. Global coupling ζ was set to 0.012 and stimulus
520 weighting (γ) was set to 0.03 so that simulated response times of visual areas following
521 V1 stimulation exhibited a pattern of activations resembling the known hierarchical
522 processing organization of the visual system (V2: 4 ms, V3: 4 ms, V4: 8 ms, MT: 9 ms,
523 MSTl: 37 ms, MSTd: 47 ms, FEF: 99 ms). Differences with empirical activation times
524 (e.g., MST and FEF) may be due 1) a lack of subcortical-cortical pathways in our model;
525 and 2) the use of the same conduction velocity for all connections.

526 The same model and stimulation parameters were then used to stimulate the
527 subregions of the hippocampus (CA3, CA1, subiculum, pre-subiculum, para-subiculum),
528 entorinal cortex (ERC), areas 35 and 36 of the perirhinal cortex (PRC), and areas TF
529 and TH of the parahippocampal cortex (PHC), to look for the activations of nodes whose
530 pathways may serve to mediate the exchange of information between the memory and
531 oculomotor systems (Shen et al., 2016). These nodes of interest included areas V2, V3,
532 V4, VP, MT, MSTd, PO, MIP, FST, 7a, granular insular cortex, anterior cingulate cortex,
533 46, 12, proisocortex, 5, 10, 11, orbitofrontal area 13, orbitofrontal area 14, 23, 25, 32, and
534 11. We further examined whether activation was observed in regions important for
535 oculomotor guidance, including the lateral intraparietal area (area LIP), the dorsolateral

536 prefrontal cortex (area 46), anterior cingulate cortex (area 24), and the frontal eye fields
537 (FEF).

538 Lesion models
539 Lesions of particular HC and MTL subregions were simulated by removing their afferent
540 and efferent connections to the rest of the network. Stimulations of other HC and MTL
541 sites were repeated on these lesion models.

542 Code availability
543 Simulations were carried out using the command-line version of TheVirtualBrain (TVB)
544 software package in Python, which is available for download at <http://thevirtualbrain.org>.
545 The customized TVB code for the simulations presented here is available upon request.

546

Acknowledgements

547 This work was supported by funding awarded to J.D.R. from the Natural Sciences and

548 Engineering Research Council of Canada (NSERC; 482639).

549

550

References

- 551 Althoff, R. R., & Cohen, N. J. (1999). Eye-movement-based memory effect: a
552 reprocessing effect in face perception. *Journal of Experimental Psychology.*
553 *Learning, Memory, and Cognition*. <https://doi.org/10.1037/0278-7393.25.4.997>
- 554 Alvarado, M. C., & Bachevalier, J. (2005). Comparison of the effects of damage to the
555 perirhinal and parahippocampal cortex on transverse patterning and location
556 memory in rhesus macaques. *The Journal of Neuroscience : The Official Journal of*
557 *the Society for Neuroscience*, 25(6), 1599–1609.
558 <https://doi.org/10.1523/JNEUROSCI.4457-04.2005>
- 559 Bakker, R., Wachtler, T., & Diesmann, M. (2012). CoCoMac 2.0 and the future of tract-
560 tracing databases. *Frontiers in Neuroinformatics*, 6(December), 30.
561 <https://doi.org/10.3389/fninf.2012.00030>
- 562 Belopolsky, A. V. (2015). Common Priority Map for Selection History, Reward and
563 Emotion in the Oculomotor System. *Perception*, 44(8–9), 920–933.
564 <https://doi.org/10.1177/0301006615596866>
- 565 Bisley, J. W., & Mirpour, K. (2019). The neural instantiation of a priority map. *Current*
566 *Opinion in Psychology*, 29, 108–112. <https://doi.org/10.1016/j.copsyc.2019.01.002>
- 567 Boccara, C. N., Sargolini, F., Thoresen, V. H., Solstad, T., Witter, M. P., Moser, E. I., &
568 Moser, M. B. (2010). Grid cells in pre-and parasubiculum. *Nature Neuroscience*.
569 <https://doi.org/10.1038/nn.2602>
- 570 Breakspear, M. (2017). Dynamic models of large-scale brain activity. *Nature*
571 *Neuroscience*, 20(3), 340–352. <https://doi.org/10.1038/nn.4497>
- 572 Bremmer, F., Distler, C., & Hoffmann, K. P. (1997). Eye position effects in monkey

- 573 cortex. II. Pursuit- and fixation-related activity in posterior parietal areas LIP and
- 574 7A. *Journal of Neurophysiology*. <https://doi.org/10.1152/jn.1997.77.2.962>
- 575 Buckmaster, C. A. (2004). Entorhinal Cortex Lesions Disrupt the Relational Organization
- 576 of Memory in Monkeys. *Journal of Neuroscience*.
- 577 <https://doi.org/10.1523/jneurosci.1532-04.2004>
- 578 Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default
- 579 network: Anatomy, function, and relevance to disease. *Annals of the New York*
- 580 *Academy of Sciences*. <https://doi.org/10.1196/annals.1440.011>
- 581 Buswell, G. T. (1935). *How people look at pictures: a study of the psychology and*
- 582 *perception in art. How people look at pictures: a study of the psychology and*
- 583 *perception in art.*
- 584 Caminiti, R., Carducci, F., Piervincenzi, C., Battaglia-Mayer, A., Confalone, G., Visco-
- 585 Comandini, F., ... Innocenti, G. M. (2013). Diameter, Length, Speed, and
- 586 Conduction Delay of Callosal Axons in Macaque Monkeys and Humans: Comparing
- 587 Data from Histology and Magnetic Resonance Imaging Diffusion Tractography.
- 588 *Journal of Neuroscience*, 33(36), 14501–14511.
- 589 <https://doi.org/10.1523/JNEUROSCI.0761-13.2013>
- 590 Chan, J. P. K., Kamino, D., Binns, M. A., & Ryan, J. D. (2011). Can changes in eye
- 591 movement scanning alter the age-related deficit in recognition memory? *Frontiers in*
- 592 *Psychology*, 2(MAY), 1–11. <https://doi.org/10.3389/fpsyg.2011.00092>
- 593 Chau, V., Murphy, E. F., Rosenbaum, R. S., Ryan, J. D., & Hoffman, K. L. (2011). A
- 594 flicker change detection task reveals object-in-scene memory across species.
- 595 *Frontiers in Behavioral Neuroscience*, 5, 58.

- 596 https://doi.org/10.3389/fnbeh.2011.00058
- 597 Cohen, N. J. (2015). Navigating life. *Hippocampus*, 25(6), 704/708.
- 598 https://doi.org/10.1002/hipo.22443.
- 599 Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G. ., Mantini, D., & Corbetta, M.
- 600 (2014). How local excitation-inhibition ratio impacts the whole brain dynamics. *The*
601 *Journal of Neuroscience*, 34(23), 7886–7898.
- 602 https://doi.org/10.1523/JNEUROSCI.5068-13.2014
- 603 Deco, Gustavo, Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the
604 dynamical organization of resting-state activity in the brain. *Nature Reviews.*
605 *Neuroscience*, 12(1), 43–56. https://doi.org/10.1038/nrn2961
- 606 Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The Medial Temporal Lobe
607 and Recognition Memory. *Annual Review of Neuroscience*.
- 608 https://doi.org/10.1146/annurev.neuro.30.051606.094328
- 609 Erez, J., Cusack, R., Kendall, W., & Barense, M. D. (2016). Conjunctive Coding of
610 Complex Object Features. *Cerebral Cortex*. https://doi.org/10.1093/cercor/bhv081
- 611 Fagan, J. F. (1970). Memory in the infant. *Journal of Experimental Child Psychology*,
612 9(2), 217–226. https://doi.org/10.1016/0022-0965(70)90087-1
- 613 Fantz, R. L. (1964). Visual experience in infants: Decreased attention to familiar patterns
614 relative to novel ones. *Science (New York, N.Y.)*, 146(3644), 668–670.
- 615 https://doi.org/10.1126/SCIENCE.146.3644.668
- 616 Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the
617 primate cerebral cortex. *Cerebral Cortex*, 1, 1–47.
- 618 Ghosh, A., Rho, Y., McIntosh, A. R., Kötter, R., & Jirsa, V. K. (2008). Noise during rest

- 619 enables the exploration of the brain's dynamic repertoire. *PLoS Computational
620 Biology*, 4(10). <https://doi.org/10.1371/journal.pcbi.1000196>
- 621 Girard, P., Hupé, J. M., & Bullier, J. (2001). Feedforward and Feedback Connections
622 Between Areas V1 and V2 of the Monkey Have Similar Rapid Conduction
623 Velocities. *Journal of Neurophysiology*, 85(3), 1328–1331.
624 <https://doi.org/10.1152/jn.2001.85.3.1328>
- 625 Graham, K. S., Barense, M. D., & Lee, A. C. H. (2010). Going beyond LTM in the MTL:
626 A synthesis of neuropsychological and neuroimaging findings on the role of the
627 medial temporal lobe in memory and perception. *Neuropsychologia*, 48(4), 831–
628 853. <https://doi.org/10.1016/j.neuropsychologia.2010.01.001>
- 629 Hamker, F. H. (2006). Modeling feature-based attention as an active top-down inference
630 process. *BioSystems*, 86(1–3), 91–99.
631 <https://doi.org/10.1016/j.biosystems.2006.03.010>
- 632 Hannula, D. E., Althoff, R. R., Warren, D. E., Riggs, L., Cohen, N. J., & Ryan, J. D.
633 (2010). Worth a glance: using eye movements to investigate the cognitive
634 neuroscience of memory. *Frontiers in Human Neuroscience*, 4, 166.
635 <https://doi.org/10.3389/fnhum.2010.00166>
- 636 Hannula, D. E., & Ranganath, C. (2009). The eyes have it: hippocampal activity predicts
637 expression of memory in eye movements. *Neuron*, 63(5), 592–599.
638 <https://doi.org/10.1016/j.neuron.2009.08.025>
- 639 Hannula, D. E., Ryan, J. D., Tranel, D., & Cohen, N. J. (2007). Rapid onset relational
640 memory effects are evident in eye movement behavior, but not in hippocampal
641 amnesia. *Journal of Cognitive Neuroscience*, 19(10), 1690–1705.

- 642 <https://doi.org/10.1162/jocn.2007.19.10.1690>
- 643 Henderson, J. M., Nuthmann, A., & Luke, S. G. (2013). Eye movement control during
644 scene viewing: Immediate effects of scene luminance on fixation durations. *Journal
645 of Experimental Psychology: Human Perception and Performance*.
- 646 <https://doi.org/10.1037/a0031224>
- 647 Hoffman, K. L., Dragan, M. C., Leonard, T. K., Micheli, C., Montefusco-Siegmund, R.,
648 & Valiante, T. A. (2013). Saccades during visual exploration align hippocampal 3-8
649 Hz rhythms in human and non-human primates. *Frontiers in Systems Neuroscience*,
650 7, 43. <https://doi.org/10.3389/fnsys.2013.00043>
- 651 Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert
652 shifts of visual attention. *Vision Research*, 40(10–12), 1489–1506.
653 [https://doi.org/10.1016/S0042-6989\(99\)00163-7](https://doi.org/10.1016/S0042-6989(99)00163-7)
- 654 Johnston, K., & Everling, S. (2008). Neurophysiology and neuroanatomy of reflexive and
655 voluntary saccades in non-human primates. *Brain and Cognition*, 68(3), 271–283.
656 <https://doi.org/10.1016/j.bandc.2008.08.017>
- 657 Killian, N. J., Jutras, M. J., & Buffalo, E. A. (2012). A map of visual space in the primate
658 entorhinal cortex. *Nature*, 491(7426), 761–764. <https://doi.org/10.1038/nature11587>
- 659 Killian, N. J., Potter, S. M., & Buffalo, E. A. (2015). Saccade direction encoding in the
660 primate entorhinal cortex during visual exploration. *Proceedings of the National
661 Academy of Sciences of the United States of America*, 112(51), 15743–15748.
662 <https://doi.org/10.1073/pnas.1417059112>
- 663 Leonard, T. K., Mikkila, J. M., Eskandar, E. N., Gerrard, J. L., Kaping, D., Patel, S. R.,
664 ... Hoffman, K. L. (2015). Sharp Wave Ripples during Visual Exploration in the

- 665 Primate Hippocampus. *The Journal of Neuroscience : The Official Journal of the*
666 *Society for Neuroscience*, 35(44), 14771–14782.
- 667 <https://doi.org/10.1523/JNEUROSCI.0864-15.2015>
- 668 Liu, Z.-X., Shen, K., Olsen, R. K., & Ryan, J. D. (2017). Visual Sampling Predicts
669 Hippocampal Activity. *The Journal of Neuroscience*, 37(3), 599–609.
670 <https://doi.org/10.1523/JNEUROSCI.2610-16.2017>
- 671 Liu, Z. X., Shen, K., Olsen, R. K., & Ryan, J. D. (2018). Age-related changes in the
672 relationship between visual exploration and hippocampal activity.
673 *Neuropsychologia*, 119(July), 81–91.
674 <https://doi.org/10.1016/j.neuropsychologia.2018.07.032>
- 675 Meister, M. L. R., & Buffalo, E. A. (2016). Getting directions from the hippocampus:
676 The neural connection between looking and memory. *Neurobiology of Learning and*
677 *Memory*, 134(December), 135–144. <https://doi.org/10.1016/j.nlm.2015.12.004>
- 678 Micic, D., Ehrlichman, H., & Chen, R. (2010). Why do we move our eyes while trying to
679 remember? The relationship between non-visual gaze patterns and memory. *Brain*
680 *and Cognition*, 74(3), 210–224. <https://doi.org/10.1016/j.bandc.2010.07.014>
- 681 Mišić, B., Goñi, J., Betzel, R. F., Sporns, O., & McIntosh, A. R. (2014). A network
682 convergence zone in the hippocampus. *PLoS Computational Biology*, 10(12),
683 e1003982. <https://doi.org/10.1371/journal.pcbi.1003982>
- 684 Neupane, S., Guitton, D., & Pack, C. C. (2016). Two distinct types of remapping in
685 primate cortical area V4. *Nature Communications*.
686 <https://doi.org/10.1038/ncomms10402>
- 687 Norman, K. A., & O'Reilly, R. C. (2003). Modeling Hippocampal and Neocortical

- 688 Contributions to Recognition Memory: A Complementary-Learning-Systems
689 Approach. *Psychological Review*. <https://doi.org/10.1037/0033-295X.110.4.611>
- 690 Olsen, R. K., Lee, Y., Kube, J., Rosenbaum, R. S., Grady, C. L., Moscovitch, M., &
691 Ryan, J. D. (2015). The role of relational binding in item memory: evidence from
692 face recognition in a case of developmental amnesia. *The Journal of Neuroscience* :
693 *The Official Journal of the Society for Neuroscience*, 35(13), 5342–5350.
694 <https://doi.org/10.1523/JNEUROSCI.3987-14.2015>
- 695 Parr, T., & Friston, K. J. (2017). The active construction of the visual world.
696 *Neuropsychologia*, 104, 92–101.
697 <https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2017.08.003>
- 698 Peyrache, A., Schieferstein, N., & Buzsáki, G. (2017). Transformation of the head-
699 direction signal into a spatial code. *Nature Communications*.
700 <https://doi.org/10.1038/s41467-017-01908-3>
- 701 Robertson, R. G., Rolls, E. T., Georges-François, P., & Panzeri, S. (1999). Head direction
702 cells in the primate pre-subiculum. *Hippocampus*.
703 [https://doi.org/10.1002/\(SICI\)1098-1063\(1999\)9:3<206::AID-HIPO2>3.0.CO;2-H](https://doi.org/10.1002/(SICI)1098-1063(1999)9:3<206::AID-HIPO2>3.0.CO;2-H)
- 704 Rolls, E. T. (2013). The mechanisms for pattern completion and pattern separation in the
705 hippocampus. *Frontiers in Systems Neuroscience*.
706 <https://doi.org/10.3389/fnsys.2013.00074>
- 707 Ryals, A. J., Wang, J. X., Polnaszek, K. L., & Voss, J. L. (2015). Hippocampal
708 contribution to implicit configuration memory expressed via eye movements during
709 scene exploration. *Hippocampus*, 25(9), 1028–1041.
710 <https://doi.org/10.1002/hipo.22425>

- 711 Ryan, J.D., Cohen, N. J. (2004). The nature of change detection and online
712 representations of scenes. *Journal of Experimental Psychology: Human Perception
713 and Performance*, 30(5), 988–1015. <https://doi.org/15462635>
- 714 Ryan, J. D., Althoff, R. R., Whitlow, S., & Cohen, N. J. (2000). Amnesia is a deficit in
715 relational memory. *Psychological Science*, 11(6), 454–461.
716 <https://doi.org/10.1111/1467-9280.00288>
- 717 Ryan, J. D., & Cohen, N. J. (2003). Evaluating the neuropsychological dissociation
718 evidence for multiple memory systems. *Cognitive, Affective and Behavioral
719 Neuroscience*, 3(3), 168–185. <https://doi.org/10.3758/CABN.3.3.168>
- 720 Ryan, J. D., Leung, G., Turk-Browne, N. B., & Hasher, L. (2007). Assessment of Age-
721 Related Changes in Inhibition and Binding Using Eye Movement Monitoring.
722 *Psychology and Aging*, 22(2), 239–250. <https://doi.org/10.1037/0882-7974.22.2.239>
- 723 Sato, N., & Nakamura, K. (2006). Visual Response Properties of Neurons in the
724 Parahippocampal Cortex of Monkeys. *Journal of Neurophysiology*.
725 <https://doi.org/10.1152/jn.01089.2002>
- 726 Schmolesky, M. T., Wang, Y., Hanes, D. P., Thompson, K. G., Leutgeb, S., Schall, J. D.,
727 & Leventhal, A. G. (2017). Signal Timing Across the Macaque Visual System.
728 *Journal of Neurophysiology*. <https://doi.org/10.1152/jn.1998.79.6.3272>
- 729 Seelke, A. M. H., Padberg, J. J., Disbrow, E., Purnell, S. M., Recanzone, G., & Krubitzer,
730 L. (2012). Topographic maps within brodmann's area 5 of macaque monkeys.
731 *Cerebral Cortex*. <https://doi.org/10.1093/cercor/bhr257>
- 732 Shen, K., Bezgin, G., Schirner, M., Ritter, P., Everling, S., & McIntosh, A. R. (n.d.). A
733 macaque connectome for large-scale network stimulations in TheVirtualBrain.

- 734 *Scientific Data.*
- 735 Shen, K., Bezgin, G., Selvam, R., McIntosh, A. R., & Ryan, J. D. (2016). An Anatomical
736 Interface between Memory and Oculomotor Systems. *Journal of Cognitive
737 Neuroscience*, 28(11), 1772–1783. https://doi.org/10.1162/jocn_a_01007
- 738 Shen, K., Goulas, A., Grayson, D. S., Eusebio, J., Gati, J. S., Menon, R. S., ... Everling,
739 S. (2019). Exploring the limits of network topology estimation using diffusion-based
740 tractography and tracer studies in the macaque cortex. *NeuroImage*, 191, 81–92.
741 <https://doi.org/10.1016/j.neuroimage.2019.02.018>
- 742 Smith, C. N., Hopkins, R. O., & Squire, L. R. (2006). Experience-dependent eye
743 movements, awareness, and hippocampus-dependent memory. *The Journal of
744 Neuroscience : The Official Journal of the Society for Neuroscience*, 26(44), 11304–
745 11312. <https://doi.org/10.1523/JNEUROSCI.3071-06.2006>
- 746 Smith, C. N., & Squire, L. R. (2017). When eye movements express memory for old and
747 new scenes in the absence of awareness and independent of hippocampus. *Learning
748 and Memory*. <https://doi.org/10.1101/lm.043851.116>
- 749 Sobotka, S., Nowicka, A., & Ringo, J. L. (1997). Activity Linked to Externally Cued
750 Saccades in Single Units Recorded From Hippocampal, Parahippocampal, and
751 Inferotemporal Areas of Macaques. *J Neurophysiol*, 78(4), 2156–2163.
- 752 Spiegler, A., Hansen, E. C. A., Bernard, C., McIntosh, A. R., & Jirsa, V. K. (2016).
753 Selective Activation of Resting-State Networks following Focal Stimulation in a
754 Connectome-Based Network Model of the Human Brain. *Eneuro*, 3(5).
- 755 Stephan, K. E., Kamper, L., Bozkurt, A., Burns, G., Young, M., & Kötter, R. (2001).
756 Advanced database methodology for the Collation of Connectivity data on the

- 757 Macaque brain (CoCoMac). *Philosophical Transactions of the Royal Society of*
758 *London. Series B, Biological Sciences*, 356(1412), 1159–1186.
- 759 <https://doi.org/10.1098/rstb.2001.0908>
- 760 Tang, Q., Burgalossi, A., Ebbesen, C. L., Sanguinetti-Scheck, J. I., Schmidt, H., Tukker,
761 J. J., ... Brecht, M. (2016). Functional Architecture of the Rat Parasubiculum.
762 *Journal of Neuroscience*. <https://doi.org/10.1523/JNEUROSCI.3749-15.2016>
- 763 Vincent, J. L., Kahn, I., Van Essen, D. C., & Buckner, R. L. (2010). Functional
764 Connectivity of the Macaque Posterior Parahippocampal Cortex. *Journal of*
765 *Neurophysiology*. <https://doi.org/10.1152/jn.00546.2009>
- 766 Vlachos, I., Aertsen, A., & Kumar, A. (2012). Beyond statistical significance:
767 Implications of network structure on neuronal activity. *PLoS Computational*
768 *Biology*, 8(1). <https://doi.org/10.1371/journal.pcbi.1002311>
- 769 Warren, D. E., Duff, M. C., Tranel, D., & Cohen, N. J. (2010). Medial temporal lobe
770 damage impairs representation of simple stimuli. *Frontiers in Human Neuroscience*,
771 4, 35. <https://doi.org/10.3389/fnhum.2010.00035>
- 772 Wynn, J. S., Ryan, J. D., & Moscovitch, M. (2019). Effects of prior knowledge on active
773 vision and memory in younger and older adults. *Journal of Experimental*
774 *Psychology: General*. <https://doi.org/10.1037/xge0000657>
- 775 Yassa, M. A., & Stark, C. E. L. (2011). Pattern separation in the hippocampus. *Trends in*
776 *Neurosciences*. <https://doi.org/10.1016/j.tins.2011.06.006>
- 777 Yeung, L.-K., Olsen, R. K., Bild-Enkin, H. E. P., D'Angelo, M. C., Kacollja, A.,
778 McQuiggan, D. A., ... Barense, M. D. (2017). Anterolateral Entorhinal Cortex
779 Volume Predicted by Altered Intra-Item Configural Processing. *The Journal of*

- 780 *Neuroscience*. <https://doi.org/10.1523/JNEUROSCI.3664-16.2017>
- 781 Yeung, L.-K., Olsen, R. K., Hong, B., Mihajlovic, V., D'Angelo, M. C., Kacollja, A., ...
- 782 Barense, M. D. (2019). Object-in-place Memory Predicted by Anterolateral
- 783 Entorhinal Cortex and Parahippocampal Cortex Volume in Older Adults. *Journal of*
- 784 *Cognitive Neuroscience*, 31(5), 711–729. https://doi.org/10.1162/jocn_a_01385
- 785

786 **Table 1. Simulated activation times (ms) following stimulation of hippocampal**
 787 **subfields and medial temporal lobe regions.** Only nodes of interest (HC/MTL regions,
 788 oculomotor regions, and regions that are involved in the shortest paths between HC/MTL
 789 and oculomotor nodes) are shown. S= subiculum, PrS = pre-subiculum, PaS=para-
 790 subiculum; ERC = entorhinal cortex; 35/36 = perirhinal cortex; TF/TH =
 791 parahippocampal cortex. 0 = stimulation onset; N/A = no response observed. For a
 792 comprehensive set of activation times for all nodes in the network, see Supplementary
 793 Table 2.

Observation Node	Stimulated Node									
	CA3	CA1	S	PrS	PaS	ERC	35	36	TF	TH
CA3	0	48	31	37	27	0	21	20	48	1
CA1	137	0	0	0	46	0	8	2	0	0
S	115	17	0	26	37	0	16	10	0	0
PrS	84	23	119	0	25	6	13	11	0	0
PaS	350	17	96	28	0	50	15	0	0	32
ERC	169	40	0	4	0	0	0	0	7	13
35	567	6	21	49	50	0	0	0	9	19
36	317	1	14	10	6	0	0	0	6	14
TF	137	0	20	0	44	11	12	6	0	0
TH	7	0	29	0	0	20	29	18	0	0
5	N/A	322	50	92	555	249	129	141	69	64
10	N/A	59	24	83	106	12	10	12	81	20
11	N/A	12	68	74	166	10	7	8	38	48
12	N/A	96	186	93	285	15	9	10	24	34
13	N/A	10	18	62	132	8	7	11	19	19
14	N/A	9	27	57	76	9	9	11	13	20
23	N/A	165	384	12	231	43	37	52	24	13
25	435	6	19	35	57	6	11	8	9	12
32	N/A	38	63	88	89	10	13	14	14	17
Ig	N/A	11	63	75	189	11	4	6	21	13
Pro	N/A	52	96	12	48	3	1	4	29	20
7a	N/A	381	202	336	795	256	53	52	103	59
FST	186	47	147	52	79	6	1	3	0	6
MIP	N/A	237	523	215	296	405	113	126	70	48
PO	656	208	593	190	248	355	99	107	60	39
MSTd	N/A	286	664	287	494	33	23	23	94	53
MT	N/A	260	857	272	483	189	107	23	36	83
V4	N/A	76	353	103	244	280	147	142	5	15

VP	753	55	266	86	259	223	98	101	2	41
V3	N/A	260	841	257	409	398	154	163	68	68
V2	215	56	274	48	66	139	16	17	6	0
24	N/A	107	250	55	238	24	22	25	22	16
46	N/A	84	135	15	187	12	9	11	17	23
FEF	N/A	217	452	68	500	79	19	15	34	71
LIP	N/A	535	N/A	445	N/A	561	233	230	176	144

794