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19 ABSTRACT

20  Age-associated deterioration of cellular physiology leads to pathological conditions. The

21  ability to detect premature aging could provide a window for preventive therapies against age-
22 related diseases. However, the techniques for determining cellular age are limited, as they rely
23 ona limited set of histological markers and lack predictive power. Here, we implement

24 GERAS (GEnetic Reference for Age of Single-cell), a machine learning based framework

25  capable of assigning individual cells to chronological stages based on their transcriptomes.

26  GERAS displays greater than 90% accuracy in classifying the chronological stage of

27  zebrafish and human pancreatic cells. The framework demonstrates robustness against

28  Dbiological and technical noise, as evaluated by its performance on independent samplings of
29  single-cells. Additionally, GERAS determines the impact of differences in calorie intake and
30  BMI on the aging of zebrafish and human pancreatic cells, respectively. We further harness
31  the predictive power of GERAS to identify genome-wide molecular factors that correlate with
32 aging. We show that one of these factors, junb, is necessary to maintain the proliferative state
33 ofjuvenile beta-cells. Our results showcase the applicability of a machine learning framework
34 to classify the chronological stage of heterogeneous cell populations, while enabling to detect
35  pro-aging factors and candidate genes associated with aging.

36

37

38
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39 BACKGROUND

40 Aging is a universal phenomenon, during which cells undergo progressive

41  transcriptional 2, genomic >, epigenetic >, and metabolic ° changes. The age-related

42 modifications can deteriorate the functional properties of cells. The accumulation of cellular
43  defects can lead to a decline in organismal health and to the onset of age-related diseases. A
44 major focus of the biology of aging is to identify factors that accelerate or slow-down,

45  preferably even reverse, the cellular aging process. Biological studies have identified

46  multiple modifiers of the aging process, including genetic and environmental factors "*. For
47  instance, caloric restriction has been demonstrated to increase lifespan in multiple species °,
48  including humans '°. However, the discovery of factors that influence aging relies on

49  retrospective measures, after the impact of age has already manifested itself, and depends on a
50  restricted set of indicators based on histological analysis " 1t is therefore imperative to

51  develop reliable indicators of cellular age that forgo the need for detrimental phenotypes.

52 Predicting cellular aging before the defects manifest themselves would provide a window for
53  therapeutic interventions. Preventive therapies during this window would bypass additional
54  complications arising after the onset of the pathology.

55 The development of a reliable cellular age predictor requires two principal

56  components. Firstly, it entails a reliable assessment of the transitions cells undergo with age.
57  Secondly, the predictor should be capable of placing cells of unknown age along this

58 transition path in order to estimate their age. The first objective, assessment of cellular

59  transitions, has been enabled by recent advances in single-cell mMRNA expression profiling 12
60  Cellular progression through the transitions is increasingly being described by both heuristic
61  methods and probabilistic models. These methods are categorized as pseudotemporal

62  estimation algorithms and use techniques such as dimensionality reduction, graph theory,

63  Dbifurcation analysis and optimal-transport analysis to place cells along a transition trajectory

64 ' All the methods make explicit or implicit assumptions about the smoothness of mMRNA
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65  expression profiles along the trajectories and seek to explain part of the variation across the
66  cells by location along the trajectory. Unwanted variation that cannot be explained by

67 trajectory location can confound the analysis. Some methods protect against confounding
68  effects by using a prior over pseudotime that leverages information about the time cells were
69  assayed '® whilst others do not. Although current methods can reveal cellular transitions

70  during a differentiation process ' **

, they have only been shown to work retrospectively, that
71  is they have no predictive ability to insert de-novo samples into the trajectories. Thus, their
72 predictive utility on unseen cells, the second objective, remains unresolved.

73 Prediction of the position of de-novo samples in a cellular transition trajectory requires
74  discrimination of the transcriptional features of importance from the confounding factors that
75  accompany single-cell measurements. The three main confounding factors are: 1) biological
76  noise due to fluctuations in mRNA expression levels, 2) technical noise inherent in single-cell
77  mRNA sequencing, and 3) cell-type diversity within an organ. Biological noise can arise due
78  to the stochasticity in biochemical processes involved in mRNA production and degradation
79 2% heterogeneity in the cellular microenvironment *°, and many more unknown factors.

80  Although mechanisms such as the passive transport of newly transcribed mRNA from the

81  nucleus to the cytoplasm exist to reduce the level of biological noise 26 it can never be

82  eliminated completely *. In fact, aging might enhance fluctuations in mRNA expression

83  levels 2*. Nevertheless, in certain contexts, fluctuations in expression levels are beneficial
84  to the organism ***°. Technical noise, on the other hand, arises due to the sensitivity and

85  depth of single-cell sequencing technology *'. Sequencing involves conversion of mRNA into
86  cDNA and amplification of the minute amounts of cDNA. These steps could omit certain

87  mRNA molecules, muting their detection. Moreover, amplified cDNA molecules might

88  escape sequencing due to the limits on the comprehensiveness of the technology. In effect,

89  expression noise is inherent to single-cell measurements.
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90 The diversity in cell types within an organ adds a second layer of complexity to the

91 inherent noise in mRNA expression. Diverse types of cells express unique sets of genes and
92  regulatory networks. Moreover, numerous studies have demonstrated the presence of cellular
93 sub-populations within nominally homogenous cells ****. For example, pancreatic beta-cells
94  have been shown to consist of dynamic sub-populations with different proliferative and

3436 and liver cells were demonstrated to display variability in gene

95  functional properties
96  expression depending on their location within the organ *’. Thus, the inherent cell-to-cell
97  heterogeneity adds to the challenge of extracting age-specific transitions from mRNA
98  expression profiles. Furthermore, cellular heterogeneity makes it difficult to extrapolate the
99  results from studies at the tissue-scale to the aging of individual cells and to identify common
100  molecular signatures of aging 38,39
101 In this study, we provide a framework that efficiently ‘learns’ the cellular transitions
102  of aging from single-cell gene expression data in the presence of expression noise and cellular
103 heterogeneity. First, the age predictor is trained to recognize the age of individual cells based
104 on their chronological stage. Chronological stage is an easily measurable fact, and hence
105  provides a ground truth for the training. Second, we show that the trained predictor can place
106  robustly cells of unknown ages along the aging path. To show the utility of the age predictor,
107  we apply it to the pancreatic beta-cells, which represent an excellent system for studying
108  aging. In mammals, the beta-cell mass is established during infancy and serves the individual
109  throughout life *°. The long-lived beta-cells support blood glucose regulation, with their
110 dysfunction implicated in the development of Type 2 diabetes. Older beta-cells display
111 hallmarks of aging, such as a reduced proliferative capacity and impaired function 1 We first
112 focus on the zebrafish beta-cells due to the potential for visualization and genetic
113 manipulation of beta-cells at single-cell resolution *°, and extend our framework to human

114 pancreatic cells using publicly available published datasets. Finally, we demonstrate the

115  predictor’s utility in identifying age-modifying genetic and environmental factors.
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116 RESULTS

117  Machinelearning based framework accurately and robustly predicts chronological stage
118 To capture the transcriptional dynamics of beta-cells with age, we performed single-
119 cell mRNA sequencing of beta-cells in primary islets dissected from animals belonging to
120  three chronological stages: Juvenile (1 month post-fertilization (mpf)), Adolescent (3, 4 and 6
121 mpf) and Adult (10, 12 and 14 mpf). Using Tg(ins:Betabow) *°, a transgenic line that

122 specifically marks zebrafish beta-cells with red fluorescence (Supplementary Fig. S1), we
123 isolated and sequenced 827 beta-cells in multiple batches. Sequencing was performed using
124 the Smart-Seq2 protocol, which has been demonstrated to provide higher transcriptional

125  coverage than other methods **. The sequenced cells were quality-controlled to yield a total
126  of 645 beta-cells (Supplementary Fig. S2). To identify age-specific transitions, we first

127  attempted to order the cells using an unsupervised pseudotemporal analysis (Supplementary
128  Fig. S3). However, the beta-cells from the three chronological stages were broadly spread
129  along the predicted temporal trajectory. The shortfall of unsupervised pseudotemporal

130  ordering prompted us to consider an alternative approach in which we modeled the data using
131  the ground truth provided by the chronological stage. For this, we developed a supervised
132 deep learning framework to predict the stage of the cellular origin: Juvenile, Adolescent or
133 Adult (Fig. 1a). As input to the classifier, genes detected in all the cells were ranked in

134 descending order of their variability and the top 1000 genes were selected for training

135  (Supplementary Table S1). Since neural networks are prone to overfitting, two normalizing
136 hyperparameters were added: L2 regularization (which penalizes a strong focus on few

137  inputs) and dropout regularization (which helps ‘averaging’ across connections). This

138  framework was named GERAS (GEnetic Reference for Age of Single-cell) in reference to the
139  Greek God of old age.

140 For training GERAS, 80% of the beta-cells were randomly chosen. Optimal

141  normalizing hyperparameters determined by cross-validation were used for training the final
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142 predictor. Following development, we estimated the contribution of the 1000 input genes
143 towards accurate predictions (Supplementary Fig. S4, Supplementary Table S1). The

144  estimation showed that the input genes displayed a wide distribution of importance towards
145  the accuracy of prediction. Notably, some of these genes were previously implicated in

146  diabetes (Supplementary Fig. S4b). Using the trained GERAS, internal validation was carried
147  out with a test set comprising the remaining 20% of the cells from each chronological stage.
148  The cells of the test set had never been shown to GERAS. Internal validation achieved an
149  overall accuracy (proportion of cells for which the predicted stage matched the real stage) of
150  91% (Fig. 1b). This demonstrates the success of GERAS in classifying individual cells into
151  chronological stages based solely on their mRNA expression profile.

152 Next, we wanted to understand the robustness of GERAS under biological and

153  technical noise, typically encountered in batch measurements of single-cells. To this end, we
154  performed external validation using independently sequenced beta-cells. We sequenced a
155  new batch of beta-cells from adolescent animals (4 mpf) and used GERAS to predict their
156  chronological age. All cells from this independent cohort were classified as ‘Adolescent’
157  (100% accuracy), the ground truth for the stage of the cells (Fig. 1¢). Additionally, we tested
158  the performance of GERAS with beta-cells sequenced using alternative pipelines.

159  Specifically, we utilized the C1-Chip platform from Fluidigm to sequence a new batch of
160  beta-cells from adolescent animals (3 mpf). GERAS achieved 92.3% success in correctly
161  classifying the cells from the new batch as ‘Adolescent’ (Fig. 1¢). These data underscore the
162  potential of GERAS in effectively handling batch effects.

163 To test the performance of GERAS on a regression task, we evaluated the model’s
164  ability to classify cells obtained from time-points in-between the discrete chronological stages
165  we used for training. For interpolation, we collected beta-cells from animals aged 1.5 mpf
166  (juvenile) or 9 mpf (adult) since these ages were not part of the model’s constituent stages.

167  GERAS classified 50% of the beta-cells from 1.5 mpf animals as ‘Juvenile’, and 47.3% as
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168  ‘Adolescent’ (Fig. 1d). Thus, GERAS classified 97.3% of beta-cells in time-periods

169  neighboring the actual age of the sample. Similarly, 31% of the beta-cells from 9 mpf

170  animals were classified as ‘Adolescent’, and 69% as ‘Adult’ (Fig. 1d). None (0%) of the cells
171  were attributed to the ‘Juvenile’ stage, further strengthening the interpolation capacity of

172 GERAS. Taken together, these results demonstrate that our model divides the continuous

173  time variable into discrete but linearly-ordered stages, thereby allowing regression analysis of
174 the data.

175 GERASevaluatesthe impact of an environmental factor on cellular age

176 The rate of aging is susceptible to modifications ® and nutritional cues have been noted

10 To investigate the effect of altering nutritional cues on

177  to alter aging in many organisms
178  cellular age, we employed the ability of GERAS to handle batch effects and interpolation.

179  Specifically, we focused on studying the impact of calorie intake on beta-cell aging. We

180  separated 3 mpf adolescent zebrafish siblings into two groups. One group was fed three times
181  aday with Artemia, a typical fish diet consisting of living prey with a relatively high amount
182 of fat and carbohydrates **. The other group was placed on intermittent feeding with normal
183  feeding performed on alternate days (Fig. 2a). After one month, the beta-cells were isolated
184  and the age of individual beta-cells was evaluated using GERAS for each group. The analysis
185  showed a striking difference in age between the two sets of beta-cells obtained from coeval
186  adolescent zebrafish (Fig. 2a). While 65% of the beta-cells from zebrafish on intermittent

187  feeding were classified as ‘Adolescent’, only 23% of the beta-cells from three-times-a-day-
188  fed animals were similarly classified; the rest 77% were categorized as ‘Adult’. This

189  difference in classification of the beta-cells isolated from animals of the same age suggests
190 that higher-caloric intake expedites the aging of young beta-cells. Moreover, it shows the

191  utility of GERAS in evaluating a pro-aging factor.

192 GERAS-based predictionslead to discovery of a molecular factor involved in aging
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193 To identify molecular players underlying the accelerated aging of beta-cells with

194  higher-calorie intake, we harnessed the heterogeneity in the chronological stage predictions
195  along with the inherent heterogeneity in gene expression within single cells. In our

196  framework, chronological stage predictions can be easily converted to classification

197  probability by using the output of ‘softmax’ layer (Fig. 1a and Methods). This transforms
198  discrete classifications into a continuous probability distribution (Supplementary Fig. S5).
199  Taking advantage of this approach, we calculated the correlation between the probabilities of
200  the beta-cells to be classified in the younger (‘Adolescent’) stage with the mRNA expression
201  levels of all 11,570 genes expressed in the beta-cells (Supplementary Fig. S5). For correlation
202  analysis, genes with positive correlation increase the chance of the cell being classified in the
203  younger stage, while a negative correlation enhances the chance of classification in the older
204  stage. The correlation analysis for beta-cells from three-times-a-day fed animals revealed
205 1158 genes exhibiting high (positive or negative) correlation with predictive probability (Fig.
206  2b, Supplementary Table S2 and S3). Unbiased gene ontology analysis using DAVID *

207  revealed involvement of the highly correlated genes in aging-related pathways, including
208  cellular differentiation, protein transport *>*®, amino acid biosynthesis *"**, NAD+ ADP-

209  ribosyltransferase activity * and basic-leucine zipper domain containing transcription factors
210 *°(Fig. 2¢). In particular, there was a positive correlation with the transcription factors junba
211  and fosab, suggesting a role for these genes in the classification of the beta-cells to the

212 younger, ‘Adolsecent’, stage (Fig. 2b). Additionally, in our primary mRNA expression data
213 of beta-cells from three chronological stages, junba and fosab displayed significant down-
214 regulation with age (Supplementary Fig. S6). Notably, junba, was not one of the 1000-input
215  genes utilized by GERAS for generating predictions, demonstrating the capacity of

216  correlation analysis to identify genome-wide candidate genes.

217 Based on the observation that junba expression in beta-cells declines with age, and its

218  positive correlation with the classification of beta-cells from animals on a higher-calorie diet
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219  to the younger stage, we decided to investigate the biological impact of reducing junba

220  function. For this, we overexpressed a dominant negative version of junba specifically in
221  beta-cells (using an ins:nls-BFP-2A-DN-junba construct) (Supplementary Fig. S7a). The
222 expression of nls-BFP-2A-DN-junba was induced in the background of the beta-cell specific

223  fluorescence ubiquitination cell cycle indicator (FUCCI)-reporters '+

, allowing

224 identification of beta-cell’s cell-cycle stage (Supplementary Fig. S7b, ¢). Comparison

225  between the juxtaposed DN-junba-expressing and control cells within islets from juveniles (1
226  mpf), a stage associated with high rates of beta-cell proliferation *', showed a 50% decline in
227  proliferation upon DN-junba expression (Fig. 3a, b). Thus, blocking junba function can

228  reduce the proliferation of juvenile beta-cells. Since the reduction in proliferation of beta-
229  cells is a hallmark of aging *', our results suggest that declining junba expression might

230  underlie this reduction.

231 A singlemode for chronological stage classification of the entire human pancreatic cells
232 Next, to test the applicability of our framework beyond the scope of zebrafish beta-
233 cells, we developed a classifier for human cells using the entire ensemble of pancreatic cells.
234 The pancreas, a gland located in the abdomen, is involved in metabolic regulation and food
235  digestion. Metabolic regulation is accomplished by the endocrine part of the pancreas, which
236  chiefly consists of beta-, alpha-, and delta-cells. Food digestion, on the other hand, is

237  contributed by the exocrine part of the pancreas, composed of ductal and acinar cells. An
238  important characteristic of pancreatic cells is the presence of cell-specific marker genes,

239  allowing computational segregation of the various cell-types based on mRNA expression
240  levels (Methods). To develop the classifier for human pancreatic cells, we obtained single-
241  cell mRNA expression profiles from Enge et al. Their study generated single-cell

242 transcriptomes from pancreatic cells of eight healthy individuals belonging to three discrete
243 stages *”: Juvenile (1 month, 5 and 6 years), Young (21 and 22 years), and Middle (38, 44 and

244 54 years) (Fig. 4a). Without segregating the data by cell-type, we trained GERAS to predict
Page 10 of 45


https://doi.org/10.1101/303214
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/303214; this version posted April 17, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

245  the chronological stage for the entire ensemble of pancreatic cells. The trained GERAS,

246  utilizing inputs from multiple genes (Supplementary Fig. S8, Supplementary Table S4),

247  achieved an overall accuracy of 95% on the test set (Fig. 4b). Upon segregating the results by
248  cell type, based on the expression of their respective markers, we found that GERAS

249  displayed >90% accuracy for each major cell-type of the pancreas (Fig. 4b’), demonstrating
250  the feasibility of developing a single age classifier for the multiple cell types of the pancreas.
251 As an additional validation, a second assessment with human cells was undertaken by
252 utilizing the single-cell mRNA expression profiles of human pancreatic cells from a

253 publication by Segerstolpe et al. . This independent cohort contains single-cell

254  transcriptomes from pancreata of six healthy individuals ranging from 22 — 48 year of age.
255  Additionally, the body mass index (BMI) for each individual was reported, allowing

256  comparisons between individuals with similar chronological age but different body weight.
257  Using GERAS trained with the human data from Enge et al., we predicted the chronological
258  stage of the cells from two individuals (aged 43 and 48 years) belonging to the ‘Middle’ age
259  group (38 — 54 years). The predictions displayed >93% classification accuracy (Fig. 4c).
260  This high accuracy of prediction on data from a second independent source further

261  strengthens the external validation of our model. Next, we utilized the data from two

262  individuals, aged 23 and 22 years. Despite the proximity in their chronological age, these two
263  individuals differed in their BMI values (21.5 — normal and 32.9 — obese, respectively).

264  Strikingly, our analysis revealed different classification pattern for data from each of these
265  individuals: while 32% of the cells from the 23 year old with normal BMI were classified in
266  the younger stages, none of the cells from the 22 year old with obese BMI fell in similar

267  stages (Fig. 4d). Following this observation, we calculated the classification probability of
268  the all six individuals in relation to their BMI. The probability results from our analysis

269  suggest that an obese BMI correlates with an increased probability for the cells to be

270  classified in an older stage (Supplementary Fig. S9). We recommend exercising caution
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271  while interpreting this result due to the multiple confounding factors associated with human
272  samples that we could not control for. A GERAS developed with cells from individuals

273  encompassing a wider distribution of age and BMI range would be desired for stronger

274  conclusions. Nevertheless, the successful age classification of an entire human organ and its
275  external validation, demonstrate the adaptability of our framework to diverse cell-types,

276  thereby establishing the universality of the approach.

277  DISCUSSION

278 In this study, we have presented a method that provides the blueprint for developing
279  predictive classifier for cellular aging. Our chronological stage predictor efficiently handles
280  biological and technical noise, and functions robustly on a diverse cell population. The

281  temporal classifier was developed in an unbiased, data-driven manner. Genes for building the
282  predictor were not selected based on their differential expression with time. The classifier
283  predicted the chronological age solely from the expression profile of the top 1000 most

284  variable genes. The algorithm, however, did not use all genes uniformly. Instead, varying
285  levels of importance were attributed to the input genes (Supplementary Fig. S4, S8). Multiple
286  genes exhibiting high importance for successful classification show an existing association
287  with metabolic and age-related degenerative disorders. For instance, the human pancreatic
288  GERAS ascribes high importance to Amyloid precursor protein (APP), which is associated
289  with Alzheimer’s disease, and also recently implicated in pancreatic biology **. In the future,
290 it would be worthwhile to test the biological functions for the genes selected by the classifier,
291  and to follow-up on them as potential biomarkers of the aging process.

292 The predictive power of the framework is not restricted to classification tasks. The
293  discrete classifications can be readily converted to a continuous probability distribution

294 (Supplementary Fig. S5). This characteristic can be exploited to shed light on the molecular
295  factors controlling the rate of aging. We used this feature on beta-cells displaying accelerated

296  aging in response to a higher calorie diet (Fig. 2a). Correlating the probability distribution
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297  with gene expression enabled identification of candidate genes involved in the aging process
298  (Fig. 2b, c). Such analysis was possible due to the single-cell-centric nature of our approach,
299  and would be missed out with bulk sequencing in which the cellular variability is averaged
300  out. Follow-up analysis using a genetic technique (Supplementary Fig. S7) verified the role
301  of one candidate gene, junba, in regulating the proliferation of beta-cells (Fig. 3). Itis

302  important to note that the mosaic analysis was performed in whole islets without any tissue
303  dissociation, thus avoiding any dissociation-specific modification in cell physiology >°.

304  However, a reduction in proliferation represents one aspect of the aging process, and

305  additional roles for junba activity during the aging process still need verification.

306  Nonetheless, the age-dependent reduction of Junb, the mammalian homologue of junba, has
307  been implicated in post-natal maturation of mouse beta-cells *°. It would be of interest to

308  follow-up on these results and study the connection between aging and Junb activity in

309  mammalian models.

310 Importantly, beta-cells from animals fed three-times-a-day revealed a diversity in their
311  classification. Notably, 23% of the beta-cells were classified in the younger stage, suggesting
312 cellular heterogeneity in the aging process. This was additionally observed during the

313  interpolation analysis (Fig. 1d), in which cells from intermediate time-points classified in the
314  two adjacent stages. Asynchronous cellular aging in beta-cells was recently hypothesized
315  using histological analysis >’. Quantifying the extent of heterogeneity in the aging process
316  while capturing the mRNA expression profile, made possible by our framework, provides an
317  exciting opportunity for understanding the molecular underpinnings of heterogeneous cellular
318 aging.

319 Our machine-learning based framework has high flexibility in its design and

320  execution, which can be exploited to develop predictive models based on diverse biological
321  parameters. Moreover, the inputs to the predictor are not limited to mRNA expression levels

322 but can be extended to include other covariates. With improvements in single cell
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323 epigenetics™, new models integrating both genetic and epigenetic changes could be built to
324  improve accuracy and resolution.

325 Our framework is based on the assumption that chronological age provides a useful
326  metric for the modeling of age. Chronological age is an easily observable fact, and this

327  provided the ground truth for training and testing our models. The aging trajectory provided
328 Dby the use of chronological age served as benchmark for all predictions generated by the

329  framework. However, chronological age does not always correlate well with development of
330 disease and mortality . Previous studies have introduced the concept of biological age **!,
331  ametric that correlates better than chronological age with pathological conditions. However,
332 the determination of biological age requires training, testing and verification of regression
333  models. This leads to the biological age being defined as per the computation model, which
334  canresult in very low overlap between different measures of biological age 62 In the future, it
335  would be worthwhile to generate two-tier models combining the information from models
336  based on chronological and biological age.

337 We developed our model with the idea in mind to be able to detect premature aging.
338  However, individual responses might differ towards the factors that lead to accelerated aging.
339  For instance, within the population of humans with an obese BMI, the ‘metabolically healthy
340  obese’ group exhibits lower risk for complications as compared to the ‘metabolically

341  unhealthy obese’ ®**. Further work needs to be done to identify individual risk-factors

342  associated with premature aging. This would be necessary for recommendations of

343  preventive therapies.

344 The predictors presented in this study are restricted by sequencing platforms and the
345  specific tissues utilized for training them. This limits their immediate adaptation. The

346  predictors are built with data generated from Smart-Seq2 sequencing pipeline, which captures
347  the full-length mRNAs with high transcriptome coverage. The predictor might be unable to

348  handle the data from Drop-seq or MARS-seq, protocols that sequence the 3’-end of mRNA
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349  and provide lower-coverage *>. Computational efforts for eliminating the idiosyncrasies of
350  individual platforms ® would help to remove this restriction. Additionally, the predictors do
351 not extend beyond the currently described tissues. Investigators interested in the aging of
352 other cells, for instance muscle, would need to develop and validate de-novo predictive

353  models. Nevertheless, we expect the groundwork presented here to help with the

354  development of predictive models. Further improvements of our approach could expedite the
355  identification of age-modifying factors, which are important regulators of development and
356  disease.

357 CONCLUSION

358 Here we developed a machine learning based platform that successfully predicts the
359  chronological stage of individual cells. We show the framework’s robustness in handling
360  multiple sample processing pipelines, time-points that fall between the discrete chronological
361  stages, and diversity in cell types. The framework’s capability to characterize aging factors
362  was demonstrated through evaluation of the impact of a higher-calorie feeding on beta-cell
363 aging. The predictive power of the framework was further harnessed to discover junba as a
364  candidate gene that maintains the proliferative beta-cell state, a characteristic trait of younger
365 Dbeta-cells. Broad applicability of the framework was demonstrated by predictions on the

366  entire human pancreatic tissue. We anticipate that the robustness and flexibility exhibited
367  here will enable the development of aging models for multiple tissues, opening the possibility
368  of detecting premature aging and preventing pathological developments. To maximize the
369  accessibility and impact of the study, the framework is openly shared on github °, and a user-

370  friendly, graphical interface is provided for generating predictions from trained models.
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371 METHODS

372  Zebrafish strainsand husbandry

373 Wild-type or transgenic zebrafish of the outbred AB, WIK or a hybrid WIK/AB strain
374  were used in all experiments. Zebrafish were raised under standard conditions at 28°C.

375  Animals were chosen at random for all experiments. Published transgenic strains used in this

376  study were Tg(ins:BB1.0L; cryaa: RFP)*; Tg(ins:FUCCI-G1)****°': Tg(ins: FUCCI-

377 SG2IM)***¢5' Experiments were conducted in accordance with the Animal Welfare Act and

378  with permission of the Landesdirektion Sachsen, Germany (permits AZ 24-9168, TV38/2015,

379  T12/2016, and T13/2017).
380  Singlecell isolation of zebrafish beta-cells

381 Primary islets from Tg(ins:BB1.0L; cryaa: RFP) zebrafish were dissociated into single
382  cells and sorted using FACS-Aria I (BD Bioscience). Islets were dissociated into single cells
383 by incubation in TrypLE (ThermoFisher, 12563029) with 0.1% Pluronic F-68 (ThermoFisher,
384  24040032) at 37 °C in a benchtop shaker set at 450 rpm for 30 min. Following dissociation,
385  TrypLE was inactivated with 10% FBS, and the cells pelleted by centrifugation at 500g for 10
386  min at 4 °C. The supernatant was carefully discarded and the pellet re-suspended in 500 uL of
387  HBSS (without Ca, Mg) + 0.1% Pluronic F-68. To remove debris, the solution was passed
388  overa 30 um cell filter (Miltenyi Biotec, 130-041-407). To remove dead cells, calcein violet
389  (ThermoFisher, C34858) was added at a final concentration of 1 uM and the cell suspension
390  incubated at room temperature for 20 minutes. The single cell preparation was sorted with the
391  appropriate gate for identification of beta-cells (RFP+ and calcein+) (Supplementary Fig. S1).

392  FACS was performed through 100 pm nozzle with index sorting.

393  Singlecell mMRNA sequencing of zebrafish beta-cells from 96-well plates
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394 Cells were sorted into a 96-well plate containing 2 ul of nuclease free water with 0.2%
395  Triton-X 100 and 4 U murine RNase Inhibitor (NEB), spun down and frozen at -80°C. After
396 thawing the samples, 2 pl of a primer mix was added (5 mM dNTP (Invitrogen), 0.5 uM dT-
397  primer*, 4 U RNase Inhibitor (NEB)). RNA was denatured for 3 minutes at 72°C and the
398  reverse transcription was performed at 42°C for 90 min after filling up to 10 ul with RT

399  buffer mix for a final concentration of 1x superscript II buffer (Invitrogen), 1 M betaine, 5
400 mM DTT, 6 mM MgCl2, 1 uM TSO-primer*, 9 U RNase Inhibitor and 90 U Superscript II.
401  After synthesis, the reverse transcriptase was inactivated at 70°C for 15 min. The cDNA was
402  amplified using Kapa HiFi HotStart Readymix (Peqlab) at a final 1x concentration and 0.1
403  uM UP primer under following cycling conditions: initial denaturation at 98°C for 3 min, 22
404  cycles [98°C 20 sec, 67°C 15 sec, 72°C 6 min] and final elongation at 72°C for 5 min. The
405  amplified cDNA was purified using 1x volume of hydrophobic Sera-Mag SpeedBeads (GE
406  Healthcare) and DNA was eluted in 12 pl nuclease free water. The concentration of the

407  samples was measured with a Tecan plate reader Infinite 200 pro in 384 well black flat

408  bottom low volume plates (Corning) using AccuBlue Broad range chemistry (Biotium).

409 For library preparation, 700 pg cDNA in 2 pl was mixed with 0.5 pl tagmentation
410  enzyme and 2.5 pl Tagment DNA Buffer (Nextera DNA Library Preparation Kit; [llumina)
411  and tagmented at 55°C for 5 min. Subsequently, [llumina indices were added during PCR
412 (72°C 3 min, 98°C 30 sec, 12 cycles [98°C 10 sec, 63°C 20 sec, 72°C 1 min], 72°C 5 min)
413  with 1x concentrated KAPA Hifi HotStart Ready Mix and 0.7 uM dual indexing primers.
414  After PCR, libraries were quantified with AccuBlue Broad range chemistry, equimolarly
415  pooled and purified twice with 1x volume Sera-Mag SpeedBeads. This was followed by
416  Illumina sequencing on a Nextseq500 aiming at an average sequencing depth of 0.5 million

417  reads per cell.
418
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419  *dT primer: Aminolinker-rAAGCAGTGGTATCAACGCAGAGTCGAC T(30) VN
420  *TSO primer: AAGCAGTGGTATCAACGCAGAGTACATggg

421  *UP primer: AAGCAGTGGTATCAACGCAGAGT

422  Single cell mMRNA sequencing of zebrafish beta-cellswith the C1 system

423 The C1™ Single-Cell mRNA Seq 10-17 um IFC (© Fluidigm Corporation, CA, USA)

424  was used to perform mRNA sequencing on single cells. In general, the protocol (PN 100-7168
425 LI1) suggested by the manufacturer was followed, with some modifications. 1200 cells in PBS
426  were directly sorted by FACS into the inlet, mixed 3:2 with suspension reagent, resulting in a
427  final volume of 6 ul. Cells were loaded with the mRNAseq: Cell load protocol, without
428  staining on the IFC. For RT and amplification, the mRNA Seq: RT & Amp script was run
429  with the following cycling parameters: 1x 98°C 1 min, 5x (95°C 20-45 sec, 59-49°C with
430  0.3°C increment/cycle 4 min, 68°C 6 min) 9x (95°C 20-45 sec, 65-49°C with 0.3°C
431  increment/cycle 30 sec, 68°C 6 min) 7x (95°C 30-45 sec, 65-49°C with 0.3°C increment/cycle
432 30 sec, 68°C 7 min) and 72°C 10 min using SMART-Seq v4 Ultra Low Input RNA Kit for
433 Sequencing (Takara BIO USA, INC.). For library preparation, 2 ul cDNA were mixed with
434 0.5 pl tagmentation enzyme and 2.5 pl Tagment DNA Buffer (Nextera DNA Library
435  Preparation Kit; [llumina) and tagmented at 55°C for 5 min. [llumina indices were added by
436  PCR with the following cycling conditions: 1x (72°C 3 min, 98°C 30 sec), 12 x (98°C 10 sec,
437  63°C 20 sec, 72°C 1 min), 1x (72°C 5 min), using KAPA Hifi HotStart Ready Mix and 0.7
438  uM final dual indexing primers. Libraries were quantified, equimolarly pooled and purified
439  twice with 1x volume Sera-Mag SpeedBeads. Illumina sequencing (75bp SE) was done on a

440  Nextseq500 aiming to achieve an average sequencing depth of 0.5 million reads per cell.

441  Mapping of read counts and quality control
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442 Raw reads in fastq format were trimmed using trim-galore with default parameters to
443 remove adapter sequences. Trimmed reads were aligned to the zebrafish genome, GRCz10,
444 using HISAT2 %" with default parameters. htseq-count °® was used to assign reads to exons
445  thus eventually getting counts per gene. Using cells that were utilized for developing

446  zebrafish GERAS (see next section), the following quality control parameters were obtained

447  (Supplementary Fig. S2):

448 1. The median and median absolute deviation (MAD) for total reads
449 2. The median and MAD for % of mitochondrial reads

450 3. The median and MAD for % spike-ins

451 4. Number of detectable genes

452  Cells passed quality control if they belonged to median + 3*MAD bracket for 1-3 and
453  contained more than 1500 genes. Read counts for all cells that passed quality control are

454  available at: https://sharing.crt-dresden.de/index.php/s/zcQ14AMGJAevokU.

455  Pseudotemporal ordering of zebrafish beta-cells

456 Unsupervised pseudotemporal ordering of zebrafish beta-cells was carried out using
457  the read counts from beta-cells isolated from seven different ages. The cells were grouped in
458  three stages before analysis: ‘Juvenile’ (1 mpf), ‘Adolescent’ (3, 4, 6 mpf) and “Young’ (10,
459 12, 14 mpf). Ordering was carried out using Monocle '°, as outlined in the vignette for

460  Monocle2. The analysis is shared online as Monocle.R.
461  Development of GERASfor zebrafish beta-cells

462 For development of GERAS for zebrafish beta-cells, read counts were used from
463  seven ages of zebrafish: 1 mpf, 3 mpf, 4 mpf, 6 mpf, 10 mpf, 12 mpf and 14 mpf. The 3 mpf

464  and 6 mpf stages contained two batches of beta-cells collected and sequenced on different
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465  days. Each batch of cells originated from six zebrafish. Read counts were normalized to

466  transcripts per million (TPM) using the formula:

Read Countgy,

TT'aTLSCT'ipth = W

Transcript,,

TPMy, = * 1,000,000

Yg Transcript,

467  where for gene g and cell ¢, Transcripty are the number of transcripts calculated by dividing
468  the read counts to the length of the gene in kb, and TPM is the proportion of the gene’s

469  transcripts among per million of total cellular transcripts.

470 The entire dataset containing 508 beta-cells were randomly divided into 80%-20%
471  train-test set. Genes were sorted in descending order according to their expression variability
472  (calculated by ‘median absolute deviation’) in the entire dataset. The top 1000 most variable
473  genes were used for developing a four-layer fully connected neural network (Fig. 1a). The
474  neural network contained two hidden layers with rectified linear unit (ReLU) activation

475  function, and a softmax output layer. The network was trained to classify the pancreatic cells
476  into three chronological ages: Juvenile (1 month post-fertilization (mpf)), Adolescent (3, 4
477  and 6 mpf) and Adult (10, 12 and 14 mpf). During training, a five-fold cross-validation was
478  repeated three times over a grid of values for regularization hyperparameters: dropout

479  frequency (0.4 to 0.9 in steps of 0.1) and regularization constant (0.4 to 1.6 in steps of 0.2).
480  The combination with the highest cross-validation accuracy was taken as the optimal value,
481  and a final model was trained using the entire training set and the optimal regularization

482  hyperparameters. The entire network was implemented in R using TensorFlow API. An

483  Rmarkdown report detailing the development of zebrafish beta-cell GERAS is available at

484  https://github.com/sumeetpalsingh/GERAS2017/blob/master/GERAS_Tf Zfhtml .

485 The trained model was used to predict the chronological age of the test set. Accuracy
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486  was calculated as the proportion of cells for which the prediction matched the chronological
487  age. By considering each prediction as a binomial distribution (a ‘Juvenile’ cell can be
488  classified as ‘Juvenile’ or ‘Not Juvenile’), the standard error was calculated using the

489  following formula:

accuracy * (1 — accuracy)

Standard error = \/ -

490  where nis the number of cells tested.
491  Prediction of chronological ageusing GERAS for zebrafish beta-cells

492 For external validation (4 mpf and 3 mpf C1-sample) and interpolation (1.5 mpf and 9
493  mpf), new batches of zebrafish beta-cells were isolated in 96-well plates and sequenced.

494  Quality controlled raw counts were obtained as outlined above. The raw counts were

495  normalized to TPM values, which were then used to predict the chronological stage using pre-
496  trained GERAS. Results were depicted as balloonplots, where a grid contains dots whose size

497  reflects the percentage of cells classified in the corresponding group.

498  Assessing theimpact of calories on the chronological age of zebrafish beta-cells using

499 GERAS

500 Twelve zebrafish at 3 mpf from the same clutch were separated into two groups of 6
501 animals each. Both groups were fed with their normal feed of freshly hatched Artemia (brine
502  shrimp). The intermittent feeding group was fed on alternate day, while the other group was
503  fed three times daily with intervals of at least two hours between the feedings. Amount of
504  food eaten by each animal was not controlled. After a month, the beta-cells were isolated into
505  96-well plates using FACS. The cells were processed and sequenced together. TPM-

506  normalized counts from the cells were used to predict the chronological age using GERAS.

507 Correlation analysis and gene ontology (GO) analysis
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508 Correlation analysis was carried out for beta-cells collected from the three-times-a-day
509  animals. These beta-cells classified in ‘Adolescent’ and ‘Adult’ stage (Fig. 2a). The analysis
510  calculated the correlation between the probability of a cell to be classified in the younger

511  (“‘Adolescent’) stage and the mRNA expression of genes. To obtain the classification

512 probability, the softmax for the ‘Adolescent’ stage was calculated from the output layer of
513  GERAS (Fig. S5). For this, a function (model softmax) was written that takes the log2-

514  transformed normalized values of single cells, performs forward propagation through GERAS
515  till the softmax layer, and returns the output. The output contains the probability for the

516  particular cell to classify in all the three stages (‘Juvenile’, ‘Adolescent’, and ‘Adult’). The

517  function is deposited as source/model_softmax.R ®. The probability for ‘Adolescent’ stage

518  was extracted from this output.

519 Correlation coefficient was calculating using the cor(classification probability, gene
520  expression) function in R. The calculation was restricted to genes expressed in more than 10%
521  of'the cells (11,570 genes). This gave a correlation value for each gene expressed in beta-cells
522 from three-times-a-day animals. The values were sorted in ascending order and plotted in Fig.
523  2b. The genes with the highest positive correlation were identified as the top fifth-percentile,
524  and the genes with the highest negative correlation were identified as the lowest fifth-

525  percentile. These genes were further used for unbiased gene ontology (GO) analysis using

526 DAVID *. As background for GO analysis, the list of expressed genes was used.
527  Construction of theins:nls-BFP-T2A-DN-junba; cryaa: RFP plasmid

528 To generate ins. nls-BFP-T2A-DN-junba;cryaa: RFP, a vector was created by

529  inserting multiple cloning sites (MCS) downstream of the insulin promoter to yield ins:MCS,
530 cryaa:RFP. To do so, the plasmid ins:mAG-zGeminin;cryaa: RFP was digested with

531  EcoRI/Pacl and ligated with dsDNA generated by annealing two primers harboring the sites
532 EcoRYV, Nhel, Nsil, Sall and flanked by EcoRI/Pacl overhangs. The plasmid pUC-Kan
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533 consisting of the DN-junba (junba'>’>%, consisting of only the DNA binding domain®’) fused
534  to nls-BFP via T2A sequence flanked by EcoRI/Pacl sites was synthesized from GenScript.
535 inssMCScryaa: RFP and the plasmid pUC-nls-BFP-T2A-DN-junba were subsequently

536  digested with EcoRI/Pacl to yield compatible fragments, which were ligated together to yield
537  the final construct. The entire construct was flanked with I-Scel sites to facilitate genomic

538  insertion.
539  Analysisof proliferation using mosaic expression of DN-junba

540 To identify proliferating beta-cells, the zebrafish beta-cell specific FUCCI system®'
541  was used by crossing Tg(ins:FUCCI-GL1) with Tg(ins:FUCCI-SG2/M). Embryos obtained
542  from the mating were injected with ins:nls-BFP-T2A-DN-junba; cryaa: RFP plasmid, along
543  with I-Scel, to facilitate mosaic integration into the genome. At 30 dpf, animals were

544  euthanized in Tricaine and dissected to isolate the islets. The isolated islets were fixed in 4%
545  paraformaldehyde (PFA) for 48 hours at 4°C, washed multiple times in PBS and mounted on
546  slides for confocal microscopy. Confocal images were used for cell-counting. All the

547  To(insFUCCI-S/G2/M)-positive cells (green fluorescence only) were counted manually

548  within the BFP-positive and BFP-negative clones. Using Imaris (Bitplane), the total number
549  of BFP-positive and beta-cells were calculated in the entire islet. For this, the “spots” function
550  was used after thresholding. For calculating percentages (%), the following calculations were

551  used:
Total BFP-negative cells = Total beta-cells — Total BFP-positive cells

% BFP-positive proliferating cells

ins:FUCCI-SG2/M-positive and BFP-positive cells
= *

Total BFP-positive cells 100
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% BFP-negative proliferating cells

ins:FUCCI-SG2/M-positive and BFP-negative cells
= *

. 1
Total BFP-negative cells 00

Statistical analysis

Statistical analysis was performed using R. No animals were excluded from analysis.
Blinding was not performed during analysis. Analysis of normal distribution was performed.
To compare chronological age (Adolescent versus Adult) between beta-cell from intermittent
feeding and three-times a day fed animals, Fisher’s exact test for count data (fisher.test(x =
2X2 matrix, alternative = "two.sided")) was performed. To compare the expression levels of
junba and fosab between Juvenile, Adolescent and Adult, ANOVA followed by Tukey's range
test (fit <- aov(Expression ~ Stage); TukeyHSD(fit)) was performed. To compare the
proliferation between DN-junba expressing cells with control cells, an unpaired two-tailed t-
test with unequal variance (t.test (x = dataframe, alternative = "two.sided", paired = FALSE,
var.equal = FALSE)) was used to calculate p-values. A p-value of less than 0.05 was

considered statistically significant.

Development of GERAS for human pancreatic cells

For development of GERAS for human pancreatic cells, read counts from Enge et al?’

were obtained from GEO: GSE81547. Read counts were normalized to reads per million

(RPM) using the formula:

Read Count
RPM 9°

= 1,000,000
9¢ ¥ Read Count, -

where for gene g and cell ¢, RPM, is the proportion of the gene’s reads among per million of

the total cellular reads.

The entire dataset containing 2544 pancreatic cells was randomly divided into 80%-

20% train-test set. Genes were sorted in descending order according to their expression
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572  variability (calculated by ‘median absolute deviation’) in the entire dataset. The top 1000

573  most variable genes were used for developing a four-layer fully connected neural network
574  (Fig. 4a). The neural network contained two hidden layers with ReLU activation function, and
575  asoftmax output layer. The network was trained to classify the pancreatic cells into three

576  chronological ages: Juvenile (1 month, 5 and 6 years), Young (21 and 22 years), and Middle
577 (38, 44 and 54 years). During training, a five-fold cross-validation was repeated three times
578  over a grid of values for regularization hyperparameters: dropout frequency (0.4 to 0.9 in

579  steps of 0.1) and regularization constant (0.2 to 1.2 in steps of 0.2). The combination with the
580  highest cross-validation accuracy was taken as the optimal value, and a final model was

581 trained using the entire training set and the optimal regularization hyperparameters. The entire
582  network was implemented in R using TensorFlow API. An Rmarkdown report detailing the
583  development of human pancreatic GERAS is available at

584  https://github.com/sumeetpalsingh/GERAS2017/blob/master/GERAS_Tf Hs.html *.

585 The trained model was used to predict the chronological age of the test set. Accuracy
586  was calculated as the proportion of cells for which the prediction matched the chronological
587  age. By considering each prediction as a binomial distribution (a ‘Middle’ cell can be

588 classified as ‘Middle’ or ‘Not Middle’), the standard error was calculated using the following

589  formula:

accuracy * (1 — accuracy)

Standard error = \/ -

590  where n is the number of cells tested.

591 To calculate the accuracy and standard error per cell type, the expression levels of the
592  following cell-specific markers were extracted for each cell: ‘INS’ (beta-cell), ‘GCG’ (alpha-
593  cell), ‘SST’ (delta), ‘PRSS1’ (acinar) and ‘KRT19’ (ductal). A cell was classified if the

594  expression value of any cell-specific marker exceeded 50 RPM, else it was classified as
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‘Others’. For classification, the cell-type marker with the highest expression determined the
cell type. Thus, a (theoretical) cell with RPM values of 1000 INS, 3 GCG, 4 SST, 0 PRSS1, 0
KRT19 was classified as beta-cell, while another (theoretical) cell with RPM values of 3 INS,
5 GCQG, 7 SST, 1777 PRSS1, 9 KRT19 was classified as acinar cell. Cell-type specific cells

present in the test set were used to calculate the accuracy per cell-type.
Independent cohort of human pancreatic cells

For testing GERAS with external data, read counts of pancreatic single-cell data from
Segerstolpe et al.”® were obtained from ArrayExpress (EBI) with accession number: E-
MTAB-5061. The publication contained data from six healthy individuals. The entire data
was stratified according to the individuals, and cells from each individual that passed quality-
control according to Segerstolpe et al. were used for further analysis. Read counts from the

cells were normalized to RPM for input to GERAS.
Calculating classification probability for ‘Middle (38 — 54 years) stage

To calculate the probability that a particular cell would be classified to the ‘Middle’
stage, the softmax for the ‘Middle’ stage was calculated from the output layer of human
pancreatic GERAS. For this, the function model softmax was provided with the log2-
transformed RPM values and used to calculate the probability for the particular cell to classify
in all the three stages (‘Juvenile’, ‘Young’, and ‘Middle’). The probability for ‘Middle’ stage

was extracted from this output.
Prediction of chronological age using GERAS for human pancreatic cells

For predicting the chronological stage of cells belonging to individuals of age 22, 23,
43 and 48 years, RPM values from each individual were used as input to human pancreatic
GERAS. Results were depicted as balloonplots, where a grid contains dots whose size reflects

the percentage of cells classified in the corresponding group.
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619  Calculating variableimportance for GERAS

620 Variable importance was calculated as outlined in Gedeon et al. "°. The code for

621  carrying out the calculation is shared as source/variableImportance.R ®. The code uses the
622  weights of the trained neural network to calculate the importance of each variable (input) used
623  for classification. The output is scaled to 0 (least important) and 1 (most important). This was
624  used to identify the importance of each gene used in zebrafish and human GERAS. The

625  results were sorted in descending order for plotting. Additionally, the top 20 most important
626  genes were obtained from the sorted list, and their relative importance calculated using the

627  formula,

Importance,

Relative Importance, =
P 9 ¥, Importance

628  where g denotes an individual gene among the top 20. The disease association for each gene
629  was obtained from DisGeNET database ’'. From the database, an association with a score of

630  greater than or equal to 0.2 was reported.
631  Shiny implementation of GERAS predictor

632 To enable easy access to predictions using GERAS, a Shiny app was developed. The
633 app is freely available at

634  https://github.com/sumeetpalsingh/GERAS2017/shiny GERAS_Tf.R®. The app provides a

635  graphic-user interface (GUI) for users to make chronological age predictions using a pre-
636  trained GERAS model. The users can upload normalized counts, verify the uploaded data, and

637  obtain predictions in a downloadable comma-separated (csv) file.
638 Dataavailability

639 The raw datasets, along with tabulated count data and TPM normalized values,

640  generated during the current study are available from GEO under accession number
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641  GSE109881, with the token number ixkzakssxnsjtaf. The data will be made public upon
642  publication. Normalized read-counts for all human pancreatic samples used in the study are

643  available at: https://sharing.crt-dresden.de/index.php/s/zcQ14AMGJAevokU , and codes for

644  developing and testing GERAS are available at

645  https://github.com/sumeetpalsingh/ GERAS2017 *. Please refer to README.md to navigate

646  the Github folder. The authors welcome any requests for information on the raw data, data

647  processing, GERAS development and utilization.

648
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830 ADDITIONAL FILES

831  Supplementary Figures (.pdf)

832  Containing Supplementary Fig. S1-S9.

833

834 Table S1: Variable Importance for zebrafish beta-cell GERAS (.xIs)

835 A table listing the 1000-input genes utilized by zebrafish beta-cell GERAS and their

836  importance towards successful classification.

837

838  Table S2: Genesnegatively correlated with classification probability (.xIs)

839  For beta-cells from three-times-a-day fed animals, correlation analysis was performed. In the
840  analysis, correlation coefficient was calculated between the probability to be classified in
841  ‘Adolescent’ stage and gene expression. The genes were ranked in descending order of
842  correlation coefficient. The table contains the genes in the bottom 5t percentile.

843

844  Table S3: Genes positively correlated with classification probability (.xIs)

845  For beta-cells from three-times-a-day fed animals, correlation analysis was performed. In the
846  analysis, correlation coefficient was calculated between the probability to be classified in
847  ‘Adolescent’ stage and gene expression. The genes were ranked in descending order of
848  correlation coefficient. The table contains the genes in the top 5t percentile.

849

850 Table $4: Variable Importance for Human pancreatic GERAS (.xIs)

851 A table listing the 1000-input genes utilized by human pancreatic GERAS and their

852  importance towards successful classification.

853

854

855
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856  Figurelegends
857

858  Figurel: A Chronological age classifier for zebrafish beta-cells

859 (&) A schematic of the machine learning framework for predicting the chronological age of
860 zebrafish beta-cells based on single-cell transcriptome (see Online Methods for details).

861  (b) Barplot showing the accuracy of GERAS for classifying the age of beta-cells that were

862 excluded during the training of the model. The predictions on the excluded beta-cells
863 displayed greater than 91% accuracy, exhibiting successful separation of single-cells into
864 chronological stages. Error bars indicate standard error.

865  (c) Balloonplots showing the age-classification of de-novo sequenced beta-cells. GERAS
866 predicted the age of the cells from independent sources with greater than 92% accuracy,
867 showcasing the robustness of the model in handling biological and technical noise.

868  (d) The capacity of GERAS to perform regression analysis was tested using cells with ages
869 in-between the chronological stages used to train GERAS. More than 97% of the cells

870 from the intermediate time-points classify in the nearest-neighbor stages.

871  Number of cells for each condition is denoted by ‘n’.

872

873  Figure2: Impact of calorieintake on the chronological stage of zebrafish beta-cells

874 (@) The impact of calorie intake on the predicted age of beta-cells was investigated.

875 Statistically, a higher proportion of beta-cells from 4 mpf animals fed three-times-a-day
876 classified as ‘Adult’, as compared to cells from animals on intermittent feeding, in which
877 a majority of the cells (67%) classified as adolescent. (Fisher’s Exact Test, **p-value <
878 0.01).
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879  (b) To identify the genes contributing to chronological stage classification, correlation

880 analysis was performed. To this end, all beta-cells from the group fed three-times-a-day
881 were used to calculate the correlation coefficient between gene expression and the

882 probability of the cell to be classified in the ‘Adolescent’ stage. The Y-axis denotes the
883 correlation coefficient and the X-axis depicts all the genes expressed in the beta-cells.

884 The extreme fifth-percentile values are colored, with the red marking the top 5™ percentile
885 (positive correlation) and blue marking the bottom 5t percentile (negative correlation).
886 Genes with positive correlation, which include junba and fosab, contribute towards

887 classification in the ‘Adolescent’ stage as opposed to classification in the ‘Adult’ stage,
888 thereby increasing the probability of a cell being classified as younger.

889  (c) Gene-ontology (GO) analysis using DAVID * for genes in the extreme fifth-percentile.
890 This analysis includes the genes exhibiting negative (blue in b) and positive (red in b)

891 correlation.

892  Zebrafish illustration provided with permission.

893

894  Figure3: Inhibition of junba reduces the proliferation of zebrafish beta-cells

895 (&) Maximum intensity confocal projections of islet from 30 dpf animal showing mosaic

896 expression of nls-BFP-2A-DN-junba (blue) together with Tg(ins: FUCCI-SG2/M) (green)
897 and Tg(ins:FUCCI-G0/G1) (red). Arrowheads mark proliferating beta-cells, as indicated
898 by the presence of green fluorescence and absence of red fluorescence. Scale bar 10 um.

899  (b) Tukey-style boxplots showing the percentage of proliferating beta-cells among BFP+ and

900 BFP- cells. BFP+ cells co-express DN-junba, while the BFP- cells act as internal control.
901 The BFP+ cells show a statistically significant decrease in the proportion of proliferating
902 cells (t-test, **p-value <0.01). ‘n’ denotes number of islets.
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903

904 Figure4: A Chronological age classifier for human pancreatic cells

905 (&) A single chronological age classifier for the entire ensemble of human pancreatic cells
906 using machine learning. No cell-type segregation was performed during training.

907  (b) Barplot showing the accuracy of GERAS on classifying the age of pancreatic cells that

908 were not used for training the model. An accuracy of 95% was achieved for cells

909 previously unseen by GERAS. (b’) The classification accuracy of GERAS on the

910 previously unseen pancreatic cells after segregating them into major cell-types.

911 Classification accuracy equals the proportion of cells for which the predicted stage
912 matched the actual stage. For each cell-type, greater than 93% accuracy was achieved.
913 Error bars indicate standard error.

914  (c) External validation for the classifier was provided by human pancreatic single-cell mRNA

915 expression data obtained from an independent publication. Cells from individuals
916 belonging to the ‘Middle’ (38 — 54 years) stage of the classifier displayed greater than
917 93% accuracy.

918  (d) Balloonplot showing classification of cells from individuals with similar chronological

919 age but different BMI. In individuals with normal BMI, 32% of the cells were classified
920 in ‘Juvenile’ and “Young’ stages, while none (0%) of the cells from individuals with obese
921 BMI were similarly classified.

922  Number of cells for each condition is denoted by ‘n’.

923
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932  Figure3

a Impact of DN-junba on beta-cell proliferation
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