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Abstract 

The results of most neuroimaging studies are reported in volumetric (e.g., MNI152) or 

surface (e.g., fsaverage) coordinate systems. Accurate mappings between volumetric 

and surface coordinate systems can facilitate many applications, such as projecting 

fMRI group analyses from MNI152/Colin27 to fsaverage for visualization, or 

projecting resting-state fMRI parcellations from fsaverage to MNI152/Colin27 for 

volumetric analysis of new data. However, there has been surprisingly little research 

on this topic. Here, we evaluated three approaches for mapping data between 

MNI152/Colin27 and fsaverage coordinate systems by simulating the above 

applications: projection of group-average data from MNI152/Colin27 to fsaverage 

and projection of fsaverage parcellations to MNI152/Colin27. Two of the approaches 

are currently widely used. A third approach (registration fusion) was previously 

proposed, but not widely adopted. Two implementations of the registration fusion (RF) 

approach were considered, with one implementation utilizing the Advanced 

Normalization Tools (ANTs). We found that RF-ANTs performed the best for 

mapping between fsaverage and MNI152/Colin27, even for new subjects registered to 

MNI152/Colin27 using a different software tool (FSL FNIRT). This suggests that 

RF-ANTs would be useful even for researchers not using ANTs. Finally, it is worth 

emphasizing that the most optimal approach for mapping data to a coordinate system 

(e.g., fsaverage) is to register individual subjects directly to the coordinate system, 

rather than via another coordinate system. Only in scenarios where the optimal 

approach is not possible (e.g., mapping previously published results from MNI152 to 

fsaverage), should the approaches evaluated in this manuscript be considered. In these 

scenarios, we recommend RF-ANTs 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/registration/Wu

2017_RegistrationFusion). 
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Introduction 

 Most neuroimaging studies register their participants to a common coordinate 

system for group analyses (Talairach et al., 1967; Talairach and Tournoux, 1988; 

Evans et al., 1993; Thompson et al., 1997; Fischl et al., 1999b; Van Essen, 2002). 

Even studies focusing on individual-specific analyses map individual participants to a 

common coordinate system (e.g., Gordon et al., 2017), allowing for comparisons 

across participants or studies. There are two main types of coordinate systems: 

volumetric and surface. The advantage of volumetric coordinate systems is that both 

cortical and subcortical structures are represented, in contrast to surface coordinate 

systems that only focus on the cerebral cortex. Conversely, surface-based coordinate 

systems allow for more accurate inter-subject registration by respecting the 2D 

topology of the cerebral cortex (Fischl et al., 1999a; Goebel et al., 2006; Anticevic et 

al., 2008; Cointepas et al., 2010; Ghosh et al., 2010; Pantazis et al., 2010; Van Essen 

et al., 2012; Tucholka et al., 2012).  

The most popular volumetric coordinate system is the MNI152 template, 

obtained by group-wise registration of 152 participants (Mazziotta et al., 1995, 2001; 

Good et al., 2001; Fonov et al., 2011; Grabner et al., 2006). Another common 

volumetric coordinate system is the single-subject MNI template (i.e., Colin27; 

Holmes et al., 1998), often used in the neuroimaging software packages SPM and 

MRIcron for lesion-symptom mapping (Ashburner and Friston, 1999; Rorden et al., 

2007). The most popular surface coordinate system is FreeSurfer fsaverage template 

(Fischl et al., 1999b; Bar and Aminoff, 2003; Filimon et al., 2007; Yeo et al,. 2010a). 

An important issue with multiple coordinate systems is that results reported in one 

coordinate system cannot be easily translated to another coordinate system. 

While there have been tremendous research efforts on mapping data from 

individual subjects into common coordinate systems (Collins et al., 1994; Woods et 

al., 1998; Rueckert et al., 1999; Hellier et al., 2003; Andersson et al., 2007; Ashburner, 

2007; Hamm et al, 2010; Yeo et al., 2010b; Yushkevich et al., 2012; Robinson et al., 

2014; Tong et al., 2017; Nenning et al., 2017), there is significantly less work on 

mappings between coordinate systems (Lancaster et al., 2007; Laird et al., 2010). 

Accurate mapping between volumetric (e.g. MNI152) and surface (e.g. fsaverage) 

coordinate systems would be useful for many applications. For example, it is a 

common practice for researchers to perform group analysis in MNI152 space, and 

then project the results to fsaverage space for visualization (Liu et al., 2009; Sepulcre 
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et al., 2010; Yeo et al., 2015). As another example, resting-state parcellations 

estimated in fsaverage or fs_LR surface coordinate systems (Yeo et al., 2011; Gordon 

et al., 2016; Glasser et al., 2016; Schaefer et al., in press) can be projected to the 

MNI152 coordinate system for analyzing fMRI data of new subjects registered to the 

MNI152 template. Finally, a more accurate MNI152-fsaverage mapping would 

facilitate the comparison of thousands of neuroimaging studies reported in either 

MNI152 or fsaverage coordinate system. 

In this work, we evaluate three approaches (including two implementations of 

one of the approaches) for mapping between volumetric (MNI152 or Colin27) and 

surface (fsaverage) coordinate systems. The evaluation utilized simulations 

mimicking the previously described applications: projection of group-average data 

from MNI152/Colin27 to fsaverage and projection of surface-based parcellations 

from fsaverage to MNI152/Colin27. We note that the evaluations are not comparisons 

of volumetric and surface registrations. Instead, the evaluations served to provide 

error bounds on different mappings between MNI152/Colin27 and fsaverage 

coordinate systems and to guide the adoption of best practices.  

It is also worth emphasizing that a perfect mapping between volumetric and 

surface coordinate systems is impossible because of registration errors that become 

irreversible after group averaging. Therefore, the best way of mapping data to 

fsaverage is by registering subjects directly to fsaverage (e.g., via the official 

FreeSurfer recon-all pipeline). Similarly, the best way of mapping data to 

MNI152/Colin27 is by registering subjects directly to the corresponding volumetric 

template. The approaches evaluated in this paper should only be considered when the 

best approach is not possible, e.g., mapping previously published results from 

MNI152 to fsaverage. Whenever the original data from a subject’s native space are 

available, one should perform registration between the subject’s native space and the 

desired coordinate system (fsaverage, MNI152 or Colin27) directly, rather than utilize 

the approaches evaluated in this paper. 
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Methods 

Volumetric and surface templates 

The MNI152 coordinate system is created by averaging the MRI scans of 152 

participants and affords a higher resolution over the original MNI305 average brain. 

Here we consider the 1mm asymmetric MNI152 template distributed by the FMRIB 

Software Library (FSL) version 5.0.8. The template was obtained by the linear and 

nonlinear registration of 152 T1-weighted images (Grabner et al., 2006).  

Although MNI152 is the most commonly used volumetric coordinate system, 

the inter-subject averaging results in the loss of fine anatomical details. Therefore, 

some research communities (e.g., neuropsychology) prefer single-subject templates. 

A commonly used single-subject template is Colin27 (also called the MNI single 

subject template), which is an average image across 27 scans of one subject (Holmes 

et al., 1998). We used the 1mm Colin27 template from the Statistical Parametric 

Mappings (SPM) Anatomy Toolbox version 2.2c (Eickhoff et al., 2005). 

Finally, the most common surface coordinate system is FreeSurfer fsaverage, 

which is obtained by spherical alignment of 40 participants (Fischl et al., 1999a, 

1999b). As a surface template, fsaverage offers excellent representation of the cortical 

surface’s intrinsic topological structure as well as multi-scale summary statistics of 

cortical geometry. It also has an inflated form, which facilitates data visualization. We 

used the fsaverage template from FreeSurfer version 4.5.0. 

 

Data and FreeSurfer processing 

Data from 1490 subjects from the Brain Genomics Superstruct Project (GSP) 

were considered (Holmes et al., 2015). All imaging data were collected on matched 

3T Tim Trio scanners using the vendor-supplied 12-channel phase-array head coil. 

Subjects were clinically normal, English-speaking young adults (ages 18 to 35). The 

structural MRI data consisted of one 1.2mm x 1.2mm x 1.2mm scan for each 

participant. Details of data collection can be found elsewhere (Yeo et al., 2011; 

Holmes et al., 2015). The subjects were split into training and test set, each containing 

745 subjects. 

A second dataset consisted of 30 healthy young adults from the Hangzhou 

Normal University of the Consortium for Reliability and Reproducibility 

(CoRR-HNU) dataset (Zuo et al., 2014; Chen et al., 2015). All anatomical images 

were collected on matched 3T GE Discovery MR750 scanners using an 8-channel 
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head coil. Ten 1.0mm x 1.0mm x 1.0mm scans were performed for each subject 

across one month. In this paper, we utilized all 10 sessions for all 30 subjects, giving 

rise to a total of 300 sessions. 

The T1 images of the GSP dataset has been previously processed (Holmes et al., 

2015) using FreeSurfer 4.5.0 recon-all procedure (http://surfer.nmr.mgh.harvard.edu; 

Dale et al., 1999; Ségonne et al., 2004, 2007; Fischl et al., 1999a, 1999b, 2001). For 

consistency, the T1 images of the CoRR-HNU dataset were also processed using the 

same FreeSurfer version. FreeSurfer constitutes a suite of automatic algorithms that 

extract models of most macroscopic human brain structures from T1 MRI data. There 

are three outputs of the recon-all procedure that were important for subsequent 

analyses. 

First, FreeSurfer automatically reconstructs surface mesh representations of the 

cortex from individual subjects’ T1 images. The cortical surface mesh is inflated into 

a sphere, and registered to a common spherical coordinate system that aligned the 

cortical folding patterns across subjects (Fischl et al., 1999a, 1999b). The outcome of 

this procedure is a nonlinear mapping between the subject’s native T1 space and 

fsaverage surface space. 

Second, the recon-all procedure generates corresponding volumetric 

(aparc.a2009s+aseg.mgz) and surface (lh.aparc.a2009s.annot and 

rh.aparc.a2009s.annot) parcellations of 74 sulci and gyri for each subject (Fischl et al., 

2004b; Desikan et al., 2006; Destrieux et al., 2010). FreeSurfer assign these labels 

based on probabilistic information estimated from a manually labeled training set 

(Destrieux atlas), as well as geometric information derived from the cortical model of 

the subject. These anatomical segmentations will be utilized in our evaluation of 

various algorithms for mapping between MNI152/Colin27 and fsaverage.  

Third, the recon-all procedure performs a joint registration-segmentation 

procedure that aligns the T1 image to an internal FreeSurfer volumetric space1, while 

classifying each native brain voxel into one of multiple brain structures, such as the 

thalamus and caudate (Fischl et al., 2004a, 2004b). The outcome of this procedure is a 

nonlinear mapping between the subject’s native T1 space and FreeSurfer internal 

volumetric space. The nonlinear mapping is represented by a dense displacement field 

                                                
1 Note that this internal volumetric space is different from fsaverage volume. 
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(i.e., a single displacement vector at each 2-mm isotropic atlas voxel) and can be 

found in the file “talairach.m3z” (under the “mri/transforms” folder of the recon-all 

output). 

 

Affine and MNIsurf  

Two existing approaches (Affine and MNIsurf) for mapping between MNI152 

and fsaverage coordinate systems were identified. Both approaches have been 

discussed on the FreeSurfer mailing list and might be considered as “recommended” 

FreeSurfer approaches.  

 Figure 1 summarizes the Affine approach for mapping between MNI152 and 

fsaverage surface coordinate systems. The Affine approach made use of an affine 

transformation between the MNI152 template and fsaverage volume space (Figure 1A) 

provided by FreeSurfer (i.e., $FREESURFER_HOME/average/mni152.register.dat). 

This affine transformation can be concatenated with the mapping between fsaverage 

volume and fsaverage surface (Figure 1B) using FreeSurfer functions (mri_vol2surf 

and mri_surf2vol), thus yielding a mapping between MNI152 and fsaverage 

coordinate systems. 

 

One drawback of this approach is that an affine transformation is unlikely to 

eliminate nonlinear anatomical differences between MNI152 and fsaverage volume. 

Simply replacing the affine transformation with a nonlinear warp (Van Essen et al., 

2012) might not be helpful because the fsaverage volume is a blurry average of 40 

subjects after affine registration; fine anatomical details have already been lost. 

Figure 2 summarizes the MNIsurf approach for mapping between MNI152 and 

fsaverage surface coordinate systems. The MNI152 template was first processed with 

Figure 1. Affine procedure. (A) MNI152 and fsaverage volume was aligned using an 
affine transformation. (B) FreeSurfer provides a mapping between fsaverage volume 
and fsaverage surface. Concatenating the two transformations result in a mapping 
between MNI152 and fsaverage surface. 
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FreeSurfer recon-all. The recon-all process involved extracting MNI152 template’s 

cortical ribbon and reconstructing the cortical surface (Figure 2A). FreeSurfer 

commands (mri_vol2surf and mri_surf2vol) could then be utilized to map between 

MNI152’s cortical ribbon (as segmented by recon-all) and fsaverage surface (Figure 

2B).  

 

One drawback of MNIsurf is that the cortical ribbon of a typical subject 

mapped to MNI152 coordinate system will not exactly match the group-average 

MNI152 cortical ribbon (which is abnormally thin and misses some low-frequency 

and/or thin folds due to inter-subject averaging). Consequently, there will be 

irreversible registration errors from averaging subjects mapped to the MNI152 

coordinate system. MNIsurf does not take into account these irreversible registration 

errors because it simply maps the cortical ribbon of MNI152 directly to fsaverage 

surface. 

 

Registration fusion: RF-M3Z and RF-ANTs 

The registration fusion (RF) approach was first introduced by Buckner and 

colleagues (Buckner et al., 2011; Yeo et al., 2011). Figure 3 summarizes the original 

implementation. Recall that by applying FreeSurfer recon-all procedure to each GSP 

training subject, we have generated for each subject a nonlinear mapping between the 

subject’s cortical ribbon and fsaverage surface space (Figure 3C) and a nonlinear 

mapping between the subject’s T1 volume and FreeSurfer internal volumetric space 

(Figure 3B). By also processing the MNI152 template with FreeSurfer recon-all, we 

also obtained a nonlinear mapping between the MNI152 template and FreeSurfer 

internal volumetric space (Figure 3A). By concatenating the three transformations 

(Figure 3A, Figure 3B and Figure 3C) for each subject, a mapping between MNI152 

Figure 2. MNIsurf procedure. The MNI152 template was processed using FreeSurfer 
recon-all. The cortical ribbon of MNI152 was (A) extracted and (B) aligned to 
fsaverage surface during the recon-all procedure.  
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and fsaverage coordinate systems for each GSP training subject was obtained. By 

averaging across all 745 training subjects, a final mapping between MNI152 and 

fsaverage coordinate systems was obtained. This mapping is referred to as RF-M3Z. 

 

Visual inspection suggested that the mappings between MNI152 and individual 

subjects (concatenations of transformations in Figure 3A and Figure 3B) were of good 

quality (Buckner et al., 2011; Yeo et al., 2011). However, by concatenating two 

deformations, small registration errors in each deformation may be compounded to 

result in large registration errors. Furthermore, FreeSurfer is optimized for processing 

the brains of individual subjects, not an average brain like the MNI152 template.  

Therefore, we also considered a second implementation, where the individual 

subjects and the MNI152 template were directly registered using ANTs (Avants et al., 

2007, 2009). More specifically, each GSP training subject’s T1 image was directly 

registered to the MNI152 template using an affine transformation followed by 

Symmetric Normalization (Figure 4A). Like RF-M3Z, the mapping between each 

subject’s cortical ribbon and fsaverage surface space was provided by FreeSurfer 

Figure 3. Registration fusion (RF-M3Z) procedure. Each subject’s T1 volume is 
mapped to the (A, B) MNI152 template and (C) fsaverage surface. By concatenating 
the mappings for each subject and then averaging the deformations across all 745 
training subjects, we created a mapping between MNI152 and fsaverage surface 
space. All mappings (A, B and C) were generated using FreeSurfer’s recon-all 
procedure. More specifically, mappings A and B were provided by the talairach.m3z 
files generated by recon-all, so we refer to the resulting MNI152-fsaverage mapping 
as RF-M3Z.  
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recon-all (Figure 4B). By concatenating the two transformations (Figure 4A and 

Figure 4B) for each subject, a mapping between MNI152 and fsaverage coordinate 

systems for each GSP training subject was obtained. By averaging across all 745 

training subjects, a final mapping between MNI152 and fsaverage coordinate systems 

was obtained. This mapping is referred to as RF-ANTs. It is important to note that this 

does not constitute a comparison of FreeSurfer and ANTs (Klein et al., 2010), since 

FreeSurfer is not being used in the way it was designed (i.e., individual subject 

analyses) in the case of RF-M3Z. 

 

Tight and loose cortical masks for fsaverage-to-MNI152 mappings 

It is worth mentioning an important asymmetry in the generation of the 

MNI-to-fsaverage and fsaverage-to-MNI mappings. When computing the 

MNI-to-fsaverage mapping, each subject yielded a mapping between every fsaverage 

vertex and some MNI location, which allowed for a simple averaging of 

MNI-to-fsaverage mappings across all 745 training subjects. By contrast, when 

computing the fsaverage-to-MNI mapping, not every training subject yielded a 

Figure 4. Registration fusion (RF-ANTs) procedure. Each subject’s T1 volume is 
mapped to the (A) MNI152 template and (B) fsaverage surface. By concatenating the 
mappings (A and B) for each subject and then averaging the deformations across all 
745 training subjects, we created a mapping between MNI152 and fsaverage. 
Mapping (A) was generated using ANTs, so we refer to the resulting 
MNI152-fsaverage mapping as RF-ANTs. 
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mapping between every MNI location and some fsaverage vertex because not every 

MNI location corresponded to the cerebral cortex of every subject.  

Therefore, when computing the fsaverage-to-MNI mapping, we defined two 

cortical masks. Figure 5 illustrates the two MNI152 masks and the difference between 

them. The tight cortical mask corresponded to the cortex for at least 50% of the 

subjects (Figure 5A), while the loose cortical mask corresponded to the cortex for at 

least 15% of the subjects (Figure 5B). For each tight cortical mask voxel (Figure 5A), 

the fsaverage-to-MNI152 mappings were averaged across all subjects with valid 

fsaverage-to-MNI152 mappings for the voxel. The averaged mapping was then grown 

outwards to fill the entire loose cortical mask. More specifically, for each voxel 

outside the tight mask (but within the loose mask; Figure 5C), its nearest voxel within 

the tight mask (Figure 5A) was identified based on Euclidean distance. The voxel was 

then assigned the same fsaverage surface coordinates as its nearest voxel within the 

tight mask. Therefore, fsaverage surface data can be projected to fill up the entire 

loose cortical mask in the MNI152 template. This procedure was repeated for Affine, 

MNIsurf, RF-M3Z and RF-ANTs. 

 

MNI152-to-fsaverage evaluation 

To evaluate the MNI152-to-fsaverage projection, let’s consider a possible 

usage scenario. Researchers often project data (e.g., fMRI) from subjects’ native 

spaces to MNI152 coordinate system for some form of group analysis. The outcome 

of the group analysis can be visualized in the volume, but is often projected to 

fsaverage surface for visualization. By contrast, data from subjects’ native space can 

Figure 5. Cortical masks for fsaverage-to-MNI152 mappings. (A) Tight cortical mask 
corresponding to 50% of the 745 GSP training subjects. (B) Loose cortical mask 
corresponding to 15% of the training subjects. (C) Difference between tight and loose 
cortical masks. 
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be directly projected to fsaverage surface for group analysis. The 

subjects-to-MNI152-to-fsaverage results should ideally be close to the 

subjects-to-fsaverage results.  

To simulate the above scenario, recall that we have processed the 745 GSP test 

subjects using FreeSurfer recon-all, yielding corresponding surface 

(lh.aparc.a2009s.annot and rh.aparc.a2009s.annot) and volumetric 

(aparc.a2009s+aseg.mgz) parcellations of 74 sulci and gyri per cortical hemisphere 

(i.e., Destrieux parcellation). Figure 6A illustrates the superior temporal sulcus label 

in two GSP test subjects. The parcellation labels were projected to MNI152 

coordinate system using ANTs and averaged across subjects, resulting in a 

ANTs-derived volumetric probabilistic map per anatomical structure. The 

probabilistic maps simulated the group-average results from typical fMRI studies. As 

an example, Figure 6B illustrates the ANTs-derived MNI152 volumetric probabilistic 

Figure 6. MNI152-to-fsaverage evaluation. (A) Parcellation labels from each subject 
were projected to (B) MNI152 and (C) fsaverage. The projected labels were averaged 
across subjects, resulting in a probabilistic map per anatomical structure in (B) 
MNI152 and (C) fsaverage respectively. Figure shows superior temporal sulcus as an 
example. The latter maps in (C) fsaverage were used as “ground truth”. The MNI152 
probabilistic maps can then be projected to fsaverage surface using the various 
projection approaches (dotted arrow) for comparison with the “ground truth” maps.  
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map of the superior temporal sulcus.  

The MNI152 volumetric probabilistic maps (Figure 6B) can then be projected 

to fsaverage surface using the various MNI152-to-fsaverage projection approaches 

(dotted arrow in Figure 6) for comparison with “ground truth” surface probabilistic 

maps (Figure 6C). The “ground truth” surface probabilistic maps were obtained by 

averaging the surface parcellations across subjects in fsaverage surface space, mapped 

from each subject using FreeSurfer. As an example, Figure 6C shows the “ground 

truth” surface probabilistic map of the superior temporal sulcus.  

To quantify the disagreement between the projected probabilistic map and the 

“ground truth” surface probabilistic map of an anatomical structure, the Normalized 

Absolute Difference (NAD) metric was used. The NAD metric was defined as the 

absolute difference between the two maps, summed across all vertices and divided by 

the sum of the “ground truth” probabilistic map. This metric measured the 

dissimilarity between the two maps, normalizing for the size of the anatomical 

structure. A lower NAD value indicates better performance.  

For every pair of approaches, the NAD metric for each of the 74 anatomical 

structures were averaged between the two hemispheres and submitted to a 

paired-sample t-test. Multiple comparisons were corrected using a false discovery rate 

(FDR; Benjamini and Hochberg, 1995) of q < 0.05. All the p values reported in 

subsequent sections survived the false discovery rate.  

  

fsaverage-to-MNI152 evaluation 

To evaluate the fsaverage-to-MNI152 projection, let’s consider a possible 

usage scenario. It is unlikely that researchers would directly project individual 

subjects’ fMRI data onto fsaverage surface space for group-level analysis, and then 

project their results into MNI152 space for visualization. A more likely scenario 

might be the projection of surface-based resting-state fMRI cortical parcellations 

(Yeo et al., 2011; Gordon et al., 2015; Glasser et al., 2016; Schaefer et al., in press) to 

MNI152 space. The projected resting-state fMRI parcellation can then be utilized for 

analyzing new data from individual subjects registered to the MNI152 coordinate 

system. In this scenario, it would be ideal if the projected fsaverage-to-MNI152 

resting-state parcellation were the same as a parcellation that was estimated from 

resting-state fMRI data directly registered to MNI152 space.  
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To simulate the above scenario, the Destrieux anatomical parcellation of each 

GSP test subject (Figure 7A) was projected to fsaverage and combined into a 

winner-takes-all parcellation (Figure 7B). The surface-based parcellation can then be 

projected to MNI152 using the various fsaverage-to-MNI152 projection approaches 

(dotted arrow in Figure 7) for comparison with the “ground truth” volumetric 

parcellation (Figure 7C). The “ground truth” volumetric parcellation was obtained by 

projecting the individual subjects’ anatomical parcellations (Figure 7A) into MNI152 

space (using ANTs) and then combined into a winner-take-all parcellation (Figure 

7C).  

 

To quantify the agreement between the projected parcellation and the “ground 

truth” parcellation, the Dice coefficient was computed for each of the 74 anatomical 

Figure 7. Fsaverage-to-MNI152 evaluation. (A) Parcellation from each subject was 
projected to (B) fsaverage and (C) MNI152. By combining the parcellations across 
subjects, winner-takes-all parcellations were obtained in (B) MNI152 and (C) 
fsaverage respectively. The latter was used as “ground truth”. The fsaverage 
winner-takes-all parcellation can be projected to MNI152 coordinate system using the 
various projection approaches (dotted arrow) for comparison with the “ground truth” 
MNI152 parcellation. 
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regions per hemisphere. A higher Dice value indicates better performance.  

For every pair of approaches, the Dice metric for each of the 74 anatomical 

structures were averaged between the two hemispheres and submitted to a 

paired-sample t-test. Multiple comparisons were corrected using a false discovery rate 

(FDR; Benjamini and Hochberg, 1995) of q < 0.05. All the p values reported in 

subsequent sections survived the false discovery rate. 

 

Generalization to new data (CoRR-HNU) and FSL FNIRT 

The RF mappings were derived using the GSP training set. To ensure the 

mappings generalize to new data, the above evaluations (MNI152-to-fsaverage and 

fsaverage-to-MNI152) were repeated using the CoRR-HNU dataset. Furthermore, the 

previous evaluation procedures utilized ANTs to project subjects’ anatomical 

parcellations to MNI152 (Figure 6B and Figure 7C), resulting in possible biases in 

favor of RF-ANTs. As such, the above evaluations were repeated using FSL 

FLIRT/FNIRT (Andersson et al., 2007). More specifically, FLIRT/FNIRT was 

utilized to project individual subjects’ parcellation to MNI152 space to obtain 

FNIRT-derived CoRR-HNU MNI152 volumetric probabilistic maps (Figure 6B), as 

well as FNIRT-derived CoRR-HNU MNI152 winner-take-all parcellation (Figure 

7C). 

 

Registration fusion convergence 

In the previous analyses, as many training subjects as available (N=745) were 

used to construct the average mappings for the RF approaches. Here, we investigated 

the relationship between the accuracy of the RF approaches and the number of 

subjects used. More specifically, the MNI152-to-fsaverage evaluation (using 

ANTs-derived GSP MNI152 maps) were repeated using RF mappings averaged 

across different number of subjects. 

 

Colin27-to-fsaverage and fsaverage-to-Colin27 

The previous mappings and evaluations were repeated for Colin27. In the case 

of the Affine approach, FreeSurfer does not provide a corresponding 

Colin27-to-fsaverage-volume warp. Therefore, an affine warp was generated using 

FSL FLIRT.  
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Since we are now working with the Colin27 template, the MNIsurf approach 

was renamed as Colin27surf. It should be noted that unlike that of the MNI152 

template, the cortical ribbon of the Colin27 template is not abnormally thin (since it is 

a single subject template). However, using a single subject prevents the use of 

cross-subject variance measures that can stabilize inter-subject registration (Fischl, 

1999b). Therefore, we also expect registration errors between the cortical ribbon of a 

typical subject and Colin27. Consequently, Colin27surf does not take into account 

irreversible registration errors because it simply maps the cortical ribbon of Colin27 

directly to fsaverage. 
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Results 

MNI152-to-fsaverage projection 

Figure 8 shows the projection of ANTs-derived MNI152 probabilistic maps of 

four representative anatomical structures to fsaverage surface space for the GSP test 

set. Figure 9 shows the projection of FNIRT-derived MNI152 probabilistic maps of 

four representative anatomical structures to fsaverage surface space for the 

CoRR-HNU dataset. The black boundaries correspond to the winner-takes-all 

parcellation obtained by thresholding the “ground truth” GSP or CoRR-HNU 

fsaverage surface probabilistic maps respectively. Visual inspection of Figures 8 and 

9 suggests that the projected probabilistic maps corresponded well to the “ground 

truth” for all approaches, although there was also clear bleeding to adjacent 

anatomical structures for the central sulcus and middle frontal sulcus.  

The NAD evaluation metric is shown below each brain in Figures 8 and 9. A 

lower value indicates closer correspondence with the “ground truth” probabilistic map. 

The NAD generally agreed with the visual quality of the projections, suggesting its 

usefulness as an evaluation metric. For example, in Figure 8, the projection of the left 

ANTs-derived middle posterior cingulate probabilistic map using RF-ANTs visually 

matched the “ground truth” black boundaries very well, resulting in a low NAD of 

0.27. On the other hand, the corresponding projection using MNIsurf aligned well 

with the posterior, but not the anterior, portion of the “ground truth” black boundaries, 

resulting in a worse NAD of 0.34 (Figure 8).   

Figure 10 shows the NAD metric averaged across all anatomical structures 

within each hemisphere. When ANTs-derived GSP MNI152 probabilistic maps were 

used, RF-ANTs was the best (p < 0.01 corrected). RF-M3Z and MNIsurf showed 

comparable performance and were both significantly better than Affine (p < 0.01 

corrected). When FNIRT-derived CoRR-HNU MNI152 probabilistic maps were used, 

RF-ANTs was also the best (p < 0.01 corrected). RF-M3Z and Affine showed 

comparable performance and were both significantly better than MNIsurf (p < 0.04 

corrected and p < 0.02 corrected). To summarize, RF-ANTs always performed the 

best. We note that hemispheric differences within each approach were not statistically 

significant (all p > 0.2).  
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Figure 8. Visualization of ANTs-derived MNI152 probabilistic maps projected to 
fsaverage surface space in the GSP test set. Four representative structures are shown. 
Black boundaries correspond to the “ground truth” winner-takes-all parcellation. The 
value below each cortical surface shows the Normalized Absolute Difference (NAD) 
between projected probabilistic map and “ground truth” probabilistic map, where a 
smaller value indicates better performances. Best NAD for each region is bolded. 
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Figure 9. Visualization of FNIRT-derived MNI152 probabilistic maps projected to 
fsaverage surface space in the CoRR-HNU dataset. Four representative structures are 
shown. Black boundaries correspond to the “ground truth” winner-takes-all 
parcellation. The value below each cortical surface shows the Normalized Absolute 
Difference (NAD) between projected probabilistic map and “ground truth” 
probabilistic map, where a smaller value indicates better performances. Best NAD for 
each region is bolded. 
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fsaverage-to-MNI152 projection 

Figure 11 illustrates the projection of the fsaverage winner-takes-all 

parcellation to MNI152 volumetric space for the GSP test set, juxtaposed against 

black boundaries of ANTs-simulated “ground truth” segmentations. Figure 12 

illustrates the projection of the fsaverage winner-takes-all parcellation to MNI152 

volumetric space for the CoRR-HNU dataset, juxtaposed against black boundaries of 

FNIRT-simulated “ground truth” segmentations. Figures 11A and 12A show the 

fsaverage-to-MNI152 projections before the dilation within the loose cortical mask 

(see Methods). Figures 11B and 12B show the fsaverage-to-MNI projections after the 

dilation, with insets illustrating example regions with obvious differences across 

methods.  

 

Figure 10. Normalized Absolute Difference (NAD) of MNI152 probabilistic maps 
projected to fsaverage surface space. (Left) Results for ANTs-derived GSP MNI152 
probabilistic maps. (Right) Results for FNIRT-derived CoRR-HNU MNI152 
probabilistic maps. The bars represent the NADs averaged across all 74 probabilistic 
maps within left hemisphere (black) and right hemisphere (white). Error bars 
correspond to standard errors across the 74 anatomical structures. Overall, RF-ANTs 
performed the best. 
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Figure 11. Winner-takes-all fsaverage parcellation projected to MNI152 volumetric 
space with ANTs-simulated “ground truth” (black boundaries) in the GSP test set. (A) 
Projections before dilation within loose cortical mask. (B) Projections after dilation 
within loose cortical mask. 
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Figure 12. Winner-takes-all fsaverage parcellation projected to MNI152 volumetric 
space with FNIRT-simulated “ground truth” (black boundaries) in CoRR-HNU 
dataset. (A) Projections before dilation within loose cortical mask. (B) Projections 
after dilation within loose cortical mask. 
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Figure 13 shows the Dice metric averaged across all anatomical structures 

within each hemisphere. In the case of GSP test set (using ANTs-simulated “ground 

truth”), RF-ANTs was the best (p < 0.01 corrected). RF-M3Z, MNIsurf and Affine all 

showed comparable performance. In the case of the CoRR-HNU dataset (using 

FNIRT-simulated “ground truth”), RF-ANTs and Affine were the best (p < 0.01 

corrected). There was no statistically significant difference between RF-ANTs and 

Affine.  

 

 To summarize, RF-ANTs performed the best, although Affine also performed 

surprisingly well when FNIRT-simulated CoRR-HNU “ground truth” was considered 

(Figure 13 right). Visual inspection of Figure 12A suggests that the projected cortical 

ribbon for Affine did not match well to the MNI152 cortical ribbon. However, the 

dilation within the loose cortical mask appeared to compensate for the poor mapping 

(Figure 12B), leading to a competitive dice score (Figure 13 right).  

 

Registration fusion convergence 

 Figure 14 shows the average NAD metric within each hemisphere for 

projecting ANTs-derived GSP MNI152 probabilistic maps to fsaverage space, plotted 

against the number of subjects used to construct the RF mappings. The NAD values 

start converging after about 100 subjects. When more than 300 subjects are used, the 

Figure 13. Dice of winner-takes-all fsaverage parcellation projected to MNI152 
space, compared against (left) ANTs-simulated GSP “ground truth” and (right) 
FNIRT-simulated CoRR-HNU “ground truth”. Bars represent Dice coefficient 
averaged across all 74 segmentation labels within left hemisphere (black) and right 
hemisphere (white). Error bars correspond to standard errors.  
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NAD values are mostly stable, although the right hemisphere for RF-ANTs seem to 

require more subjects to converge. This suggests that the use of 745 training subjects 

is sufficient to guarantee the quality of the RF mappings. Nevertheless, the RF 

mappings that we have made publicly available, utilize the entire GSP dataset to 

construct the mappings. 

 

Colin27-to-fsaverage and fsaverage-to-Colin27 projections 

Figures S1 to S3 show the Colin27-to-fsaverage projection results. The results 

are largely consistent with the MNI152-to-fsaverage results. In the case of the GSP 

test set (using ANTs-derived volumetric probabilistic maps), RF-ANTs was the best 

(p < 0.01 corrected). RF-M3Z and Colin27surf showed comparable performance and 

were both significantly better than Affine (p < 0.01 corrected). In the case of the 

CoRR-HNU dataset (using FNIRT-derived Colin27 volumetric probabilistic maps), 

RF-ANTs was also the best (p < 0.01 corrected). RF-M3Z was the second best (p < 

0.01 corrected), followed by Affine (p < 0.01 corrected). Hemispheric differences 

within each approach were not statistically significant (all p > 0.1). To summarize, 

RF-ANTs always performed the best. 

Figure 14. Normalized Absolute Difference (NAD) of ANTs-derived GSP MNI152 
probabilistic maps projected to fsaverage space as a function of the number of 
subjects used to create the RF mappings. (Left) RF-ANTs. (Right) RF-M3Z. NADs 
were averaged across all 74 probabilistic maps within left hemisphere (black) and 
right hemisphere (gray), and across all subjects in GSP test set. Results converge after 
about 300 subjects, although the right hemisphere for RF-ANTs seems to require 
more subjects to converge.  
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Figures S4 to S6 show the fsaverage-to-Colin27 projection results. The results 

are largely consistent with the fsaverage-to-MNI152 results. In the case of the GSP 

test set (using ANTs-derived “ground truth”), RF-ANTs was the best (p < 0.01 

corrected). While Colin27surf showed better performance than RF-M3Z (p < 0.01 

corrected), both of them showed (statistically) comparable performance with Affine. 

On the other hand, in the case of the CoRR-HNU dataset (using FNIRT-derived 

“ground truth”), both RF-ANTs and RF-M3Z showed (statistically) comparable 

performance with Affine. Nevertheless, RF-ANTs showed better performance than 

RF-M3Z (p < 0.01 corrected). Colin27surf performed the worst (p < 0.01 corrected). 

To summarize, RF-ANTs performed the best, although Affine also performed 

surprisingly well when FNIRT-simulated CoRR-HNU “ground truth” was considered. 

Similar to the previous section, the dilation within the loose cortical mask 

compensated for the actually poor Affine mapping. 
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Discussion 

In this paper, various approaches (Affine, MNIsurf/Colin27surf, RF-M3Z and 

RF-ANTs) for mapping between MNI/Colin27 and fsaverage were quantitatively 

evaluated. RF-ANTs performed the best. 

Our results showed that RF-ANTs compared favorably with RF-M3Z, 

MNIsurf/Colin27surf and Affine even when FSL FNIRT was used to set up the 

evaluations using a dataset different from the one utilized to derive RF-ANTs. This 

suggests that if a different software (other than ANTs) was used to register data to 

MNI152 space, it would still be preferable to use RF-ANTs (rather than RF-M3Z, 

MNIsurf or Affine) to map the resulting data to fsaverage space. Nevertheless, to 

achieve best performance, if SPM was used to register data to MNI152 space, then it 

would probably be the most optimal to generate a new set of RF transformations 

using SPM. 

One potential concern is that the RF mappings are expensive to create because 

it requires registering a large number of subjects. However, we note that this is a 

one-time cost. To alleviate this one-time cost, RF-M3Z and RF-ANTs mappings 

generated using all 1490 GSP subjects are available at 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/registration/Wu

2017_RegistrationFusion. The code to replicate the mappings or generate new 

mappings can be found at the same repository. 

Recent work has proposed integrating surface-based and volumetric 

registration to obtain the advantages of each (Joshi et al., 2009; Postelnicu et al., 2009; 

Zollei et al., 2010). These combined-volume-surface registration algorithms either 

used both cortical features and volumetric intensity to drive the alignment 

simultaneously (Joshi et al., 2009) or used geometric information from a 

surface-based warp to initialize the volumetric alignment (Postelnicu et al., 2009; 

Zollei et al., 2010). However, these methods were usually designed with inter-subject 

registration in mind. The combined-volume-surface registration algorithms can be 

used to create a joint surface-volumetric template, in which the surface and 

volumetric surface coordinate systems are in alignment. However, creating a new 

coordinate system would not be helpful for researchers with existing data in 

MNI152/Colin27 and fsaverage coordinate systems.    

The RF approaches might also potentially benefit from improving the 

registration between subjects and the common coordinate systems (e.g., MNI152). As 
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the RF approaches can be easily adapted to new registration methods, future work can 

explore more variants of the RF approach. For example, by restricting the registration 

between subjects’ native space and MNI152/Colin27 to geodesic paths in an 

anatomical manifold (Hamm et al., 2010), we might be able to generate a better final 

mapping. 

 In summary, the RF-ANTs projections between MNI152/Colin27 and 

fsaverage worked surprisingly well. For example, the projected anatomical structures 

fitted the ground truth boundaries very well (Figure 4), although there were clear, but 

minor mis-registrations across sulci. The advantage of registration fusion is consistent 

with the image segmentation literature, which has demonstrated that using multiple 

registrations for label fusion can improve image segmentation because the multiple 

registrations capture greater inter-subject variability and protects against occasional 

registration failures (Heckemann et al., 2006; Aljabar et al., 2009; Collins and 

Pruessner, 2010; Sabuncu et al., 2010; Wang et al., 2013; Iglesias and Sabuncu, 

2015).  

Overall, we believe that the RF approach is useful for projecting between 

volume and surface coordinate systems. However, we emphasize that the best way of 

mapping data to fsaverage is by registering subjects directly to fsaverage, while the 

best way of mapping data to MNI152/Colin27 is by registering subjects directly to the 

corresponding volumetric template. When data in individuals’ native spaces are 

available, researchers should not use the RF approaches to project individuals’ data 

between MNI152/Colin27 and fsaverage for convenience. The RF approaches 

evaluated in this paper can be considered when the optimal approach is not possible 

(e.g., when running FreeSurfer on individual subjects is not possible). Furthermore, 

care must be taken when interpreting results. For example, when describing MNI152 

results that have been projected to fsaverage for visualization, it is important to verify 

that the description is consistent with the original volumetric data in MNI152 space.  

 

Conclusion 

In this paper, we compared various approaches for mapping between 

MNI152/Colin27 volumetric and fsaverage surface coordinate systems. We found that 

a new implementation of the RF approach (Buckner et al., 2011; Yeo et al., 2011), 

RF-ANTs, performed the best. Nevertheless, it is worth noting that the most optimal 

approach for mapping data to a particular coordinate system (e.g., fsaverage) is to 
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register individual subjects directly to the coordinate system, rather than via another 

coordinate system. However, in scenarios where the optimal approaches are not 

possible (e.g., mapping previously published results from MNI152 to fsaverage), we 

recommend using RF-ANTs. The RF approach can be easily adapted for other 

volumetric and surface coordinate systems. Code and transformations from this paper 

can be found at 

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/registration/Wu

2017_RegistrationFusion. 
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Supplementary figures 

Figure S1. Visualization of ANTs-derived Colin27 probabilistic maps projected to 
fsaverage surface space in the GSP test set. Four representative structures are shown. 
Black boundaries correspond to the “ground truth” winner-takes-all parcellation. The 
value below each cortical surface shows the Normalized Absolute Difference (NAD) 
between projected probabilistic map and “ground truth” probabilistic map, where a 
smaller value indicates better performances. Best NAD for each region is bolded. 
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Figure S2. Visualization of FNIRT-derived Colin27 probabilistic maps projected to 
fsaverage surface space in the CoRR-HNU dataset. Four representative structures are 
shown. Black boundaries correspond to the “ground truth” winner-takes-all 
parcellation. The value below each cortical surface shows the Normalized Absolute 
Difference (NAD) between projected probabilistic map and “ground truth” 
probabilistic map, where a smaller value indicates better performances. Best NAD for 
each region is bolded. 
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Figure S3. Normalized Absolute Difference (NAD) of Colin27 probabilistic maps 
projected to fsaverage surface space. (Left) Results for ANTs-derived GSP MNI152 
probabilistic maps. (Right) Results for FNIRT-derived CoRR-HNU Colin27 
probabilistic maps. The bars represent the NADs averaged across all 74 probabilistic 
maps within left hemisphere (black) and right hemisphere (white). Error bars 
correspond to standard errors across the 74 anatomical structures. Overall, RF-ANTs 
performed the best. Numerically, it may seem that the right hemisphere show smaller 
NAD values for the nonlinear methods  and larger NAD value for Affine, compared 
to the left hemisphere. However, the difference were not significant (all p > 0.1). 
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Figure S4. Winner-takes-all fsaverage parcellation projected to Colin27 volumetric 
space with ANTs-simulated “ground truth” (black boundaries) in the GSP test set. (A) 
Projections before dilation within loose cortical mask. (B) Projections after dilation 
within loose cortical mask. 
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Figure S5. Winner-takes-all fsaverage parcellation projected to Colin27 volumetric 
space with FNIRT-simulated “ground truth” (black boundaries) in the CoRR-HNU 
dataset. (A) Projections before dilation within loose cortical mask. (B) Projections 
after dilation within loose cortical mask. 
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Figure S6. Dice of winner-takes-all fsaverage parcellation projected to Colin27 
space, compared against (left) ANTs-simulated GSP “ground truth” and (right) 
FNIRT-simulated CoRR-HNU “ground truth”. Bars represent Dice coefficient 
averaged across all 74 segmentation labels with left hemisphere (black) and right 
hemisphere (white). Error bars correspond to standard errors.  
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