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Abstract

Pupil responses have been used to track cognitive processes during decision-making. Studies have
shown that in these cases the pupil reflects the joint activation of many cortical and subcortical brain
regions, also those traditionally implicated in value-based learning. However, how the pupil tracks
value-based decisions and reinforcement learning is unknown. We combined a reinforcement learning
task with a computational model to study pupil responses during value-based decisions, and decision
evaluations. We found that the pupil closely tracks reinforcement learning both across trials and par-
ticipants. Prior to choice, the pupil dilated as a function of trial-by-trial fluctuations in value beliefs.
After feedback, early dilation scaled with value uncertainty, whereas later constriction scaled with re-
ward prediction errors. Our computational approach systematically implicates the pupil in value-based
decisions, and the subsequent processing of violated value beliefs. These dissociable influences provide

an exciting possibility to non-invasively study ongoing reinforcement learning in the pupil.
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Introduction

There is fast-growing interest to understand how the pupil, as a non-invasive proxy of neuromodulation’,
relates to cognition and in particular decision-making. Traditionally, pupil dilation during and after

decisions has been related to uncertainty and surprise>™, likely via noradrenergic modulations by

the locus coeruleus (LC)”®. Recent work, however, shows that the pupil also tracks activity of other

neuromodulatory nuclei. For example, in a recent perceptual decision-making task it was found

that pupil dilations were modulated by activity in dopaminergic midbrain nuclei®. These nuclei are

known to release dopamine in response to rewards and reward-predicting cues to optimize future

decisions!'®12. The pupil also dilates in response to the presentation of cues predicting reward'*-!> and

tracks changes in reward expectations!®. These pupil responses are blunted in Parkinson’s patients, yet

are fully restored by dopamine agonists'”-8.

These findings raise the intriguing possibility that the pupil is sensitive to a multitude of neuro-
modulatory processes, including dopamine, implying that it could be used to non-invasively study the
underlying processes that shape value-based decisions and learning. Here, we investigated the interplay
between the pupil, reinforcement learning and value-based decision-making by using a computational
reinforcement learning (RL) model as a basis for linear systems analysis of pupil size fluctuations.

We measured pupil size while thirty-four participants performed a probabilistic reinforcement
learning task, consisting of a learning and transfer phase (Fig. la,b & Methods). The reliability of
choice outcomes varied across three learning pairs'® with different reward probabilities. These differ-
ent reward probabilities create varying degrees of choice difficulty, uncertainty and value expectations
across choices. We fit a hierarchical Bayesian version of the Q-learning RL algorithm®® to participants’
choices in the learning phase to describe value-based choices and outcome evaluations (Fig. 1c &
Methods)?!-?*. The Q-learning algorithm describes value-based decision-making using two functions:

a choice function and an outcome function. The choice function calculates the probability of choosing
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one option (Q-chosen) over the other (Q-unchosen), based on one’s sensitivity to value differences, or
explore-exploit tendency (B; Fig. 1d, left panel). The outcome function then computes the magnitude
by which the reward prediction error (RPE) changes value beliefs about the chosen option, scaled by

the learning rate (a; Fig. 1d, right panel)®. As value beliefs are differentially updated after positive and

26-28 29-31

negative outcomes via different striatal learning mechanisms* ™", we defined separate learning

rate parameters for positive (ag,;,) and negative (ay,s) choice outcomes?-26-2732,

Our computational approach allows us to investigate the potential utility of the pupil as a proxy
for value-based decision-making and value belief updating, across two levels. First, we describe par-
ticipants’ choice behaviour using parameters that embody core computational RL principles. These
parameters provide a strong handle to investigate how inter-individual differences in value-based learn-
ing and decision-making relate to pupil responses. Second, by simulating the learning process we can
investigate how pupil size depends on trial-to-trial fluctuations in underlying computational variables
such as value beliefs, uncertainty and reward prediction errors. That is, our experimental paradigm

allowed us to map pupil responses onto separable computational components both across participants

and trials.
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Figure 1: Probabilistic selection task and reinforcement learning model. a, During learning, 3 option
pairs were presented in random order. Participants had to select the more rewarding option of each
pair (option A, C and E) by learning from probabilistic feedback that indicated +0.1 reward points after
a ‘correct’ choice, or no points. Choosing option A resulted in a reward in 80% of the times, whereas
choosing option B resulted in a reward only in 20% of the times. Reward probability ratios were 70/30
for the CD pair and 60/40 for the EF pair, thereby increasing uncertainty about the correct option to
choose. The transfer phase tested how much was learned from the probabilistic feedback. All options
were randomly paired with one another, and participants selected the most rewarding option based on
earlier learning. In this phase, feedback was omitted. b, Example pupil trace for a trial in the learning
phase. ¢, Bayesian hierarchical model, consisting of an outer participant (i = 1...,N) and inner trial (¢
=1...,T) plane. Variables of interest are depicted by circular and squared nodes, indicating continuous
and discrete variables, respectively. Shaded variables are obtained from the behavioural data and used
to fit the model. Double bordered variables are deterministic, as they were derived from the model
fit. Arrows indicate dependencies between variables. ®() represents the probit transform. d, Model
parameters governing value-based decision-making. Left panel: the -parameter describes sensitivity
to option value differences (AQ-value). Higher B-values indicate greater sensitivity to AQ-value and
more exploitatory decisions for options with highest expected rewards. Right panel: the a-parameter
governs value belief updating. Higher learning rates («) indicate rapid, but more volatile value belief
updating compared to lower learning rates. e, Across-trial fluctuations in value beliefs (Q-values) for
the chosen and unchosen option and RPEs with the EF pair as example.
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Results

Behavioural and model performance

Participants learned the stimulus-reward contingencies well, as they correctly learned to select the
higher reward probability option in all three pairs (P(correct) above chance, all P’s <.001; Fig. 2a).
Performance was best in AB and decreased progressively from CD to EE, where smaller differences
in the reward probability ratios increased the number of incorrect responses (Fp 66 = 14.45, P<.001,
1°=.19) and response times (F(2,66) = 5.5, P=.006, 11;=.04). In the transfer phase, choices were guided by
the previously learned reward probabilities. Here, participants made more errors (F(3,66)= 49.3, P<.001,
17§=.53) and were slower (F(y¢6=34.6, P<.001, 17§=.12) when confronted with option pairs with small
value differences (Fig. 2b), consistent with earlier studies.?®333

The Q-learning model simulated participants’ choice behavior well (Fig. 2c) when using the fitted
learning rates (gain> 0'Less) and explore-exploit (8) parameter (Fig. 2d). In accordance with behavior,

the estimated value beliefs were highest for A and lowest for B (Fig. 2d) with differences in value beliefs

being largest for AB, followed by the CD and EF pair (F, 6= 20.63, P<.001, r];:.39).

Pupil responses predict individual differences in value-based decision-making

We next investigated whether the pupil was sensitive to the underlying processes supporting value-
based decisions. To do so, we first characterized the average pupil response pattern across subjects
epoched around two separate moments in the trial: leading up to and immediately after the moment of
choice and after receiving choice feedback. Around the moment of a choice, average pupil dilation was
observed already ~1s. prior to the moment of the behavioural report (Fig. 3a), reflecting the unfolding
decision process™**. After receiving choice feedback, a biphasic pupil response was observed that was

characterized by early dilation (~1s. post-event) and late constriction (~2s. post-event; Fig. 3b).
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Figure 2: Behavioral and model performance. Average accuracy and RT across subjects (N=34) as a
function of option pairs in the learning phase (a) and option value differences (derived from the experi-
mental reward probabilities) in the transfer phase (b) that indicated small (S), medium (M) or large (L)
value differences between presented options. ¢, Real and simulated choice accuracy as a function of run
number in the learning phase, split by option pair. For all option pairs, simulated and real accuracy
was very similar, with real EF accuracy being slightly underestimated by the model. d, Group-level
posterior distributions of the obtained parameter estimates for B, ag,n and ay.s. e, Model estimates
of value beliefs for each option at the end of the learning phase. /100 for visualization; error bars

represent mean + s.e.m.
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Across individuals, the observed choice- and feedback-evoked pupil responses corresponded differ-
entially to the underlying processes driving value-based decision-making. As shown in Fig. 3¢ (upper
panel), pupil dilation at the moment of a choice was uniquely predicted by an individual’s sensitivity
to value differences, or explore-exploit tendency (8; permutation test, P=.006; Supplementary Fig. 1a),
indicating that a greater tendency to exploit high value options (high g) related to a stronger dilatory
response (Fig. 3c, lower panel). Feedback-related dilation and constriction correlated inversely with
an individual’s positive, but not negative, learning rate (Supplementary Fig. 1b), suggesting that this
parameter selectively scaled the amplitude of the feedback-evoked pupil response. Indeed, as shown in
Fig. 3d (upper panel), the feedback-evoked response amplitude was uniquely predicted by an individ-
ual’s positive learning rate (ag,,; permutation test, P=.017), indicating that slower updating of value
beliefs after positive feedback predicted a stronger feedback-evoked response (low ac,i,; Fig. 3¢, lower
panel & Supplementary Fig 1d).

In sum, choice- and feedback-evoked pupil responses differentially predicted the underlying pro-
cesses supporting value-based decisions in the learning phase. The tendency to exploit high value op-
tions (B) predicted stronger pupil dilation leading up to a value-driven choice, whereas less updating of
value beliefs after positive feedback (agg,) predicted an amplified feedback-related response. These re-
lations are consistent with theories that describe and formalize Q-learning, in which the explore-exploit
parameter determines the outcome of a value-driven choice and learning rates affect how much value

beliefs are updated after receiving choice feedback.

Pupil dilation reflects the value of the upcoming choice, during learning but not in transfer

We observed that across-subject variability in pupil responses was explained by model parameters
that describe the underlying processes driving value-based decision-making. But do pupil responses

also reflect the ongoing reinforcement learning process during value learning? In a next step, we in-
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Figure 3: Across-subject relations between model parameters and pupil responses during choice
and after feedback. Average deconvolved choice-related (a) and feedback-related (b) pupil response.
Regression coeflicients of an across-subject GLM of the relation between derived model parameters and
pupil dilation at the moment of choice (¢, upper panel), and a scalar amplitude measure of the feedback-
related pupil response (d, upper panel). Median split across subjects based on modulations of B at the
time of choice (c, lower panel), and ag,;, after feedback (d, lower panel). Lines and (shaded) error bars
of represent mean * s.e.m of across-subject modulations (N=34). Horizontal significance designators
indicate time points where regression coeflicients significantly differentiate from zero (P<.05), based
on cluster-based permutation tests (n=1000), **P<.01, *P<.05.
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vestigated the extent to which trial-to-trial fluctuations in variables describing ongoing value-based
decision-making were tracked by pupil responses.

In the learning phase, prior to reaching a value-driven choice, pupil dilation correlated positively
with the value difference between options (cluster P<.001, 2.0s. pre-event until -0.07s. pre-event, Fig.
4a, upper panel), indicating that larger value differences elicited larger pupil dilation before the choice.
Specifically, the pupil dilated as a function of trial-by-trial value beliefs of the chosen, but not the un-
chosen option (paired t-test, £(33)=6.98, P<.001; Fig 4b, upper panel), revealing that pupil dilation
uniquely reflected the value belief determining the upcoming choice.

To rule out the possibility that condition differences (i.e. AB, CD, EF) instead of trial-by-trial fluctu-
ations in chosen value beliefs explained pupil dilation prior to a choice, we estimated their independent
effects on pupil size in a single regression analysis. We observed no differences between conditions in
average pupil dilation prior to a choice (Fig. 4a, lower panel). This also excluded the hypothesis that
pre-choice pupil dilation was driven by uncertainty, as we did not observe significantly more dilation
in the most difficult, hence most uncertain, EF pair. In all pairs, pre-choice pupil size correlated posi-
tively with chosen value (F(566) = 19.76, P<.001, 71;2;;15; Fig. 4b, lower panel) irrespective of the condi-
tion type (F(266) = 1.8, P=.17). Thus, prior to reaching a value-driven choice, the pupil tracked subtle
differences in value beliefs about the upcoming choice, while dilation was not driven by uncertainty
differences between the conditions.

Next, we asked whether value beliefs also modulated pre-choice pupil dilation in the transfer phase,
where feedback was omitted. In contrast to the learning phase, pupil dilation prior to a value-driven
choice was not predicted by previously learned value differences between options (Fig. 4c, upper panel),
nor by separate chosen or unchosen value beliefs (paired ¢-test, t<1, Fig. 4b, upper panel). Indeed, a
repeated measures ANOVA with the factors phase (learning, transfer) and value (chosen, unchosen)

indicated that only during learning, but not during transfer, pre-choice pupil dilation was modulated

10
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by value beliefs about the upcoming choice (F(; 3= 6.9, P=.013, n§:.06).

However, immediately after a value-based choice, learned value beliefs negatively predicted pupil
dilation both in the learning (cluster P=.007, 0.68s. pre-event until 1.5s. post-event; Fig. 4a, upper
panel) and transfer phase (cluster P=.003, -0.02s. until 1.48s. post-event; Fig. 4c, upper panel). Now
smaller, instead of larger, value differences elicited larger post-choice pupil dilation, suggesting that the
difficulty of a recent choice, or the choice conflict it generated, drove pupil size upward. Indeed, we
observed a similar post-choice pupil response pattern when regressing choice conflict on the basis of
the experimental reward probabilities on pupil size (Fig. 4c, lower panel), indicating that post-choice
pupil dilation was modulated by choice conflict, consistent with an earlier report®*.

These model-based trial-to-trial analyses show that when engaged in active reinforcement learning,
pupil dilations differentially reflect value beliefs and choice conflict at different points in time. Prior
to value-based choices, pupil size uniquely reflected value beliefs about the upcoming choice, where
stronger dilations predicted higher value beliefs. This pattern of pre-choice value dilations was absent
in the subsequent transfer phase where rewards could not be obtained, indicating that seemingly similar
pupil dilations prior to value-based choices indexed different cognitive processes during learning and

transfer.

Feedback-evoked pupil responses reflect value uncertainty and reward prediction errors

Only during active reinforcement learning, we observed that choice-related pupil dilation reflected
value beliefs about the upcoming choice. If the pupil reliably tracked ongoing reinforcement learning, it
should also provide information about the evaluation of a choice outcome. In the last step, we therefore
investigated how feedback-evoked pupil responses covaried with the degree to which outcomes violated
value beliefs about a recent choice.

We observed larger feedback-evoked pupil dilation (Fig. 5a) after choices between options with

11
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Figure 4: Pre-choice pupil dilation reflects the value of the upcoming choice. a (upper panel), Beta
coefficients accounting for choice-related pupil dilation in the learning phase. Larger value differences
between options (blue dashed line) elicited larger choice-related pupil dilations (black solid line) prior
to choice (at t=0). After choice, this relationship reversed, as smaller value differences elicited larger
post-choice pupil dilations. a (lower panel), Average choice-related pupil dilation for AB, CD and EF
pairs. b (upper panel), Beta coeflicients of chosen and unchosen value regressors accounting for pupil
size fluctuations in the pre-choice decision interval of the learning (left) and transfer phase (right). b
(lower panel), Beta coeflicients of chosen and unchosen value regressors split by learning phase pairs,
showing that pre-choice pupil size is modulated by values of the to-be chosen stimulus, irrespective of
uncertainty. ¢ (upper panel), Learned value differences did not modulate choice-related pupil dilation
prior to choice (at t=0). After choice, smaller learned value differences elicited stronger pupil dilation.
¢, (lower panel): Smaller value differences between choice options elicited larger post-pupil dilation,
indicating choice conflict drove pupil size. Lines and (shaded) error bars of represent mean + s.e.m
of within-subject modulations. Horizontal significance designators indicate time points where regres-
sion coefficients significantly differentiate from zero (P<.05), based on cluster-based permutation tests
(n=1000), *** P<.001, ** P<.01, repeated measures ANOVA.

12


https://doi.org/10.1101/302166
http://creativecommons.org/licenses/by-nc-nd/4.0/

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

small value differences. Specifically, early post-feedback dilation correlated negatively with differences
in value beliefs of recently presented options (cluster P<.001, -1.5s. pre-event until 1.78s. post-event;
Fig. 5b). We furthermore verified that these feedback-evoked dilations were not driven by feedback
valence (Supplementary Fig. 2a,b). In contrast to dilation in the choice interval, dilation in the feedback
interval was explained by fluctuations in trial-by-trial value beliefs of both the chosen and the unchosen
options, in opposite directions (Fig. 5¢). Thus, lower beliefs about the chosen and higher beliefs about
the alternative option both increased dilation, indicating that uncertainty about the value of a past
choice modulated feedback-evoked dilation. In support of this, trial-by-trial chosen and unchosen
value beliefs explained feedback-evoked dilation already prior to receiving feedback, showing that it
was uncertainty about the outcome of a value-based decision that drove pupil size. Lastly, outcomes that
violated value beliefs did not elicit larger feedback-evoked dilations (Supplemental Fig. 2), excluding
the hypothesis that these modulations of the feedback response reflected surprise.

Importantly, whereas value beliefs about a recent choice affected early dilation, the degree to which
outcomes violated those beliefs modulated late feedback-evoked pupil constriction. As shown in Fig.
5b, signed RPEs correlated positively with late feedback-evoked pupil constriction ~2s. after receiving
feedback (cluster P<.001, 1.8s. until 3.0s. post-event). This correlation indicated that worse-than-
expected outcomes (-RPEs) elicited stronger pupil constriction compared to better-than-expected out-
comes (+RPEs).

To summarize, we observed a biphasic feedback-evoked pupil response that tracked the evaluation
of a recent value-based choice. Early pupil dilation was modulated by uncertainty about the value of
options, as choices between similarly valued options increased dilation the most. Late pupil constric-
tion was modulated by the violation of current value beliefs, as worse-than-expected outcomes elicited

stronger pupil constriction compared to better-than-expected ones.

13
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Figure 5: Feedback-evoked pupil responses reflect value uncertainty and reward prediction errors.
a-c, Beta coefficients accounting for feedback-evoked pupil responses in the learning phase. The
feedback-evoked pupil response (a) was characterized by early dilation (~1s. post-event) and late con-
striction (~2. post-event). b, Early in time (~1s. post-event), feedback-evoked pupil dilation correlated
negatively with the difference in value beliefs about recently presented options (AValue, blue dashed
line). Late in time (~2s. post-event), feedback-evoked pupil constrictions correlated positively with
signed RPEs (orange dashed line). ¢, Both lower value beliefs of the recently chosen and higher value
beliefs of recently unchosen option increased feedback-evoked pupil dilations, already prior to the
moment of feedback (at #=0). Lines and shaded error bars represent mean + s.e.m of within-subject
modulations. Horizontal significance designators indicate time points where regression coefficients sig-
nificantly differentiate from zero (P<.05). Statistics based on cluster-based permutation tests, n=1000.
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Discussion

The present results provide the novel insight that the pupil is a reliable reporter of the underlying pro-
cess of learning and decision-making based on value. When engaged in active reinforcement learning,
but not when choice value was already internalized, the pupil showed two distinct response patterns.
Prior to reaching a value-driven choice, pupil dilations scaled with trial-by-trial value beliefs about
the upcoming choice and were diagnostic for an individual’s sensitivity to choose the option with the
highest expected outcome. Feedback about the choice subsequently evoked a biphasic evaluation re-
sponse. Early pupil dilation scaled with uncertainty about the value of recent choice options, whereas
subsequent pupil constriction scaled with the violation of current choice value beliefs, or signed reward
prediction errors. Moreover, the amplitude of this (post-feedback) biphasic response was predicted by
variability in learning rates across participants, which determine the updating of value beliefs given the
reward prediction error.

Previous studies have shown that cues predicting reward increase pupil dilation'*~'>!”18, Our ob-
servation that value beliefs increase pupil dilation prior to choice are in line with these findings. Criti-
cally, we additionally show that pupil dilation increases as a function of value beliefs about the chosen
option and signal the value of the upcoming choice. Moreover, we found that pupil dilations were not
modulated by the value of the alternative option, indicating that the pupil does not reflect the values as-
sociated with all potential options, but specifically, the value that was driving the choice. Interestingly,
striatal dopamine concentrations and phasic responses of dopamine neurons are observed to reflect
chosen value*®~3. This signalling is thought to support value learning of a choice, as the value of the
chosen option gets updated according to the reward prediction error after receiving choice feedback.

Importantly, only during learning, but not during transfer, was pupil dilation prior to choice mod-
ulated by choice value. Why was this the case, when participants had to make value-based decisions in

both phases? One important difference between the phases was the ability to learn from the outcomes
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of actions. In the learning phase, options could be compared to each other and the outcome of a choice
was immediately presented. This was very different in the transfer phase, when participants were con-
fronted with new choice situations and had no ability to learn from their choices because they never
received feedback. Dopamine, particularly in the striatum, plays and important role during reinforce-
ment learning®. Striatal dopamine strengthens actions that lead to rewarding outcomes and weakens
those that lead to aversive ones!*?¢, thereby flexibly adapting behaviour to maximise rewards. In the
transfer phase, value beliefs are consolidated and dopamine no longer plays an important role in learn-
ing or modulating choice behaviour. Information used to make a value-based choice is now retrieved
from memory, guided by structures that encode learned value representations, such as the ventrome-

dial prefrontal cortex*%4!

. Our finding that the pupil was only sensitive to choice value during active
reinforcement learning could mean that the pupil is particularly sensitive to the process of learning the
value of choices, or contingency learning.*?

An individual’s sensitivity to value differences between presented options, as quantified by our
computational model, predicted the amount of pupil dilation exactly at the time of a value-based
choice. Individuals that were more sensitive to small value differences showed stronger dilations. These

22

individuals exploited high value options, leading to better task performance®*. Increased pupil di-

lation has been associated with better task performance?>*

, or with the tendency to exploit in dy-
namic environments*>*®. The observed relationship between pupil dilation and individual sensitivity
to value differences could reflect either of these processes, as choosing a high value option can result
from accurate option value representations or from the general tendency to favour exploitation over
exploration’’. Measuring pupil responses during value-based decision-making in a reversal learning
paradigm might provide a way to disentangle these two alternative explanations, as optimal task per-

formance would then depend on changing decision strategies over time.

Uncertainty did not drive pupil size prior to a value-based choice, as our results indicated that the
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most difficult, hence uncertain, pair (EF) did not increase dilation. On the contrary, higher value be-
liefs, indicating more certainty about choice value, elicited greater dilation. This finding contrasts with
earlier work relating pupil dilations to situations of increased uncertainty®>*°, but aligns with those asso-
ciating it with certainty®*%. One possible explanation for these differential findings is that in our study,
higher value beliefs about the upcoming choice led to increased reward expectations'’, or decreased
risk assessment?, driving pupil dilation prior to the choice.

However, immediately after a value-based choice, but prior to feedback, we observed that uncer-
tainty modulated pupil size, as choices between closely valued options triggered strong post-choice
dilation. While our study is the first to relate the pupil directly to value beliefs, these findings are con-
sistent with observations of pupil dilation indexing choice conflict after difficult decisions®* or decision
uncertainty during perceptual decisions®. Our work extends these studies by showing that different cog-
nitive processes affect pre- and post-choice dilation, linking pre-choice dilation to chosen value beliefs
and post-choice dilation to value uncertainty. This provides a tentative link to dopamine neurons en-
coding reward uncertainty*’, where sustained dopamine activity prior to the moment of the outcome
was strongest after cues predicting reward with 50% probability. These highly unpredictable cues are
thought to drive learning maximally, as high subjective uncertainty indicates the lack of an accurate
reward predictor and the need to improve predictions*®. Pupil dilation after a choice between options
with small value differences may relate to this process, reflecting the allocation of attentional resources
to support learning from the upcoming choice outcome.

After feedback, a biphasic feedback-evoked pupil response tracked two different evaluation pro-
cesses related to the outcome of a choice. First, early dilations were explained by uncertainty about the
value of the choice outcome, but not by surprise, as outcomes that violated value beliefs did not trigger
stronger dilations. This is a somewhat surprising finding, given that pupil dilations can be stronger

after unexpected outcomes®*°0-2, What our results suggest is that during reinforcement learning, the
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uncertainty associated with the outcome of a choice increases pupil dilation, irrespective of its positive
or negative value. What this may indicate is that early pupil dilation reflected increased attention to
uncertain, but potentially rewarding stimuli in the environment.

Second, late pupil constriction was explained by signed reward prediction errors, thus, reflecting
how much the outcome violated current value beliefs about the chosen option. Lower-than-expected
choice outcomes resulted in smaller pupil responses compared to higher-than-expected ones, which
shows a striking resemblance to the reward prediction error pattern of phasic dopamine neurons!%>*>*
that briefly activate after higher-than-expected outcomes and deactivate after lower-than-expected out-
comes. In calculating this error term, the obtained reward is compared to the value of the chosen
option®®, which we observed also modulated pupil dilation prior to a value-based choice. Thus, our
findings suggest that pupil responses track specific decision and evaluation signals that promote value-
based learning and decision-making.

Recently, a more elaborate view of the phasic dopamine reward prediction error response has been
proposed, in which an initial unselective component detects any potential reward and a later com-
ponent codes the well-known reward value® The dynamic evolution of the feedback-evoked pupil re-
sponse is consistent with this pattern, as early dilation unselectively increased after uncertain outcomes
and late constriction reflected the evaluation of the outcome’s reward value.

To conclude, our study provides evidence that the pupil is a reliable indicator of value-based
decision-making, as it signalled the processing of value up to a choice and the subsequent evaluation
of choice outcomes in terms of uncertainty and violations of value beliefs. There were several aspects
to our approach that enabled us to establish these specific relations and to move beyond previous work
linking the pupil to reward. First, we characterised the full temporal profile of value-based decisions
in the pupil, thereby relating different decision and evaluation processes to different components of

the pupil response. Second, these specific relations could only be established with the use of a formal
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learning model that provided us access to participants’ developing value beliefs, and the underlying
processes thought to support value-driven decisions. This also highlights our use of subjective value
estimates to relate to the pupil. In contrast, previous studies investigating reward-related effects on

23171852 " yith one notable exception'®. Lastly,

pupil size employed externally defined value estimates
our study describes the temporal evolution of reinforcement learning in the pupil, thereby providing
evidence that the pupil can be used to non-invasively track the reinforcement learning process as

it takes place. Future studies that combine functional brain imaging and pupillometry will have to

further specify the brain areas that contribute to the value-based pupil response.

Methods

Participants

Forty-two healthy participants with normal to corrected to normal vision completed the experiment
(10 males; mean age=24.9; age range=18-34 years). They were paid 16€ for 2 hours of participation
and earned an additional performance bonus (mean=10.2€, SD=1.8). The ethical committee of the
Vrije Universiteit Amsterdam approved the study and written informed consent was obtained from all
participants. Eight participants were excluded from analyses due to the following reasons: inadequate
fixation to the center of the screen (N=4), reporting more than three unique stimulus pairs in the
learning phase (N=1) and (almost) perfect choice accuracy in the learning phase, which complicated

behavioral model fitting (N=3), resulting in a total of 34 participants for the analyses.

Task & Procedure

Participants were seated in a dimly lit, silent room with their head positioned on a chin rest, 60 cen-

timeters away from the computer screen. They received written information about the general purpose
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of the experiment, after which they completed a 30-trial practice session of the learning phase. Subse-
quently, participants completed for the learning phase 6 runs of 60 trials each (360 trials in total, 120
presentations of each stimulus pair), with small breaks in-between runs. After each run, the earned
number of points was displayed. At the end of the learning phase, the total number of earned points was
converted into a monetary bonus. Directly after the learning phase, participants entered the transfer
phase. They completed 5 runs of 60 trials each (300 trials in total, 20 presentations per stimulus pair),
with small breaks in-between runs. Overall choice accuracy was displayed at the end of the transfer

phase.

Stimuli & trial structure

Stimuli were presented on a 21-inch Iiyama Vision Master 505 MS103DT with a spatial resolution
of 1024 x 768 pixels, at a refresh rate of 120Hz, with mean luminance 60 cd/m2. Experiments were
programmed in OpenSesame and data analysis were performed using custom software written in
Python, using Numpy (v1.11.2), Scipy (v0.18.1), FIRDeconvolution (v0.1.devl), Hedfpy (v0.0.dev1),
MNE (v0.14) and PyStan (v2.14) packages. Luminance effects on pupil size were minimized by
keeping the background luminance of the display constant. Color stimuli were near-isoluminant to
each other and the background (set via a flicker-fusion color calibration test carried out once at the
start of the experiment). To account for luminance bias effects, each participant had a unique color
pair (red-blue; yellow-dark blue; green-magenta) to reward probability mapping (AB, CD, EF) that
was counterbalanced in order (e.g. red-blue or blue-red for AB).

In each learning phase trial, participants continuously fixated on a central white fixation dot. After
500ms (SD=200ms), two colored stimuli (1.26°x1.26° visual angle) appeared at the horizontal meridian
left and right from the central fixation dot at a distance of 5.04° visual angle. Participants made a choice

for one of the options using the ‘K’ (left choice) and ‘L (right choice) keys. A choice was highlighted by
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asmall dark grey arrow (150ms) pointing in the direction of the chosen option. After a random interval
drawn from a Gaussian distribution with a mean of 1500ms (SD=300m:s), the choice was followed by
auditory feedback, indicating reward (+0.1 points; 500ms ‘correct’ sound) or no reward (500ms; pure
sine tone at 300Hz). Omissions or response times (RTs) longer than 3500ms were followed by a neutral
tone (500ms; pure sine tone at 660Hz). Inter-trial intervals were drawn from a Gaussian distribution
with a mean of 3000ms (SD=300ms) Trials of the transfer phase followed the same trial structure as

trials in the learning phase, but had a shorter duration as choices were not followed by feedback.

Behavioural analysis

Choices and RTs were recorded for all trials in the learning and transfer phase. RT on every trial was
computed as the time from onset of the stimulus pair until the choice (keypress). Trials with RTs below
150ms or above the RT deadline of 3500ms were removed from all analyses. As a choice between two
options in the learning phase was never necessarily “correct”, we defined the selection of the optimal
option (more reinforcing option of the presented pair) as a correct choice. For the transfer phase, value
conflict on a particular trial was defined on the basis of the experimental reinforcement value difference

between the presented stimuli, where smaller value differences were associated with higher conflict.

Computational model

Choices during the learning phase were fit with a reinforcement learning (“Q-learning”) model**. For
each option, the model estimates its expected value, or “Q-value’, on the basis of individual sequences
of choices and outcomes. All Q-values were set to 0.5 before learning. After each choice, the chosen
option’s Q-value is updated by learning from feedback that resulted in an unexpected outcome, which is
captured by the RPE, r(t) - Q;(¢). Thus, the Q-value for option i on the next trial t is updated depending

on the outcome, 1, using the following formula:
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agan[ri(t) — Qi(#)] ifr=1
Qi(t+1) = Qi(t) + (1)

aress| i(H) — Qi(#)]  ifr=0
where parameters 0 < @Gain> @Loss < 1 represent positive and negative learning rates, respectively,
that determine the magnitude by which value beliefs are updated depending on the RPE. We modeled
separate learning rates, as different striatal subpopulations are involved in positive and negative feed-

29-31 and individuals tend to learn more from positive feedback?!*>?%, Given the Q-values,

backlearning
the probability of selecting one option over the other (e.g. selecting option A over B) was described by

a softmax choice rule:

p (t) _ exp([% ) Qﬂ(t))

= wp(F- 0s(0) T exp(p - Qa(D) @

Here, 0 < B < 100, or the explore-exploit parameter, described the sensitivity to option value dif-
ferences, where larger g values indicates greater sensitivity, and more exploitative choices, for options

with relative higher reward values.

Bayesian hierarchical fitting procedure

The Q-learning model was fit using a Bayesian hierarchical fitting procedure, where individual pa-
rameter estimates were drawn from group-level parameter distributions that constrained the range of
possible individual parameter estimates. This procedure allowed for the simultaneous estimation of
group-level and individual-level parameters*>*’, thereby capitalizing on the statistical strength offered
by the degree to which participants are similar with respect to the model parameters as well as taking
into account individual differences®®.

As shown in Fig 1¢, our model was implemented following Jahfari et al. (2016, 2018). Variables r;(¢-
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1) (outcome for participant i on trial £-1) and ch;(#) (choice of participant i on trial ¢) were obtained from
the behavioural data. Per-participant parameter estimates ag; (g, participant i), ay; (ar.ss participant
i) and B, (B participant i) were modeled using a probit transformation z’; (ag; aj;, Bi). The probit
transformation is the inverse cumulative distribution function of the normal distribution that can be
used to specify a binary response model. z’; were drawn from group-level normal distributions with
mean y, and standard deviation 6./. A normal prior was assigned to group-level means y,~ N (1,0)
and a uniform prior to the group-level standard deviations 6,~ (1, 1.5) *. The Bayesian hierarchical
model was implemented in STAN®® and fit to all trials of the learning phase that fell within the correct
response time window 150ms < RT < 3500ms,(mean=99.5% of trials, SD=0.8%). Multiple chains
were generated to ensure convergence, which was evaluated by the Rhat statistic®. The Rhat statistic
confirmed convergence of the fitting procedure (i.e., all Rhats were equal to 1.0). We also tested whether
the derived per-participant parameters could simulate choices that were qualitatively similar to the
observed choices originally used for fitting. Here, choices were simulated 100 times for each participant
using the mode of the derived per-participant parameter distribution. Simulated choice accuracy was

averaged across simulations and evaluated against the observed choice data (Fig. 2¢).

Quantifying single-trial estimates

The modes of the per-participant posterior parameter distributions were selected to describe individual
positive and negative learning rates (@Gain, ®Loss) and relative reward sensitivity (8). In the learning
phase, these per-participant parameter estimates were used to quantify Q-values and RPEs on each
trial. Specifically, we quantified for each trial the value of the chosen option, the unchosen option
and the difference between presented options (AValue). In the transfer phase, when participants did
not receive feedback about their choices, we investigated how previously learned value related to pupil

responses during value-based decisions. To do so, we selected the final Q-value estimates for each
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option (i.e. at the end of the learning phase) and used these values to quantify for each trial the value of
the chosen and unchosen stimulus, given the individual sequences of choices. The obtained single-trial
variables were used as covariate regressors in a deconvolution analysis (described below), to investigate
how they dynamically varied with trial-by-trial fluctuations in transient pupil responses in the learning

and transfer phase.

Pupillometry: preprocessing

The diameter of the pupil was recorded at a 1000Hz using an EyeLink 1000 Tower Mount (SR Research).
The eye-tracker was calibrated prior to each run. Blinks and saccades were detected using standard
EyeLink software with default settings and Hedfpy, a Python package for preprocessing eye-tracking
data. Periods of data loss during blinks were removed by linear interpolation, using an interpolation
time window of 200ms before until 200ms after a blink. Blinks not identified by the manufacturer’s
software were removed by linear interpolation around peaks in the rate of change of pupil size, using the
same interpolation time window. The interpolated pupil signal was band-pass filtered between 0.05Hz
and 4Hz, using third-order Butterworth filters, z-scored per run, and resampled to 20Hz. As blinks

61,62 these influences

and saccades have strong and relatively long-lasting effects on transient pupil size
were removed from the data, as follows. Blink and saccade regressors were created by convolving all
blink and saccade events with their standard Impulse Response Function (IRF)®*-%%, These convolved
regressors were used to estimate their responses in a General Linear Model (GLM), after which we
used the residuals of this GLM for further analysis. For the subsequent deconvolution analysis, trials
were removed in which participants made a saccade towards either of the two presented colored stimuli

(i.e. saccades exceeding 3.3° visual angle away from fixation) to ensure that pupil responses were not

affected by eye movements (percentage removed trials, mean=4.8%; SD=4.5%; range=0.0%-16.3%).
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Pupillometry: deconvolution analysis
Learning phase

Transient pupil responses were analyzed using FIRDeconvolution, a Python package used to perform
Finite Impulse Response fits®. For the analysis of the learning phase, a design matrix was constructed
that estimated pupil time courses of the following 3 transient event types: the onset of the choice options
(start of the decision interval), choice (keypress) and feedback (auditory tone). Time courses of the
onset of the options and feedback were estimated in the interval -0.5s. pre-event until 3.0s. post-event.
The time course of the choice was estimated in the interval -2.0s. pre-event until 1.5s post-event, as
decision-related pupil dilation is predominantly driven prior to the behavioral report™*. Further, the
sustained drive of pupil size during the decision interval, defined as the time period from onset of the
options until the choice, was estimated by a boxcar regressor. The boxcar regressor expanded each
trial's RT (in samples) and was normalized by dividing the height of the boxcar by the mean RT of
the regressor. This procedure ensured that the estimated IRF of all transient and sustained regressor
types were comparable. Lastly, the design matrix included 2 stick regressors to estimate the pupil time
course of the following nuisance events: the onset of the fixation dot and the offset of the options
from the screen. Pupil time courses of both events were estimated -0.5s. pre-event until 3.0s. post-
event. No intercept was added to the design matrix as ridge regression (described below) requires
centered dependent and independent variables®. For the decision interval, we investigated how value
beliefs about presented options affected pupil size by adding single-trial chosen and unchosen Q-value
estimates as covariates to the design matrix. These Q-value estimates were also used as covariates
for the feedback interval, to investigate how value expectations about a recent choice affected pupil
size during feedback. Finally, we added single-trial RPE estimates to the design matrix to investigate
how violations of choice beliefs affected the feedback-related response. All covariate regressors were

z-scored per participant, to ensure unbiased across-subject comparisons of deconvolution beta weights.
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Transfer phase

The design matrix for the deconvolution analysis of the transfer phase was identical to that of the learn-
ing phase, with two exceptions: (1) the pupil time course for feedback events was not estimated, as no
feedback events occurred during this phase, (2) a stick regressor was included to investigate the effects
of choice conflict on pupil responses. Choice conflict was determined the basis of experimental rein-
forcement value differences between the presented options, where trials were divided into three bins
(10-20%; 30-40% and 50-60%), that corresponded to large, medium and small choice conflict between

options.

Pupillometry: ridge regression
We implemented the deconvolution analysis using cross-validated ridge regression, which allows one
to find the general solution to a least-squares problem that would be unstable due to multicollinearity
of regressors®®. Ridge regression penalizes, or shrinks, regression coefficient weights towards zero to
reduce the estimation variance on the coefficients:

Brigee = (XX +ADTXTy 3)

Here, y is the pupil time series signal and X is the design matrix consisting of a set of vectors that
contain ones at all sample times relative to the event timings of which we estimated the pupil response,
and zeros elsewhere. The identity matrix, I, is multiplied by A > 0, a tuning parameter that controls the

strength of the penalty term. If A = 0, the linear regression solution is obtained, A = oo, B, = 0. To

ridge
obtain for each participant the optimal A value, we applied cross validation on the pupil time series data.

Here, the pupil data was divided into a training and test set. A weight matrix was obtained for each A

value (range = 0 < A < 1), using the training set, and was used to predict the test set. This process was
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repeated for 20 different selections of training and test sets, and the best A value was selected based on

its prediction accuracy. The resulting regression, ., , contained the deconvolved pupil responses of

ridg

all separate event types.

Statistical comparisons

Nonparametric cluster-based permutation ¢-tests®’~%

were used to test for significant regression coef-
ficients and to correct for multiple comparisons over time. Briefly, for each time point of a time series
signal, t-tests were performed on each set of across-subject coefficient values. The cluster size was de-
termined by the number of contiguous timepoints for which the ¢-test resulted in P<.05. The observed
cluster size was then compared to a random permutation distribution of maximal cluster sizes: the
proportion of random clusters resulting in a larger size than the observed one determined the P-value,
corrected for multiple comparisons.

To assess the effects of chosen and unchosen value covariates on pupil size across the decision
interval, we summed each regressor’s coefficient values locked to the start (option onset) and locked to
the end of the decision interval (the moment of choice), while discarding their post-choice effects. We
normalised the summed regressor coefficient values by the number of samples they explained of the
pupil time series signal. The resulting averaged, normalised regressor coefficient values were used in a
repeated measures ANOVA to test for main and interaction effects on pupil size, both for the learning
and transfer phase.

Across-subject analyses of the relation between pupil responses and computational model param-
eters were calculated using bootstraps’’. We randomly drew with replacement 10,000 new pupil size -
model parameter estimate pairs which were used in the across-subject GLM. From the resulting boot-

strapped regression coeflicients, 68% confidence intervals were calculated using a percentile approach.

P-values calculations were based on a two-sided hypothesis test, with the P-value being the fraction of
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the bootstrap distribution that fell below (or above) 0.
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