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Abstract

To analyze a specific genome region using next-generation sequencing technologies, the
enrichment of DNA libraries with targeted capture methods has been standardized. For
enrichment of mitochondrial genome, a previous study developed an original targeted
capture method that use baits constructed from long-range polymerase chain reaction
(PCR) amplicons, common laboratory reagents, and equipment. In this study, a new
targeted capture method is presented, that of bacterial artificial chromosome (BAC)
double capture (BDC), modifying the previous method, but using BAC libraries as baits
for sequencing a relatively large gene. We applied the BDC approach for the 214 kb
autosomal region, ring finger protein 213, which is the susceptibility gene of moyamoya
disease (MMD). To evaluate the reliability of BDC, cost and data quality were
compared with those of a commercial kit. While the ratio of duplicate reads was higher,
the cost was less than that of the commercial kit. The data quality was sufficiently the
same as that of the kit. Thus, BDC can be an easy, low-cost, and useful method for

analyzing individual genome region with substantial length.
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Introduction

The high-throughput sequencing technology, next-generation sequencing (NGS), has
made a striking impact on genomic research and the entire biological field. The NGS
technology is often called massively parallel sequencing because it effectively conducts
whole-genome sequencing in a relatively short time [1]. NGS enables researchers to
analyze the whole human genome of about 3 Gbp and identify all of the 30,000 genes in
only 1 week [2]. To analyze specific regions (e.g., whole exons, and already known
disease-related genes) using NGS, enrichment of DNA libraries with targeted capture
methods are standardized.

In capture methods, probes for enriching the targeted genomic regions are called
“baits” that attract molecules of interest as in fishing. There are two major approaches
for relatively large-scale genomic-region enrichment, the “on-array” and “in-solution”
methods. Both of these approaches target sequences up to several hundred kbp. In the
on-array capture method (Roche NimbleGen products), microarrays immobilize baits
that hybridize with the targeted regions and are used to enrich the genomic region of
interest. Meanwhile, the in-solution method (e.g., Roche, Illumina, Agilent
Technologies, and MY croarray products) use biotinylated DNA or RNA baits to enrich

targeted region. Because DNA-RNA hybrids show higher efficiency than do DNA-DNA
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hybrids, RNA baits are used in some systems [3]. The targeted DNA is recovered using

streptavidin-labeled magnetic beads. The in-solution approach has advantages compared

with the on-array method: the reagent cost is lower, less DNA is required, and it is

easily scaled because the capture method can be conducted entirely in small tubes [4].

Small-scale targeted capture methods have been proposed for the enrichment of

the complete mitochondrial genome (mtDNA) [5-7]. Maricic et al. (2010) presented a

capture method for the mtDNA molecules that used biotinylated polymerase chain

reaction (PCR) amplicons as baits. Human mtDNA is approximately 16.6 kbp long.

When constructing the baits, two primer sets of long-range PCR that amplify >9 kbp

regions are sufficient to cover whole mtDNA genome sequencing. The long-range PCR

amplicons are sheared with sonicators. The sheared amplicons are biotinylated and used

for the enrichment. This targeted capture method is cited by approximately 200 previous

studies that analyzed genomes of modern or ancient organisms (e.g., humans,

pathogens, animals, and fishes). The commercial targeted capture kits for small regions

cost approximately 250-900 USD per reaction. The method provided by Maricic et al.

(2010) is approximately 50 USD per reaction and much less expensive than commercial

methods. If the Maricic’s method can be applied for large genes, then it definitely saves

the cost.
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In order to enrich larger genomic regions than mtDNA, we conceived of using
bacterial artificial chromosome (BAC) libraries as baits, instead of PCR amplicons.
BAC is a vector that can carry DNA fragments of >300 kbp [8], and can be amplified by
culturing E. coli harboring the BAC. Human BAC libraries constructed in previous
studies [9—11] are available and distributed through resource centers. We named the
novel approach presenting in this study as “BAC double capture (BDC) method.” Here
we show the conditions optimized for the BDC method, and the satisfactory efficiency

evaluated in comparison to the commercial enrichment kit in the NGS output data.

Materials and Methods

Preparation of indexed libraries for testing experimental
conditions by BAC single capture (BSC) and BAC double
capture (BDC) with PrimeSTAR

A DNA solution purchased from the Health Science Research Resources Bank (Osaka,
Japan) was used in the present study. The DNA concentration was measured using a

NanoPhotometer (Implen; CA, USA). The total amount of 5 pg of DNA was sheared
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using a Covaris S2 sonicator (Covaris; MA, USA). The target peak was set at 400 bp. A

total of 50 ng of DNA was used to produce the indexed library, using an NEBNext Ultra

DNA Library Prep Kit and Multiplex Oligos for Illumina (New England BioLabs; MA,

USA). Sheared DNA was end-repaired, dA-tailed, and ligated to Illumina specific

adaptors. Sizes of the adaptor-ligated DNAs are selected to an approximate insert size,

400-500 bp, by Agencourt AMPure XP beads (Beckman Coulter; CA, USA). The

genomic DNA shotgun library was amplified with 4 PCR reactions using a primer pair,

Sol bridge PS5 and Sol bridge P7, which was as presented in Maricic et al. (2010). We

used 500 pmol of the library as a template for PCR in a 50-pL solution containing

deoxynucleotide (ANTP) 0.2 mM, 0.2 uM of each primer, 1.25 U of PrimeSTAR GXL

DNA Polymerase (Takara Bio; Shiga, Japan). PCR was carried out following the

cycling reaction: 15 cycles of denaturation at 98°C for 10 sec, annealing at 60°C for 15

sec, extension at 68°C for 50 sec. Those PCR products were pooled and the solution was

purified using a MinElute PCR Purification Kit (Qiagen; Hilden, Germany), and it was

then eluted it into 23 pL buffer EB (Qiagen). The concentration of the solution was

measured using a NanoPhotometer (Implen). The total amount of 2pug per capture

reaction was obtained.
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Bait production

The BAC from the CHORI-17 library (ID number: CH17-24F19) included RNF213 and
nearby four genes with the intergenic regions (Fig 1). The total length of the BAC, from
the BACPAC Resources Center (https://bacpacresources.org), was 213,477 bp.
NucleoBond BAC 100 (Macherey-Nagel; Diiren, Germany) was used to purify the
BAC. The concentration was measured using a NanoPhotometer (Implen). The total
amount of 5 pg of BAC was sheared using a Covaris S2 sonicator (Covaris). Because
Maricic et al. (2010) recommended that smear DNA band of a gel electrophoresis
should be brightest at a size smaller than 1 kbp, and no fragment longer than 5 kbp
should be visible, four default settings of the peaks were selected: 150 bp, 300 bp, 500
bp, and 800 bp. The seven baits we obtained showed different peaks: 151 bp, 340 bp,
456 bp, 492 bp, 522 bp, 619 bp, 735 bp, and 882 bp that were included in the range of
that Maricic et al. (2010) showed. The sheared BACs were purified using a MinElute
PCR Purification Kit (Qiagen). Subsequently, 1.5-ug sheared BACs per capture reaction
were prepared, and the products were then biotinylated according to the protocol used in
the previous study [7]. To evaluate the effects of the baits’ lengths, the five baits (150
bp, 340 bp, 619 bp, 735 bp, and 882 bp) were used; for the number of the captures, two

baits (340 bp or 456 bp peak) were used; and for the hybridization temperature, baits
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that showed a 492 bp peak were used. Baits of 522 bp peak were used for an initial

BDC (with PrimeSTAR), and baits of 492 bp peak were used for an additional BDC.

BAC single capture (BSC) for testing experimental conditions
This enrichment was conducted according to the protocol of Maricic et al. (2010) using
BAC baits. We named it “BAC single capture (BSC).” Concentrations of enriched
libraries were assessed using a KAPA Quantification Kit (Kapa Biosystems, Cape
Town, South Africa). The size distributions of enriched libraries were verified using a
2100 Bioanalyzer (Agilent Technologies; CA, USA). To determine the technical

variability in targeted captures, each capture was performed in duplicate.

Initial protocol of BAC double capture (BDC) with

PrimeSTAR

This enrichment was conducted following the modified protocol of the NimbleGen
technical note “Double Capture: High Efficiency Sequence Capture of Small Targets for
use in SeqCap EZ Library, Applications on 454 Sequencing Systems” (Fig 2). SeqCap
EZ Hybridization and Wash Kit (Roche; Basel, Switzerland) were used according to the

technical note. The protocol was named, “BAC double capture (BDC) with

10
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PrimeSTAR.” Blocking oligonucleotide solutions and human Cot-1 DNA were added to

the library solution. The solution was dried out using a heat block at 95°C.

Hybridization buffer and formamide added to the dried DNA, and the mixture was

suspended by vortex mixing. The suspended mixture was single-stranded using a heat

block at 95°C for 10 min. Biotinylated BAC baits (500 ng) eluted by 4.5 pL PCR grade

water was added to the single-stranded DNA mixture and mixed by pipetting. Then the

solution was heated in a thermal cycler to 95°C for 10 min and incubated at 65°C

overnight (12—-16 h). Following incubation, Dynabeads M-270 Streptavidin (Invitrogen;

CA, USA) was added to the hybridization mixture. Bound DNA fragments were washed

and eluted using NGS MagnaStand (Nippon Genetics, Tokyo, Japan). After the wash

and the elution, PCRs were run of the enriched library (26 pL) before removing

magnetic beads. The 5 pL of the eluted library was used as a template for PCR in a 50

pL solution containing deoxynucleotide (ANTP) 0.2 mM, 0.2 uM of each primer,

Sol bridge PS5 and Sol bridge P7 in Maricic et al. (2010), 1.25 U of PrimeSTAR GXL

DNA Polymerase (Takara Bio). The 1st post-capture PCR was carried out following the

cycling reaction: 16 cycles of denaturation at 98°C for 10 sec, annealing at 60°C for 15

sec, extension at 68°C for 50 sec into the plateau phase according to Maricic et al.

(2010). The PCR amplicon was purified using a MinElute PCR Purification Kit

11
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(Qiagen). Then, the 2nd capture was conducted using the enriched and purified library
using the same steps as in the 1st capture. After that, the 2nd post-capture PCR of the
2nd captured library was run into the plateau phase (20 cycles) using the same cycling
condition as in the Ist post-capture PCR. The amplified library was purified using the
methods described above. Quantification of the amplified capture library was conducted
with a KAPA Library Quantification Kit for [1lumina NGS platforms (Kapa Biosystems)
and a 2100 Bioanalyzer (Agilent Technologies). To determine the technical variability

in targeted captures, each capture was performed in duplicate.

Sequencing for BSC and BDC with PrimeSTAR

The enriched libraries by BSC were sequenced on a MiSeq (Illumina; CA, USA) using
[llumina MiSeq reagent kit v2 (2 x 25 cycles) or v2 nano (2 x 150 cycles) or v3 (2 x 75
cycles). Fastq files were processed using Trimmomatic (version 0.35) in the paired-end
palindrome mode to remove TruSeq adapter sequences, low-quality reads (average:
<Q20), and nucleotides after the 5'-end from the 26th base and following bases of each
read, regardless of quality, to minimize the differences among the three reagent kits.
The enriched libraries by BDC with PrimeSTAR were sequenced on a MiSeq

(ITlumina) using the [llumina MiSeq Reagent Kit v3 (2 % 75 cycles). Fastq files were

12
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processed using Trimmomatic (version 0.35) in the paired-end palindrome mode to

remove TruSeq adapter sequences and low-quality (average: <Q20) reads.

Alignment for BSC and BDC with PrimeSTAR

The quality-controlled reads were aligned with the Burrows-Wheeler Aligner (BWA)
software version 0.7.12-r1039 [12] to the human genome (GRCh37) with default
parameters. Duplicate reads per sample were marked using the MarkDuplicates tool
from the Picard software version 1.128 (https://broadinstitute.github.io/picard/) and
local realignments around indels were performed on per sample basis using the
IndelRealigner tool from the Genome Analysis Toolkit (GATK) software version 3.4-46
[13]. The reads mapped to a large tandem repeat, chr17: 78234665-78372586, were
removed. Coverage and average depth per sample of targeted regions were calculated
using GATK’s DepthOfCoverage analysis. The number of mapped and duplicated reads

were obtained using SAMtools versionl.2 flagstat analysis [ 14].

Production of indexed libraries for BDC and MB

DNA was extracted from bloods of 24 moyamoya disease (MMD) cases collected at

Kitasato University Hospital using DNA Extractor WB Kit (Wako Pure Chemical

13
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Industries; Osaka, Japan). All the patients included in this study provided written
informed consent. This project was approved by the ethics committee at Kitasato
University School of Medicine. The concentrations of DNA extracts were measured
using a NanoPhotometer (Implen) and Qubit 3.0 Fluorometer (ThermoFisher Scientific;
MA, USA). Using a Covaris S220 sonicator (Covaris), 2 ug of DNA was sheared. The
target peak was set at 300 bp. To produce an indexed library using NEBNext Ultra DNA
Library Prep Kit and Multiplex Oligos for Illumina (New England BioLabs), 500 ng of
DNA was used. Sheared DNA was end-repaired, dA-tailed, ligated to Illumina specific
adaptors, size selected to an approximate insert size of 400-500 bp by Agencourt
AMPure XP beads (Beckman Coulter), and amplified by 6 or 7 cycles of PCR. The

libraries were purified using Agencourt AMPure XP beads (Beckman Coulter).

The final protocol of BDC

The protocol of BDC with PrimeSTAR was modified with KAPA HiFi DNA
Polymerase. The following is the final protocol of BDC. The PCR amplification process
of the protocol of BDC was improved with KAPA HiFi DNA Polymerase. DNA
libraries of eight MMD cases were used for the final protocol. The 1st and 2nd post-

captured libraries were used as templates for PCR in a 50 pL solution containing

14
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deoxynucleotide (ANTP) 0.3 mM, 0.5 uM of each primer, 1.0 U of KAPA HiFi DNA
Polymerase (Kapa Biosystems). PCR was carried out using the following protocol: an
initial denaturing step at 98°C for 2 min, 8 cycles for 1st post-capture libraries or 13
cycles for the 2nd post-capture libraries of denaturation at 98°C for 20 s, annealing at
60°C for 30 s, extension at 72°C for 40 s, and a final extension step at 72°C for 5 min.
To determine the technical variability in targeted captures, each capture was performed

in duplicate.

MYbaits double capture (MB)

DNA libraries of 24 MMD cases were used for the targeted capture experiment. The
captures were performed using the MYbait Custom Kit (MY croarray; MI, USA)
constructed for enrichment of the same region of the BAC twice, following the
manufacturer’s instructions (http://www.mycroarray.com/pdf/MYbaits-manual-v3.pdf).
The baits of MYbaits were uniquely designed to map to the human reference genome.
The designed baits covered nearly 80% of the target region. The libraries were
hybridized to half of an aliquot of the RNA baits per reaction. The 1st post-capture PCR
was 8 cycles. The 2nd capture was conducted using the whole quantity of the 1st post-

capture PCR amplicons with the same protocol as that in the 1st capture. The 2nd post-

15
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capture PCR was 11 cycles. After the enrichment, the libraries were purified using
MinElute PCR Purification kit (Qiagen), quantified using TapeStation (Agilent
Technologies) and Qubit 3.0 Fluorometer (ThermoFisher Scientific). The method is

called MYbaits double capture (MB).

Sequencing and alignment for BDC and MB

The enriched libraries were sequenced on a MiSeq (Illumina) using Illumina MiSeq
reagent kit v3 (2 x 75 bp chemistry). Fastq files were processed using Trimmomatic
(version 0.35) [15] in the paired-end palindrome mode to remove TruSeq adapter
sequences and low-quality (average: <Q20) reads. The method of alignment for BDC

and MB was the same as for that of BSC and BDC with PrimeSTAR.

Valiant calling for BDC and MB

The resulting data was analyzed with the GATK version 3.4-46, according to GATK Best
Practices recommendations [13,16,17]. Following the guidelines for experiments of
small-targeted regions, this workflow included calling variants and producing the
genomic variant call format (gVCF) files in target regions individually per subject using

a HaplotypeCaller, followed by joint genotyping data to produce a multisample raw VCF

16
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file using GenotypeGVCFs. Default settings were used for both tools. After variant
calling, the following annotations and thresholds were used to remove low-confidence
SNPs, based on GATK recommendations for hard filtering: QD <2.0, FS >60.0,
HaplotypeScore >13.0, MQ <40, MQRankSum <-12.5, ReadPosRankSum <-8.0.
Similarly, the following filters were applied to remove low-confidence indels: QD <2.0,
FS >200.0, ReadPosRankSum <—20.0. We extracted variants information from the

filtered VCEF file using VCFtools [18].

Results

Experimental conditions of BDC

The effects of baits lengths were evaluated. BSC was performed with the five baits with
different lengths and the on-target rates were graphed (Fig 3). The approximate 350—750
bp peak baits showed more stability and higher on-target rates (0.28—0.43%) than did
the 150 bp peak bait (0.16% and 0.33%). The rates of the 150 bp peak bait showed a
larger difference (0.17%) between the duplicates than did that of the longer baits (0.04—

0.08%).
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The effects of numbers of captures were evaluated. BSC and BDC were
performed with PrimeSTAR and the on-target rates were graphed (Fig 4). There was
one capture of BSC and two of BDC with PrimeSTAR, which showed higher on-target
rates (16.53% and 12.21%) than did that of BSC (0.28% and 0.32%). Therefore, two
captures were more efficient than one.

The effects of hybridization temperature were evaluated. Hybridizations were
performed at 45°C and 65°C, and the on-target rates were graphed (Fig 5).
Hybridization at 65°C showed higher on-target rates (21.12% and 25.01%) than did

those hybridized at 45°C (3.51% and 5.78%).

Comparison between BDC and a commercial targeted capture

method

PrimeSTAR GXL DNA polymerase for BDC was used in the initial protocol of BDC
(see Materials and Methods). However, in the final protocol of BDC, it was converted
to KAPA HiFi DNA polymerase (see Materials and Methods) because the polymerase
showed more high yield than did the PrimeSTAR GXL DNA polymerase (S1 Figure, S1
Protocol). The quality of the NGS data of BDC with KAPA HiFi DNA polymerase and

the targeted capture method was compared with that of MB.
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Averages of rates of “unique reads” and “duplicate reads” were calculated (Table 1).

“Unique reads” mean reads that mapped uniquely to a reference genome. “Duplicate

reads” mean reads that mapped to a reference genome at the same position with the

other reads and had the same length and the same variation. When raw NGS datasets are

processed, duplicate reads are removed from the dataset. BDC with KAPA HiFi DNA

polymerase showed a higher average of duplicate-reads rate (46.9%) than did that of

MB (16.1%). The averages of depths between BDC and MB were compared (Table 1).

“Depth” means the number of reads that mapped at a genomic position. The averages of

total depth calculated by adding depth of each genomic position were almost the same,

approximately 30 M. The averages of depth were also almost the same, approximately

140. The averages of on-target rates were also compared (Table 1): that of BDC (22.5%)

was similar to that of MB (24.3%).

Validation of variant sites

The validation of BDC was evaluated using sequence data of 8 samples from MMD

cases that were conducted both BDC and MB. The called SNP sites of BDC (572 sites)

were larger than those of MB (549 sites) (Table 2). The numbers of SNPs registered in

dbSNP were larger in BDC (540 sites) than in MB (517 sites). The number of SNPs not
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registered in dbSNP of BDC was the same as that of MB. The concordant rates of
genotypes of SNP sites between BDC and MB were calculated (Table 3). The SNPs
registered in dbSNP were 98.4%. The SNPs registered in dbSNP were 97.3%. In
twenty-eight SNPs, at least 1 out of 8 MMD samples were called different genotypes
between BDC and MB. Those SNPs were placed at genomic regions where was difficult
to map reads and call variants correctly in (poly A or G regions: 7 sites, CNV: 11 sites,

retro transposons: § sites, low complexity regions: 2 sites).

Comparisons of the average values of between BDC and MB

The data qualities and costs of BDC and MB were evaluated comparing nine categories
(Table 4). The required genomic DNA for each method was higher weight in BDC (1.5
pg) than that in MB (0.5 pg). BDC required baits which we constructed myself, while
MB required manufactured baits included in a targeted capture kit. BDC took 10 days to
prepare the baits because of the time required to order E. coli harboring BAC that covered
RNF213 and amplified and purified it. MB took 60 days from design of the baits to its
arrival. The period of a targeted capture experiment in BDC was the same as MB, 3 days.
The experimental cost without sequencing using MiSeq of BDC (USD 55) was lower

than that of MB (USD 270). We examined four points regarding the quality of the data.
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That of MB was the required library weight. The duplicate read rate of BDC (46.9%) was
higher than that of MB (16.1%). The average of depth of BDC (140.5) was the almost
same as that of MB (141.9). The on-target rate of BDC (22.5%) was also quite close to
that of MB (24.3%). Therefore, the data quality of BDC was close in on MB, except only

for the duplicate read rate.

Discussion

We compared the three experimental conditions, the baits lengths, the number of
captures, and the hybridization temperatures, and found appropriate conditions
exclusively for the BDC method. These might not be the best conditions, but better ones
for the method.

We first found that the baits of 350—750 bp peak obtained a higher on-target rate
than did the peak baits around 150 bp and 900 bp (Fig 3). The magnetic beads
(Dynabeads M-270) that immobilize baits reduce the binding capacity for large DNA
fragments due to the likelihood of steric hindrance. Twice as many copies of a 500 bp

DNA fragment bind to the beads than in the case of a 1,000 bp DNA fragment.
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Therefore, around 900 bp baits would show lower on-target rates. The present study

showed that about 150 bp baits were the lowest and most unstable on-target rates.

Commercial targeted capture kits have uniformly about 100 bp baits (e.g., Agilent: 120

bp, [llumina: 100 bp, MYcroarray: 80—120 bp). The protocols of such kits optimized

many conditions (e.g., bait lengths, the bait densities, the hybridization temperatures,

and the hybridization reagents). Those results indicate that the experimental conditions

of the protocol in the present study are not applicable for the short baits. To optimize the

baits lengths for BDC, we should examine more patterns of baits lengths in the next

step.

We observed much higher on-target rates with double captures than that with a

single capture (Fig 4), suggesting that the double capture definitely enriches more target

libraries. The targeted captures of small regions are especially more difficult than those

of larger regions, because genome libraries have smaller volumes of narrow targeted

regions (e.g., hundreds kbp) than those of broad targeted regions (e.g., several Mbp).

Double captures seem to enable researchers to enrich more DNA of interest than do

single captures.

We found that the hybridization temperature at 65°C was suitable for effective

library enrichment (Fig 5), suggesting that the hybridization at 65°C gave higher
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specificity than that at 45°C. From these results, overall, we would propose that the

conditions are the baits with 350—750 bp peak, twice capturing, and the 65°C

hybridization temperature.

The average of duplicate read rate of BDC was higher than that of MB (Table 1).

In the BDC protocol, PCR includes one more cycle than that in the MB protocol for

obtaining libraries of adequate quantities. This could be the reason why the higher rate

of duplication in BDC was observed. It might be important for improving BDC to

reduce the number of PCR cycles.

The on-target rate of BDC (Table 1) was higher than the that of the previous

manual methods that enriched mtDNA using baits constructed from long-range PCR

amplicons or genomic regions using BAC-based baits [7,19]. A previous study [7]

proposed a single capture method. Another previous study [19] also proposed a single

capture method and used non-sheared BACs that were affected by their own steric

hindrance. Thus, we would claim that BDC is improved from the previous manual

capture methods.

BDC showed more called SNP sites than MB (Table 2). The baits used in MB

were synthetic oligonucleotide probes. Non-unique baits in a human-reference-genome

sequence were excluded in the probes designed. Therefore, the baits of MB covered
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approximately 80% of the target region. On the other hand, the baits used in BDC were

constructed from BAC, which covered the whole target regions. The differences of

processes constructing probes between BDC and MB could affect the numbers of

enriched libraries and the called SNP sites.

The concordance of SNP genotypes between BDC and MB was >97% (Table 3).

The SNPs that were called the different genotypes placed at poly A, poly G, repetitive

regions and transposons. Those genomic regions that showed low uniqueness in

genomes are, in general, more likely to have errors in PCRs and mapping reads [20].

Thus, the SNP sites that showed discordance of genotypes locate genomic regions

where were difficult to call SNPs correctly.

BDC allows efficient capture of the genomic library of NGS for large genes. First,

the approach is cost-effective in that it only requires standard laboratory equipment and

reagents that cost USDS55 per reaction (Table 4). Second, it is fast, i.e., it enables

researchers to perform captures immediately without designing and constructing baits

(Table 4). Third, the on-target rates are almost the same for BDC and MB (Tables 1 and

4). Those features enable more laboratories to start easily targeted captures. More

adjustments of capture conditions make a better BDC. When BDC is used for the other

human genomic regions and any organism’s genome, the conditions of targeted captures
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435  may require adjustment. E.g., if the GC (guanine and cytosine) contents of targeted
436  regions are different from those of the BAC used in the present study, suitable

437  hybridization temperatures can be changed. BDC enables the recovery of targeted

438  genomic regions like a large gene from most such ancient samples. Because a large
439  amount of non-targeted DNA and bacterial DNA extracted from those bones, those
440  samples are needed to retrieve only endogenous genomes. Our new approach helps to
441  conduct paleogenomic studies.
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Figure legends

Fig 1. A genomic position of the BAC (ID: CH17-24F19). The BAC contains five
genes: caspase recruitment domain family member 17 (CARD17), solute carrier family
26 member 11 (SLC26A11), ring finger protein 213 (RNF213), N-sulfoglucosamine
sulfohydrolase (SGSH), CTD-2047H16.4 (uncharacterized gene).

Fig 2. An overview of the BAC double capture (BDC) method, which we modified
(Maricic et al., 2010). On the left, the bait construction from the BAC is shown; on the
right, the production of indexed libraries that are used in the library enrichment (center).
Those colored light red are the BAC-based baits, dark red represents targeted DNA
molecules in the libraries, black represents non-targeted DNA molecules in the libraries,
green and pink represent indexes, gray represents adapters, and blue and yellow
represent biotinylated adapters. Thick lines represent double stranded DNA, and thin

lines represent single stranded DNA.
Fig 3. On-target rates depending on BAC baits length. On-target rate equals the
reads mapped to the target region divided by the reads mapped to the whole reference

genome.

Fig 4. On-target rates depending on the number of captures. The formula to

calculate the on-target rate is the same as in Fig 3.

Fig 5. On-target rates of the hybridization temperature. The formula to calculate the

on-target rate is the same as in Fig 3.
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573  Table 1. Average numbers of BDC and MB.

Method BDC MB
Duplicate reads (%) 46.9 16.1
Unique reads (%) 53.1 83.9
Total depth 30,020,317 30,321,836
Depth 140.5 141.9
On-target rate (%) 22.5 243
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576  Table 2. Numbers of validated SNPs.

Method All SNPs dbSNP (registered) dbSNP (non-registered)
BDC 572 540 32
MB 549 517 32

577
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579 Table 3. Concordant rates of genotypes.

dbSNP (registered) dbSNP (non-registered)
Number of sites* 478 32
Concordant rate of
98.4% 97.3%
Genotypes

580  *Sites that genotyped all eight samples with both BDC and MB.
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582  Table4. Summary of comparisons between BDC and MB.

Category Method

1 2 BDC MB
Required library weight (pg) 1.5 0.5
Baits construction Self-making Outsource

Cost Preparation period of baits (day) 10 60
Period of targeted capture (day) 3 3
Cost per reaction (USD) 55 270
Duplicate reads (%) 46.9 16.1

Data Average of depth 140.5 141.9

quality | On-target rate (%) 22.5 243
SNP concordance* (%) 98.4

583  *A calculated value from SNPs registered in dbSNP138
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585  Supporting information

586

587  Supplementary Figure Legends

588

589  S1 Fig. Comparison of PCR efficiency between PrimeSTAR GXL DNA Polymerase

590 and KAPA HiFi DNA Polymerase.
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597  S1 Protocol Amplification efficiency of two polymerases.

598 A2 puL of 1st post-captured library solution before removing magnetic beads

599  concentrated using a BDC method was used as a template for PCR in a 20 pL solution

600  containing 0.5 U of PrimeSTAR GXL DNA Polymerase (Takara Bio), deoxynucleotide

601  (dNTP) 0.2 mM, 0.2 uM of each primer, Sol bridge PS5 and Sol bridge P7 in Maricic

602 etal. (2010). The PCR and purification were carried out using the same method as BDC

603  with PrimeSTAR. The same volume of the 1st post-captured library solution was used

604  as a template for PCR in a 20 pL solution containing, 0.4 U of KAPA HiFi DNA

605  Polymerase (Kapa Biosystems), deoxynucleotide (ANTP) 0.3 mM, 0.5 uM of each

606  primer, Sol bridge P5 and Sol bridge P7 in Maricic et al. (2010). PCR was carried out

607  using the following protocol: an initial denaturing step at 98°C for 2 min, 16 cycles for

608  the 1st post-capture library of denaturation at 98°C for 20 s, annealing at 60°C for 30 s,

609  extension at 72°C for 45 s, and a final extension step at 72°C for 5 min. To determine

610 the technical variability in targeted captures, each PCR was performed in duplicate. The

611  PCR amplicons were quantified using Qubit 3.0 Fluorometer (ThermoFisher Scientific).
612

613
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