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Abstract
The results of most neuroimaging studies are reported in volumetric (e.g., MNI152) or
surface (e.g., fsaverage) coordinate systems. Accurate mappings between volumetric
and surface coordinate systems can facilitate many applications, such as projecting
fMRI group analyses from MNI152/Colin27 to fsaverage for visualization, or
projecting resting-state fMRI parcellations from fsaverage to MNI152/Colin27 for
volumetric analysis of new data. However, there has been surprisingly little research
on this topic. Here, we evaluated three approaches for mapping data between
MNI152/Colin27 and fsaverage coordinate systems by simulating the above
applications: projection of group-average data from MNI152/Colin27 to fsaverage
and projection of fsaverage parcellations to MNI152/Colin27. Two of the approaches
are currently widely used. A third approach (registration fusion) was previously
proposed, but not widely adopted. Two implementations of the registration fusion (RF)
approach were considered, with one implementation utilizing the Advanced
Normalization Tools (ANTs). We found that RF-ANTs performed the best for
mapping between fsaverage and MNI152/Colin27, even for new subjects registered to
MNI152/Colin27 using a different software tool (FSL FNIRT). This suggests that
RF-ANTs would be useful even for researchers not using ANTs. Finally, it is worth
emphasizing that the most optimal approach for mapping data to a coordinate system
(e.g., fsaverage) is to register individual subjects directly to the coordinate system,
rather than via another coordinate system. Only in scenarios where the optimal
approach is not possible (e.g., mapping previously published results from MNI152 to
fsaverage), should the approaches evaluated in this manuscript be considered. In these
scenarios, we recommend RF-ANTSs

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable projects/registration/Wu

2017 RegistrationFusion).
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Introduction

Most neuroimaging studies register their participants to a common coordinate
system for group analyses (Talairach et al., 1967; Talairach and Tournoux, 1988;
Evans et al., 1993; Thompson et al., 1997; Fischl et al., 1999b; Van Essen, 2002).
Even studies focusing on individual-specific analyses map individual participants to a
common coordinate system (e.g., Gordon et al., 2017), allowing for comparisons
across participants or studies. There are two main types of coordinate systems:
volumetric and surface. The advantage of volumetric coordinate systems is that both
cortical and subcortical structures are represented, in contrast to surface coordinate
systems that only focus on the cerebral cortex. Conversely, surface-based coordinate
systems allow for more accurate inter-subject registration by respecting the 2D
topology of the cerebral cortex (Fischl et al., 1999a; Goebel et al., 2006; Anticevic et
al., 2008; Cointepas et al., 2010; Ghosh et al., 2010; Pantazis et al., 2010; Van Essen
et al., 2012; Tucholka et al., 2012).

The most popular volumetric coordinate system is the MNI152 template,
obtained by group-wise registration of 152 participants (Mazziotta et al., 1995, 2001;
Good et al., 2001; Fonov et al., 2011; Grabner et al., 2006). Another common
volumetric coordinate system is the single-subject MNI template (i.e., Colin27;
Holmes et al., 1998), often used in the neuroimaging software packages SPM and
MRIcron for lesion-symptom mapping (Ashburner and Friston, 1999; Rorden et al.,
2007). The most popular surface coordinate system is FreeSurfer fsaverage template
(Fischl et al., 1999b; Bar and Aminoff, 2003; Filimon et al., 2007; Yeo et al,. 2010a).
An important issue with multiple coordinate systems is that results reported in one
coordinate system cannot be easily translated to another coordinate system.

While there have been tremendous research efforts on mapping data from
individual subjects into common coordinate systems (Collins et al., 1994; Woods et
al., 1998; Rueckert et al., 1999; Hellier et al., 2003; Andersson et al., 2007; Ashburner,
2007; Hamm et al, 2010; Yeo et al., 2010b; Yushkevich et al., 2012; Robinson et al.,
2014; Tong et al., 2017; Nenning et al., 2017), there is significantly less work on
mappings between coordinate systems (Lancaster et al., 2007; Laird et al., 2010).
Accurate mapping between volumetric (e.g. MNI152) and surface (e.g. fsaverage)
coordinate systems would be useful for many applications. For example, it is a
common practice for researchers to perform group analysis in MNI152 space, and

then project the results to fsaverage space for visualization (Liu et al., 2009; Sepulcre
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et al., 2010; Yeo et al., 2015). As another example, resting-state parcellations
estimated in fsaverage or fs LR surface coordinate systems (Yeo et al., 2011; Gordon
et al., 2016; Glasser et al., 2016; Schaefer et al., in press) can be projected to the
MNI152 coordinate system for analyzing fMRI data of new subjects registered to the
MNI152 template. Finally, a more accurate MNI152-fsaverage mapping would
facilitate the comparison of thousands of neuroimaging studies reported in either
MNI152 or fsaverage coordinate system.

In this work, we evaluate three approaches (including two implementations of
one of the approaches) for mapping between volumetric (MNI152 or Colin27) and
surface (fsaverage) coordinate systems. The evaluation utilized simulations
mimicking the previously described applications: projection of group-average data
from MNI152/Colin27 to fsaverage and projection of surface-based parcellations
from fsaverage to MNI152/Colin27. We note that the evaluations are not comparisons
of volumetric and surface registrations. Instead, the evaluations served to provide
error bounds on different mappings between MNI152/Colin27 and fsaverage
coordinate systems and to guide the adoption of best practices.

It is also worth emphasizing that a perfect mapping between volumetric and
surface coordinate systems is impossible because of registration errors that become
irreversible after group averaging. Therefore, the best way of mapping data to
fsaverage is by registering subjects directly to fsaverage (e.g., via the official
FreeSurfer recon-all pipeline). Similarly, the best way of mapping data to
MNI152/Colin27 is by registering subjects directly to the corresponding volumetric
template. The approaches evaluated in this paper should only be considered when the
best approach is not possible, e.g., mapping previously published results from
MNI152 to fsaverage. Whenever the original data from a subject’s native space are
available, one should perform registration between the subject’s native space and the
desired coordinate system (fsaverage, MNI152 or Colin27) directly, rather than utilize

the approaches evaluated in this paper.
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Methods
Volumetric and surface templates

The MNI152 coordinate system is created by averaging the MRI scans of 152
participants and affords a higher resolution over the original MNI305 average brain.
Here we consider the Imm asymmetric MNI152 template distributed by the FMRIB
Software Library (FSL) version 5.0.8. The template was obtained by the linear and
nonlinear registration of 152 T1-weighted images (Grabner et al., 2006).

Although MNI152 is the most commonly used volumetric coordinate system,
the inter-subject averaging results in the loss of fine anatomical details. Therefore,
some research communities (e.g., neuropsychology) prefer single-subject templates.
A commonly used single-subject template is Colin27 (also called the MNI single
subject template), which is an average image across 27 scans of one subject (Holmes
et al., 1998). We used the Imm Colin27 template from the Statistical Parametric
Mappings (SPM) Anatomy Toolbox version 2.2c (Eickhoff et al., 2005).

Finally, the most common surface coordinate system is FreeSurfer fsaverage,
which is obtained by spherical alignment of 40 participants (Fischl et al., 1999a,
1999b). As a surface template, fsaverage offers excellent representation of the cortical
surface’s intrinsic topological structure as well as multi-scale summary statistics of
cortical geometry. It also has an inflated form, which facilitates data visualization. We

used the fsaverage template from FreeSurfer version 4.5.0.

Data and FreeSurfer processing

Data from 1490 subjects from the Brain Genomics Superstruct Project (GSP)
were considered (Holmes et al., 2015). All imaging data were collected on matched
3T Tim Trio scanners using the vendor-supplied 12-channel phase-array head coil.
Subjects were clinically normal, English-speaking young adults (ages 18 to 35). The
structural MRI data consisted of one 1.2mm x 1.2mm x 1.2mm scan for each
participant. Details of data collection can be found elsewhere (Yeo et al., 2011;
Holmes et al., 2015). The subjects were split into training and test set, each containing
745 subjects.

A second dataset consisted of 30 healthy young adults from the Hangzhou
Normal University of the Consortium for Reliability and Reproducibility
(CoRR-HNU) dataset (Zuo et al., 2014; Chen et al., 2015). All anatomical images

were collected on matched 3T GE Discovery MR750 scanners using an 8-channel
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head coil. Ten 1.0mm x 1.0mm x 1.0mm scans were performed for each subject
across one month. In this paper, we utilized all 10 sessions for all 30 subjects, giving
rise to a total of 300 sessions.

The T1 images of the GSP dataset has been previously processed (Holmes et al.,
2015) using FreeSurfer 4.5.0 recon-all procedure (http://surfer.nmr.mgh.harvard.edu;
Dale et al., 1999; Ségonne et al., 2004, 2007; Fischl et al., 1999a, 1999b, 2001). For

consistency, the T1 images of the CORR-HNU dataset were also processed using the

same FreeSurfer version. FreeSurfer constitutes a suite of automatic algorithms that
extract models of most macroscopic human brain structures from T1 MRI data. There
are three outputs of the recon-all procedure that were important for subsequent
analyses.

First, FreeSurfer automatically reconstructs surface mesh representations of the
cortex from individual subjects’ T1 images. The cortical surface mesh is inflated into
a sphere, and registered to a common spherical coordinate system that aligned the
cortical folding patterns across subjects (Fischl et al., 1999a, 1999b). The outcome of
this procedure is a nonlinear mapping between the subject’s native T1 space and
fsaverage surface space.

Second, the recon-all procedure generates corresponding volumetric
(aparc.a2009s+aseg.mgz) and surface (lh.aparc.a2009s.annot and
rh.aparc.a2009s.annot) parcellations of 74 sulci and gyri for each subject (Fischl et al.,
2004b; Desikan et al., 2006; Destrieux et al., 2010). FreeSurfer assign these labels
based on probabilistic information estimated from a manually labeled training set
(Destrieux atlas), as well as geometric information derived from the cortical model of
the subject. These anatomical segmentations will be utilized in our evaluation of
various algorithms for mapping between MNI152/Colin27 and fsaverage.

Third, the recon-all procedure performs a joint registration-segmentation
procedure that aligns the T1 image to an internal FreeSurfer volumetric space', while
classifying each native brain voxel into one of multiple brain structures, such as the
thalamus and caudate (Fischl et al., 2004a, 2004b). The outcome of this procedure is a
nonlinear mapping between the subject’s native T1 space and FreeSurfer internal

volumetric space. The nonlinear mapping is represented by a dense displacement field

' Note that this internal volumetric space is different from fsaverage volume.
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(i.e., a single displacement vector at each 2-mm isotropic atlas voxel) and can be
found in the file “talairach.m3z” (under the “mri/transforms” folder of the recon-all

output).

Affine and MNIsurf

Two existing approaches (Affine and MNIsurf) for mapping between MNI152
and fsaverage coordinate systems were identified. Both approaches have been
discussed on the FreeSurfer mailing list and might be considered as “recommended”
FreeSurfer approaches.

Figure 1 summarizes the Affine approach for mapping between MNI152 and
fsaverage surface coordinate systems. The Affine approach made use of an affine
transformation between the MNI152 template and fsaverage volume space (Figure 1A)
provided by FreeSurfer (i.e., SFREESURFER _HOME/average/mnil52.register.dat).
This affine transformation can be concatenated with the mapping between fsaverage
volume and fsaverage surface (Figure 1B) using FreeSurfer functions (mri_vol2surf
and mri_surf2vol), thus yielding a mapping between MNI152 and fsaverage

coordinate systems.

MNI152 fsaverage volume fsaverage

Figure 1. Affine procedure. (A) MNI152 and fsaverage volume was aligned using an
affine transformation. (B) FreeSurfer provides a mapping between fsaverage volume
and fsaverage surface. Concatenating the two transformations result in a mapping
between MNI152 and fsaverage surface.

One drawback of this approach is that an affine transformation is unlikely to
eliminate nonlinear anatomical differences between MNI152 and fsaverage volume.
Simply replacing the affine transformation with a nonlinear warp (Van Essen et al.,
2012) might not be helpful because the fsaverage volume is a blurry average of 40
subjects after affine registration; fine anatomical details have already been lost.

Figure 2 summarizes the MNIsurf approach for mapping between MNI152 and

fsaverage surface coordinate systems. The MNI152 template was first processed with
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FreeSurfer recon-all. The recon-all process involved extracting MNI152 template’s
cortical ribbon and reconstructing the cortical surface (Figure 2A). FreeSurfer

commands (mri_vol2surf and mri_surf2vol) could then be utilized to map between

MNI152’s cortical ribbon (as segmented by recon-all) and fsaverage surface (Figure

2B).

MNI152 MNI152 surface fsaverage

Figure 2. MNIsurf procedure. The MNI152 template was processed using FreeSurfer
recon-all. The cortical ribbon of MNI152 was (A) extracted and (B) aligned to
fsaverage surface during the recon-all procedure.

One drawback of MNIsurf is that the cortical ribbon of a typical subject
mapped to MNI152 coordinate system will not exactly match the group-average
MNI152 cortical ribbon (which is abnormally thin and misses some low-frequency
and/or thin folds due to inter-subject averaging). Consequently, there will be
irreversible registration errors from averaging subjects mapped to the MNI152
coordinate system. MNIsurf does not take into account these irreversible registration
errors because it simply maps the cortical ribbon of MNI152 directly to fsaverage

surface.

Registration fusion: RF-M3Z and RF-ANTs

The registration fusion (RF) approach was first introduced by Buckner and
colleagues (Buckner et al., 2011; Yeo et al., 2011). Figure 3 summarizes the original
implementation. Recall that by applying FreeSurfer recon-all procedure to each GSP
training subject, we have generated for each subject a nonlinear mapping between the
subject’s cortical ribbon and fsaverage surface space (Figure 3C) and a nonlinear
mapping between the subject’s T1 volume and FreeSurfer internal volumetric space
(Figure 3B). By also processing the MNI152 template with FreeSurfer recon-all, we
also obtained a nonlinear mapping between the MNI152 template and FreeSurfer
internal volumetric space (Figure 3A). By concatenating the three transformations

(Figure 3A, Figure 3B and Figure 3C) for each subject, a mapping between MNI152
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and fsaverage coordinate systems for each GSP training subject was obtained. By
averaging across all 745 training subjects, a final mapping between MNI152 and

fsaverage coordinate systems was obtained. This mapping is referred to as RF-M3Z.

Training subject 1

MNI152 FreeSurferinternal
volumetric space

fsaverage

Training subject 745

Figure 3. Registration fusion (RF-M3Z) procedure. Each subject’s T1 volume is
mapped to the (A, B) MNI152 template and (C) fsaverage surface. By concatenating
the mappings for each subject and then averaging the deformations across all 745
training subjects, we created a mapping between MNI152 and fsaverage surface
space. All mappings (A, B and C) were generated using FreeSurfer’s recon-all
procedure. More specifically, mappings A and B were provided by the talairach.m3z
files generated by recon-all, so we refer to the resulting MNI152-fsaverage mapping
as RF-M3Z.

Visual inspection suggested that the mappings between MNI152 and individual
subjects (concatenations of transformations in Figure 3A and Figure 3B) were of good
quality (Buckner et al., 2011; Yeo et al., 2011). However, by concatenating two
deformations, small registration errors in each deformation may be compounded to
result in large registration errors. Furthermore, FreeSurfer is optimized for processing
the brains of individual subjects, not an average brain like the MNI152 template.

Therefore, we also considered a second implementation, where the individual
subjects and the MNI152 template were directly registered using ANTs (Avants et al.,
2007, 2009). More specifically, each GSP training subject’s T1 image was directly
registered to the MNI152 template using an affine transformation followed by
Symmetric Normalization (Figure 4A). Like RF-M3Z, the mapping between each

subject’s cortical ribbon and fsaverage surface space was provided by FreeSurfer
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recon-all (Figure 4B). By concatenating the two transformations (Figure 4A and
Figure 4B) for each subject, a mapping between MNI152 and fsaverage coordinate
systems for each GSP training subject was obtained. By averaging across all 745
training subjects, a final mapping between MNI152 and fsaverage coordinate systems
was obtained. This mapping is referred to as RF-ANTSs. It is important to note that this
does not constitute a comparison of FreeSurfer and ANTs (Klein et al., 2010), since
FreeSurfer is not being used in the way it was designed (i.e., individual subject

analyses) in the case of RF-M3Z.

Training subject 1

2

MNI152

fsaverage

Training subject 745

Figure 4. Registration fusion (RF-ANTSs) procedure. Each subject’s T1 volume is
mapped to the (A) MNI152 template and (B) fsaverage surface. By concatenating the
mappings (A and B) for each subject and then averaging the deformations across all
745 training subjects, we created a mapping between MNI152 and fsaverage.
Mapping (A) was generated using ANTs, so we refer to the resulting
MNI152-fsaverage mapping as RF-ANTs.

Tight and loose cortical masks for fsaverage-to-MNI152 mappings

It is worth mentioning an important asymmetry in the generation of the
MNI-to-fsaverage and fsaverage-to-MNI mappings. When computing the
MNI-to-fsaverage mapping, each subject yielded a mapping between every fsaverage
vertex and some MNI location, which allowed for a simple averaging of
MNI-to-fsaverage mappings across all 745 training subjects. By contrast, when

computing the fsaverage-to-MNI mapping, not every training subject yielded a
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mapping between every MNI location and some fsaverage vertex because not every
MNI location corresponded to the cerebral cortex of every subject.

Therefore, when computing the fsaverage-to-MNI mapping, we defined two
cortical masks. Figure 5 illustrates the two MNI152 masks and the difference between
them. The tight cortical mask corresponded to the cortex for at least 50% of the
subjects (Figure 5A), while the loose cortical mask corresponded to the cortex for at
least 15% of the subjects (Figure 5B). For each tight cortical mask voxel (Figure 5A),
the fsaverage-to-MNI152 mappings were averaged across all subjects with valid
fsaverage-to-MNI152 mappings for the voxel. The averaged mapping was then grown
outwards to fill the entire loose cortical mask. More specifically, for each voxel
outside the tight mask (but within the loose mask; Figure 5C), its nearest voxel within
the tight mask (Figure 5A) was identified based on Euclidean distance. The voxel was
then assigned the same fsaverage surface coordinates as its nearest voxel within the
tight mask. Therefore, fsaverage surface data can be projected to fill up the entire
loose cortical mask in the MNI152 template. This procedure was repeated for Affine,

MNIsurf, RF-M3Z and RF-ANTs.

(B)

Figure 5. Cortical masks for fsaverage-to-MNI152 mappings. (A) Tight cortical mask
corresponding to 50% of the 745 GSP training subjects. (B) Loose cortical mask
corresponding to 15% of the training subjects. (C) Difference between tight and loose
cortical masks.

MNI152-to-fsaverage evaluation

To evaluate the MNI152-to-fsaverage projection, let’s consider a possible
usage scenario. Researchers often project data (e.g., fMRI) from subjects’ native
spaces to MNI152 coordinate system for some form of group analysis. The outcome
of the group analysis can be visualized in the volume, but is often projected to

fsaverage surface for visualization. By contrast, data from subjects’ native space can
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be directly projected to fsaverage surface for group analysis. The
subjects-to-MNI152-to-fsaverage results should ideally be close to the
subjects-to-fsaverage results.

To simulate the above scenario, recall that we have processed the 745 GSP test
subjects using FreeSurfer recon-all, yielding corresponding surface
(Ih.aparc.a2009s.annot and rh.aparc.a2009s.annot) and volumetric
(aparc.a2009s+aseg.mgz) parcellations of 74 sulci and gyri per cortical hemisphere
(i.e., Destrieux parcellation). Figure 6A illustrates the superior temporal sulcus label
in two GSP test subjects. The parcellation labels were projected to MNI152
coordinate system using ANTs and averaged across subjects, resulting in a
ANTs-derived volumetric probabilistic map per anatomical structure. The
probabilistic maps simulated the group-average results from typical fMRI studies. As

an example, Figure 6B illustrates the ANTs-derived MNI152 volumetric probabilistic

(A) Test subject 1

MN152 volumetric

probabilistic maps
1

: MN152-to-fsaverage
; brojection

Test subject 745

fsaverage surface
probabilistic maps
(“ground truth”)

Figure 6. MNI152-to-fsaverage evaluation. (A) Parcellation labels from each subject
were projected to (B) MNI152 and (C) fsaverage. The projected labels were averaged
across subjects, resulting in a probabilistic map per anatomical structure in (B)
MNI152 and (C) fsaverage respectively. Figure shows superior temporal sulcus as an
example. The latter maps in (C) fsaverage were used as “ground truth”. The MNI152
probabilistic maps can then be projected to fsaverage surface using the various
projection approaches (dotted arrow) for comparison with the “ground truth” maps.
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map of the superior temporal sulcus.

The MNI152 volumetric probabilistic maps (Figure 6B) can then be projected
to fsaverage surface using the various MNI152-to-fsaverage projection approaches
(dotted arrow in Figure 6) for comparison with “ground truth” surface probabilistic
maps (Figure 6C). The “ground truth” surface probabilistic maps were obtained by
averaging the surface parcellations across subjects in fsaverage surface space, mapped
from each subject using FreeSurfer. As an example, Figure 6C shows the “ground
truth” surface probabilistic map of the superior temporal sulcus.

To quantify the disagreement between the projected probabilistic map and the
“ground truth” surface probabilistic map of an anatomical structure, the Normalized
Absolute Difference (NAD) metric was used. The NAD metric was defined as the
absolute difference between the two maps, summed across all vertices and divided by
the sum of the “ground truth” probabilistic map. This metric measured the
dissimilarity between the two maps, normalizing for the size of the anatomical
structure. A lower NAD value indicates better performance.

For every pair of approaches, the NAD metric for each of the 74 anatomical
structures were averaged between the two hemispheres and submitted to a
paired-sample t-test. Multiple comparisons were corrected using a false discovery rate
(FDR; Benjamini and Hochberg, 1995) of q < 0.05. All the p values reported in

subsequent sections survived the false discovery rate.

fsaverage-to-MNI152 evaluation

To evaluate the fsaverage-to-MNI152 projection, let’s consider a possible
usage scenario. It is unlikely that researchers would directly project individual
subjects’ fMRI data onto fsaverage surface space for group-level analysis, and then
project their results into MNI152 space for visualization. A more likely scenario
might be the projection of surface-based resting-state fMRI cortical parcellations
(Yeo et al., 2011; Gordon et al., 2015; Glasser et al., 2016; Schaefer et al., in press) to
MNI152 space. The projected resting-state fMRI parcellation can then be utilized for
analyzing new data from individual subjects registered to the MNI152 coordinate
system. In this scenario, it would be ideal if the projected fsaverage-to-MNI152
resting-state parcellation were the same as a parcellation that was estimated from

resting-state fMRI data directly registered to MNI152 space.
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To simulate the above scenario, the Destrieux anatomical parcellation of each
GSP test subject (Figure 7A) was projected to fsaverage and combined into a
winner-takes-all parcellation (Figure 7B). The surface-based parcellation can then be
projected to MNI152 using the various fsaverage-to-MNI152 projection approaches
(dotted arrow in Figure 7) for comparison with the “ground truth” volumetric
parcellation (Figure 7C). The “ground truth” volumetric parcellation was obtained by
projecting the individual subjects’ anatomical parcellations (Figure 7A) into MNI152
space (using ANTs) and then combined into a winner-take-all parcellation (Figure

7C).

To quantify the agreement between the projected parcellation and the “ground

truth” parcellation, the Dice coefficient was computed for each of the 74 anatomical

(A) Test subject 1

fsaverage surface
parcellation

|
| fsaverage-to-MNI152
I projection

Test subject 745

MN152 volumetric
parcellation
(“ground truth”)

Figure 7. Fsaverage-to-MNI152 evaluation. (A) Parcellation from each subject was
projected to (B) fsaverage and (C) MNI152. By combining the parcellations across
subjects, winner-takes-all parcellations were obtained in (B) MNI152 and (C)
fsaverage respectively. The latter was used as “ground truth”. The fsaverage
winner-takes-all parcellation can be projected to MNI152 coordinate system using the
various projection approaches (dotted arrow) for comparison with the “ground truth”
MNI152 parcellation.
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regions per hemisphere. A higher Dice value indicates better performance.

For every pair of approaches, the Dice metric for each of the 74 anatomical
structures were averaged between the two hemispheres and submitted to a
paired-sample t-test. Multiple comparisons were corrected using a false discovery rate
(FDR; Benjamini and Hochberg, 1995) of q < 0.05. All the p values reported in

subsequent sections survived the false discovery rate.

Generalization to new data (CoRR-HNU) and FSL FNIRT

The RF mappings were derived using the GSP training set. To ensure the
mappings generalize to new data, the above evaluations (MNI152-to-fsaverage and
fsaverage-to-MNI152) were repeated using the CORR-HNU dataset. Furthermore, the
previous evaluation procedures utilized ANTs to project subjects’ anatomical
parcellations to MNI152 (Figure 6B and Figure 7C), resulting in possible biases in
favor of RF-ANTSs. As such, the above evaluations were repeated using FSL
FLIRT/FNIRT (Andersson et al., 2007). More specifically, FLIRT/FNIRT was
utilized to project individual subjects’ parcellation to MNI152 space to obtain
FNIRT-derived CoRR-HNU MNI152 volumetric probabilistic maps (Figure 6B), as
well as FNIRT-derived CoRR-HNU MNI152 winner-take-all parcellation (Figure
7C).

Registration fusion convergence

In the previous analyses, as many training subjects as available (N=745) were
used to construct the average mappings for the RF approaches. Here, we investigated
the relationship between the accuracy of the RF approaches and the number of
subjects used. More specifically, the MNI152-to-fsaverage evaluation (using
ANTs-derived GSP MNI152 maps) were repeated using RF mappings averaged

across different number of subjects.

Colin27-to-fsaverage and fsaverage-to-Colin27

The previous mappings and evaluations were repeated for Colin27. In the case
of the Affine approach, FreeSurfer does not provide a corresponding
Colin27-to-fsaverage-volume warp. Therefore, an affine warp was generated using

FSL FLIRT.
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Since we are now working with the Colin27 template, the MNIsurf approach
was renamed as Colin27surf. It should be noted that unlike that of the MNI152
template, the cortical ribbon of the Colin27 template is not abnormally thin (since it is
a single subject template). However, using a single subject prevents the use of
cross-subject variance measures that can stabilize inter-subject registration (Fischl,
1999b). Therefore, we also expect registration errors between the cortical ribbon of a
typical subject and Colin27. Consequently, Colin27surf does not take into account
irreversible registration errors because it simply maps the cortical ribbon of Colin27

directly to fsaverage.
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Results
MNI152-to-fsaverage projection

Figure 8 shows the projection of ANTs-derived MNI152 probabilistic maps of
four representative anatomical structures to fsaverage surface space for the GSP test
set. Figure 9 shows the projection of FNIRT-derived MNI152 probabilistic maps of
four representative anatomical structures to fsaverage surface space for the
CoRR-HNU dataset. The black boundaries correspond to the winner-takes-all
parcellation obtained by thresholding the “ground truth” GSP or CoRR-HNU
fsaverage surface probabilistic maps respectively. Visual inspection of Figures 8 and
9 suggests that the projected probabilistic maps corresponded well to the “ground
truth” for all approaches, although there was also clear bleeding to adjacent
anatomical structures for the central sulcus and middle frontal sulcus.

The NAD evaluation metric is shown below each brain in Figures 8 and 9. A
lower value indicates closer correspondence with the “ground truth” probabilistic map.
The NAD generally agreed with the visual quality of the projections, suggesting its
usefulness as an evaluation metric. For example, in Figure 8, the projection of the left
ANTs-derived middle posterior cingulate probabilistic map using RF-ANTs visually
matched the “ground truth” black boundaries very well, resulting in a low NAD of
0.27. On the other hand, the corresponding projection using MNIsurf aligned well
with the posterior, but not the anterior, portion of the “ground truth” black boundaries,
resulting in a worse NAD of 0.34 (Figure 8).

Figure 10 shows the NAD metric averaged across all anatomical structures
within each hemisphere. When ANTs-derived GSP MNI152 probabilistic maps were
used, RF-ANTSs was the best (p < 0.01 corrected). RF-M3Z and MNIsurf showed
comparable performance and were both significantly better than Affine (p <0.01
corrected). When FNIRT-derived CoORR-HNU MNI152 probabilistic maps were used,
RF-ANTs was also the best (p < 0.01 corrected). RF-M3Z and Affine showed
comparable performance and were both significantly better than MNIsurf (p < 0.04
corrected and p < 0.02 corrected). To summarize, RF-ANTs always performed the
best. We note that hemispheric differences within each approach were not statistically

significant (all p > 0.2).
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Middle posterior cingulate Middle frontal sulcus

MNiIsurf RF-M3Z RF-ANTs

Affine

RF-ANTs

RF-M32

MNiIsurf

Affine

Figure 8. Visualization of ANTs-derived MNI152 probabilistic maps projected to
fsaverage surface space in the GSP test set. Four representative structures are shown.
Black boundaries correspond to the “ground truth” winner-takes-all parcellation. The
value below each cortical surface shows the Normalized Absolute Difference (NAD)
between projected probabilistic map and “ground truth” probabilistic map, where a
smaller value indicates better performances. Best NAD for each region is bolded.
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Figure 9. Visualization of FNIRT-derived MNI152 probabilistic maps projected to
fsaverage surface space in the CoORR-HNU dataset. Four representative structures are
shown. Black boundaries correspond to the “ground truth” winner-takes-all
parcellation. The value below each cortical surface shows the Normalized Absolute
Difference (NAD) between projected probabilistic map and “ground truth”

probabilistic map, where a smaller value indicates better performances. Best NAD for
each region is bolded.
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Figure 10. Normalized Absolute Difference (NAD) of MNI152 probabilistic maps
projected to fsaverage surface space. (Left) Results for ANTs-derived GSP MNI152
probabilistic maps. (Right) Results for FNIRT-derived CoORR-HNU MNI152
probabilistic maps. The bars represent the NADs averaged across all 74 probabilistic
maps within left hemisphere (black) and right hemisphere (white). Error bars
correspond to standard errors across the 74 anatomical structures. Overall, RF-ANTs
performed the best.

fsaverage-to-MNI 152 projection

Figure 11 illustrates the projection of the fsaverage winner-takes-all
parcellation to MNI152 volumetric space for the GSP test set, juxtaposed against
black boundaries of ANTs-simulated “ground truth” segmentations. Figure 12
illustrates the projection of the fsaverage winner-takes-all parcellation to MNI152
volumetric space for the CoORR-HNU dataset, juxtaposed against black boundaries of
FNIRT-simulated “ground truth” segmentations. Figures 11A and 12A show the
fsaverage-to-MNI152 projections before the dilation within the loose cortical mask
(see Methods). Figures 11B and 12B show the fsaverage-to-MNI projections after the
dilation, with insets illustrating example regions with obvious differences across

methods.
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MNIsurf Affine

Figure 11. Winner-takes-all fsaverage parcellation projected to MNI152 volumetric
space with ANTs-simulated “ground truth” (black boundaries) in the GSP test set. (A)
Projections before dilation within loose cortical mask. (B) Projections after dilation
within loose cortical mask.
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RF-ANTs

Figure 12. Winner-takes-all fsaverage parcellation projected to MNI152 volumetric
space with FNIRT-simulated “ground truth” (black boundaries) in CoORR-HNU
dataset. (A) Projections before dilation within loose cortical mask. (B) Projections
after dilation within loose cortical mask.
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Figure 13 shows the Dice metric averaged across all anatomical structures
within each hemisphere. In the case of GSP test set (using ANTs-simulated “ground
truth”), RF-ANTs was the best (p < 0.01 corrected). RF-M3Z, MNIsurf and Affine all
showed comparable performance. In the case of the CoORR-HNU dataset (using
FNIRT-simulated “ground truth”), RF-ANTs and Affine were the best (p < 0.01
corrected). There was no statistically significant difference between RF-ANTs and

Affine.

ANTs-simulated GSP ground truth FNIRT-simulated CoRR-HNU ground truth

0.91 ueft hemisphere  Oright hemisphere 0.97 u |eft hemisphere Oright hemisphere

0.8 - T ——

o
o
!

0.7 4

o
3

Dice coefficient (higher is better)
Dice coefficient (higher is better)

0.6

0.6-
RF-ANTs RF-M3Z MNIsurf  Affine RF-ANTs RF-M3Z MNIsurf  Affine

Figure 13. Dice of winner-takes-all fsaverage parcellation projected to MNI152
space, compared against (left) ANTs-simulated GSP “ground truth” and (right)
FNIRT-simulated CoORR-HNU “ground truth”. Bars represent Dice coefficient
averaged across all 74 segmentation labels within left hemisphere (black) and right
hemisphere (white). Error bars correspond to standard errors.

To summarize, RF-ANTs performed the best, although Affine also performed
surprisingly well when FNIRT-simulated CoRR-HNU “ground truth” was considered
(Figure 13 right). Visual inspection of Figure 12A suggests that the projected cortical
ribbon for Affine did not match well to the MNI152 cortical ribbon. However, the
dilation within the loose cortical mask appeared to compensate for the poor mapping

(Figure 12B), leading to a competitive dice score (Figure 13 right).

Registration fusion convergence

Figure 14 shows the average NAD metric within each hemisphere for
projecting ANTs-derived GSP MNI152 probabilistic maps to fsaverage space, plotted
against the number of subjects used to construct the RF mappings. The NAD values

start converging after about 100 subjects. When more than 300 subjects are used, the
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NAD values are mostly stable, although the right hemisphere for RF-ANTs seem to
require more subjects to converge. This suggests that the use of 745 training subjects
is sufficient to guarantee the quality of the RF mappings. Nevertheless, the RF
mappings that we have made publicly available, utilize the entire GSP dataset to
construct the mappings.

RF-ANTs mappings RF-M3Z mappings
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Figure 14. Normalized Absolute Difference (NAD) of ANTs-derived GSP MNI152
probabilistic maps projected to fsaverage space as a function of the number of
subjects used to create the RF mappings. (Left) RF-ANTs. (Right) RF-M3Z. NADs
were averaged across all 74 probabilistic maps within left hemisphere (black) and
right hemisphere (gray), and across all subjects in GSP test set. Results converge after
about 300 subjects, although the right hemisphere for RF-ANTSs seems to require
more subjects to converge.

Colin27-to-fsaverage and fsaverage-to-Colin27 projections

Figures S1 to S3 show the Colin27-to-fsaverage projection results. The results
are largely consistent with the MNI152-to-fsaverage results. In the case of the GSP
test set (using ANTs-derived volumetric probabilistic maps), RF-ANTs was the best
(p <0.01 corrected). RF-M3Z and Colin27surf showed comparable performance and
were both significantly better than Affine (p < 0.01 corrected). In the case of the
CoRR-HNU dataset (using FNIRT-derived Colin27 volumetric probabilistic maps),
RF-ANTSs was also the best (p < 0.01 corrected). RF-M3Z was the second best (p <
0.01 corrected), followed by Affine (p < 0.01 corrected). Hemispheric differences
within each approach were not statistically significant (all p > 0.1). To summarize,

RF-ANTs always performed the best.
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Figures S4 to S6 show the fsaverage-to-Colin27 projection results. The results
are largely consistent with the fsaverage-to-MNI152 results. In the case of the GSP
test set (using ANTs-derived “ground truth”), RF-ANTs was the best (p < 0.01
corrected). While Colin27surf showed better performance than RF-M3Z (p < 0.01
corrected), both of them showed (statistically) comparable performance with Affine.
On the other hand, in the case of the CoORR-HNU dataset (using FNIRT-derived
“ground truth”), both RF-ANTs and RF-M3Z showed (statistically) comparable
performance with Affine. Nevertheless, RF-ANTs showed better performance than
RF-M3Z (p <0.01 corrected). Colin27surf performed the worst (p < 0.01 corrected).
To summarize, RF-ANTs performed the best, although Affine also performed
surprisingly well when FNIRT-simulated CoORR-HNU “ground truth” was considered.
Similar to the previous section, the dilation within the loose cortical mask

compensated for the actually poor Affine mapping.
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Discussion

In this paper, various approaches (Affine, MNIsurf/Colin27surf, RF-M3Z and
RF-ANTSs) for mapping between MNI/Colin27 and fsaverage were quantitatively
evaluated. RF-ANTSs performed the best.

Our results showed that RF-ANTs compared favorably with RF-M3Z,
MNIsurf/Colin27surf and Affine even when FSL FNIRT was used to set up the
evaluations using a dataset different from the one utilized to derive RF-ANTs. This
suggests that if a different software (other than ANTSs) was used to register data to
MNI152 space, it would still be preferable to use RF-ANTs (rather than RF-M3Z,
MNIsurf or Affine) to map the resulting data to fsaverage space. Nevertheless, to
achieve best performance, if SPM was used to register data to MNI152 space, then it
would probably be the most optimal to generate a new set of RF transformations
using SPM.

One potential concern is that the RF mappings are expensive to create because
it requires registering a large number of subjects. However, we note that this is a
one-time cost. To alleviate this one-time cost, RF-M3Z and RF-ANTSs mappings
generated using all 1490 GSP subjects are available at
https://github.com/ThomasY eoLab/CBIG/tree/master/stable projects/registration/Wu

2017 RegistrationFusion. The code to replicate the mappings or generate new

mappings can be found at the same repository.

Recent work has proposed integrating surface-based and volumetric
registration to obtain the advantages of each (Joshi et al., 2009; Postelnicu et al., 2009;
Zollei et al., 2010). These combined-volume-surface registration algorithms either
used both cortical features and volumetric intensity to drive the alignment
simultaneously (Joshi et al., 2009) or used geometric information from a
surface-based warp to initialize the volumetric alignment (Postelnicu et al., 2009;
Zollei et al., 2010). However, these methods were usually designed with inter-subject
registration in mind. The combined-volume-surface registration algorithms can be
used to create a joint surface-volumetric template, in which the surface and
volumetric surface coordinate systems are in alignment. However, creating a new
coordinate system would not be helpful for researchers with existing data in
MNI152/Colin27 and fsaverage coordinate systems.

The RF approaches might also potentially benefit from improving the

registration between subjects and the common coordinate systems (e.g., MNI152). As
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the RF approaches can be easily adapted to new registration methods, future work can
explore more variants of the RF approach. For example, by restricting the registration
between subjects’ native space and MNI152/Colin27 to geodesic paths in an
anatomical manifold (Hamm et al., 2010), we might be able to generate a better final
mapping.

In summary, the RF-ANTs projections between MNI152/Colin27 and
fsaverage worked surprisingly well. For example, the projected anatomical structures
fitted the ground truth boundaries very well (Figure 4), although there were clear, but
minor mis-registrations across sulci. The advantage of registration fusion is consistent
with the image segmentation literature, which has demonstrated that using multiple
registrations for label fusion can improve image segmentation because the multiple
registrations capture greater inter-subject variability and protects against occasional
registration failures (Heckemann et al., 2006; Aljabar et al., 2009; Collins and
Pruessner, 2010; Sabuncu et al., 2010; Wang et al., 2013; Iglesias and Sabuncu,
2015).

Overall, we believe that the RF approach is useful for projecting between
volume and surface coordinate systems. However, we emphasize that the best way of
mapping data to fsaverage is by registering subjects directly to fsaverage, while the
best way of mapping data to MNI152/Colin27 is by registering subjects directly to the
corresponding volumetric template. When data in individuals’ native spaces are
available, researchers should not use the RF approaches to project individuals’ data
between MNI152/Colin27 and fsaverage for convenience. The RF approaches
evaluated in this paper can be considered when the optimal approach is not possible
(e.g., when running FreeSurfer on individual subjects is not possible). Furthermore,
care must be taken when interpreting results. For example, when describing MNI152
results that have been projected to fsaverage for visualization, it is important to verify

that the description is consistent with the original volumetric data in MNI152 space.

Conclusion
In this paper, we compared various approaches for mapping between
MNI152/Colin27 volumetric and fsaverage surface coordinate systems. We found that
a new implementation of the RF approach (Buckner et al., 2011; Yeo et al., 2011),
RF-ANTs, performed the best. Nevertheless, it is worth noting that the most optimal

approach for mapping data to a particular coordinate system (e.g., fsaverage) is to
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register individual subjects directly to the coordinate system, rather than via another
coordinate system. However, in scenarios where the optimal approaches are not
possible (e.g., mapping previously published results from MNI152 to fsaverage), we
recommend using RF-ANTs. The RF approach can be easily adapted for other
volumetric and surface coordinate systems. Code and transformations from this paper
can be found at

https://github.com/ThomasY eoLab/CBIG/tree/master/stable projects/registration/Wu

2017 RegistrationFusion.
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Supplementary figures
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Figure S1. Visualization of ANTs-derived Colin27 probabilistic maps projected to
fsaverage surface space in the GSP test set. Four representative structures are shown.
Black boundaries correspond to the “ground truth” winner-takes-all parcellation. The
value below each cortical surface shows the Normalized Absolute Difference (NAD)
between projected probabilistic map and “ground truth” probabilistic map, where a
smaller value indicates better performances. Best NAD for each region is bolded.
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Figure S2. Visualization of FNIRT-derived Colin27 probabilistic maps projected to
fsaverage surface space in the CoRR-HNU dataset. Four representative structures are
shown. Black boundaries correspond to the “ground truth” winner-takes-all
parcellation. The value below each cortical surface shows the Normalized Absolute
Difference (NAD) between projected probabilistic map and “ground truth”
probabilistic map, where a smaller value indicates better performances. Best NAD for
each region is bolded.
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Figure S3. Normalized Absolute Difference (NAD) of Colin27 probabilistic maps
projected to fsaverage surface space. (Left) Results for ANTs-derived GSP MNI152
probabilistic maps. (Right) Results for FNIRT-derived CoRR-HNU Colin27
probabilistic maps. The bars represent the NADs averaged across all 74 probabilistic
maps within left hemisphere (black) and right hemisphere (white). Error bars
correspond to standard errors across the 74 anatomical structures. Overall, RF-ANTs
performed the best. Numerically, it may seem that the right hemisphere show smaller

NAD values for the nonlinear methods

and larger NAD value for Affine, compared

to the left hemisphere. However, the difference were not significant (all p > 0.1).
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RF-ANTs

Figure S4. Winner-takes-all fsaverage parcellation projected to Colin27 volumetric
space with ANTs-simulated “ground truth” (black boundaries) in the GSP test set. (A)
Projections before dilation within loose cortical mask. (B) Projections after dilation
within loose cortical mask.
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Figure S5. Winner-takes-all fsaverage parcellation projected to Colin27 volumetric
space with FNIRT-simulated “ground truth” (black boundaries) in the CoORR-HNU
dataset. (A) Projections before dilation within loose cortical mask. (B) Projections
after dilation within loose cortical mask.
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Figure S6. Dice of winner-takes-all fsaverage parcellation projected to Colin27
space, compared against (left) ANTs-simulated GSP “ground truth” and (right)
FNIRT-simulated CoORR-HNU “ground truth”. Bars represent Dice coefficient
averaged across all 74 segmentation labels with left hemisphere (black) and right
hemisphere (white). Error bars correspond to standard errors.
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