

1

2 <Long title>

3 A new targeted capture method using bacterial artificial
4 chromosome (BAC) libraries as baits for sequencing relatively
5 large genes

6

7 <Short title>

8 A new targeted capture method using BAC baits

9

10

11 Kae Koganebuchi^{1#*}, Takashi Gakuhari², Hirohiko Takeshima³, Kimitoshi Sato⁴,
12 Kiyotaka Fujii⁴, Toshihiro Kumabe⁴, Satoshi Kasagi⁵, Takehiro Sato⁶, Atsushi Tajima⁶,
13 Hiroki Shibata⁷, Motoyuki Ogawa^{1,8}, Hiroki Oota^{1,8*}

14

15

16 ¹ Department of Biological Structure, Kitasato University Graduate School of Medical
17 Sciences, Sagamihara, Kanagawa, Japan

18 ² Center for Cultural Resource Studies, Kanazawa University, Kanazawa, Ishikawa, Japan

19 ³ Department of Marine Biology, School of Marine Science and Technology, Tokai
20 University, Shizuoka, Shizuoka, Japan

21 ⁴ Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara,
22 Kanagawa, Japan

23 ⁵ School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan

24 ⁶ Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive
25 Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan

26 ⁷ Medical Institute of Bioregulation, Kyushu University, Higashi, Fukuoka, Japan

27 ⁸ Department of Anatomy, Kitasato University School of Medicine, Sagamihara,
28 Kanagawa, Japan

29 ^{#a} Current Address: Department of Human Biology and Anatomy, Graduate School of
30 Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan

31

32 * Corresponding author

33 E-mail: hiroki_oota@med.kitasato-u.ac.jp (HO)

34

35

36

37 **Author Contributions**

38 Conceptualization: KK, TG, HO

39 Formal Analysis: KK

40 Investigation: KK, TS, HS

41 Resources: KS, KF, TK, HO

42 Supervision: TG, SK, HT, AT, MO

43 Writing - Original Draft Preparation: KK

44 Writing - Review & Editing: KK, HO

45

46 **Funding**

47 This work was supported in by KAKENHI (Grants-in-Aid for Scientific Research B) to
48 HO (25284157) from the Japan Society for the Promotion of Science (JSPS). KK was
49 supported by the JSPS Fellowship (15J10824). This work was partly performed in the
50 Cooperative Research Project Program of the Medical Institute of Bioregulation,
51 Kyushu University.

52

53 **Competing interests**

54 The authors have declared that no competing interests exist.

55

56

57 **Abstract**

58 To analyze a specific genome region using next-generation sequencing technologies, the
59 enrichment of DNA libraries with targeted capture methods has been standardized. For
60 enrichment of mitochondrial genome, a previous study developed an original targeted
61 capture method that use baits constructed from long-range polymerase chain reaction
62 (PCR) amplicons, common laboratory reagents, and equipment. In this study, a new
63 targeted capture method is presented, that of bacterial artificial chromosome (BAC)
64 double capture (BDC), modifying the previous method, but using BAC libraries as baits
65 for sequencing a relatively large gene. We applied the BDC approach for the 214 kb
66 autosomal region, *ring finger protein 213*, which is the susceptibility gene of moyamoya
67 disease (MMD). To evaluate the reliability of BDC, cost and data quality were
68 compared with those of a commercial kit. While the ratio of duplicate reads was higher,
69 the cost was less than that of the commercial kit. The data quality was sufficiently the
70 same as that of the kit. Thus, BDC can be an easy, low-cost, and useful method for
71 analyzing individual genome region with substantial length.

72

73

74

75 **Introduction**

76 The high-throughput sequencing technology, next-generation sequencing (NGS), has
77 made a striking impact on genomic research and the entire biological field. The NGS
78 technology is often called massively parallel sequencing because it effectively conducts
79 whole-genome sequencing in a relatively short time [1]. NGS enables researchers to
80 analyze the whole human genome of about 3 Gbp and identify all of the 30,000 genes in
81 only 1 week [2]. To analyze specific regions (e.g., whole exons, and already known
82 disease-related genes) using NGS, enrichment of DNA libraries with targeted capture
83 methods are standardized.

84 In capture methods, probes for enriching the targeted genomic regions are called
85 “baits” that attract molecules of interest as in fishing. There are two major approaches
86 for relatively large-scale genomic-region enrichment, the “on-array” and “in-solution”
87 methods. Both of these approaches target sequences up to several hundred kbp. In the
88 on-array capture method (Roche NimbleGen products), microarrays immobilize baits
89 that hybridize with the targeted regions and are used to enrich the genomic region of
90 interest. Meanwhile, the in-solution method (e.g., Roche, Illumina, Agilent
91 Technologies, and MYcroarray products) use biotinylated DNA or RNA baits to enrich
92 targeted region. Because DNA-RNA hybrids show higher efficiency than do DNA-DNA

93 hybrids, RNA baits are used in some systems [3]. The targeted DNA is recovered using
94 streptavidin-labeled magnetic beads. The in-solution approach has advantages compared
95 with the on-array method: the reagent cost is lower, less DNA is required, and it is
96 easily scaled because the capture method can be conducted entirely in small tubes [4].

97 Small-scale targeted capture methods have been proposed for the enrichment of
98 the complete mitochondrial genome (mtDNA) [5–7]. Maricic et al. (2010) presented a
99 capture method for the mtDNA molecules that used biotinylated polymerase chain
100 reaction (PCR) amplicons as baits. Human mtDNA is approximately 16.6 kbp long.
101 When constructing the baits, two primer sets of long-range PCR that amplify >9 kbp
102 regions are sufficient to cover whole mtDNA genome sequencing. The long-range PCR
103 amplicons are sheared with sonicators. The sheared amplicons are biotinylated and used
104 for the enrichment. This targeted capture method is cited by approximately 200 previous
105 studies that analyzed genomes of modern or ancient organisms (e.g., humans,
106 pathogens, animals, and fishes). The commercial targeted capture kits for small regions
107 cost approximately 250–900 USD per reaction. The method provided by Maricic et al.
108 (2010) is approximately 50 USD per reaction and much less expensive than commercial
109 methods. If the Maricic's method can be applied for large genes, then it definitely saves
110 the cost.

111 In order to enrich larger genomic regions than mtDNA, we conceived of using
112 bacterial artificial chromosome (BAC) libraries as baits, instead of PCR amplicons.
113 BAC is a vector that can carry DNA fragments of >300 kbp [8], and can be amplified by
114 culturing *E. coli* harboring the BAC. Human BAC libraries constructed in previous
115 studies [9–11] are available and distributed through resource centers. We named the
116 novel approach presenting in this study as “BAC double capture (BDC) method.” Here
117 we show the conditions optimized for the BDC method, and the satisfactory efficiency
118 evaluated in comparison to the commercial enrichment kit in the NGS output data.

119

120

121 **Materials and Methods**

122

123 **Preparation of indexed libraries for testing experimental 124 conditions by BAC single capture (BSC) and BAC double 125 capture (BDC) with PrimeSTAR**

126 A DNA solution purchased from the Health Science Research Resources Bank (Osaka,
127 Japan) was used in the present study. The DNA concentration was measured using a
128 NanoPhotometer (Implen; CA, USA). The total amount of 5 µg of DNA was sheared

129 using a Covaris S2 sonicator (Covaris; MA, USA). The target peak was set at 400 bp. A
130 total of 50 ng of DNA was used to produce the indexed library, using an NEBNext Ultra
131 DNA Library Prep Kit and Multiplex Oligos for Illumina (New England BioLabs; MA,
132 USA). Sheared DNA was end-repaired, dA-tailed, and ligated to Illumina specific
133 adaptors. Sizes of the adaptor-ligated DNAs are selected to an approximate insert size,
134 400–500 bp, by Agencourt AMPure XP beads (Beckman Coulter; CA, USA). The
135 genomic DNA shotgun library was amplified with 4 PCR reactions using a primer pair,
136 Sol_bridge_P5 and Sol_bridge_P7, which was as presented in Maricic et al. (2010). We
137 used 500 pmol of the library as a template for PCR in a 50- μ L solution containing
138 deoxynucleotide (dNTP) 0.2 mM, 0.2 μ M of each primer, 1.25 U of PrimeSTAR GXL
139 DNA Polymerase (Takara Bio; Shiga, Japan). PCR was carried out following the
140 cycling reaction: 15 cycles of denaturation at 98°C for 10 sec, annealing at 60°C for 15
141 sec, extension at 68°C for 50 sec. Those PCR products were pooled and the solution was
142 purified using a MinElute PCR Purification Kit (Qiagen; Hilden, Germany), and it was
143 then eluted it into 23 μ L buffer EB (Qiagen). The concentration of the solution was
144 measured using a NanoPhotometer (Implen). The total amount of 2 μ g per capture
145 reaction was obtained.
146

147 **Bait production**

148 The BAC from the CHORI-17 library (ID number: CH17-24F19) included *RNF213* and
149 nearby four genes with the intergenic regions (Fig 1). The total length of the BAC, from
150 the BACPAC Resources Center (<https://bacpacresources.org>), was 213,477 bp.
151 NucleoBond BAC 100 (Macherey-Nagel; Düren, Germany) was used to purify the
152 BAC. The concentration was measured using a NanoPhotometer (Implen). The total
153 amount of 5 µg of BAC was sheared using a Covaris S2 sonicator (Covaris). Because
154 Maricic et al. (2010) recommended that smear DNA band of a gel electrophoresis
155 should be brightest at a size smaller than 1 kbp, and no fragment longer than 5 kbp
156 should be visible, four default settings of the peaks were selected: 150 bp, 300 bp, 500
157 bp, and 800 bp. The seven baits we obtained showed different peaks: 151 bp, 340 bp,
158 456 bp, 492 bp, 522 bp, 619 bp, 735 bp, and 882 bp that were included in the range of
159 that Maricic et al. (2010) showed. The sheared BACs were purified using a MinElute
160 PCR Purification Kit (Qiagen). Subsequently, 1.5-µg sheared BACs per capture reaction
161 were prepared, and the products were then biotinylated according to the protocol used in
162 the previous study [7]. To evaluate the effects of the baits' lengths, the five baits (150
163 bp, 340 bp, 619 bp, 735 bp, and 882 bp) were used; for the number of the captures, two
164 baits (340 bp or 456 bp peak) were used; and for the hybridization temperature, baits

165 that showed a 492 bp peak were used. Baits of 522 bp peak were used for an initial

166 BDC (with PrimeSTAR), and baits of 492 bp peak were used for an additional BDC.

167

168 **BAC single capture (BSC) for testing experimental conditions**

169 This enrichment was conducted according to the protocol of Maricic et al. (2010) using

170 BAC baits. We named it “BAC single capture (BSC).” Concentrations of enriched

171 libraries were assessed using a KAPA Quantification Kit (Kapa Biosystems, Cape

172 Town, South Africa). The size distributions of enriched libraries were verified using a

173 2100 Bioanalyzer (Agilent Technologies; CA, USA). To determine the technical

174 variability in targeted captures, each capture was performed in duplicate.

175

176 **Initial protocol of BAC double capture (BDC) with**

177 **PrimeSTAR**

178 This enrichment was conducted following the modified protocol of the NimbleGen

179 technical note “Double Capture: High Efficiency Sequence Capture of Small Targets for

180 use in SeqCap EZ Library, Applications on 454 Sequencing Systems” (Fig 2). SeqCap

181 EZ Hybridization and Wash Kit (Roche; Basel, Switzerland) were used according to the

182 technical note. The protocol was named, “BAC double capture (BDC) with

183 PrimeSTAR.” Blocking oligonucleotide solutions and human Cot-1 DNA were added to
184 the library solution. The solution was dried out using a heat block at 95°C.
185 Hybridization buffer and formamide added to the dried DNA, and the mixture was
186 suspended by vortex mixing. The suspended mixture was single-stranded using a heat
187 block at 95°C for 10 min. Biotinylated BAC baits (500 ng) eluted by 4.5 μ L PCR grade
188 water was added to the single-stranded DNA mixture and mixed by pipetting. Then the
189 solution was heated in a thermal cycler to 95°C for 10 min and incubated at 65°C
190 overnight (12–16 h). Following incubation, Dynabeads M-270 Streptavidin (Invitrogen;
191 CA, USA) was added to the hybridization mixture. Bound DNA fragments were washed
192 and eluted using NGS MagnaStand (Nippon Genetics, Tokyo, Japan). After the wash
193 and the elution, PCRs were run of the enriched library (26 μ L) before removing
194 magnetic beads. The 5 μ L of the eluted library was used as a template for PCR in a 50
195 μ L solution containing deoxynucleotide (dNTP) 0.2 mM, 0.2 μ M of each primer,
196 Sol_bridge_P5 and Sol_bridge_P7 in Maricic et al. (2010), 1.25 U of PrimeSTAR GXL
197 DNA Polymerase (Takara Bio). The 1st post-capture PCR was carried out following the
198 cycling reaction: 16 cycles of denaturation at 98°C for 10 sec, annealing at 60°C for 15
199 sec, extension at 68°C for 50 sec into the plateau phase according to Maricic et al.
200 (2010). The PCR amplicon was purified using a MinElute PCR Purification Kit

201 (Qiagen). Then, the 2nd capture was conducted using the enriched and purified library
202 using the same steps as in the 1st capture. After that, the 2nd post-capture PCR of the
203 2nd captured library was run into the plateau phase (20 cycles) using the same cycling
204 condition as in the 1st post-capture PCR. The amplified library was purified using the
205 methods described above. Quantification of the amplified capture library was conducted
206 with a KAPA Library Quantification Kit for Illumina NGS platforms (Kapa Biosystems)
207 and a 2100 Bioanalyzer (Agilent Technologies). To determine the technical variability
208 in targeted captures, each capture was performed in duplicate.

209

210 **Sequencing for BSC and BDC with PrimeSTAR**

211 The enriched libraries by BSC were sequenced on a MiSeq (Illumina; CA, USA) using
212 Illumina MiSeq reagent kit v2 (2×25 cycles) or v2 nano (2×150 cycles) or v3 (2×75
213 cycles). Fastq files were processed using Trimmomatic (version 0.35) in the paired-end
214 palindrome mode to remove TruSeq adapter sequences, low-quality reads (average:
215 $<Q20$), and nucleotides after the 5'-end from the 26th base and following bases of each
216 read, regardless of quality, to minimize the differences among the three reagent kits.

217 The enriched libraries by BDC with PrimeSTAR were sequenced on a MiSeq
218 (Illumina) using the Illumina MiSeq Reagent Kit v3 (2×75 cycles). Fastq files were

219 processed using Trimmomatic (version 0.35) in the paired-end palindrome mode to

220 remove TruSeq adapter sequences and low-quality (average: <Q20) reads.

221

222 **Alignment for BSC and BDC with PrimeSTAR**

223 The quality-controlled reads were aligned with the Burrows-Wheeler Aligner (BWA)

224 software version 0.7.12-r1039 [12] to the human genome (GRCh37) with default

225 parameters. Duplicate reads per sample were marked using the MarkDuplicates tool

226 from the Picard software version 1.128 (<https://broadinstitute.github.io/picard/>) and

227 local realignments around indels were performed on per sample basis using the

228 IndelRealigner tool from the Genome Analysis Toolkit (GATK) software version 3.4-46

229 [13]. The reads mapped to a large tandem repeat, chr17: 78234665-78372586, were

230 removed. Coverage and average depth per sample of targeted regions were calculated

231 using GATK's DepthOfCoverage analysis. The number of mapped and duplicated reads

232 were obtained using SAMtools version1.2 flagstat analysis [14].

233

234 **Production of indexed libraries for BDC and MB**

235 DNA was extracted from bloods of 24 moyamoya disease (MMD) cases collected at

236 Kitasato University Hospital using DNA Extractor WB Kit (Wako Pure Chemical

237 Industries; Osaka, Japan). All the patients included in this study provided written
238 informed consent. This project was approved by the ethics committee at Kitasato
239 University School of Medicine. The concentrations of DNA extracts were measured
240 using a NanoPhotometer (Implen) and Qubit 3.0 Fluorometer (ThermoFisher Scientific;
241 MA, USA). Using a Covaris S220 sonicator (Covaris), 2 µg of DNA was sheared. The
242 target peak was set at 300 bp. To produce an indexed library using NEBNext Ultra DNA
243 Library Prep Kit and Multiplex Oligos for Illumina (New England BioLabs), 500 ng of
244 DNA was used. Sheared DNA was end-repaired, dA-tailed, ligated to Illumina specific
245 adaptors, size selected to an approximate insert size of 400–500 bp by Agencourt
246 AMPure XP beads (Beckman Coulter), and amplified by 6 or 7 cycles of PCR. The
247 libraries were purified using Agencourt AMPure XP beads (Beckman Coulter).
248

249 **The final protocol of BDC**

250 The protocol of BDC with PrimeSTAR was modified with KAPA HiFi DNA
251 Polymerase. The following is the final protocol of BDC. The PCR amplification process
252 of the protocol of BDC was improved with KAPA HiFi DNA Polymerase. DNA
253 libraries of eight MMD cases were used for the final protocol. The 1st and 2nd post-
254 captured libraries were used as templates for PCR in a 50 µL solution containing

255 deoxynucleotide (dNTP) 0.3 mM, 0.5 μ M of each primer, 1.0 U of KAPA HiFi DNA
256 Polymerase (Kapa Biosystems). PCR was carried out using the following protocol: an
257 initial denaturing step at 98°C for 2 min, 8 cycles for 1st post-capture libraries or 13
258 cycles for the 2nd post-capture libraries of denaturation at 98°C for 20 s, annealing at
259 60°C for 30 s, extension at 72°C for 40 s, and a final extension step at 72°C for 5 min.
260 To determine the technical variability in targeted captures, each capture was performed
261 in duplicate.

262

263 **MYbaits double capture (MB)**

264 DNA libraries of 24 MMD cases were used for the targeted capture experiment. The
265 captures were performed using the MYbait Custom Kit (MYcroarray; MI, USA)
266 constructed for enrichment of the same region of the BAC twice, following the
267 manufacturer's instructions (<http://www.mycroarray.com/pdf/MYbaits-manual-v3.pdf>).
268 The baits of MYbaits were uniquely designed to map to the human reference genome.
269 The designed baits covered nearly 80% of the target region. The libraries were
270 hybridized to half of an aliquot of the RNA baits per reaction. The 1st post-capture PCR
271 was 8 cycles. The 2nd capture was conducted using the whole quantity of the 1st post-
272 capture PCR amplicons with the same protocol as that in the 1st capture. The 2nd post-

273 capture PCR was 11 cycles. After the enrichment, the libraries were purified using
274 MinElute PCR Purification kit (Qiagen), quantified using TapeStation (Agilent
275 Technologies) and Qubit 3.0 Fluorometer (ThermoFisher Scientific). The method is
276 called MYbaits double capture (MB).

277

278 **Sequencing and alignment for BDC and MB**

279 The enriched libraries were sequenced on a MiSeq (Illumina) using Illumina MiSeq
280 reagent kit v3 (2 × 75 bp chemistry). Fastq files were processed using Trimmomatic
281 (version 0.35) [15] in the paired-end palindrome mode to remove TruSeq adapter
282 sequences and low-quality (average: <Q20) reads. The method of alignment for BDC
283 and MB was the same as for that of BSC and BDC with PrimeSTAR.

284

285 **Variant calling for BDC and MB**

286 The resulting data was analyzed with the GATK version 3.4-46, according to GATK Best
287 Practices recommendations [13,16,17]. Following the guidelines for experiments of
288 small-targeted regions, this workflow included calling variants and producing the
289 genomic variant call format (gVCF) files in target regions individually per subject using
290 a HaplotypeCaller, followed by joint genotyping data to produce a multisample raw VCF

291 file using GenotypeGVCFs. Default settings were used for both tools. After variant
292 calling, the following annotations and thresholds were used to remove low-confidence
293 SNPs, based on GATK recommendations for hard filtering: QD <2.0, FS >60.0,
294 HaplotypeScore >13.0, MQ <40, MQRankSum <-12.5, ReadPosRankSum <-8.0.
295 Similarly, the following filters were applied to remove low-confidence indels: QD <2.0,
296 FS >200.0, ReadPosRankSum <-20.0. We extracted variants information from the
297 filtered VCF file using VCFtools [18].

298

299

300 **Results**

301

302 **Experimental conditions of BDC**

303 The effects of baits lengths were evaluated. BSC was performed with the five baits with
304 different lengths and the on-target rates were graphed (Fig 3). The approximate 350–750
305 bp peak baits showed more stability and higher on-target rates (0.28–0.43%) than did
306 the 150 bp peak bait (0.16% and 0.33%). The rates of the 150 bp peak bait showed a
307 larger difference (0.17%) between the duplicates than did that of the longer baits (0.04–
308 0.08%).

309 The effects of numbers of captures were evaluated. BSC and BDC were
310 performed with PrimeSTAR and the on-target rates were graphed (Fig 4). There was
311 one capture of BSC and two of BDC with PrimeSTAR, which showed higher on-target
312 rates (16.53% and 12.21%) than did that of BSC (0.28% and 0.32%). Therefore, two
313 captures were more efficient than one.

314 The effects of hybridization temperature were evaluated. Hybridizations were
315 performed at 45°C and 65°C, and the on-target rates were graphed (Fig 5).
316 Hybridization at 65°C showed higher on-target rates (21.12% and 25.01%) than did
317 those hybridized at 45°C (3.51% and 5.78%).

318

319 **Comparison between BDC and a commercial targeted capture 320 method**

321 PrimeSTAR GXL DNA polymerase for BDC was used in the initial protocol of BDC
322 (see Materials and Methods). However, in the final protocol of BDC, it was converted
323 to KAPA HiFi DNA polymerase (see Materials and Methods) because the polymerase
324 showed more high yield than did the PrimeSTAR GXL DNA polymerase (S1 Figure, S1
325 Protocol). The quality of the NGS data of BDC with KAPA HiFi DNA polymerase and
326 the targeted capture method was compared with that of MB.

327 Averages of rates of “unique reads” and “duplicate reads” were calculated (Table 1).

328 “Unique reads” mean reads that mapped uniquely to a reference genome. “Duplicate

329 reads” mean reads that mapped to a reference genome at the same position with the

330 other reads and had the same length and the same variation. When raw NGS datasets are

331 processed, duplicate reads are removed from the dataset. BDC with KAPA HiFi DNA

332 polymerase showed a higher average of duplicate-reads rate (46.9%) than did that of

333 MB (16.1%). The averages of depths between BDC and MB were compared (Table 1).

334 “Depth” means the number of reads that mapped at a genomic position. The averages of

335 total depth calculated by adding depth of each genomic position were almost the same,

336 approximately 30 M. The averages of depth were also almost the same, approximately

337 140. The averages of on-target rates were also compared (Table 1): that of BDC (22.5%)

338 was similar to that of MB (24.3%).

339

340 **Validation of variant sites**

341 The validation of BDC was evaluated using sequence data of 8 samples from MMD

342 cases that were conducted both BDC and MB. The called SNP sites of BDC (572 sites)

343 were larger than those of MB (549 sites) (Table 2). The numbers of SNPs registered in

344 dbSNP were larger in BDC (540 sites) than in MB (517 sites). The number of SNPs not

345 registered in dbSNP of BDC was the same as that of MB. The concordant rates of
346 genotypes of SNP sites between BDC and MB were calculated (Table 3). The SNPs
347 registered in dbSNP were 98.4%. The SNPs registered in dbSNP were 97.3%. In
348 twenty-eight SNPs, at least 1 out of 8 MMD samples were called different genotypes
349 between BDC and MB. Those SNPs were placed at genomic regions where was difficult
350 to map reads and call variants correctly in (poly A or G regions: 7 sites, CNV: 11 sites,
351 retro transposons: 8 sites, low complexity regions: 2 sites).

352

353 **Comparisons of the average values of between BDC and MB**

354 The data qualities and costs of BDC and MB were evaluated comparing nine categories
355 (Table 4). The required genomic DNA for each method was higher weight in BDC (1.5
356 μ g) than that in MB (0.5 μ g). BDC required baits which we constructed myself, while
357 MB required manufactured baits included in a targeted capture kit. BDC took 10 days to
358 prepare the baits because of the time required to order *E. coli* harboring BAC that covered
359 *RNF213* and amplified and purified it. MB took 60 days from design of the baits to its
360 arrival. The period of a targeted capture experiment in BDC was the same as MB, 3 days.
361 The experimental cost without sequencing using MiSeq of BDC (USD 55) was lower
362 than that of MB (USD 270). We examined four points regarding the quality of the data.

363 That of MB was the required library weight. The duplicate read rate of BDC (46.9%) was
364 higher than that of MB (16.1%). The average of depth of BDC (140.5) was the almost
365 same as that of MB (141.9). The on-target rate of BDC (22.5%) was also quite close to
366 that of MB (24.3%). Therefore, the data quality of BDC was close in on MB, except only
367 for the duplicate read rate.

368

369

370 **Discussion**

371

372 We compared the three experimental conditions, the baits lengths, the number of
373 captures, and the hybridization temperatures, and found appropriate conditions
374 exclusively for the BDC method. These might not be the best conditions, but better ones
375 for the method.

376 We first found that the baits of 350–750 bp peak obtained a higher on-target rate
377 than did the peak baits around 150 bp and 900 bp (Fig 3). The magnetic beads
378 (Dynabeads M-270) that immobilize baits reduce the binding capacity for large DNA
379 fragments due to the likelihood of steric hindrance. Twice as many copies of a 500 bp
380 DNA fragment bind to the beads than in the case of a 1,000 bp DNA fragment.

381 Therefore, around 900 bp baits would show lower on-target rates. The present study
382 showed that about 150 bp baits were the lowest and most unstable on-target rates.
383 Commercial targeted capture kits have uniformly about 100 bp baits (e.g., Agilent: 120
384 bp, Illumina: 100 bp, MYcroarray: 80–120 bp). The protocols of such kits optimized
385 many conditions (e.g., bait lengths, the bait densities, the hybridization temperatures,
386 and the hybridization reagents). Those results indicate that the experimental conditions
387 of the protocol in the present study are not applicable for the short baits. To optimize the
388 baits lengths for BDC, we should examine more patterns of baits lengths in the next
389 step.

390 We observed much higher on-target rates with double captures than that with a
391 single capture (Fig 4), suggesting that the double capture definitely enriches more target
392 libraries. The targeted captures of small regions are especially more difficult than those
393 of larger regions, because genome libraries have smaller volumes of narrow targeted
394 regions (e.g., hundreds kbp) than those of broad targeted regions (e.g., several Mbp).
395 Double captures seem to enable researchers to enrich more DNA of interest than do
396 single captures.

397 We found that the hybridization temperature at 65°C was suitable for effective
398 library enrichment (Fig 5), suggesting that the hybridization at 65°C gave higher

399 specificity than that at 45°C. From these results, overall, we would propose that the
400 conditions are the baits with 350–750 bp peak, twice capturing, and the 65°C
401 hybridization temperature.

402 The average of duplicate read rate of BDC was higher than that of MB (Table 1).

403 In the BDC protocol, PCR includes one more cycle than that in the MB protocol for
404 obtaining libraries of adequate quantities. This could be the reason why the higher rate
405 of duplication in BDC was observed. It might be important for improving BDC to
406 reduce the number of PCR cycles.

407 The on-target rate of BDC (Table 1) was higher than the that of the previous
408 manual methods that enriched mtDNA using baits constructed from long-range PCR
409 amplicons or genomic regions using BAC-based baits [7,19]. A previous study [7]
410 proposed a single capture method. Another previous study [19] also proposed a single
411 capture method and used non-sheared BACs that were affected by their own steric
412 hindrance. Thus, we would claim that BDC is improved from the previous manual
413 capture methods.

414 BDC showed more called SNP sites than MB (Table 2). The baits used in MB
415 were synthetic oligonucleotide probes. Non-unique baits in a human-reference-genome
416 sequence were excluded in the probes designed. Therefore, the baits of MB covered

417 approximately 80% of the target region. On the other hand, the baits used in BDC were
418 constructed from BAC, which covered the whole target regions. The differences of
419 processes constructing probes between BDC and MB could affect the numbers of
420 enriched libraries and the called SNP sites.

421 The concordance of SNP genotypes between BDC and MB was >97% (Table 3).

422 The SNPs that were called the different genotypes placed at poly A, poly G, repetitive
423 regions and transposons. Those genomic regions that showed low uniqueness in
424 genomes are, in general, more likely to have errors in PCRs and mapping reads [20].
425 Thus, the SNP sites that showed discordance of genotypes locate genomic regions
426 where were difficult to call SNPs correctly.

427 BDC allows efficient capture of the genomic library of NGS for large genes. First,
428 the approach is cost-effective in that it only requires standard laboratory equipment and
429 reagents that cost USD55 per reaction (Table 4). Second, it is fast, i.e., it enables
430 researchers to perform captures immediately without designing and constructing baits
431 (Table 4). Third, the on-target rates are almost the same for BDC and MB (Tables 1 and
432 4). Those features enable more laboratories to start easily targeted captures. More
433 adjustments of capture conditions make a better BDC. When BDC is used for the other
434 human genomic regions and any organism's genome, the conditions of targeted captures

435 may require adjustment. E.g., if the GC (guanine and cytosine) contents of targeted
436 regions are different from those of the BAC used in the present study, suitable
437 hybridization temperatures can be changed. BDC enables the recovery of targeted
438 genomic regions like a large gene from most such ancient samples. Because a large
439 amount of non-targeted DNA and bacterial DNA extracted from those bones, those
440 samples are needed to retrieve only endogenous genomes. Our new approach helps to
441 conduct paleogenomic studies.

442

443

444 **Acknowledgments**

445

446 We thank the members of the Laboratory of Evolutionary Anthropology, especially Dr.
447 Shoji Kawamura and Dr. Minoru Yoneda (The University of Tokyo), for many
448 discussions and suggestions about our research. Alumni of the Department of Anatomy,
449 Dr. Takafumi Katsumura (Okayama University) and Dr. Hiromi Matsumae (Yokohama
450 City University), have given us great suggestions for experiments and helped with data
451 analyses. Dr. Akiyoshi Takahashi (Kitasato University) helped us with our targeted
452 capture experiments. Dr. Masahira Hattori, Dr. Kenshiro Oshima (The University of

453 Tokyo) gave us equipment making a genome library for next-generation sequencing. Dr.
454 Alison Devault at MYcroarray provided a lot of advice to construct the bait set. And we
455 thank Robert E. Brandt, Founder, CEO, and CME, of MedEd Japan, for editing and
456 formatting the manuscript.

457

458

459 **References**

- 460 1. Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation
461 sequencing on genomics. *J Genet Genomics*. Elsevier Limited and Science Press;
462 2011;38: 95–109. doi:10.1016/j.jgg.2011.02.003
- 463 2. Shimada J, Mogi S. Necessity of Research and Development of the Structural
464 Genome Analysis Technology. *Sci Technol Trends Q Rev.* 2004;10: 11–18.
- 465 3. Carpenter ML, Buenrostro JD, Valdiosera C, Schroeder H, Allentoft ME, Sikora
466 M, et al. Pulling out the 1%: Whole-Genome Capture for the Targeted
467 Enrichment of Ancient DNA Sequencing Libraries. *Am J Hum Genet.* 2013;93:
468 852–864. doi:10.1016/j.ajhg.2013.10.002
- 469 4. Bainbridge MN, Wang M, Burgess DL, Kovar C, Rodesch MJ, D'Ascenzo M, et
470 al. Whole exome capture in solution with 3 Gbp of data. *Genome Biol.* 2010;11:

471 R62. doi:10.1186/gb-2010-11-6-r62

472 5. Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, et al. Targeted

473 Retrieval and Analysis of Five Neandertal mtDNA Genomes. *Science*. 2009;325:

474 318–321. doi:10.1126/science.1174462

475 6. Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, et al. Primer

476 Extension Capture: Targeted Sequence Retrieval from Heavily Degraded DNA

477 Sources. *J Vis Exp*. 2009; 1573. doi:10.3791/1573

478 7. Maricic T, Whitten M, Pääbo S. Multiplexed DNA Sequence Capture of

479 Mitochondrial Genomes Using PCR Products. Fleischer RC, editor. *PLoS One*.

480 Public Library of Science; 2010;5: e14004. doi:10.1371/journal.pone.0014004

481 8. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, et al. Cloning

482 and stable maintenance of 300-kilobase-pair fragments of human DNA in

483 *Escherichia coli* using an F-factor-based vector. *Proc Natl Acad Sci U S A*.

484 1992;89: 8794–8797. doi:10.1073/pnas.89.18.8794

485 9. Osoegawa K, Woon PY, Zhao B, Frengen E, Tateno M, Catanese JJ, et al. An

486 improved approach for construction of bacterial artificial chromosome libraries.

487 *Genomics*. 1998;52: 1–8. doi:10.1006/geno.1998.5423

488 10. Osoegawa K, Mammoser AG, Wu C, Frengen E, Zeng C, Catanese JJ, et al. A

489 bacterial artificial chromosome library for sequencing the complete human

490 genome. *Genome Res.* 2001;11: 483–496. doi:10.1101/gr.169601

491 11. Cheung VG, Nowak N, Jang W, Kirsch IR, Zhao S, Chen XN, et al. Integration

492 of cytogenetic landmarks into the draft sequence of the human genome. *Nature.*

493 2001;409: 953–958. doi:10.1038/35057192

494 12. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler

495 transform. *Bioinformatics.* 2010;26: 589–595. doi:10.1093/bioinformatics/btp698

496 13. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.

497 The Genome Analysis Toolkit: A MapReduce framework for analyzing next-

498 generation DNA sequencing data. *Genome Res.* 2010;20: 1297–1303.

499 doi:10.1101/gr.107524.110

500 14. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The

501 Sequence Alignment/Map format and SAMtools. *Bioinformatics.* 2009;25:

502 2078–2079. doi:10.1093/bioinformatics/btp352

503 15. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina

504 sequence data. *Bioinformatics.* 2014;30: 2114–2120.

505 doi:10.1093/bioinformatics/btu170

506 16. DePristo MA, Banks E, Poplin R, Garimella K V, Maguire JR, Hartl C, et al. A

507 framework for variation discovery and genotyping using next-generation DNA

508 sequencing data. *Nat Genet*. Nature Publishing Group; 2011;43: 491–498.

509 doi:10.1038/ng.806

510 17. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-

511 Moonshine A, et al. From FastQ Data to High-Confidence Variant Calls: The

512 Genome Analysis Toolkit Best Practices Pipeline. *Current Protocols in*

513 *Bioinformatics*. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2013. p. 11.10.1-

514 11.10.33. doi:10.1002/0471250953.bi1110s43

515 18. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The

516 variant call format and VCFtools. *Bioinformatics*. 2011;27: 2156–2158.

517 doi:10.1093/bioinformatics/btr330

518 19. Alvarado DM, Yang P, Druley TE, Lovett M, Gurnett C a. Multiplexed direct

519 genomic selection (MDiGS): a pooled BAC capture approach for highly accurate

520 CNV and SNP/INDEL detection. *Nucleic Acids Res*. 2014;42: e82.

521 doi:10.1093/nar/gku218

522 20. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing:

523 computational challenges and solutions. *Nat Rev Genet*. 2012;46: 36–46.

524 doi:10.1038/nrg3164

525

526

527

528

529 **Figure legends**

530 **Fig 1. A genomic position of the BAC (ID: CH17-24F19).** The BAC contains five
531 genes: *caspase recruitment domain family member 17 (CARD17)*, *solute carrier family*
532 *26 member 11 (SLC26A11)*, *ring finger protein 213 (RNF213)*, *N-sulfoglucosamine*
533 *sulfohydrolase (SGSH)*, *CTD-2047H16.4* (uncharacterized gene).

534

535

536 **Fig 2. An overview of the BAC double capture (BDC) method, which we modified**
537 **(Maricic et al., 2010).** On the left, the bait construction from the BAC is shown; on the
538 right, the production of indexed libraries that are used in the library enrichment (center).
539 Those colored light red are the BAC-based baits, dark red represents targeted DNA
540 molecules in the libraries, black represents non-targeted DNA molecules in the libraries,
541 green and pink represent indexes, gray represents adapters, and blue and yellow
542 represent biotinylated adapters. Thick lines represent double stranded DNA, and thin
543 lines represent single stranded DNA.

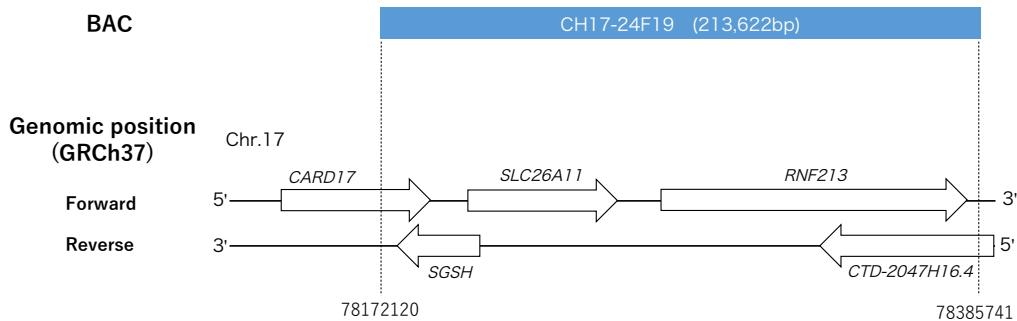
544

545 **Fig 3. On-target rates depending on BAC baits length.** On-target rate equals the
546 reads mapped to the target region divided by the reads mapped to the whole reference
547 genome.

548

549 **Fig 4. On-target rates depending on the number of captures.** The formula to
550 calculate the on-target rate is the same as in Fig 3.

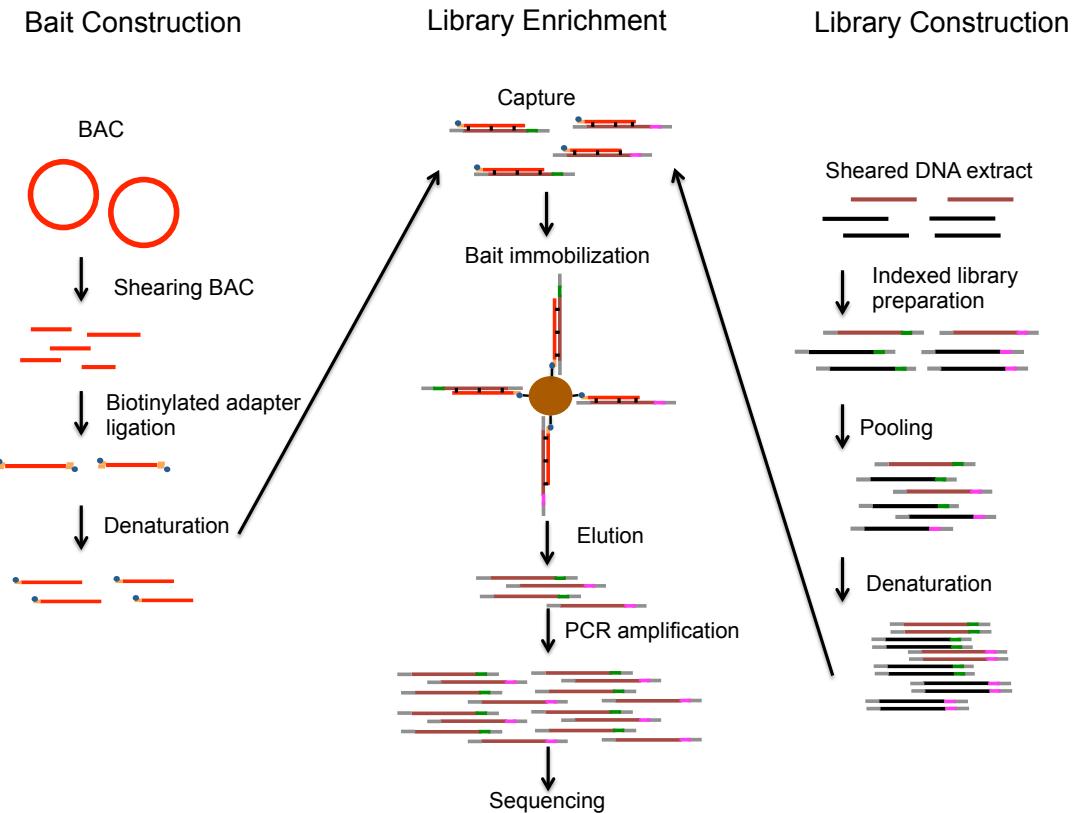
551


552 **Fig 5. On-target rates of the hybridization temperature.** The formula to calculate the
553 on-target rate is the same as in Fig 3.

554

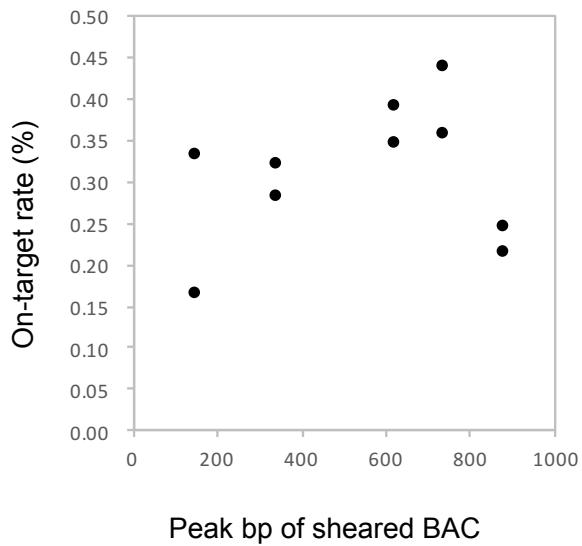
555

556


557 **Figures and Tables**

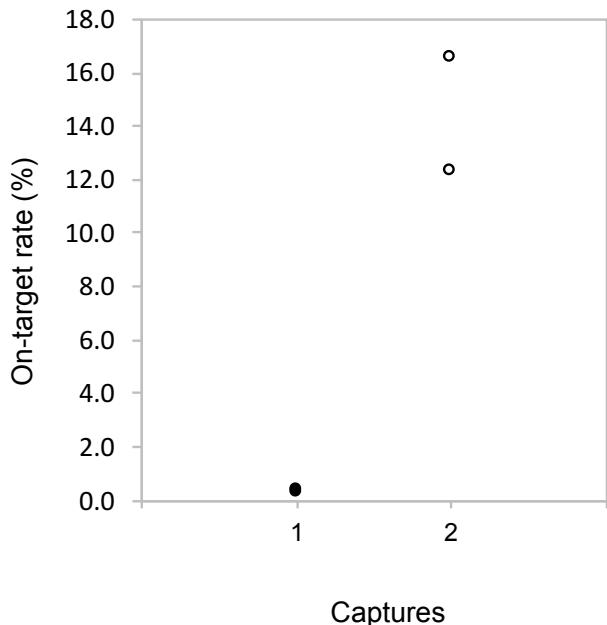
558

559 **Fig 1**


560

561

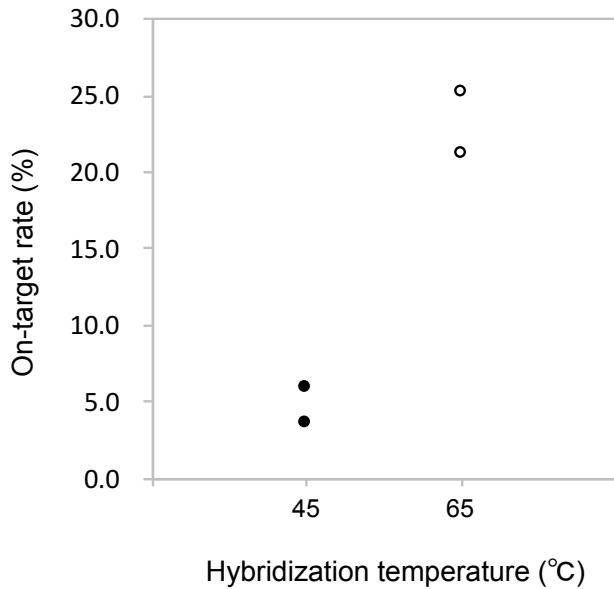
562 **Fig 2**


563

564

565 **Fig 3**

566


567

Captures

568

Fig 4

569

570

571 **Fig. 5**

572

573 **Table 1. Average numbers of BDC and MB.**

Method	BDC	MB
Duplicate reads (%)	46.9	16.1
Unique reads (%)	53.1	83.9
Total depth	30,020,317	30,321,836
Depth	140.5	141.9
On-target rate (%)	22.5	24.3

574

575

576 **Table 2. Numbers of validated SNPs.**

Method	All SNPs	dbSNP (registered)	dbSNP (non-registered)
BDC	572	540	32
MB	549	517	32

577

578

579 **Table 3. Concordant rates of genotypes.**

	dbSNP (registered)	dbSNP (non-registered)
Number of sites*	478	32
Concordant rate of Genotypes	98.4%	97.3%

580 *Sites that genotyped all eight samples with both BDC and MB.

581

582 **Table 4. Summary of comparisons between BDC and MB.**

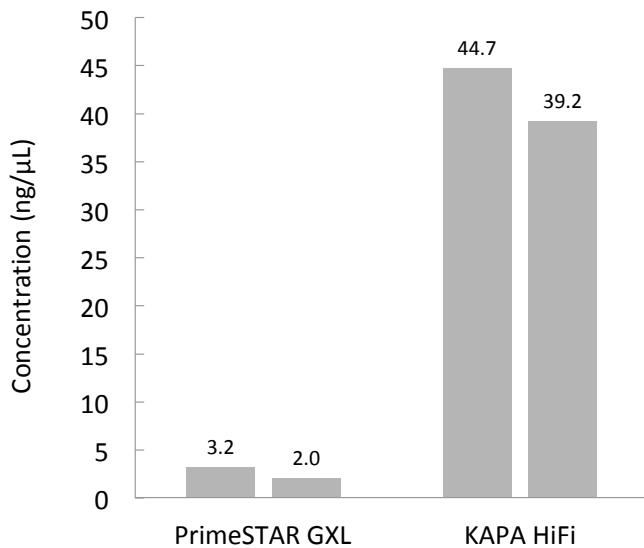
Category		Method	
1	2	BDC	MB
Cost	Required library weight (μg)	1.5	0.5
	Baits construction	Self-making	Outsource
	Preparation period of baits (day)	10	60
	Period of targeted capture (day)	3	3
	Cost per reaction (USD)	55	270
Data quality	Duplicate reads (%)	46.9	16.1
	Average of depth	140.5	141.9
	On-target rate (%)	22.5	24.3
	SNP concordance* (%)	98.4	

583 *A calculated value from SNPs registered in dbSNP138

584

585 **Supporting information**

586


587 **Supplementary Figure Legends**

588

589 **S1 Fig. Comparison of PCR efficiency between PrimeSTAR GXL DNA Polymerase**

590 **and KAPA HiFi DNA Polymerase.**

591

592
593
594 **S1 Fig**
595
596

597 **S1 Protocol Amplification efficiency of two polymerases.**

598 A 2 μ L of 1st post-captured library solution before removing magnetic beads
599 concentrated using a BDC method was used as a template for PCR in a 20 μ L solution
600 containing 0.5 U of PrimeSTAR GXL DNA Polymerase (Takara Bio), deoxynucleotide
601 (dNTP) 0.2 mM, 0.2 μ M of each primer, Sol_bridge_P5 and Sol_bridge_P7 in Maricic
602 et al. (2010). The PCR and purification were carried out using the same method as BDC
603 with PrimeSTAR. The same volume of the 1st post-captured library solution was used
604 as a template for PCR in a 20 μ L solution containing, 0.4 U of KAPA HiFi DNA
605 Polymerase (Kapa Biosystems), deoxynucleotide (dNTP) 0.3 mM, 0.5 μ M of each
606 primer, Sol_bridge_P5 and Sol_bridge_P7 in Maricic et al. (2010). PCR was carried out
607 using the following protocol: an initial denaturing step at 98°C for 2 min, 16 cycles for
608 the 1st post-capture library of denaturation at 98°C for 20 s, annealing at 60°C for 30 s,
609 extension at 72°C for 45 s, and a final extension step at 72°C for 5 min. To determine
610 the technical variability in targeted captures, each PCR was performed in duplicate. The
611 PCR amplicons were quantified using Qubit 3.0 Fluorometer (ThermoFisher Scientific).
612
613