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Abstract

Single-cell transcriptomic assays have enabled the de novo reconstruction of lineage differentiation trajectories, along
with the characterization of cellular heterogeneity and state transitions. Several methods have been developed for
reconstructing developmental trajectories from single-cell transcriptomic data, but efforts on analyzing single-cell
epigenomic data and on trajectory visualization remain limited. Here we present STREAM, an interactive pipeline
capable of disentangling and visualizing complex branching trajectories from both single-cell transcriptomic and
epigenomic data.

Main text

STREAM (Single-cell Trajectories Reconstruction, Exploration And Mapping) can accurately recover complex
developmental trajectories and provide informative and intuitive visualizations to highlight important genes that define
subpopulations and cell types. STREAM reliably reconstructs trajectories and pseudotime (the distance from the start of
a developmental trajectory) when multiple branching points are present, assumes no prior knowledge about the
structure or the number of trajectories, and does not require extensive bioinformatics knowledge thanks to a user-
friendly and interactive web interface. Additionally, STREAM has four innovations compared to other existing methods:
1) a novel density-level trajectory visualization useful to study subpopulation composition and cell-fate genes along
branching trajectories, 2) a documented end-to-end pipeline to reconstruct trajectories from chromatin-accessibility
data, 3) the first interactive database focused on single-cell trajectory visualization for several published studies ,and 4) a
trajectory mapping procedure to readily map new cells to precomputed structures without pooling data and re-
computing trajectories. This last innovation allows facile analysis of data from genetic perturbation studies or to assign
diseased/stimulated cells to a normal/resting developmental hierarchy. STREAM has been extensively tested using
several published datasets from different organisms (zebrafish, mouse, human) and single-cell technologies (qPCR,
scRNA-seq, scATAC-seq). It also has been compared to 10 other methods on both synthetic and real datasets.

STREAM takes as input a single-cell gene expression or epigenomic profile matrix and approximates the data in three or
more dimensions with a structure called the principal graph, a set of curves that naturally describe the cells’ pseudotime,
trajectories and branching points (Fig. 1a). STREAM first identifies informative features such as variable genes or top
principal components. Using these features, cells are then projected to a lower dimensional space using a non-linear
dimensionality reduction method called Modified Locally Linear Embedding (MLLE), which preserves distances within local
neighborhoods. In the MLLE embedding, STREAM infers cellular trajectories using a novel Elastic Principal Graph
implementation called EIPiGraph®. EIPiGraph is a completely redesigned algorithm for elastic principal graph
optimization introducing the elastic matrix Laplacian, trimmed mean square error, explicit control for topological
complexity and scalability to millions of points. In STREAM, EIPiGraph is integrated with a heuristic graph structure seeding
and several graph grammars rules optimized for single-cell data. In contrast to the majority of existing methods, EIPiGraph
does not rely on kNN graphs or minimum spanning trees. EIPiGraph is very robust to background noise, does not require
pre-clustering, can work in multidimensional space, and is able to manage large-scale datasets on an ordinary laptop
(Online Methods).
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Trajectory inference
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Figure 1 STREAM pipeline overview on single-cell RNA-seq data from the mouse hematopoietic system. (a) STREAM
trajectory inference. Starting with a single-cell gene expression matrix, STREAM performs three main steps: selection of
informative genes, dimensionality reduction, and simultaneous tree structure learning and fitting by EIPiGraph. The
optimal structure is selected based on the elastic energy minimization among a set of candidate structures that are
constructed every time a tree node is added. The final tree is interpreted as a set of connected curves representing
different trajectories. (b-d) STREAM visualization of inferred branching points, trajectories and expression of key genes
at both single-cell level and density level. (b) Flat tree plot, branches are represented as straight lines and each circle
represents a single cell. The lengths of the branches and the distances between cells and their assigned branches are
preserved from the space where trajectories were inferred. (c) Subway map plot, after selecting an initial state in the flat
tree plot, the tree is re-ordered to facilitate visualization. Each cell is colored by a cell label, if provided (top), or based on
the expression of a gene of interest (bottom). (d) Stream plot, a novel and intuitive visualization to show cell density
along different trajectories: at a given pseudotime, the width of each branch is proportional to the total number of cells
(top). Stream plots can also visualize the expression of a gene of interest (bottom). (e-f) STREAM detection of marker
genes. (e) STREAM automatically discovers important marker genes for each branch. Left, identification of differentially
expressed genes between bifurcating branches. (f) Identification of transition genes (expression values correlate with
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pseudotime) along one specific branch. Top two detected differentially expressed genes (Car2 and Prtn3) and transition
genes (Tmsb4x and Blvrb) are shown respectively with stream plots.

To illustrate STREAM, we first reanalyzed scRNA-seq data from Nestorowa et al. 2016 2, which sorted and profiled 1,656
single mouse hematopoietic stem and progenitor cells. Starting from the hematopoietic stem cells (HSCs), STREAM
accurately recapitulates known bifurcation events in lymphoid, myeloid and erythroid lineages and positions the
multipotent progenitors before the first bifurcation event. To facilitate the exploration of the inferred structure,
STREAM includes a flat tree plot that intuitively represents trajectories as linear segments in a 2D plane. In this
representation, the lengths of tree branches are preserved from the MLLE embedding (Fig. 1b). In addition, cells are
projected onto the tree according to their pseudotime locations and the distances from their assigned branches. If the
process under study has a natural starting point (for example a known origin in a developmental hierarchy), the user can
specify a root node. This allows easy re-organization of the tree using a breadth-first search to obtain a subway map plot
that better represents pseudotime progression from a selected starting node (Fig. 1c). Although these visualizations
capture trajectories and branching points, they are not informative on the density and composition of cell types along
pseudotime, a common challenge when modeling large datasets. To solve this problem, we propose a novel trajectory
visualization method called the stream plot. This compact representation summarizes cellular developmental
trajectories, user-defined annotations, branching points, cell density, and gene expression patterns (Fig. 1d). Density
information, an aspect overlooked by other methods, is very important to track how the composition of subpopulations
changes along a trajectory or gets partitioned around branching events. Additionally, STREAM detects potential marker
genes of different types: diverging genes, i.e. genes important in defining branching points that are differentially
expressed between diverging branches, and transition genes, i.e. genes for which the expression correlates with the cell
pseudotime on a given branch. The expression patterns of the discovered genes can then be visualized using either
subway maps or stream plots (Fig. 1e-f, Supplementary Fig. 1-2, Supplementary Note 1).

STREAM is the only trajectory inference method that explicitly implements a mapping procedure, which allows reusing a
previously inferred principal graph as reference to map new cells not included in the original fitting procedure. This
avoids pooling old and new cells and re-computing trajectories from scratch, a computationally-intensive operation that
also perturbs the original structure and complicates the interpretation of the pseudotime. This feature is particularly
helpful when studying genetic perturbation data or exploring unlabeled data. To show the utility of the mapping feature,
we applied STREAM to scRNA-seq data from Olsson et al’. This study focused on the mouse hematopoietic system,
specifically on the consequences of cell determination within the granulocyte-monocyte progenitors (GMP) population
after the transcription factors Gfil and/or Irf8 are knocked out. STREAM recovers the correct trajectories for the wild-
type cells and, using the mapping feature, also predicts and effectively visualizes the consequences of the genetic
perturbation as validated in the original study (Supplementary Fig. 3-4, Supplementary Note 2).

To test the robustness and scalability of STREAM, we next explored data derived from different platforms and
organisms. We used two recently published zebrafish datasets obtained with single-cell gPCR* and inDrop® (profiling
~10000 cells) assays. These data provided the first comprehensive model of the zebrafish hematopoiesis system without
biases introduced by FACS sorting subpopulations. Our analyses successfully recovered developmental trajectories at
unprecedented resolution compared to previous analysis (Supplementary Fig. 5-6, Supplementary Note 3-4).

We next systematically compared STREAM with 10 other state of the art methods for pseudotime inference on three
different datasets®*. First, we assessed the quality of the topology using a previously proposed synthetic dataset *.
Second, we assessed the pseudotime accuracy using known marker genes on scRNA-seq data for myoblast
differentiation, a classic dataset to compare trajectory inference methods *°. Finally, we quantitatively compared the
number and quality of trajectories in terms of precision and recall for known marker genes that completely diverge
during development. In all the comparisons, STREAM consistently outperforms the other methods in inferring the
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correct topology, provides smooth pseudotime for myoblast differentiation and reconstructs the most balanced
branching structure (avoiding under/over branching) in terms of precision and recall (F1-score) among the methods

(Supplementary Figs. 7-14, Supplementary Note 5).
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Figure 2 STREAM on single cell epigenomic data from the human hematopoietic system
workflow. FACS sorting is used to isolate populations from CD34+ human bone marrow
measurements are performed. After mapping reads to the reference genome, reads withi

. (a) Single cell ATAC-seq
and single-cell ATAC-seq
n peaks are selected and

ChromVAR is used to calculate k-mers’ z-scores. Finally, PCA is applied to the z-score matrix and top principal components
are selected as features for STREAM analysis. (b) STREAM learns a principal graph from chromatin accessibility data and

accurately reconstructs cellular developmental trajectories of the human hematopoiesis. As in

Figure 1, the structure can

be easily visualized thanks to the subway map and stream plots. In the first branch, the HSCs segregate through MPP into
lymphocyte-committed, erythrocyte-committed and myelocyte-committed branches. STREAM also reconstructs the
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bifurcation from lymphoid multipotent progenitors (LMPP) to CLP and plasmacytoid dendritic cells (pDC). (c) Discovery of
transcription factors important for lineage commitment. 7-mer DNA sequences are automatically detected and their
frequencies are visualized in both the subway map and stream plots. Recovered 7-mer DNA sequences are mapped to
known transcription factors motifs. We recovered GATA1 and CEBPA as top hits, two classic master regulators in blood
development, which correlate with directionality toward erythroid differentiation and myeloid differentiation,
respectively.

Importantly, we extended STREAM to infer trajectories from human single-cell epigenomic data. This task is particularly
challenging since the number of chromatin peaks (~450,000 peaks across hematopoiesis) far exceeds the number of
genes and the accessibility at each peak is sparse, often containing only 0, 1, or 2 reads. Additionally, trajectory
reconstruction based on scATAC-seq human data is more difficult than the recently obtained trajectories in non-
mammalian organisms®® with much smaller genomes. STREAM is able to perform pseudotime ordering on human cell
chromatin-accessibility data without relying on accessibility of known transcription factor binding sites'’ or a priori
knowledge of sampling time®8, hence providing a truly unbiased approach. STREAM in fact uses an unbiased set of DNA
sequence features (7-mers), scoring each cell with chromVAR *° based on its accessibility deviations across cells (Fig. 2a).
To test the effectiveness of STREAM, we examined open chromatin profiles of > 2,000 cells profiled by scATAC-seq in
known human hematopoietic lineages®®. STREAM not only accurately reconstructs cellular developmental trajectories of
the human blood system, but also recovers key sequence features and master regulators that have been implicated in
differentiation and lineage commitment for different subpopulations (Supplementary Fig. 15, Supplementary Note 6).
For example, two of the detected 7-mer sequences match binding models for the transcription factors GATAI and
CEPBA, which regulate differentiation towards erythroid and myeloid lineages, respectively (Fig. 15b-c).

STREAM is available as user-friendly open source software and can be used interactively to explore several precomputed
datasets and to compute new trajectories at stream.pinellolab.org (Supplementary Fig 16 ), or as a standalone
command-line tool using Docker (github.com/pinellolab/stream) (Supplementary Note 7-8).
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ONLINE METHODS
STREAM framework

Trajectories inference

Feature selection: For transcriptomic data (single-cell RNA-seq or gPCR), the input of STREAM is a gene expression
matrix, where rows represent genes, columns represent cells. Each entry contains an adjusted gene expression value
(library size normalization and log2 transformation) (Supplementary Note 7). The most variable genes are selected as
features, using a procedure we have previously proposed®. Briefly, for each gene, its mean value and standard deviation
are calculated across all the cells. Then a non-parametric local regression method (LOESS) is used to fit the relationship
between mean and standard deviation values. Genes above the curve that diverge significantly are selected as variable
genes.

Dimensionality reduction: Each cell can be thought as a vector in a multidimensional vector space in which each
component is the expression level of a gene. Typically, even after feature selection, each cell has still hundreds of
components, making it difficult to reliably assess similarity or distances between cells, a problem often referred as the
curse of dimensionality 2. To mitigate this problem, starting from the genes selected in the previous step we project cells
to a lower dimensional space using a non-linear dimensionality reduction method called Modified Locally Linear
Embedding (MLLE)3. MLLE takes into account local similarity of each cell with its neighbors and addresses the
regularization problem of standard LLE by introducing multiple weight vectors in each neighborhood. The neighbor size
is chosen based on the number of cells and is set by default to 10% of the total number of cells. The number of MLLE
components to use depends on the number of branches and on the complexity of the structure to learn. Typically, three
components capture the main structure for most datasets, increasing them may recover finer structures (although we
observed that there is no benefit for selecting more than 5 components in all the datasets tested).

EIPiGraph: structure learning and fitting

Seeding initial tree structure
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To create an initial seed structure for the principal graph learning by EIPiGraph we first used the affinity propagation®
method to cluster cells in the MLLE space. Affinity propagation is based on the idea of message-passing between sample
points, and finds a small set of exemplars which are considered to be most representative of the other samples. For all
our tests we used the scikit-learn implementation® with a damping factor set to 0.75. Based on the exemplars obtained
by the affinity propagation procedure, a minimum spanning tree (MST) was constructed using the Kruskal’s algorithm.
The obtained tree is then used as initial tree structure for the EIPiGraph procedure.

Elastic principal graph method (EIPiGraph)

Elastic principal graphs are structured data approximators®?®, consisting of vertices and edges. The vertices are embedded
into the space of the data, minimizing the mean squared distance (MSD) to the data points, similarly to k-means. Unlike
unstructured k-means, the edges connecting the vertices are used to define an elastic energy term. The elastic energy
term and MSD are used to create penalties for graph edge stretching and the bending of branches. To find the optimal
graph structure, EIPiGraph uses a graph grammar approach, which is described below. This approach allows an effective
exploration of the graph structure space via a gradient descent-like search. In STREAM, the set of graph grammars °used
always result in the construction of a principal tree (i.e., a graph without cycles) but alternative graph grammars can
produce more complex (e.g., circular) topologies.

Let G be a simple undirected graph with a set of vertices V and a set of edges E and ¢:V - R™ a map that describes an
embedding of the graph into the multidimensional space R by mapping a node of the graph to a point in the data space.
Let a k-star be a subgraph of G with k + 1 vertices vqo1,.« € V and k edges over these vertices {(vo, vi)|i = 1, .., k}. Let
E®(0), EO(1) denote two ends of the graph edge E®and S°(0),..., SV (k) denote the vertices of a k-star SO’ (where
S,Ej) (0) is the central vertex, to which all other vertices are connected). Let deg(vi) denote a function returning the order k
of the star with the central vertex v; and zero if there is no any star centered in vi.

The elastic energy of the graph embedment is defined as the sum of squared edge lengths (weighted by the A; elasticity
moduli and a penalty for excessive branching «) and the sum of squared deviations from harmonicity for each star
(weighted by the w))

Ut = )[4 +a(max(2 deg (EO©), deg (EO(1)) ) - 2)] ($(EC0)) - p(EV (1))’
E®
2

K
) 1 5
£ oL -1 s )
O i=1

The second term (the deviation from star harmonicity) in the case of 2-star is a simple surrogate for minimizing the local

curvature. In the case of k-stars with k>2 it can be considered as a generalization of local curvature defined for a branching
point® 1,

Let K be a partition of all the data point under consideration (X1, X5, ... Xy) such that K(i) = argmin;_; y(X; — (1)(1/']-))2
returns an index of the vertexin the graph which is the closest to the ith data point among all graph vertices. The objective
function that we want to minimize is defined as

vl
1 . 2
U*(X,G) =WZ > weemin(|lx; - 61|, B3) + U6,
LN
where w; is a weight of the data point i (can be unity for all points), |V| is the number of vertices, ||..|| is the usual

Euclidean distance and R, is a trimming radius that can be used to limit the effect of points distant from the graph (and
hence to enforce a local construction that is more robust to noise) **.
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Given a graph topology for approximating a set of vectors X, our goal is to find a map ¢:V-> R™ such that U%(X,G) - min
over all possible elastic graph G embedment in R™. The local minimum of U%(X,G) is found by applying the usual splitting
type algorithm:

1) Given the partition K of the data points by proximity to the graph vertices, we minimize U®(X, G). Note that this
functional is quadratic if K is fixed, therefore, the solution can be found very fast by solving a system of | V| linear
equations.

2) Update K using new vertex positions. This simple step can be also implemented very fast.

3) Repeat 1) and 2) until a convergence criterion is met (i.e., the vertices are being displaced by less than a fixed
threshold). Note that convergence is guaranteed by the form of U®(X, G), which is a Lyapunov function wrt to
the iterations 1-2.

A graph grammar-based approach for simultaneous learning of the graph topology and embedment of the graph into the
data space starts from a seed graph Goand a map ¢o(Go). A set of grammar operations are then applied iteratively to
transform the graph topology, and hence the map, starting from a given pair {G;, ¢:/(G;)} *2. Each grammar operation ¥*
produces a set of s new candidate graph topologies D¥, possibly taking into account the dataset X:

{{D*,dp(D")} k = 1.5} = YP({G;, $:(G)}, X)

Given the pair {G;, $i(G))} characterizing the i step of the algorithm, a set of r different graph operations {¥%,..., ¥}
(which we call a “graph grammar”), and an energy function U®(X, G), the algorithm applies all the grammar
operations selected, fit the newly derived graph topologies to the data, and choose the most energetically favorable
embedment as principal graph of the step (i+1)!":

(Gier, P11 (Ger)} = argmingpi g ey, UOCI(D%,X): (D%, 6(D) € [ 9P (61, 3161 0)
p=1.r

where {D¥, q)(Dk)} is supposed to be fit to the data after the application of a graph grammar.

In order to produce principal trees, one defines two operations for graph growth (‘bisect an edge’ and ‘add a node’) and
one operation for graph shrinking (‘remove an edge’). Afterwards, two applications of growth operations are followed by
one of shrinking. Such an approach allows avoiding local minima in the structure space of all possible tree topologies.

The EIPiGraph algorithm has four parameters with clear meaning and effect on the final result:

1) A= A controls the total length of the graph and, at the same time, promotes equal distance between neighbour
graph nodes in the data space

2) u =  controls the smoothness of the graph embedment (for the tree, smoothness of tree branches and
harmonicity of graph stars).

3) « controls for excessive branching such that sufficiently large « (e.g., @ = 1) hardly penalizes any branching while
smaller values (e.g., = 0.01) leads to keeping essential branches.

4) Ry is the trimming radius, allowing robust estimation of node positions. EIPiGraph implements a simple scaling
statistics allowing to automatically estimate Ryif needed.

In the simplest case, Ro=, a =0, and it is recommended to keep A = u/10. For all the single cell datasets in this paper it
is desirable to set = 0.02 and sometimes use trimming (automatically defined finite value for Ry).

Adjusting the final tree structure
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The resulting principal graph is refined based on the following procedures: 1) Principal tree branches can be
extrapolated from the terminal vertices, i.e. a branch can grow, if necessary, to better fit cells that maybe fall far away
from a terminal node. This allows a smoother pseudotime mapping and a more reliable characterization of cells close to
initial or terminal points 2) Branches not supported by at least nminas data points can be removed or shrunk. 3) A k-star
node, (node with connectivity k>2) can be rewired to another graph node if the latter has a higher local density or a
larger number of cells projected into it to improve the positioning of candidate branching points.

In this paper, the EIPiGraph.R R package has been used, available at https://github.com/sysbio-curie/EIPiGraph.R.
) 13_

Implementations of the EIPiGraph are also available in other programming languages (Matlab, Java, Python, Scala
Visualization

Flat Tree Plot: The tree structure learned in the 3D space (or higher dimensional space), is first approximated by linear
segments (each representing a branch) and mapped to a 2D plane based on a modified version of the force-directed
layout Fruchterman-Reingold algorithm'®. In particular, we adjust each edge length in order to preserve the lengths of
the branches of the original tree. Finally, using both the pseudotime location on the assigned branch and the distance
from it in the MLLE space, we map cells to the obtained tree in the 2D plane. Cells are represented as dots and randomly
placed to either side of the assigned branches. Each node in the tree indicates one cell state (cell states are sequentially
named SO, S1, ... starting from a randomly selected node) and the resulting structure is called flat tree plot.

Subway map plot: Starting from the flat tree plot and with a designated root or start node, breadth-first search is used
to order and arrange nodes and edges horizontally on a 2d plane. Because we preserve the branch lengths of the original
tree, the x-axis represents the distance (namely pseudotime) from the start node along the different branches. Cells are
then mapped to the obtained structure, called subway map plot with the same strategy used for the flat tree plot. To
display gene expression, each cell is colored according to its gene expression (the maximum value in the colormap is set
as 90 percentile of gene expression values across all cells).

Stream plot: Starting from the subway map plot, for each cell type (if cell labels are provided), using a sliding window
approach, we first calculate the number of cells in each window along a developmental branch. To provide smooth
transitions around the branching nodes, in those regions the sliding window spans both parent branch and children
branches and then proceeds independently on each branch. Then, the numbers of cells in all sliding windows are
normalized based on the length of the longest path in the tree. The vertical layout of different branches is optimized by
taking into consideration normalized numbers of cells to make sure there will not be overlap between branches. Based
on the normalized sliding window values, we first use linear interpolation to construct a set of supporting points. Then
the Savitzky-Golay filter (a smoothing filter able to preserve well the signal and avoid oscillations)*® is applied to create
smooth curves based on the set of supporting points. Finally, the obtained curves polygons (one for each cell type) are
assembled to form the stream plot. On stream plot, the length of each branch is the same as in the subway map plot and
represents pseudotime, whereas the width is proportional to the number of cells at a given position. To display gene
expression, we consider, for each sliding window, not only the number of cells but also their average gene expression
values smoothed by bicubic interpolation (the maximum value is set as the 90th percentile of the average gene
expression values from all the sliding windows).

Discovery of marker genes:

Diverging gene detection: For each pair of branches B; and B}, and for the gene E, the gene expression values across
cells from both branches are scaled to the range [0,1]. For gene expression E; from B; and gene expression E; from B;,
we first calculate their mean values. Then, we check the difference between mean values to make sure it is above a
specified threshold (the default value is 0.2). Mann-Whitney U test is then used to test whether E; is greater than E; or
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E; is less than Ej. Since the statistic U could be approximated by a normal distribution for large samples, and U depends
on specific datasets, we standardize U to Z-score to make it comparable between different datasets. For small samples
where this test is underpowered (<20 cells per branch), we report only the fold change to qualitatively evaluate the
differences between E; and E;. Genes with Z-score or fold change greater than the specified threshold (2.0 by default)
are considered as differentially expressed genes between branches. Formally:

U—my

Z =
Oy

Where my, oy are the mean and standard deviation, and

_ B ,nn]
My = 2 9u = <( +0- zl 1n(n—1))

Where n = n; +n; n;,n; are the number of cells in each branch, ¢; is the number of cells sharing rank [ and k is the
number of distinct ranks.

Transition gene detection: For each branch B; and for each gene E we first scale the gene expression values to [0,1] for
convenience. Then we check if the candidate gene has a reasonable dynamic range considering cells close to the start
and end points. To this end, we consider the difference in average gene expressions of the first 20% and the last 80% of
the cells based on the inferred pseudotime. If the difference is greater than a specified threshold (the default value is
0.2), we then calculate Spearman’s rank correlation between inferred pseudotime and gene expression of all the cells
along B;. Genes with Spearman’s correlation coefficient above a specified threshold (0.4 by default) are identified and
reported as transition genes.

Mapping procedure: For a set of unmapped cells X= {x; | i = 1, ..., M} and a fitted tree T built using the set of cells Y =

{y;j 1j =1, .., N}, currently we have the assumption that X and Y have the same measured genes and are sequenced
using the same experiment protocol. Both are X and Y are library size normalized and log2 transformed. To map cell x;
into the embedding, we first find its nearest K neighborsin Y, based on the same feature genes and K used to build T.
The largest distance between x; and its K neighbors is then chosen as the radius r. Then all the cellsin Y within the
radius J; = {yj| d(xj,yj) < r} are used to compute a set of weights W; = {wji,j E]i} as defined in the original MLLE
procedure. Finally, using the MLLE embedding vectors V = {vy, ..., vy}, the new cell position x'; is calculated in the

x'i = ZU] XWji

JEJi

embedding with the following equation:

After mapping, each cell is assigned to its closest branch in T.

STREAM analysis on scATAC-seq data: For the scATAC-seq analysis, a total of 3,072 cells were profiled using FACS to
isolate 9 distinct populations from CD34+ human bone marrow, which encompassed progenitors for four well-defined
lineages®®. 2,034 high-quality cells passed quality control filtering and were used in the downstream analysis with
STREAM. Specifically, cells were filtered so that 1000 unique nuclear fragments were observed for each cell and at least
60% of these reads aligned in open chromatin peaks. After filtering low quality cells, the mean intensity and GC content
for each peak that was called for this dataset was computed using the addGCBias function for the hgl9 genome using
the BSgenome.Hsapiens.UCSC.hg19 package available through chromVAR 7. These two coordinates were used to infer
an empirically-defined set of background peaks to compute accessibility deviations, which have been described
elsewhere'® '8, As features we used an unbiased k-mer scoring, which is naive to any known transcription factor motif
and thus generalizable to other systems. We used the matchKmers function in chromVAR with parameters k = 7 and
genome = BSgenome.Hsapiens.UCSC.hg19, which returns a matrix of dimension number of peaks by number of k-mers
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where a 1 indicates that the peak contains the k-mer sequence. The output of this function was then included in the
computeDeviations function to compute chromatin accessibility z-scores for each of the k-mers in our dataset. This
matrix of cells by k-mer accessibility z-scores serves as a data-driven dimensionality reduction of the chromatin
accessibility profiles of these cells. Based on the z-score matrix of k-mer DNA sequences, all the 7-mer features are
standardized to have zero mean and unit variance. PCA is performed on the scaled matrix to convert z-score to principal
components. According to the variance ratio elbow plot we selected the top 15 PCs, but excluded the first component
since it captured technical noise (dropout and number of reads). The obtained matrix is used to reconstruct trajectories
as previously described. Diverging and transition k-mers were selected with the same procedures used for gene
selection. Finally, detected k-mers were mapped to known transcription factors using Tomtom °(http://meme-
suite.org/tools/tomtom) and a motif database previously assembled
[chromvar_and_hocomoco.meme](https://github.com/buenrostrolab/chromVARmotifs)®.

Comparison of methods for trajectory inference

Simulated datasets: Given a set of n cells and assuming we know their developmental/sampling time and topological
organization, i.e. how they are organized in branches, we can easily evaluate a generic reconstruction method with the
following two metrics:

1. Difference between the number of inferred and true branches.

2. Correlation between the true sampling time X and the inferred pseudotime Y. For the pseudotime we use either
the proposed ranking or the actual distance from the starting point as provided by each method. We used 3
different measure of correlation: Pearson correlation r, Spearman correlation p and Kendall’s tau correlation t,
calculated as follow:

2ica (i —X) i = ¥)
VEL (i — 02X (i — §)?

Tpseudotime =

N6 — ) (rgy, — 7G5)

JEE G = ) \/Z&l(rgyi — 75y)?

_ cov(rgx,rgy)

Trank =

Org X Org Y

1
T= mz sgn(xi - xj)Sgn(}’i - Yj)

i#j

Where rgx and rgy are the ranks of cells, cov(rgy, rgy) is the covariance of rank variables, g,.4, and o, are the
standard deviations of rank variables. Note that since both Spearman correlation p and Kendall’s tau correlation 7 are
rank-based methods, the correlation between X and Y and the correlation between X and rgy are the same, so we
consider only the correlation between X and Y.

Real datasets: To evaluate the quality of reconstruction in real datasets in which we do not have the real developmental
time and topological information, we used the following two metrics:

1. Path-specific marker gene correlation analysis: In real datasets oftentimes, we don’t have the sampling time
along a branch. In this case, instead, it is helpful to evaluate how the inferred pseudotime recapitulates the
progressive activation or repression of an important gene along that branch. The main idea here is that ordering
cells based on a marker gene, which is important in defining a developmental trajectory, as a reasonable
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surrogate for the correct pseudotime ordering. As in the simulation case we computed 4 correlation coefficients

using marker gene expression X and the inferred pseudotime Y.

2. F; score analysis on diverging or mutually exclusive marker genes: Let us consider a pair of diverging or mutually
exclusive marker genes, G; and G;. These genes should be highly expressed on different committed branches
and rarely co-expressed in the same cell. We define B; as the branch which contains the most cells express G;.
Then we can define as true positive (TP) for B; the number of cells expressing G;. The number of cells expressing
G; on the other branches is defined as false negative (FN). The number of cells expressing G; on B; is defined as
false positive (FP). Similarly, for Gj, B; is the branch which has the most cells expressing G;. TP is the number of
cells expressing G; on B;. FN is the number of cells expressing G; on the other branches. FP is the number of cells
expressing G; on B;. Based on the following equations, recall, precision and F1 score are calculated respectively
for G; and G; as follow:

TP _ precisionXrecall
TP+FP -

recall = precision =

TP+FN precision+recall

Website and code availability:

STREAM is available as a user-friendly open source software and can be used interactively as a web-application at
http://stream.pinellolab.org or as a standalone command-line tool: https://github.com/pinellolab/STREAM.

Data availability:

All the data used in this study have been deposited at https://github.com/pinellolab/STREAM or available as
supplementary information.
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Supplementary materials
Supplementary Note 1: STREAM analysis on scRNA-seq from the mouse hematopoietic system

We used STREAM to reanalyze scRNA-seq data from Nestorowa et al. 2016, which sorted and profiled 1656 single cells
including hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), lymphoid multipotent progenitors (LMPPs),
common myeloid progenitors (CMPs), granulocyte-monocyte progenitors (GMPs) and megakaryocyte-erythrocyte
progenitors (MEPs), to study the mouse hematopoietic stem and progenitor cell differentiation processes.

STREAM recovers two bifurcation events (Fig. 1b) and three trajectories leading to myeloid, erythroid and lymphoid
precursors. First, to check the validity of the structure, we used the assigned labels in the original study, which were
derived by FACS sorting the different populations (when multiple labels were assigned based on different gates, we gave
priority to narrow gates to obtain a unique label for each cell). As expected, HSCs progress into MPPs and then bifurcate
into LMPPs and CMPs. Then CMPs differentiate into MEPs and GMPs respectively, hence accurately recapitulating
known bifurcation events.

Second, using STREAM we rediscovered known marker genes, including diverging genes between two branches and
transition genes along each branch. On the CMPs bifurcation which leads to GMPs (53,54) and MEPs (S3,S5)
populations, STREAM detects diverging genes including GMPs-specific genes like Prtn3, Mpo, Epx, and MEPs-specific
genes like Car2, Gatal, Mfsd2b? ** (Fig.1c, Supplementary Fig. 1a). Along the MEP-committed trajectory (S3, S4),
STREAM also recovered genes whose expression significantly correlates (p<1E-4, Spearman correlation) with the
pseudotime progression. We recovered genes previously described >7 ® that are progressively and precisely
downregulated such as Tmsb4x, Corola or upregulated like Blvrb, Ces2g (Fig. 1c, Supplementary Fig. 1b). Along the
lymphoid differentiation trajectory (52,51,50), STREAM identified HSCs-specific genes like Mpl°,Tgm2° (Supplementary
Fig.2), whose expressions are repressed towards lymphoid differentiation, and LMPPs-specific genes like Ighv1-81, Ccl3
(Supplementary Fig.2), whose expressions are activated during the differentiation as discussed in the original study®.

Taken together, these analyses validate the accuracy of trajectory reconstruction of STREAM in recapitulating key
bifurcation events and regulators of early blood development differentiation at single-cell resolution.
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Supplementary Figure 1 STREAM automatically discovers differentially expressed genes and transition genes around
the S1 bifurcation in mouse hematopoietic system. (a)Top left, subway map schematic to highlight the branches
(51,53)(red), (S1,50)(blue) used to calculate DE genes. Bottom left, genes highly expressed on branch (S1,53) (red part) and
genes highly expressed on branch (S1,50) (blue part), sorted by significance. Top right, top detected marker genes for
(51,S3) are visualized on both subway map plots and stream plots. Bottom right, top detected marker genes for (51,50)
are visualized on both subway map plots and stream plots. (b)Top left, subway map schematic used to highlights the
branch (51,50) (green to orange gradient) used to calculate transition genes. Bottom left, genes monotonically increasing
(orange part) or decreasing (green part) when progressing along branch (S1,50), sorted by significance. Fep Right, top
detected upregulated and downregulated transition genes along branch (S1,50) are visualized on both subway map and

stream plots.
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Supplementary Figure 2 STREAM automatically discovers marker genes along lymphoid cells differentiation trajectory
(S2,51,50) in mouse hematopoietic system. (a)Top left, subway map schematic to highlight the lymphoid cells
differentiation trajectory (52,51,50) consisting of two branches (52,51)(cyan), (51,50)(yellowgreen), whose related marker
genes are calculated. Bottom left, heatmap showing the detected marker genes expression. Each row indicates one marker
gene. Each column indicates one cell on the trajectory (52,51,50). Cells are ordered by the inferred pseudotime from
STREAM. The two colors represent cells’ branch ID assignment, either branch (S2,51) or branch (51,50). (b) Twelve marker
genes selected from left heatmap are visualized on stream plots.

Supplementary Note 2: Studying genetic perturbations with STREAM’s mapping feature

STREAM provides a useful mapping procedure. After the principal graph is learned, it is possible to map new cells to the
inferred structure. This reference structure is important when studying genetic or epigenetic perturbation, or when
comparing different conditions (for example normal and cancer, response to stimuli, etc.). Existing methods require to
fit a new model since the fitting procedure is not deterministic or because they don’t implement and provide this
feature to the users. The main problem with re-computing the structure lies in the fact that it is hard to interpret
pseudotime and cell positioning since trajectories may change based on the density and/or composition of the new cells
to map. Our mapping procedure is instead deterministic and allows the user to easily study and predict perturbation
effects, and explore the origin of unknown cell populations on annotated branching structures or vice versa (see an
example in Supplementary Note 3).
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To show the utility of the mapping feature, we applied STREAM on scRNA-seq data from Olsson et al. 2017*. Using FACS
sorting, 382 cells were isolated and profiled from different subpopulations, including stem/multipotent progenitor (LSK;
lin-, Scal+, c-Kit+), CMP, GMP, and LKCD34+(lin—c-Kit+CD34+) cells (Supplementary Fig. 3a left). A key result of this
study is the discovery of metastable mixed-lineage states and the presence of co-expressed genes at single-cell level
from competing lineages. The authors suggest that these metastable states are important in cell-fate decisions and that
transcription factors play a key role in this process. In fact, they uncovered and validated two key transcription factors,
i.e. Gfil and Irf8, that are co-expressed in a sub-population and are shown to be important for the commitment to
neutrophils or macrophages. Importantly, this dataset contains, in addition to wild-type data, genetic perturbations of
those two key regulators.

Using the wild-type data, STREAM unbiasedly and correctly reconstructs the cell lineage hierarchy (Supplementary Fig.
3a right) as shown by inspection of the labels proposed in the original study (either cell surface markers or predicted
lineages): starting from haematopoietic stem cell/progenitor(HSCP), cells bifurcate into an erythrocytic branch (which
contains megakaryocytic (Meg) and erythrocytic (Eryth) cells) and into a multi-lineage primed (Multi-Lin) branch. Multi-
Lin cells further separate into the granulocytic (Gran) branch and monocytic (Mono) branch. The hierarchical progression
can be easily visualized by our proposed 2D visualizations: subway map and stream plots (Supplementary Fig.3b).
Importantly, STREAM precisely recovers the bifurcation event from Muli-lineage to Mono and Gran as shown in the
original study within the wild-type GMP cellular population (Supplementary Fig. 3b,c), whereas the proposed Monocle2
analysis in the same dataset'? incorrectly assigns those cells to a very short erythroid branch. Furthermore, Monocle2
branch lengths are overall very diverse and distorted in their hierarchical representation (FE branch in Fig 2, and
Supplementary Fig. 18 of the original paper'?). Using our gene expression analysis, the Gran-specific gene Gfil, Mono-
specific gene Irf8, and Eryth-specific gene Gatal are highly expressed on their respective inferred trajectories,
confirming the validity of the reconstructed branching structure (Supplementary Fig. 3d).
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Supplementary Figure 3 Unbiased reconstruction of wild-type mouse hematopoietic cell lineage hierarchy. (a) Left, cell
subpopulations were isolated from the mouse wild-type hematopoietic system including stem/multipotent progenitor
(LSK), common myeloid progenitor (CMP), granulocyte monocyte progenitor (GMP) and LKCD34+ and profiled by scRNA
sequencing. Right, wild-type cells are shown in low dimensional space together with trajectories inferred by STREAM. Cells
are colored by the cluster labels proposed by Olsson at al. (b) Left, subway map plot; right, stream plot. Both are colored
by cluster labels inferred by Olsson at al. (c) The same subway map and stream plot as (b) but colored by FACS gating
labels from the original study. (d) Stream plots of three key marker genes: Gfil for granulocyte, Irf8 for monocyte and
Gatal for Meg and Eryth.

Next, using the STREAM mapping function, we analyzed the genetic perturbation data to study the consequences on cell
fate determination of Gfil loss (Gfil -/-), Irf8 loss (Irf8 -/-) and both Gfil and Irf8 loss (Gfil -/- Irf8 -/-) within wild-type
GMP cells (Supplementary Fig. 4a). Gfil-/- GMP cells tend to differentiate into the Mono branch and Irf8 -/- GMP cells
lean toward the Gran branch. Gfil -/- Irf8 -/- GMP cells have equal chance to go either way. The loss of Gfil and Irf8
instead does not show any imbalance of cells differentiating into the diverging branches (Supplementary Fig. 4b-d). Our
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predictions are validated by the original study where the authors used GMP cells with inducible expression and GFP
reporters for Gfil and Irf8. Irf8 loss led to cells that differentiated toward granulocyte. Conversely, Gfil loss led the cells
to differentiate toward monocytes. Interestingly they showed that cells from the hematopoietic stem cell/progenitor
and myeloid compartments are trapped with the double knockouts of Irf8 and Gfil, and in fact, are rarely differentiating
towards monocytes or granulocytes. These results are in perfect agreement with our unbiased analysis. In addition,
compared to the proposed Monocle2 analysis, our reference structure can be fixed to recapitulate only the wild-type
cells and is not influenced by the mapping of new cells (compare instead A,B with C,D in Supplementary Fig. 18 of the
original paper'?).
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Supplementary Figure 4 Mapping of genetic perturbation data to the inferred trajectories from wild-type mouse
hematopoietic cells. (a) Left, scRNA sequencing is performed on genetically perturbed cells within the GMP populations:
Gfil-/-, Irf8-/- and Gfil1-/-Irf8-/- . Right, genetically perturbed cells are mapped using STREAM to the low dimensional space
in which cellular trajectories were built based on wild-type cells. (b) At density level, stream plots easily summarize the
effects of the 3 genetic perturbations: Gfil-/- cells are diverted to monocyte-committed branch while Irf8-/- cells are
instead diverted to granulocyte-committed branch. Gfil-/-Irf8-/- cells have equal chances to differentiate into either
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branch. (c) Single-cell level visualization of perturbed cells on the reference flat tree plot constructed from wild-type cells
(top). Genetically perturbed cells are mapped to the flat tree and shown in red. Pie charts show the proportion of
genetically perturbed cells on different branches. Consistently with the stream plot in (b), Gfil-/- cells mainly appear on
monocyte-committed branch (51,50), while the majority of Irf8-/- cells appear on granulocyte-committed branch (51,52).
Gfil-/-Irf8-/- cells are approximately equally located on the intermediate state branch (S3,51), monocyte-committed
branch (51,50) and granulocyte-committed branch (51,52).

Supplementary Note 3: STREAM analysis on single cell gPCR data of the zebrafish hematopoietic system

Next, we tested STREAM with data from a different organism, analyzing recently published single-cell gPCR data from
Moore et al'?, that provided a first model of the zebrafish hematopoiesis system using a panel of 96 gene primers. 166
cells were profiled from the wild-type(WT) whole-kidney marrow (WKM). STREAM analysis uncovered four cell lineages
trajectories (Supplementary Fig. 5a left). Based on the automatic gene detection module of STREAM, we uncovered
marker genes for each trajectory (Supplementary Fig. 5a), which includes T cell marker gene TCR-alpha, myeloid marker
gene nccrp-1, B-cell marker gene CD79 and erythroid marker gene band3. Based on this analysis, we hypothesize that
the inferred four branches corresponded to T cells, myeloid, B cell and erythroid lineages (Supplementary Fig. 5a right).
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Supplementary Figure 5 STREAM recovers developmental trajectories of hematopoietic cells in zebrafish from qPCR
data. (a) STREAM output for single-cell qPCR on cells from zebrafish wild-type whole-kidney marrow (WKM). The stream
plot shows only one color (gray) since no labels to annotate cell-types are available in this case. Four trajectories are
recovered and visualized in the 3D space, flat tree plot and stream plot respectively. Four of the top marker genes
automatically detected by STREAM are visualized as stream plots: TCR-alpha (T cells), cd79 (B cell), nccrp-1(myeloid) and
band3(erythroid). (b) Validation of the putative cellular differentiation branches. Hematopoietic cells from adult
transgenic zebrafish and peripheral blood are mapped to the trajectories inferred in (a). These cells comprise peripheral
red blood cells (RBC) and FACS-sorted cells, which include CD41 (hematopoietic stem and precursor cells), Ick (T cells),
Mpx (myeloid cells), rag2(B cells) and Gatal (erythroid cells).

To validate our branches, we used the STREAM mapping features to map fluorescent-labeled and FACS sorted cells from
WKM: 20 erythroid cells from peripheral blood cells (per RBC), 24 erythroid cells Tg(gatal:dsRed), 48 myeloid cells
Tg(mpx:GFP), 49 B cells Tg(rag2 :dsRed), 83 mature T cells Tg(Ick:GFP)cells, 85 HSPCs Tg(CD41:GFP)low. Lck cells are
mapped to T cell branch, mpx cells are mapped to myeloid cell branch, rag2 cells are mapped to B cell branch, both
gatal and per RBC are mapped to erythroid branch; also, the majority of HSPCs are mapped to the proposed starting
state as expected (Supplementary Fig.5b). This analysis validates our unbiased reconstruction of the developmental
trajectories from unlabeled cells and provides another example of the STREAM mapping feature utility.

Supplementary Note 4: STREAM analysis on inDrop data of the zebrafish hematopoietic system

To test the scalability and robustness of STREAM on a larger and more challenging scRNA-seq dataset, we next analyzed
~10000 unlabeled cells from the zebrafish whole-kidney marrow generated by Tang et al '* using the inDrop protocol® (a
recently proposed droplet-based assay). The original study, based on dimensionality reduction and clustering, uncovered
and annotated 10 different and imbalanced subpopulations (validated by the authors using sorting of fluorescent or
transgenic cell sub-populations) (Supplementary Fig.6a). STREAM correctly recapitulated the hierarchy of the different
lineages and unbiasedly recovered four different hematopoietic cellular trajectories: starting from HSCs, through blood
progenitor cells, cells differentiate into erythroid, macrophage, neutrophil and lymphoid lineages (Supplementary
Fig.6b). Importantly, we rediscover well-known marker genes: bal for the erythroid branch, mfap4 for the macrophage
branch, mpx for the neutrophil branch, and Ick for the lymphoid branch (Supplementary Fig.6c). This analysis highlights
four important points of our approach: 1) we can recover trajectories using unsorted populations, 2) the trajectory
inference is robust to sub-populations imbalance, 3) our gene analysis is a powerful tool to discover marker genes, and
4) our method is scalable to currently available large-scale single-cell assays.
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Supplementary Figure 6 STREAM reconstructs cellular heterogeneity within the zebrafish kidney marrow from inDrop
data. (a) STREAM output for inDrop single-cell RNA-seq data from the zebrafish wild-type whole-kidney marrow. Cell
labels are based on the Tang et al. classification and are highly unbalanced as shown by the pie chart. (b) Principal graph
plot, subway map plot and stream plot show the trajectories recovered in the hematopoiesis of zebrafish. HSCs through
blood progenitor cells differentiate into erythroid, myeloid (including macrophage and neutrophil) and lymphoid cells (c)
Marker genes from original study are visualized in stream plot to confirm and validate the recovered structure.

Supplementary Note 5: Comparison of STREAM with existing methods

Several methods have been proposed for pseudotime inference or trajectory reconstructions. In fact, more than 50
methods have been proposed for this task making a systematic comparison unfeasible for the scope of this manuscript.
For this reason, we compared STREAM with 10 state-of-the-art methods well recognized and commonly used by the
single-cell community: Monocle2, scTDA, Wishbone, TSCAN, SLICER, DPT, GPFates, Mpath, SCUBA and PHATE!> 1624,
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Features SCUBA TSCAN Monocle2 Wishbone Mpath scTDA SLICER DPT GPFates PHATE STREAM
Structure Multiple Linear Multiple Simple Multiple Multiple Multiple Simple Multiple Multiple Multiple
branches branches bifurcation branches branches branches bifurcation branches branches branches
Deterministic x v v v v x v v x v v
User-friendly ++ +++ +++ +++ ++ + + +++ + ++ 4+
Starting Cell Times points
Extra-input Time points None None Starting cell and time Time points Starting cell None and number of None None
points trends
Trajectory- v v v x v v v x v x v

visualization

Single-cell level

L x x x v x x v v v x v
gene visualization
(Gl G GlenEiy x v x x v v x x x x v
level visualization
Automatic mgrker x v v x v x x x x x v
gene detection
T2 WEEEIG x x x x x x x x x x v
feature
Tested on x x v x x x x x x x v

epigenomic data

Supplementary Figure 7 Overview of trajectories inference methods included in the comparison
Summary table to compare features available in different methods.

First, we reviewed the different methods to summarize their general features, required inputs, supported data and
limitations (Supplementary Fig. 7). Next, we focus our comparison on three important aspects: topology correctness,
pseudotime reliability, and branching model complexity. We also provide in our assessment the default visualizations
provided by each method to showcase and easily compare their expressiveness in representing cellular development
trajectories. For each method, the analyses were performed with standard parameters when possible, following the
guidelines provided in the documentation or suggested by the respective authors.

. ¥ with known

We started our analysis using a previously proposed gold-standard synthetic dataset by Rizvi et a
topology and pseudotime: two bifurcation events and 3 different time points (Supplementary Fig. 8). We first assessed
the qualitative output of each method using their proposed visualization. PHATE, a dimensionality reduction method,
qualitatively preserves cellular trajectories but does not provide branch assignment information for cells. STREAM,
scTDA, Monocle2, and Mpath can accurately reconstruct two bifurcation events. Wishbone and DPT instead can only
detect one simple bifurcation even though the obtained 2D manifold clearly shows two bifurcations. SLICER detects too
many branches and their positions are difficult to assess from the proposed visualization. GPFates requires to pre-
specify the number of trajectories (referred as trends in the original study and manually set for this dataset to 3).
Although the generated curves initially follow the correct branches, they incorrectly converge at the end. SCUBA fails to
detect bifurcation events in this dataset. We also noticed that scTDA, SCUBA, and MPATH do not provide single-cell-
resolution visualization. Wishbone and DPT do not provide trajectory visualization so they cannot visualize both time
points and recovered branch assignment in the same plot. (Supplementary Fig.8).
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Supplementary Figure 8 Output of different trajectories inference methods on synthetic data

Top left: Topology structure of a synthetic benchmark dataset proposed by Rizvi et al. Cells are sampled from three
different time points (T1, T2 and T3). It has two bifurcation events: the first happens between T1 and T2, the second
happens between T2 and T3. STREAM, stream plot and subway map plot allow to study cellular trajectories and time
points at both density level and single cell level. Wishbone, left, cells are colored by time points, right, cells are colored by
its identified differentiation branch ID. (inferred trajectories cannot be explicitly visualized). scTDA, proposed topological
representation colored by pseudo-time indicates cellular differentiation trajectories, in which nodes correspond to a set
of cells and node size is proportional to the number of cells (visualization of single-cells is not available). Monocle2, cells
are colored by time points and the skeleton depicts differentiation trajectories (density information is not available). DPT,
on the left cells are colored by time points and on the right cells are colored by its identified differentiation branch ID
(inferred trajectories cannot be explicitly visualized). GPFates, cells are colored by time points. Three curves represent
three trajectories(trends). (density information is not available). PHATE, cells are colored by time points. It doesn’t provide
trajectories information and pseudotime. SLICER, on the left cells are colored by time points and on the right cells are
colored by its identified differentiation branch ID (inferred trajectories cannot be explicitly visualized). Mpath, each node
represents one landmark cell and the tree structure shows differentiation trajectories (visualization of single-cells is not
available with this method). TSCAN, cells are colored by states detected from TSCAN. The skeleton depicts a linear
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trajectory. (density information is not available). SCUBA, each node is one cluster and the node size represents the
variance within each cluster. (neither visualization of single-cells or density information is available with this method).

We next calculated for each method the correlation (Online methods) between true pseudotime and inferred
pseudotime. Our method has the best performance for two out of four metrics (importantly when using the actual
pseudotime defined as the distance of each cell from the origin in the proposed embedding) and comparable
performance for the other two rank-based metrics (following scTDA in which this synthetic dataset was proposed)
(Supplementary Fig. 9).

STREAM 0.950065 0.937391 0.943971 0.811876 2
scTDA 0.948441 NA 0.959412 0.823502 2
Wishbone 0.941388 0.863387 0.933951 0.797147 1
SLICER 0.902736 0.913719 0.890663 0.740552 2
DPT 0.894521 0.917585 0.880598 0.740634 1
Monocle2 0.888202 0.914076 0.873133 0.727129 2
TSCAN 0.781034 NA 0.767569 0.618827 0
SCUBA 0.24301 0.150043 0.240983 0.158902 0
Mpath NA NA NA NA 2
GPfates NA NA NA NA 2
PHATE NA NA NA NA 2

Supplementary Figure 9 Analysis results of different methods on synthetic data
Correlation (Pearson, Spearman and Kendall’s tau) between real and inferred pseudotime (either rank or distance based)
for the 11 methods tested.

In summary, STREAM correctly recovers the correct topology, has the best pseudotime reconstruction performance
when using distance-based pseudotime along a trajectory, and is the only tool that provides a visualization to study the
density of different cell types in different branches.

To compare the different methods on real datasets, we first used the most commonly used scRNA-seq dataset for this
task, originally proposed by Trapnell et al?®. This dataset contains human skeletal muscle myoblasts (HSMM) cells
differentiating along a linear trajectory. In this analysis, we were able to evaluate only methods capable to detect the
correct bifurcation event. Regardless, the visual output of all the methods is presented for completeness
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(Supplementary Fig. 10). The original study proposed a single bifurcation, which leads to myoblast cells or separate
potentially contaminating cells (Supplementary Fig. 11a). To test the quality of pseudotime it has been proposed to use
known marker genes along the myoblast differentiation trajectory, in particular to correlate their expression level (a
surrogate for the correct ordering) with the rank or distance-based pseudotime (Online Methods). To this end, we used
the previously proposed genes ENO3, MEF2C, and MYH2 > STREAM has the overall best performances on ENO3 and
MYH2 (when considering the average score of the four metrics) and a comparable performance on MEF2C with both
distance or rank based pseudotime (Supplementary Fig. 11b-c, Supplementary Fig. 12). When ordering cells based on
the distance pseudotime, we expect, in the ideal scenario, a continuous and smooth distribution. For example, STREAM
can generate a smooth and monotonically increasing distribution of ENO3 expression based on the inferred pseudotime.
In contrast, we noticed that for the distance-based pseudotime in Monocle2, cells are mainly attracted to the end points
of the trajectory, with few cells in between. In Wishbone and SLICER, distance-based pseudotime shows a set of
unexpected discrete segments. Neither Mpath nor TSCAN can generate distance-based pseudotime. In addition, Mpath
doesn’t recover a monotonically increasing trend (Supplementary Fig. 11c, Supplementary Fig. 12).
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Supplementary Figure 10 Output of different trajectories inference methods on HSMM scRNA-seq data.
Output provided by different methods on HSMM scRNA-seq data, as described in Supplementary Figure 8.
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Supplementary Figure 11 Analysis results of different methods on HSMM scRNA-seq data. (a) ENO3, a marker gene for
late-stage differentiation, is used to evaluate the myoblast commitment trajectory (highly expressed in fully differentiated
cells) (b) Correlation analysis along myoblast differentiation. The bar plot shows for each method the Pearson correlation
between inferred rank-based pseudotime and ENO3 expression, Pearson correlation between inferred distance-based
pseudotime and ENO3 expression, Spearman correlation between inferred pseudotime and ENO3 expression and
Kendall’s tau correlation between inferred pseudotime and ENO3 expression (c) Along the myoblast differentiation
trajectory, the scatter plots show the relationship between ENO3 expression and rank-based pseudotime or distance-
based pseudotime inferred by different methods. The dashed lines are fitted curve by generalized additive model (GAM).
(Only methods that successfully detect the correct bifurcation are included).
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Supplementary Figure 12 Analysis results of different methods on HSMM scRNA-seq data. Same analysis presented in
Supplementary Figure 10 for two additional marker genes of myoblast differentiation: MYH2 and MEF2C

Finally, we analyzed a high-quality single cell gPCR dataset containing ~270 blood cells sorted from 6 different
populations: HSC, MPP, CMP, GMP, MEP and common lymphoid progenitor cells (CLPs) profiled for ~170 key

transcription factors important in mouse hematopoiesis®

. The output of each method is shown in Supplementary Fig.

13. STREAM is the only method that clearly shows the reconstructed developmental trajectories and the lineage

hierarchies using its default visualizations. We recovered a trajectory that starts from HSCs and then through MPPs

bifurcates into CMPs. A subset of likely erythroid-poised CMPs shows an early progression into MEP, consistent with a

recently refined model of hematopoiesis?’

commitment from MPPs into GMPs and CLPs.

. We also recovered a second bifurcation event that effectively captures cell
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Supplementary Figure 13 Output of different trajectories inference methods on mouse hematopoietic sc-qPCR data.
Output provided by different methods on mouse hematopoietic sc-qPCR data, as described in Supplementary Figure 8.

To assess the quality of the discovered trajectories, we reasoned that classic marker genes for different lineages should
be expressed in cells belonging to different trajectories with minimal mixing (i.e. it should be rare to observe single cells
that express simultaneously both markers). To this end, we selected Gatal, a classic erythroid marker, and Pax5, a
classic lymphoid marker. For each method, we selected the two best single trajectories that contained Gatal or Pax5
expressing cells (we observed that for some models these two trajectories coincide). Then, each trajectory is evaluated
based on precision, recall and the F1 score (see Online Methods). The optimal model should balance precision and recall
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separating Gatal and Pax5 in two distinct trajectories; whereas under-branching models will have a high recall but poor
precision and over-branching models will have a high precision but poor recall (Supplementary Fig. 14a).

STREAM has the highest F1-score for both Gatal and Pax5 among all the methods tested and balance well precision and
recall (Supplementary Fig. 14b-c). SCUBA works reasonably well for both genes but has a lower recall overall. Monocle2
tends to generate over-branched structures with high precision but poor recall. Mpath works well in the case of Gatal
but performs poorly for Pax5. Since both Wishbone and DPT can only detect a single bifurcation, they both fail to
separate the lymphoid cells from erythroid cells, which leads to having a perfect recall but very poor precision.

In summary, although many of the proposed methods work reasonably well with simple linear trajectories, they may
provide over- or under- branched models in more complex scenarios and may mask important trajectories or marker
genes
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Supplementary Figure 14 Analysis results of different methods on mouse hematopoietic sc-qPCR data
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(a) Using as an example the two marker genes Gatal and Pax5, which are highly expressed on MEP-committed branch and
CLP-committed branch respectively, and rarely co-expresses in the same single cell, the illustration shows three different
reconstruction scenarios: optimal model (high precision and high recall), over-branching (high precision but low recall)
and under-branching (low precision but high recall). (b) The scatter plots show the relationship between precision and
recall for each marker gene across methods. Each circle represents one method and its F; score is reported below. (c)
Gatal and Pax5 expression are visualized in both stream plots and subway map plots for the two best branches
automatically detected by STREAM.

Supplementary Note 6: STREAM analysis on scATAC-seq data of the human hematopoietic system

Although some initial attempts have recently shown how to reconstruct trajectories from single-cell chromatin
accessibility data?®2°, STREAM is the only method to our knowledge that is capable of capturing trajectories from
human single-cell (sc) ATAC-seq data using a set of unbiased DNA sequence features. In addition, STREAM is the only
end-to-end pipeline that provides specific functions to analyze scATAC-seq data. In fact, Monocle2, a method specifically
designed for transcriptomic data and used in the aforementioned initial studies, doesn’t provide in the current
implementation (last checked on Apr 13, 2018) any tool for trajectory reconstruction based on scATAC-seq data
(http://cole-trapnell-lab.github.io/monocle-release/).

To illustrate STREAM analysis on scATAC-seq data, a total of 3,072 cells were profiled from the human bone marrow and
isolated by FACS into nine different cellular populations, including HSC, MPP, CMP, CLP, LMPP, GMP, MEP, mono and

)30 . After filtering cells as previously described,®' single cell accessibility profiles for

plasmacytoid dendritic cells (pDCs
2,034 high-quality cells passed quality control. We emphasize that each cell was sorted using multiple surface markers as
previously described 3?, providing a phenotypic “true positive” for cell state that would enable us to determine the

accuracy of STREAM.

To consider general features related to chromatin accessibility, as many transcription factor motifs have been defined
from the hematopoietic system, we sought to determine the efficacy of our approach using general DNA sequence
features, i.e. unbiased k-mer scores, which are naive to any known transcription factor motifs and thus generalizable to
other systems. To this end, starting from count data and using chromVAR?3, we first constructed a matrix of cells x k-mer
accessibility z-scores in our dataset (in our experiments k=7). The k-mer accessibility z-scores are then used by STREAM
as features to reconstruct trajectories (Online Methods).

STREAM accurately reconstructed cellular developmental trajectories of the human blood system: the HSCs branch
segregates through MPP into the erythrocyte-committed, lymphocyte-committed and myelocyte-committed branches.
STREAM also reconstructed the bifurcation from lymphoid multipotent progenitors (LMPP) to CLP and plasmacytoid
dendritic cells (pDC). Interestingly, STREAM reveals a similar and consistent hematopoietic hierarchy described by
orthogonal assays such as transcriptomic profiling (Fig. 2b).
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Supplementary Figure 15 STREAM automatically discovers important k-mers along the erythroid cells differentiation
trajectory (S5,52,51,50) for the human hematopoietic system
Top left, subway map schematic to highlight the erythroid cells differentiation trajectory (S5,52,51,5S0) consisting of three

branches (S5,52)(cyan), (S2,S1)(brown) and (S1,50)(blue), whose related marker k-mers are calculated. Bottom left,

heatmap showing the standardized Z-scores of detected important k-mers. Each row indicates one k-mer. Each column

indicates one cell on the trajectory (55,52,51,50) and cells are ordered by the inferred pseudotime from STREAM. The

three colors represent different cell branch ID assignments including branch (S5,52), branch(S2,51), and branch(S1,50).

Right, ten detected k-mers selected from left heatmap and their target transcription factor motifs along with output

information reported by the motif comparison tool Tomtom. These k-mers are further visualized on stream plots.

In addition, STREAM, using the inferred structure, automatically identifies significant k-mer DNA sequences for each

branch. Importantly, those recovered k-mers can be mapped to known transcription factors motifs that may drive cell-

fate decision and commitment. In addition to GATA1 and CEPBA, recovered for erythroid lineage and myeloid lineages,

respectively (Fig. 2c), along the erythroid cell differentiation trajectory, we uncovered several additional potential

regulators for HSCs (ATF334, HOXB8%*) and MEPs (LM023¢, TAL1*°) (Supplementary Fig.15 ).

In summary, compared to previous studies, STREAM provides the unbiased reconstruction of human hematopoiesis
using chromatin accessibility data at single-cell resolution. Moreover, it uncovers annotated (i.e. mappable to
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transcription factors) or unannotated DNA sequences that may be important in defining the different developmental
paths.

Supplementary Note 7: STREAM interactive website

In order to make STREAM user-friendly and accessible to non-bioinformatician, we have created an interactive website:

http://stream.pinellolab.org. The website implements all the features of the command line version and provides
interactive and exploratory panels to zoom and visualize single-cells on any given branch.

The website offers two functions: 1) to run STREAM on single-cell transcriptomic or epigenomic data provided by the
users and 2) the first interactive database of precomputed trajectories with results for seven published datasets. The
users can visualize and explore cells’ developmental trajectories, subpopulations and their gene expression patterns at
single-cell level. (Supplementary Fig. 16).

The website can also run on a local machine using the provided Docker image we have created. To run the website in a
local machine it is just necessary to install Docker and then from the command line execute the following command:

docker run -p 10001:10001 pinellolab/stream STREAM_webapp
After the execution of the command the user will have a local instance of the website accessible at the URL:

http://localhost:10001
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Supplementary Figure 16 STREAM interactive website. It consists of ‘precomputed results” and ‘Compute on Your Data’
. In‘Precomputed Results’, users can visualize single cell trajectories from several published datasets. In ‘Compute on Your
Data’, in addition to visualization, users can also infer trajectory using their personal dataset.

Supplementary Note 8: STREAM command line interface

STREAM can be easily used thanks to a simple command line interface. It is possible to install and use STREAM with
Docker.

Installation with Docker

With Docker no installation is required, the only dependence is Docker itself. Docker can be downloaded freely from
here: https://store.docker.com/search?offering=community&type=edition

To get a local copy of STREAM execute the following command:
docker pull pinellolab/stream
STREAM usage and example dataset

The main and required input file is a tab-separated gene expression matrix (raw counts or scaled) in tsv file format. Each
row represents a unique gene and each column is one cell.

The following table shows the first 5 rows (genes) and 5 columns (cells) of the provided example dataset

HSC1 HSC1.1 HSC1.2 HSC1.3 HSC1.4
CD52 6.479620 0.000000 0.000000 5.550051 0.000000
Ifitm1 11.688533 11.390682 10.561844 11.874295 8.976571
Cdkn3 0.000000 0.000000 0.000000 0.000000 8.293616
Ly6a 10.417026 11.452145 0.000000 8.158840 8.945882

Bax 6.911608 10.201157 0.000000 9.396073 0.000000

In addition, it is possible to provide these optional files in .tsv format:

1. Celllabels: Each item can be a putative cell type or sampling time point obtained from experiments. Cell labels
are helpful for visually validating the inferred trajectory. This file must be in .tsv format. The order of labels
should be consistent with cell order in the gene expression matrix file. No header is necessary:

HSC
HSC
GMP
MEP
MEP
MPP
GMP
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GMP

Cell label color: Customized colors to use for the different cell labels. The first column specifies cell labels and
the second column specifies the color in the format of hex. No header is necessary:

HSC  #7DD2D9
MPP  #FFA500
CMP  #e55b54
GMP  #5dabba
MEP  #166FD5
CLP #989797

Gene list: It contains genes that users may be interested in visualizing in subway map and stream plot in
addition to the genes detected by STREAM. Genes are listed in one column. No header is necessary:

Ifitm1
Cdkn3
Ly6a
CD52
Foxo1

Feature genes: It contains genes that the user can specify and that are used as features to infer trajectories.
instead of using the automatic feature selection of STREAM. No header is necessary:

Gata1
Pax5
CD63
KIf1
Lmo2

To run STREAM, after the installation at the command-line interface execute:

docker run pinellolab/stream [options]

Users can specify the following options:

-m, —--matrix

input file name. Matrix is in .tsv or tsv.gz format in which each row represents a unique gene and
each column is one cell. (default: None)

-1, --cell labels

file name of cell labels (default: None)

-c, —--cell labels colors

file name of cell label colors (default: None)

-s, --select features

LOESS, PCA, all: Select variable genes using LOESS or top principal components using PCA or keep

all the gene (default: LOESS)

-f, --feature genes

specified feature genes (default: None)
-t, --detect TG genes

detect

transition genes automatically

-d, --detect DE genes

detect

DE genes automatically

-g, --gene list

genes to visualize, it can either be filename which contains all the genes in one column or a set
of gene names separated by comma (default: None)

-p, --use_ precomputed

use precomputed data files without re-computing structure learning part

--log2

perform log2 transformation

——norm
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normalize data based on library size

-—atac

indicate scATAC-seqg data

-—-atac_counts

scATAC-seq counts file name in .tsv or .tsv.gz format. Counts file is a compressed sparse matrix
that contains three columns including region indices, sample indices and the number of
reads (default: None)

--atac_regions

scATAC-seq regions file name in .tsv or .tsv.gz format. Regions file contains three columns
including chromosome names, start and end positions of regions (default: None)
-—atac_samples

ScATAC-seq samples file name in .tsv or tsv.gz. Samples file contains one column of cell names
(default: None)

--atac _k

specify k-mers length for scATAC-seq analysis (default: 7)

--n_processes

Specify the number of processes to use. (default, all the available cores).

--loess frac

The fraction of the data used in LOESS regression (default: 0.1)

-—-pca max PC

Maximal principal components in PCA (default: 100)

--pca_first PC

keep first PC

--pca n PC

The number of selected PCs (default: 15)

--n_processes

Specify the number of processes to use. The default uses all the cores available

--1lle neighbours

LLE neighbour percent (default: 0.1)

--1lle components

number of components for LLE space (default: 3)

--AP damping factor

Affinity Propagation: damping factor (default: 0.75)

--EPG n nodes

Number of nodes for elastic principal graph (default: 50)

--EPG_lambda

lambda parameter used to compute the elastic energy (default: 0.02)

-—-EPG mu

mu parameter used to compute the elastic energy (default: 0.1)

--EPG_trimmingradius

maximal distance of point from a node to affect its embedment (default: Inf)
--EPG_finalenergy

indicating the final elastic energy associated with the configuration. It can be 'Base' or
'"Penalized' (default: 'Penalized')

--EPG_alpha

positive numeric, alpha parameter of the penalized elastic energy (default: 0.02)
--disable EPG collapse

disable collapsing small branches

--EPG collapse mode

the mode used to collapse branches. It can be 'PointNumber', 'PointNumber Extrema',
'PointNumber Leaves', 'EdgesNumber' or 'EdgesLength' (default:'PointNumber')

--EPG collapse par

the control parameter used for collapsing small branches

--EPG_shift

shift branching point

--EPG_shift mode

the mode to use to shift the branching points 'NodePoints' or 'NodeDensity' (default: NodeDensity)
--EPG_shift DR

positive numeric, the radius used when computing point density if EPG shift mode is 'NodeDensity'
(default:0.05)

--EPG_shift maxshift

positive integer, the maximum distance (number of edges) to consider when exploring the branching
point neighborhood (default:5)

--disable EPG ext

disable extending leaves with additional nodes

--EPG_ext mode

the mode used to extend the graph. It can be 'QuantDists', 'QuantCentroid' or 'WeigthedCentroid'.
(default: QuantDists)

-—-EPG ext par
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the control parameter used for contribution of the different data points when extending leaves with
nodes (default: 0.5)

--DE _z score cutoff

Differentially Expressed Genes Z-score cutoff (default: 2)
--DE_diff cutoff

Differentially Expressed Genes difference cutoff (default: 0.2)
--TG_spearman cutoff

Transition Genes Spearman correlation cutoff (default: 0.4)
--TG _diff cutoff

Transition Genes difference cutoff (default: 0.2)
--stream log view

use log2 scale for y axis of stream plot

-—for web

Output files for website

-0, -—--output folder

Output folder (default: None)

--new

file name of data to be mapped (default: None)

-—new 1

filename of new cell labels (default: None)

--new_c

filename of new cell label colors (default: None)

Example with transcriptomic data: Using the example data provided: data guoji.tsv,cell label.tsvand
cell label color.tsv, and assuming that they are in the current folder, to perform trajectories analysis, users
can simply run a single command (By default, LOESS is used to select most variable gene. For gPCR data, the number of
genes is relatively small and often preselected, it this case it may be necessary to keep all the genes as features by
setting the flag -s all):

docker run pinellolab/stream -v $PWD:/data -w /data -m data guoji.tsv -1
cell label.tsv -c cell label color.tsv -s all

To visualize genes of interest, user can provide a gene list file, for example: gene 1list.tsvandaddtheflag -p to
use the precomputed file obtained from the first running (in this way, the analysis can will not restart from the beginning
and other existing figures will not be re-generated):

docker run pinellolab/stream -v $PWD:/data -w /data -m data guoji.tsv -1
cell label.tsv -c cell label color.tsv -s all -g gene list.tsv -p

To explore potential marker genes, it is possible to add the flags —d or —t to detect DE (differentially expressed) genes
and transition gens respectively. The best 10 DE (any pair of branches) and transition genes (any branch) are
automatically plotted:

docker run pinellolab/stream -v $PWD:/data -w /data -m data guoji.tsv -1
cell label.tsv -c cell label color.tsv -s all -d -t

Example of the mapping feature: To use the mapping feature, users need to provide two datasets: one used to inferring
trajectories and the other containing cells to be mapped to the inferred trajectories. Here to illustrate this feature we
use data from Moore et al.2016 and in particular those two files: Moore . tsv (cells used to infer trajectories),

data mapping.tsv (cells to map).

We first infer trajetories using the following command:
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docker run pinellolab/stream -v $PWD:/data -w /data -m data Moore.tsv -s all --
EPG_shift --EPG trimmingradius 0.1 -o /users_path/STREAM result

Then to map the cells to the inferred trajectories we use the following command (note the flags --new, --new_| and --
new_c and the same folder for the output flag -o):

docker run pinellolab/stream -v $PWD:/data -w /data -o /users path/STREAM result
--new data mapping.tsv --new 1 cell labels mapping.tsv —--new c

cell labels mapping color.tsv

After running this command, a folder named Mapping Result will be created under
/users_path/STREAM result along with all the mapping analysis results.

Example with scATAC-seq data: To perform scATAC-seq trajectory inference analysis, three files are necessary, a .tsv file
of counts in compressed sparse format, a sample file in .tsv format and a region file in .bed format:

1. Count file: a tab-delimited compressed matrix in sparse format (column-oriented). It contains three columns.
The first column specifies the rows indices (the regions) for non-zero entry. The second column specifies the
columns indices (the sample) for non-zero entry. The last column contains the number of reads in a given region
for a particular cell. No header is necessary:

3735 96 1
432739 171 2
133126 292 1
219297 359 1
284936 1222 1
442588 1580 2

2. Sample file: It has one column. Each row is a cell name. The order of the cells should be consistent with the
sample indices in count file. No header is necessary:

singles-BM0828-HSC-fresh-151027-1
singles-BM0828-HSC-fresh-151027-2
singles-BM0828-HSC-fresh-151027-3
singles-BM0828-HSC-fresh-151027-4
singles-BM0828-HSC-fresh-151027-5

3. Region file: a tab-delimited .bed file with three columns. The first column specifies chromosome names.
The second column specifies the start position of the region. The third column specifies the end
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position of the region. The order of regions should be consistent with the regions indices in the count

file. No header is necessary:

chr1 10279 10779
chr1 13252 13752
chr1 16019 16519
chr1 29026 29526
chr1 96364 96864

Using these three files, users can run STREAM with the following command (note the flag ——atac ):

docker run pinellolab/stream -v $PWD:/data -w /data --atac -s PCA --atac counts
count file.tsv --atac sample file.tsv --atac regions region file.bed -1
cell label.tsv -c cell label color.tsv

This command will generate a file named df zscores scaled.tsv. It’s a tab-delimited z-score matrix with k-mers
in row and cells in column. Each entry is a scaled z-score of the accessibility of each k-mer across cells. This operation is
time-consuming and it may take a couple of hours with a modest machine. STREAM also provides the option to take as
input a precomputed z-score file from the previous step, for example, to recover trajectories when increasing the
dimensionality of the manifold. Using a precomputed z-score file, users can run STREAM with the following command:

docker run pinellolab/stream -v $PWD:/data -w /data -m df zscores scaled.tsv -1
cell label.tsv -c cell label color.tsv --atac -s PCA

Output description

STREAM write all the results by default in the folder STREAM result, unless a different directory is specified by the
user with the flag —o. This folder contains the following files and directories:

e LLE.pdf: projected cells in the MLLE 3D space.

e EPG.pdf: elastic principal graph fitted by EIPiGraph in 3D space

o flat_tree.pdf: 2D single-cell level flat tree plot

e nodes.tsv: positions of nodes (or states) in the flat_tree plot

e edges.tsv: edges information in the flat_tree plot

e cell_info.tsv: Cell information file. Column 'CELL_ID', the cell names in the input file. Column 'Branch’, the branch id
a cell is assigned to. The branch id is encoded by the two cell states. Column 'lam’', the location on a branch, which is
the arc length from the first cell state of branch id to the projection of the cell on that branch. Column 'dist’, the
euclidian distance between the cell and its projection on the branch.

e sub-folder 'Transition_Genes' contains several files, one for each branch id, for example for (51,52):

o Transition_Genes_S1_S2.png: Detected transition genes plot for branch S1_S2. Orange bars are genes
whose expression values increase from state S1to S2 and green bars are genes whose expression values
decrease from S1 to S2

o Transition_Genes_S1_S2.tsv: Table that stores information of detected transition genes for branch S1_S2.

e sub-folder 'DE_Genes' Genes' contains several files, one for each pair of branches, for example for (51,52) and
(53,52):

o DE_genes_S1_S2 and S3_S2.png: Detected differentially expressed top 15 genes plot. Red bars are genes
that have higher gene expression in branch S1_S2, blue bars are genes that have higher gene expression in
branch S3_S2

o DE_up_genes_S1_S2 and S3_S2.tsv: Table that stores information of DE genes that have higher expression
in branch S1_S2.
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o DE_down_genes_S1_S2 and S3_S2.tsv: Table that stores information of DE genes that have higher
expression in branch S3_S2.
sub-folder 'S0': Set of linearized plots (subway and stream plots) for each of the cell states, for example, choosing SO
state as root state:
o subway_map.png: single-cell level cellular branches plot
o stream_plot.png: density level cellular branches plot
o subway_map_gene.png: gene expression pattern on subway map plot
o stream_plot_gene.png: gene expression pattern on stream plot
sub-folder 'Precomputed":
o It contains files that store computed variables used when the flag —p is enabled.
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