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Abstract.  

Linear registration to stereotaxic space is a common first step in many automated             
image-processing tools for analysis of human brain MRI scans. This step is crucial for the               
success of the following image-processing steps. Several well-established algorithms are          
commonly used in the field of neuroimaging for this task, but none of them has a 100% success                  
rate. Manual assessment of the registration is commonly used as part of quality control.  
We propose a completely automatic quality control method based on deep learning that replaces              
human rater and accurately performs quality control assessment for stereotaxic registration of            
T1w brain scans. 
In a recently published study from our group comparing linear registration methods, we used a               
database of 9693 MRI scans from several publically available datasets and applied five linear              
registration tools. In this study, the resulting images that were assessed and labeled by a human                
rater are used to train a deep neural network to detect cases when registration failed. 
Our method was able to achieve 88% accuracy and 11% false positive rate in detecting scans that                 
should pass quality control, better than a manual QC rater. 

Keywords. ​ Deep learning, linear registration, quality control 

1 Introduction 

Many automatic image-processing techniques for processing human brain MRI scans include linear            
registration to stereotaxic space as one of the first steps in the pipeline [1, 2, 3]. Often, a human rater                    
must manually verify the quality of this step by looking at a series of images that show overlap between                   
the registered scan and some kind of reference template in order to identify datasets that failed                
registration. Such datasets may be subject to subsequent manual registration or may be discarded from               
adfa, p. 1, 2011. 
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analysis. For example, Ashburner et al. [4] explicitly states that quality control should be maintained as                
high as possible. Depending on the dataset and registration algorithm used, the success rate can vary                
from 100% down to 60% [5]. In particular, MRI scans of subjects with strong atrophy due to                 
neurodegenerative diseases show lower rates of success when using registration tools that were             
originally developed and tested on MRI scans of young healthy subjects. Also, our experiments show               
that strong atrophy makes the task of manual quality control even more challenging when the reference                
template is representative of a healthy population. 

As part of recently published work [20], to compare reliability of linear registration we performed an                
experiment where a large number of scans (9693 scans) from the Human Connectome Project (HCP)               
[14], the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [12], the Pre-symptomatic evaluation of            
experimental or novel treatments for Alzheimer’s Disease (PreventAD) and the Parkinson’s           
Progression Marker Initiative (PPMI) [13] databases were linearly registered to the MNI-ICBM152            
2009c space using five publically available linear registration methods. All registrations were then             
assessed and labeled by a human rater for quality. Since manual quality control of registrations is time                 
consuming (~30 hours for 9693 scans) and prone to inter-rater and intra-rater errors (intra-rater Dice               
index of 0.96), an automatic method that would be able to assess quality of registrations would be                 
useful for the community. We attempted to replicate the behavior of a human rater in this task by                  
training deep neural network (DNN) to determine quality of registrations by analyzing series of 2D               
control images. 

Following the logic from [4], we determined that it is more important to ensure the quality of the                  
images that were accepted by the rater, rather then overall accuracy of the classification, thus we                
decided to minimize False Positive Rate (FPR) metric (reflecting the proportion of incorrect             
registrations that were passed by the rater).  

In order to leverage existing network design and speed training of the DNN, we adapted a pre-trained                 
network that behaved well on image classification tasks [5]. In particular, we performed experiments              
using modified Resnet-18 (r18) [7, 11] and batch-normalized Network-In-Network (nin) [6, 10]. In our              
experiments, the resnet-18 was able to achieve performance similar to that of the human rater (in terms                 
of accuracy) after 1500 iterations. 

2 Methods and materials 

2.1 Materials 

We used T1w MRI scans from four different datasets (9693 scans in total): 

● ADNI: ​The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [12], is a multi-center and            
multi-scanner study with the aim of defining the progression of Alzheimer’s disease (AD). Subjects              
are normal controls, individuals with mild cognitive impairment or AD aged 55 years or older. Data                
was acquired using 1.5T and 3T scanners of different models of GE Medical Systems, Philips               
Medical systems, and SIEMENS at over 59 acquisition sites. We used 3489 scans from 1.5T               
scanners and 3056 from 3.0T. 

● PPMI​: The Parkinson Progression Marker Initiative (PPMI) [13] is an observational, multi-center            
and multi-scanner longitudinal study designed to identify PD biomarkers. Subjects are normal            
controls or de Novo Parkinson’s patients aged 30 years or older. Data was acquired using 1.5T and                 
3T scanners of different models of GE Medical Systems, Philips Medical systems, and SIEMENS at               
over 33 sites in 11 countries. We used 222 scans from 1.5T scanners and 778 from 3T. 
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● HCP​: The Human Connectome Project (HCP) [14] is an effort to characterize brain connectivity and               
function and their variability in young healthy adults aged between 25 and 30 years. We used 897                 
scans. 

● PREVENT-AD​: The PREVENT-AD (Pre-symptomatic Evaluation of Novel or Experimental         
Treatments for Alzheimer’s Disease, http://www.prevent-alzheimer.ca) program [15] follows healthy         
individuals age 55 or older with a parental history of AD dementia. We used 1251 scans. 

2.2 Automatic registration methods 

We used the registration techniques briefly described below; a subset of the techniques used in [20].                
For a full description of the methods see [20]. All available scans were registered to the stereotaxic                 
space defined by MNI-ICBM152-2009c template (MNI template) [8]. All methods with the exception             
of Elastix used 9-parameters linear registration. 

● MRITOTAL: a hierarchical multi-scale 3D registration technique for the purpose of aligning a             
given MRI volume to an average MRI template aligned with the Talairach stereotaxic coordinate              
system [16]. We have tested two configurations of this method: “standard” and “icbm”. The source               
code is available at ​https://github.com/BIC-MNI/mni_autoreg​.  

● BestLinReg: a 5-stage hierarchical technique similar to MRITOTAL that is part of the MINC tools               
and is based on a hierarchical non-linear registration strategy developed by Robbins et al. [17]. We                
tested two versions: one where cross-correlation coefficient is used as a cost function and another               
one using normalized mutual information. The source code is avaliable at           
https://github.com/BIC-MNI/EZminc/blob/ITK4/scripts/bestlinreg_s​.  

● Revised BestLinReg: ​This is the same as BestLinReg from above with different set of parameters,               
and normalized mutual information cost function. The source code is available at            
https://github.com/BIC-MNI/EZminc/blob/ITK4/scripts/bestlinreg_claude.pl​.  

● Elastix​: an intensity-based registration tool [19]. Elastix has a parametric and modular framework,             
where the user can configure different components of the registration. We used Mattes mutual              
information, adaptive stochastic gradient descent optimizer with Similarity Transform with 7           
parameters. 
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Figure 1.​ QC image for the human rater. Grayscale - one example subject’s MRI scan after registration in stereotaxic 

space, red line - outline of the MNI-ICBM152-2009c brain template.  
 

2.3 Manual quality control method 

Our registration experiments produced 57848 linear registrations in total (some registration           
experiments crashed without producing usable results). Resulting transformations were stored as affine            
4x4 matrices and applied to the corresponding scans to resample them on a 1mm​3 voxel grid in                 
stereotaxic space. Then, a series of slices were extracted, and the outline of the MNI template brain was                  
overlaid on top to create an image that was given to the human rater to assess registration performance                  
(See Figure 1). 

Out of 57848 examples, 46231 ( ​79.9​%) were accepted (passed) and 11617 ( ​20.0​%) rejected (failed).              
To test reproducibility of the human rater results, a random subset consisting of 1000 examples were                
re-evaluated by the same rater, resulting in intra-rater dice kappa similarity of ​0.96​, accuracy of ​93%                
and false-positive rate of ​17.3​%. 

2.4 Automatic registration quality control with deep neural network 

We modified an existing deep neural network design for this task, reusing weights trained on the                
ImageNet database [9,10,11]. Instead of feeding a single image with different views showing various              
slices of the registered image as in the human quality control process, we used a stack of images that                   
were created in the following fashion: (i) 3D MRI scan in the native space, without any preprocessing,                 
was resampled to the MNI template space using the linear transformation matrix provided by              
registration algorithms; (ii) the whole range of the image intensities of the input file was mapped to 0-1                  
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range; (iii) one Axial, one Sagittal and one Coronal slice was extracted from the middle of the                 
registered 3D volume; (iv) the 2D images of slices were resampled to have 256 pixels in the longest                  
dimension and then cropped around the central area to the 224x224 pixels.  
Thus for each dataset, this image stack is used as input features for the DNN. Figure 2a shows an                   
example of images corresponding to a scan that passed QC and figure 2b shows one that failed QC.                  
Figure 2c shows a reference image corresponding to MNI  template. 

In order to transfer domain knowledge, we modified a DNN trained on the ImageNet dataset (DNN0)                
in the following fashion: (i) the input layer was altered to deal with grayscale images by collapsing the                  
weight tensor along the dimension corresponding to input RGB dimension; (ii) the last few layers               
corresponding to high level features used for ImageNet classification were removed; (iii) each input              
feature from the image stack was processed sequentially using the same DNN0 layer; (iv) outputs of                
DNN0 layer corresponding to the three different images from the stack were concatenated and used as                
inputs to the last several layers, replicating the behavior of the layers originally removed from DNN0;                
(v) the final layer was modified to produce only two labels - pass or fail.  

We also created an alternative scheme, where reference images extracted from MNI template were              
used as an additional set of features in the image stack. In this case, DNN0 was modified to accept 6                    
grayscale feature maps – combining those that were subject-specific, and the others that were fixed for                
all subjects (see Figure 2c). A simplified schematic representation design of the new DNN is shown in                 
Figure 3. 

A cross-entropy loss function was used as objective function to train the DNN. The ADAM               
optimizer was used to train the network.  

 

Figure 2.​ Images generated for automated QC script.  
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Figure 3.​ Overall DNN design, dotted nodes represent optional components; BN - batch normalization; ReLU - rectified 

linear unit 

2.5 Network training 

We used an 8-fold cross-validation scheme, where all original datasets (9693) are split into 8 equal                
partitions, at each round of cross-validation one corresponding registration results of each partition is              
used as “testing” dataset and the rest of data is used as “training” dataset. A small subset of “training”                   
dataset (200 samples) was excluded from training and used for on-line validation for early stopping               
(“validation” dataset). The remaining training datasets were split into “pass” and “fail” subsets. At each               
iteration of the training, 32 samples from each subset were used to create a minibatch with balanced                 
mix of pass/fail samples that was passed through DNN for training using the ADAM optimizer, two                
iterations of training were performed on each minibatch. Every 500 mini-batches, all “training”             
samples were re-shuffled. 

An initial experiment was run with 20,000 mini-batches using one fold out of 8 to determine the                 
optimal number of iterations based on the change of the false positive rate (FPR) of the “validation”                 
dataset. See figure 4 for the progress of optimizer. 
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Figure. 4.​ Progressions of DNN training for ResNet-18 without reference, values are smoothed with moving average with 

bandwidth of 200. Over-fitting is visible after approximately 1500 minibatches.  

2.6 Silver standard and distance estimation 

To characterize misregistration quantitatively, we created a “silver standard” transformation for each            
dataset, by averaging all transformations that passed manual QC, and then calculating the distance              
between each transformation and the “silver standard”, as defined in eq (1), where ROI ​icbm is the                
bounding box of the brain ROI of the ICBM 152 2009c template [8]. 

, where  (1)ist(X , )d a Xb = X|| a
−1

° Xb
 |
| ax( x (x) ), x OIX| | = m | − X |  ∈ R icbm  

3 Results 

Following the initial experiment with 20,000 mini-batches using one out of 8 folds, we observed               
over-fitting after approximately 1500 mini-batches, so the rest of experiments were conducted with             
1500 minibatches. 
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Figure 5.​ Performance of four tested combinations of methods: acc - accuracy; auc - area under the curve from ROC 

analysis; tpr - true positive rate; fpr - false positive rate. 
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Figure 6.​ Receiver operating characteristic curves of each method, using softmax output of the final stage of the neural net. 
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Figure 7.​ Performance of the methods, after thresholding softmax output at 0.95, instead of 0.5 to determine the pass/fail.  
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Figure 8.​ Distance from the “silver standard” in mm, for the manual QC results, and for the outcome of Resnet-18 method 
cross-validation. 

Two types of pre-trained DNN were evaluated: Network-in-Network [6] and ResNet-18 [7, 11]. Two              
training schemes were tested - using only QC images (No Reference) and combining QC images with                
the images of the reference dataset: MNI template (With Reference). Resulting accuracy (acc),             
false-positive-rate (fpr), true-positive-rate (tpr) and area under receiver operating characteristic curve           
(auc) [21] are shown on Figure 5, the receiver operating characteristic curves with respect to the output                 
of softmax layer are shown on Figure 6. The Resnet-18 DNN0 with reference images showed the best                 
results in terms of false positive rate ( ​11%​) at the expense of the slight decrease of the overall accuracy                   
( ​88%​). Overall, all results are consistent with the performance of human rater (test-retest accuracy of               
93%​ and false-positive rate of ​17%​). 

If instead of using a threshold of 0.5 for the soft-max layer, a threshold of 0.95 is used to determine                    
the samples that pass QC, the overall accuracy of all method would decrease (see Figure 7), and in this                   
case, resnet-18 with reference would achieve a false-positive rate of 0.045 and the true-positive-rate              
decreases  to 0.66. 

The distribution of the distances between a “silver standard” transformations and transformations            
estimated by each method is shown on Figure 8, the behaviour of the distances depending on the                 
automated QC outcome is also shown on Figure 8.  
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4 Conclusions 

We have demonstrated that it is possible to automate the task of manual quality control using a deep                  
learning network with results comparable to the human rater.  

This technique will save significant amount of human effort in processing large imaging databases              
and will increase reproducibility of results. And could be used for automatic testing of the robustness of                 
image registration methods.  

In addition, removing human effort from the registration QC process enables the users to rerun the                
registration methods with different settings and parameters to ensure a high acceptance rate for their               
cohort of interest. In other words, the proposed QC procedure can be incorporated into the process of                 
the registration to enforce the method to repeat registration with different parameter settings until an               
accepted registration is obtained. A false negative (failing an acceptable registration) in this case would               
only increase registration time by forcing the method to repeat the process. Therefore, a lower tpr at the                  
expense of a low fpr would be tolerable and lead to the overall improvement of the registration                 
performance. 

Unfortunately, the performance of the automated QC method is limited by the performance of the               
manual rater, that was available to perform training. To improve this method, it is possible to improve                 
manual quality control and create better a “silver standard” as a reference. It would allow to simulate                 
“failures” of registration and train network to clearly detect when mis-registration exceeds some pre-set              
threshold, but this approach is not necessary going to produce kind of errors that would naturally                
happen in considered registration techniques. 

4.1 Implementation 

Original implementation was done using torch library [22], we have re-implemented software in             
pytorch [23] since.  

The source code of the method, implemented in torch and pytorch (python) and pre-trained neural               
network is available at ​https://github.com/vfonov/deep-qc 
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