
	

	 1	

Integrated proteogenomic analysis of metastatic thoracic tumors identifies 

APOBEC mutagenesis and copy number alterations as drivers of proteogenomic 

tumor evolution and heterogeneity  

 

Nitin Roper1, Shaojian Gao1, Tapan K. Maity1, A. Rouf Banday2, Xu Zhang1, Abhilash 

Venugopalan1, Constance M. Cultraro1, Rajesh Patidar3, Sivasish Sindiri3, Alexandr 

Goncearenco4, Anna R. Panchenko4, Romi Biswas1, Anish Thomas1, Arun Rajan1,  

Corey A. Carter5, David Kleiner6, Stephen Hewitt6, Javed Khan3, Ludmila Prokunina-

Olsson2, Udayan Guha1* 
 

1Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, NIH, 

Bethesda, MD; 2Laboratory of Translational Genomics, Division of Cancer Epidemiology 

and Genetics, NCI, NIH, Bethesda, MD;. 3Genetics Branch, CCR, NCI, NIH, Bethesda, 

MD; 4National Center for Biotechnology Information, NIH, Bethesda, MD; 5Walter Reed 

National Military Medical Center, Bethesda, MD; 6Laboratory of Pathology, CCR, NCI, 

NIH, Bethesda, MD.  

 

*correspondence: udayan.guha@nih.gov 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/301390doi: bioRxiv preprint 

https://doi.org/10.1101/301390
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	 2	

ABSTRACT  

Elucidation of the proteogenomic evolution of metastatic tumors may offer insight 

into the poor prognosis of patients harboring metastatic disease.  We performed whole-

exome and transcriptome sequencing, copy number alterations (CNA) and mass 

spectrometry-based quantitative proteomics of 37 lung adenocarcinoma (LUAD) and 

thymic carcinoma (TC) metastases obtained by rapid autopsy and found evidence of 

patient-specific, multi-dimensional heterogeneity. Extreme mutational heterogeneity was 

evident in a subset of patients whose tumors showed increased APOBEC-signature 

mutations and expression of APOBEC3 region transcripts compared to patients with 

lesser mutational heterogeneity. TP53 mutation status was associated with APOBEC 

hypermutators in our cohort and in three independent LUAD datasets. In a thymic 

carcinoma patient, extreme heterogeneity and increased APOBEC3AB expression was 

associated with a high-risk germline APOBEC3AB variant allele.  Patients with CNA 

occurring late in tumor evolution had corresponding changes in gene expression and 

protein abundance indicating genomic instability as a mechanism of downstream 

transcriptomic and proteomic heterogeneity between metastases. Across all tumors, 

proteomic heterogeneity was greater than copy number and transcriptomic heterogeneity. 

Enrichment of interferon pathways was evident both in the transcriptome and proteome 

of the tumors enriched for APOBEC mutagenesis despite a heterogeneous immune 

microenvironment across metastases suggesting a role for the immune 

microenvironment in the expression of APOBEC transcripts and generation of mutational 

heterogeneity. The evolving, heterogeneous nature of LUAD and TC, through APOBEC-

mutagenesis and CNA illustrate the challenges facing treatment outcomes. 
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INTRODUCTION 

Metastatic lung adenocarcinoma (LUAD) and thymic carcinoma (TC) have a poor 

prognosis and treatment options are limited. Understanding the mechanisms by which 

metastatic LUAD and TC evolve may provide greater insight into tumor progression and 

may guide novel therapeutic avenues. Previous work characterizing the evolution of 

primary non-small cell lung cancer (NSCLC) has demonstrated significant intra-tumor 

heterogeneity1-3.  However, metastatic lineages are known to occur early in primary tumor 

development4; thus, it is critical to understand the evolution of metastatic NSCLC and 

other metastatic cancer types. Autopsy programs5-10 established to harvest tumor tissue 

from metastatic sites at the end of life, have demonstrated significant heterogeneity 

depending on tumor type11-16. For example, metastatic pancreatic cancer has high inter-

metastatic heterogeneity of genomic rearrangements12 but not of driver mutations17, 

whereas metastatic clear cell renal carcinoma has recurrent driver mutations that occur 

late within individual metastases18 resulting in high inter-metastatic heterogeneity. These 

and other tumor heterogeneity studies have largely focused on whole-exome or genome 

sequencing approaches. The evolution of tumors at the level of the transcriptome or 

proteome and the underlying mechanisms that may generate multidimensional 

heterogeneity remain largely unknown. 

Here, we sought to address the following questions: (i) What is the degree of 

genomic (mutational and copy number), transcriptomic and proteomic heterogeneity 

within and between metastases of a given patient? (ii) What is the relationship between 

these three levels of heterogeneity? and (iii) What are the potential drivers of such 
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heterogeneity? To address these questions, we performed rapid (“warm”) autopsies on 

four patients with lung adenocarcinoma and one patient with thymic carcinoma. The 

autopsies were initiated within three hours of death, which allowed for procurement of 

sufficient quantity and quality of DNA, RNA and protein from metastatic tumor tissue for 

whole-exome and transcriptome sequencing, DNA copy number analysis, and mass 

spectrometry-based proteomics. Our integrated analysis of the genome, transcriptome 

and proteome uncovered key mechanisms likely driving proteogenomic heterogeneity 

within and across metastatic sites.  

 

RESULTS 

Sampling of metastatic tumors through rapid autopsy protocol 

We have established a rapid (“warm") autopsy protocol for thoracic malignancies 

(including lung cancers and thymic epithelial tumors, among others) at the NIH Clinical 

Center. Under this protocol, patients with metastatic disease who are near the end of life 

receive inpatient hospice care. Upon death, an autopsy is performed within three hours 

to procure sufficient quantity and high-quality of DNA, RNA and protein from all possible 

sites of metastatic disease. For this study, we enrolled four patients with lung 

adenocarcinoma (LUAD) - patients RA000 and RA004 who were previous smokers 

known to harbor oncogenic KRAS mutations and patients RA003 and RA005 who were 

both non-smokers with EGFR mutations. We additionally enrolled squamous cell thymic 

carcinoma patient RA006, a non-smoker, who had an aggressive disease course marked 

by no response to treatment and who died within 1.5 years of diagnosis (Supplementary 

Table 1). All of our study patients were initially diagnosed with stage IV disease, had 
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received chemotherapy and/or targeted therapy (range 2-8 lines of therapy) and were 

previously enrolled in a clinical trial at the NIH Clinical Center, except for patient RA000 

(Supplementary Table 1). For each patient, we harvested between 44-183 metastatic 

tumor lesions from multiple organs, including lung, liver and kidney (Supplementary Table 

1). We selected a total of 40 tumor samples for further analyses based on tumor content 

by histology (Fig. 1 and Supplementary Fig. 1). Three samples were removed from the 

study after sequencing and further downstream analysis due to low tumor content. 

Additional tumor tissue collected at the time of diagnosis, likely from the primary site, was 

available for whole-exome sequencing in three patients (RA000, RA003 and RA006). 

 

Intra- and inter-metastatic mutational tumor heterogeneity is highly variable within 

patients and can be extreme  

We performed whole-exome sequencing (WES) on the metastatic tumors, primary 

tumors, where available, and matched germline DNA from each patient. A range of 182 

(RA005) to 1058 (RA003) non-silent mutations were identified per patient (Supplementary 

Table 2). RNA-seq demonstrated a high, independent validation rate of WES 

(Supplementary Fig. 2),  similar to previous studies19. We found significant mutational 

heterogeneity within each patient, with the percentage of non-truncal variants ranging 

from 67% in RA000 to 99% in RA003 (Fig. 2a).  

Activating mutations in EGFR (RA003), and KRAS (RA000, RA004) were present 

in all tumors – primary and metastatic. However, an activating HRAS mutation was 

present in all metastatic sites of patient RA006 at autopsy, but not in the primary tumor at 

the time of diagnosis. Patients RA003 and RA006 had an average of 12 and 14 non-
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truncal driver mutations, respectively. In contrast, there was an average of only 3.7 non-

truncal driver mutations in the other three patients (RA005, RA004, and RA000), 

demonstrating variability in driver mutation acquisition among patients (Fig. 2a). Intra-

tumor mutational heterogeneity in driver mutations was found when tested in RA003 

tumors L2d/L2e (Fig. 2a).    

We next calculated Jaccard similarity coefficients (defined as the ratio of shared to 

all mutations between two metastatic tumors) for each patient to quantitatively assess 

intra- and inter-metastatic tumor genomic heterogeneity (values 0 - 1 correspond to the 

range from minimal to maximal heterogeneity17,20) (Supplementary Table 3). The means 

of the Jaccard similarity coefficients for each patient ranged from 0.25 (RA003) to 0.73 

(RA000) and were significantly different between patients (P=2.2x10-16, Kruskal-Wallis 

rank sum test, Fig. 2b).  Two patients, RA003 and RA006, were clear outliers and 

exhibited what we termed “extreme” mutational heterogeneity. These two patients had 

significantly lower combined mean Jaccard similarity coefficients compared to the other 

patients (mean 0.28 vs. 0.57, P=2x10-16, Chi squared test) (Fig. 2b). Jaccard similarity 

coefficients exhibited a similar trend based on expressed mutations identified by RNA-

seq analysis (Fig. 2c).  Additional sequencing resulting in a median exome coverage of 

487x (range 435 to 528) for the tumors from patients RA003 and RA006 did not 

substantially alter the observed extreme level of heterogeneity (Supplementary Fig. 3 and 

Supplementary Table 3).  Collectively, these results indicate that intra- and inter-

metastatic mutational heterogeneity can vary considerably among patients, with extreme 

heterogeneity evident in a subset of patients.   
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APOBEC mutagenesis strongly correlates with mutational tumor heterogeneity 

We next analyzed mutational signature profiles for each tumor and generated 

phylogenetic trees layered with mutational signatures1,2 to elucidate whether specific 

mutational processes could explain the observed variability in mutational tumor 

heterogeneity. Smoking signature mutations (C->A) were highly prevalent in patients 

RA000 and RA004, who were smokers (Supplementary Fig. 4a, c). Mutations generated 

by the cytosine deaminase activity of APOBEC (apolipoprotein B mRNA editing enzyme, 

catalytic polypeptide-like) family of enzymes (substitutions of C with T or G in TCA or TCT 

motifs21) were most prevalent in patients RA003, RA005 and RA006, who were all non-

smokers (Supplementary Fig. 4b, d, e). Smoking signature mutations were generally 

truncal whereas APOBEC-signature mutations were largely in the shared and private 

branches of the phylogenetic trees (Fig. 3a-e).  

To further assess the timing of APOBEC-induced mutagenesis, we evaluated 

mutational signatures in available tumors collected at the time of diagnosis. We found no 

evidence of APOBEC mutagenesis in these samples, including those from patients 

RA003 and RA006 (Fig. 3a, b), indicating that APOBEC-signature mutations were 

acquired later, either during further progression of metastatic disease or upon subsequent 

treatment. We next evaluated the relationship between APOBEC mutagenesis and 

heterogeneity. APOBEC mutation fold enrichment, a measure of APOBEC mutagenesis21 

(Supplementary Table 4), strongly correlated with Jaccard similarity coefficients based on 

WES variants (Pearson rho = -0.66, p = 2.2e-16) and expressed variants by RNA-seq 

(Pearson rho = -0.55, p = 7.704e-08) (Fig. 3f, g). Taken together, these results suggest 
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APOBEC mutagenesis significantly contributes to the generation of intra- and inter-

metastatic mutational heterogeneity.  

 

Expression of APOBEC3 region transcripts correlates with APOBEC mutagenesis  

Next, we examined RNA-seq data to determine whether APOBEC3 region 

transcript expression contributes to variability in APOBEC mutagenesis. Among the 

LUAD patients, we found APOBEC3B to be expressed at higher levels than APOBEC3A; 

this was particularly evident in the tumors of patient RA003 (Fig. 4a). APOBEC 

mutagenesis (measured here by the counts of tCw to tTw and tGw mutations)21 was 

highly correlated with APOBEC3B expression (Pearson rho=0.68, P=9.4x10-05) but not 

with APOBEC3A expression (Pearson rho =0.19, P=0.34) (Supplementary Fig. 5a, b). 

Analysis of isoform-specific expression of APOBEC3A and APOBEC3B with custom 

TaqMan assays confirmed these results (Supplementary Fig. 5c, d). Moreover, within 

patient RA003, who displayed multiple tumors with significant APOBEC mutagenesis 

(Fig. 4a), APOBEC3B was expressed 20 to 50-fold higher than APOBEC3A (Fig. 4b).  

To elucidate factors affecting APOBEC mutagenesis in our patients, we genotyped 

an APOBEC3 germline variant, rs12628403, associated with increased APOBEC 

mutagenesis22. This germline variant is a proxy for a 30-kb deletion that fuses the coding 

region of APOBEC3A with the 3’ UTR of APOBEC3B to generate a chimeric APOBEC3A-

APOBEC3B (APOBEC3AB) transcript. This chimeric APOBEC3AB transcript is more 

stable than the APOBEC3A transcript and leads to higher APOBEC3A protein levels in 

vitro23.  Only patient RA006, the thymic carcinoma patient, was a carrier of the 

rs12628403 allele, and was predicted to generate the APOBEC3AB transcript (Fig. 4a). 
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Indeed, we found expression of APOBEC3AB transcripts in patient RA006 tumors from 

RNA-seq data (Fig. 4a) and validated expression of this transcript using a TaqMan assay 

(Fig. 4c). However, the APOBEC3B transcript was also expressed in tumors from patient 

RA006, suggesting that both may have contributed to APOBEC mutagenesis. Expression 

of APOBEC3B (Pearson rho=0.77, P=0.08) and APOBEC3AB (Pearson rho=0.62, 

P=0.18) but not APOBEC3A (Pearson rho=0.23, P=0.67) significantly correlated with 

APOBEC mutagenesis (Supplementary Fig. 6a-c).  

Although expression of APOBEC3AB was lower than APOBEC3B (Fig. 4c), 

APOBEC3A encoded by APOBEC3AB is considered a more potent inducer of 

mutagenesis than APOBEC3B23,24. Therefore, we quantified the contribution of 

APOBEC3A and APOBEC3B to APOBEC mutagenesis by calculating YTCA and RTCA 

enrichment (where Y is a purine and R is a pyrimidine), attributed to differential activity of 

these enzymes25. In all tumors with high APOBEC mutagenesis from patient RA006, there 

was significant enrichment of YTCA compared to RTCA (Supplementary Fig. 6d), thereby 

suggesting APOBEC3A-like mutagenesis as a likely driver of extreme heterogeneity in 

this metastatic thymic carcinoma patient with a germline APOBEC3AB deletion. Together, 

our results implicate expression of APOBEC3 region transcripts as a mediator of 

APOBEC mutagenesis in metastatic lung adenocarcinoma and thymic carcinoma. 

 

 

TP53 mutations are associated with APOBEC hypermutators in lung adenocarcinoma  

 We hypothesized that mutant TP53, present only in LUAD patient RA003, may be 

contributing to high APOBEC3B expression and increased APOBEC mutagenesis. Using 
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three independent LUAD datasets19,26,27, we found TP53 mutations correlated with higher 

counts of APOBEC-signature mutations (Fig. 4d-f).  Moreover, mutant TP53 was 

associated with APOBEC ‘hypermutators’22 in our cohort and in all three datasets (Table 

1). Mutant TP53 was also associated with significantly higher expression of APOBEC3B, 

as well as an increase in APOBEC3A, compared to wild-type TP53 tumors in the TCGA 

dataset (Fig. 4g, h). Thus, our results suggest mutant TP53 contributes to increased 

APOBEC3B expression, APOBEC mutagenesis and is associated with APOBEC 

hypermutators in lung adenocarcinoma. 

 

Integration of copy number, transcript and protein abundance highlights mechanisms of 

proteomic heterogeneity 

To evaluate multi-dimensional heterogeneity, we plotted Pearson correlation 

coefficients (PCCs) for each data type between pairs of tumors for each patient across 

all genes for which copy number, transcript expression, and protein abundance data were 

available (Fig. 5a-e). Each patient displayed variable patterns of heterogeneity across 

each data type. Patient RA003 exhibited the least (Fig. 5a), whereas patient RA004 the 

most (Fig. 5d) heterogeneity. Patient RA005 showed the most heterogeneity in gene 

expression and protein abundance only between tumor L5d and tumors L2a/L2b/L5c (Fig. 

5c). Patient RA006 showed lower heterogeneity in copy number, gene expression and 

protein abundance within three pairs of tumors (L20b/L5a, Li3c/Li1a, L12a/L3a) compared 

to other pairs (Fig. 5b).  

Next, we plotted PCCs within each patient for each data type. Protein 

heterogeneity was significantly greater than gene expression and CNA heterogeneity 
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within all patients (Fig. 5f). We then performed pairwise comparison of the PCCs of each 

data type (Supplementary Fig. 7). We found a strong, positive linear correlation between 

CNA heterogeneity and protein heterogeneity for patients RA004 (Pearson rho=0.68, 

p=7.5e-04) and RA006 (Pearson rho=0.80, p=3.74e-4) but not for the other patients 

(Supplementary Fig. 7a, d, g, j, m), providing evidence that CNAs can lead to protein 

heterogeneity in these patients. Gene expression heterogeneity was also associated with 

protein heterogeneity but only in patients RA005, RA006 and RA000 (Supplementary Fig. 

7b, k, n). Together, these results demonstrate high heterogeneity in protein abundance 

between metastases of these patients which could stem from heterogeneity in CNA and 

gene expression.  

 

Late-event CNAs contribute to heterogeneity in gene expression and protein abundance  

We next performed hierarchical clustering by chromosomal cytoband, gene 

expression and protein abundance to further evaluate heterogeneity within each data 

type. Metastases from each patient clustered together for CNA, gene expression and 

protein abundance (Fig. 6a, Supplementary Fig. 8, 9a-b). Metastases from patients 

RA004 and RA006 showed the lowest correlation in protein abundance (Supplementary 

Fig. 9c, d) and clear differences in CNAs (Fig. 6a and Supplementary Table 5). To explore 

the downstream effects of CNAs, we plotted gene expression and protein abundance 

ratios of genes within each chromosomal arm between metastatic lineages of each 

patient (Fig. 6b, c and Supplementary Tables 6 and 7). Arm-level CNAs within tumors of 

patients RA006 and RA004 corresponded with changes in gene expression and protein 

abundance of genes at the corresponding arm-level. For example, copy number 
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differences in arm 4p between RA006 tumors corresponded with changes in expression 

and protein abundance (Fig. 6b).  Where there were no copy number differences, such 

as in arm 7q in patient RA006 and arms 4p/7q of patient RA003, there were no 

corresponding changes in gene expression and protein abundance (Fig. 6c). 

 Heterogeneity in focal-level CNAs also corresponded with changes in RNA and 

protein. For example, CCND1 was highly amplified in patient RA004 tumors L2a, L3a and 

L8b (Supplementary Table 8) which corresponded with high gene and protein expression. 

On the other hand, tumors L1b and L1c in which there was minimal increase in CCND1 

copy number, gene and protein expression were low (Fig. 6d, e). Interestingly, among 

patient RA004 liver and kidney tumors, Li1b and K1, CCND1 was highly amplified with 

correspondingly high protein but moderate gene expression, suggesting tissue specific 

discordance of gene and protein expression of select genes (Fig. 6d, e). 

We next constructed phylogenetic trees based on CNAs for each patient. Both arm 

and focal-level CNAs largely occurred early in tumor development (i.e. truncal) in patients 

RA000, RA003 and RA005 (Supplementary Fig. 10, 11, 12 a-b) but occurred later in tumor 

development (i.e. shared and private) in patients RA004 and RA006 (Fig. 3, 

Supplementary Fig. 13 and 14 a, b). These results suggest that late, not early, CNAs 

likely contributed to the observed changes in gene expression and protein abundance 

between metastases of these patients. Differential focal and arm-level CNAs may reflect 

ongoing chromosomal instability as well as selective pressure during evolution of 

metastatic lineages.   
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Enrichment of interferon signaling pathways in tumors with high APOBEC3 expression 

and immune heterogeneity 

We next sought to decipher any common gene sets or pathways within the RNA-

seq and mass-spectrometry proteomics data that were heterogeneously enriched within 

each patient. Using an unbiased approach with single-sample gene set enrichment 

analysis (ssGSEA)28,29, we found interferon (IFN)-signaling pathways (related to activity 

of IFN-α, IFN-β and IFN-γ), were the most significantly and differentially enriched 

pathways within patient RA003 (tumors L1 and L4a) and RA006 (tumors L20b, L5a, Li1a 

and Li3c) (Fig. 7a-d) at both gene expression and protein abundance levels. No common 

outlier gene sets were identified for the negatively enriched pathways.  Within the tumors 

from patients RA000, RA004 and RA005, no recurrent, common pathways were identified 

by GSEA of both the transcriptome and proteome (Supplementary Table 9). The six 

tumors from patients RA003 and RA006 that were enriched in IFN-signaling pathways 

also had the highest expression of APOBEC3 region transcripts (Fig. 3a, b, c). Given that 

APOBEC3A and APOBEC3B are IFN-stimulated genes30-32, our results suggest IFN-

signaling within the tumor immune microenvironment as a potential mechanism of 

heterogeneity in APOBEC3 region transcript expression. 

 To further interrogate heterogeneity in the immune microenvironment between 

tumors of each patient in an unbiased manner, we analyzed the gene expression and 

protein abundance data using ssGSEA based on CIBERSORT immune genes33. The 

overall immune signature score for tumors within each patient varied considerably 

between transcriptome and proteome in patients RA003 and RA005 (Fig. 7e, f). Patients 

RA000 and RA004 showed low and high overall immune signature scores, respectively 
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(Fig. 7e, f). In contrast, tumors from patient RA006 showed large and consistent 

differences in immune signature scores across both the transcriptome and proteome 

(high in L20b and L5a vs. low in L12a, L3a, Li1a, Li3c), demonstrating heterogeneous 

immune cell infiltration in the tumor microenvironment of this patient. 

 

DISCUSSION 

Genomic, transcriptomic and proteomic analyses of tumors from multiple anatomic 

sites sampled through rapid autopsy offer a unique opportunity to comprehensively 

explore the biological processes that shape the evolution of metastatic tumors.  Here, 

through rapid autopsy, we have characterized, for the first time, the proteogenomic 

evolution of metastatic lung and thymic carcinoma through exome and transcriptome 

sequencing, CNA analysis, and unbiased quantitative mass spectrometry-based 

proteomics of 37 metastatic tumors. Most importantly, we have uncovered mechanisms 

likely driving the mutational, transcriptomic and proteomic landscape of these metastatic 

tumors.  

At the genomic level, we provide evidence that APOBEC mutagenesis may be a 

driver of mutational heterogeneity in metastatic lung and thymic carcinoma tumors. 

APOBEC mutagenesis has been described as one of the most common mutational 

processes second only to “ageing”34. To date, however, within thoracic tumors, this 

process has been described mostly in primary tumors1,35,36. These studies have shown 

APOBEC mutagenesis to be associated with subclonal mutations that occur late in the 

evolution of primary tumors and within spatially distinct regions1,2. In our study, we 

identified a subset of patients with high APOBEC-mutagenesis in metastases, but not in 
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the primary tumor, suggesting APOBEC-mutagenesis can generate mutations late in the 

evolution of metastatic disease. Given that all patients in our cohort received prior 

treatment, we cannot exclude the possibility that therapy contributed to the observed 

findings. However, recent studies assessing tumors pre- and post- chemotherapy in 

multiple tumor types did not find an increase in overall mutational load or a significant 

increase in APOBEC-signature mutations37,38. Moreover, the patients in our cohort with 

the highest level of APOBEC-mutagenesis, RA003 and RA006, received the least therapy 

prior to autopsy.  

While the existence of mutational heterogeneity in metastases has been previously 

described10,12, the mechanisms have not been clear39.  Our data suggest APOBEC 

mutagenesis can generate both putative driver and passenger mutations late in 

metastases, thereby generating inter-metastatic mutational heterogeneity that in some 

cases can be extreme. These results stand in contrast to recent genomic studies of the 

metastases of patients with pancreatic17 and prostate16 cancer, which have shown limited 

mutational heterogeneity and no significant APOBEC mutagenesis21. Both of these tumor 

types have also shown no evidence of APOBEC mutagenesis within primary tumors 

highlighting the likely histologic specificity of this process. Ultimately, the clinical 

importance of APOBEC mutagenesis will be determined by the response of 

heterogeneous metastatic tumors - with and without APOBEC-signature mutations - to 

chemotherapy, targeted agents and/or immunotherapy.  

Both APOBEC3A and APOBEC3B have been shown to localize to the nucleus40 

leading to potent DNA damage41, deaminase activity and base substitutions in the 

genome35,42.  Upregulation of APOBEC3B causes APOBEC-signature mutations in 
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vitro43. Expression of APOBEC3A and APOBEC3B has also been associated with 

APOBEC-signature mutations in primary tumors from multiple cancer types including 

LUAD25,35,36,44. However, it is unclear whether these same transcripts promote APOBEC 

mutagenesis in metastatic lung and thymic carcinoma tumors. In our set of metastatic 

tumors, we observed a strong correlation between expression of APOBEC3B and 

APOBEC3AB transcripts and APOBEC mutagenesis suggesting expression of such 

transcripts may be a more dominant mechanism of APOBEC mutagenesis in metastatic 

thoracic tumors as opposed to earlier stage disease. These results are in line with recent 

work in breast cancer that has shown higher APOBEC mutagenesis in metastatic disease 

compared to early stage primary tumors45.  

Mutant TP53 has previously been associated with higher APOBEC-signature 

mutations in breast cancer35 and there is recent evidence that TP53 can repress 

APOBEC3B expression through direct transcriptional regulation of its promoter35,46,47. Our 

results suggest mutant TP53 may be an important contributor of increased APOBEC3B 

and subsequent generation of APOBEC-signature mutations in LUAD. In particular, we 

show mutant TP53 is associated with APOBEC hypermutators in LUAD using three large-

scale independent datasets.  Whether such APOBEC hypermutators also display extreme 

mutational heterogeneity similar to patient RA003, and how these patients may respond 

to therapy will be important to assess in future clinical trials.  

Expression of the APOBEC3AB transcript was captured in our study by the 

presence of the APOBEC3 germline variant, rs1262840, within thymic carcinoma patient 

RA006. This germline variant has previously been associated with increased APOBEC-

signature mutations in primary breast cancer tumors22. Whether this variant is also 
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associated with high APOBEC-mutagenesis and mutational heterogeneity within thymic 

carcinoma is unknown, as no previous multi-region sequencing study has been performed 

on this rare tumor type. Additionally, to our knowledge, apart from the current study, this 

variant has not been examined in relation to APOBEC-mutagenesis in metastatic disease. 

Given that this germline variant can easily be tested utilizing blood DNA, our results 

warrant further testing of the association between this APOBEC3 germline variant with 

APOBEC mutagenesis and mutational tumor heterogeneity in thymic carcinoma as well 

as other metastatic tumor types.   

Our integrated CNA, RNA-seq and quantitative mass spectrometry study 

demonstrate that late-event CNAs can be important drivers in the evolution of metastatic 

cancer through downstream changes in transcript and protein abundance. Early studies 

in yeast showed CNAs for a given gene lead to proportional increases in protein 

abundance48-51. More recently, studies in primary tumors demonstrated variability in CNA 

to protein cis-effects52-54. In metastatic disease, multiple studies have reported late-event 

CNAs12,18,55-58 but the effect of CNAs on transcript and protein abundance has not been 

examined.  

In one recent metastatic pancreatic cancer study, CNA differences among tumor 

suppressor genes were not evident at the protein level by IHC suggesting late-event 

CNAs can be stochastic changes rather than evolutionary selected events17. In the 

current study, all patients had some evidence of late-event CNAs. However, only patients 

with significant differences in late-event CNAs between tumors exhibited corresponding 

differences in transcript and protein abundance.  In light of the recent association between 

copy number heterogeneity and increased recurrence and death in early stage NSCLC2, 
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our results raise the question of whether late-event CNAs, through downstream effects 

on gene expression and protein abundance, can result in worse outcomes for a subset of 

patients with metastatic cancer.  Proteomic heterogeneity induced in part by CNAs may 

also explain why chromosomal instability (CIN) has been associated with poor outcomes 

in cancer2,59-61. Importantly, proteomic heterogeneity in our set of metastatic tumors, was 

much higher than CNA and transcriptomic heterogeneity, suggesting other mechanisms 

such as epigenetic and post-translational modifications may also be important drivers of 

proteomic heterogeneity.  

Through our unbiased analysis of transcriptomic and proteomic data, we found 

enrichment of IFN signaling within the microenvironment of tumors of patients with the 

highest APOBEC3 region transcript expression. APOBEC3A and APOBEC3B are IFN-

stimulated genes induced in vitro by IFN stimulation and viral infections that activate an 

IFN response30-32. These data support the known role of APOBEC mutagenesis 

contributing to non-cytolytic viral clearance62. Our data suggests IFN signaling within the 

tumor microenvironment may, in part, influence APOBEC3 region transcript expression 

and thereby contribute to heterogeneity in APOBEC-signature mutations within the 

tumors of a given patient.  

We also found transcriptomic and proteomic heterogeneity in immune signatures 

within and between patients. Major advances have been made in the treatment of 

metastatic tumors, including lung adenocarcinoma and thymic carcinoma, through 

immunotherapies such as immune checkpoint blockade63,64. Nonetheless, only a subset 

of patients responds and metastases within a given patient may respond differently due 

to immune heterogeneity65. Even without immunotherapy, metastases within a patient 
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may also have differing tumor immune microenvironments, as we demonstrate within 

thymic carcinoma patient RA006 and as has been recently shown within an ovarian 

cancer patient66. We further demonstrate that, within a given patient, the tumor immune 

microenvironment may exhibit substantial differences between the transcript and protein 

expression, adding to the complexity of assessing the immune microenvironment.  

One strength of our study is the comprehensive examination of tumor 

heterogeneity by integrating genomic (exome, CNA), transcriptomic (RNA-seq) and 

proteomic (global mass spectrometry analysis for protein abundance) data from multiple 

metastatic tumors procured through rapid autopsy. One of the limitations of our study is 

that all autopsy patients in this study were diagnosed at the late stage of metastatic 

disease. Hence, we were unable to conduct a complete temporal analysis of tumor 

evolution from early to late stage disease. The ongoing TRACERx study2,26 and co-

recruitment of those patients to the PEACE (Posthumous Evaluation of Advanced Cancer 

Environment) post-mortem study67 will allow for better elucidation of the evolution primary 

tumor to metastatic advanced disease, including at the end of life.   

In conclusion, in this report, we present the heterogeneous genomic, 

transcriptomic and proteomic landscape of metastatic lung and thymic carcinoma as well 

as identify possible mechanisms underlying such multi-level heterogeneity. High activity 

of the APOBEC3 enzymes, represented by transcript expression, and modulated by 

germline variants, mutant TP53, and the immune microenvironment, can greatly alter the 

genomic landscape between metastatic tumors of a given patient. Arm-level and focal 

CNAs occurring later in tumor evolution can generate significant downstream 

heterogeneity through effects on gene expression and protein abundance. Further studies 
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by comprehensive analyses of multiple metastatic sites from larger patient populations, 

including different tumor types, are warranted to validate these mechanisms. Such an 

endeavor requires development of rapid autopsy programs, meticulous collection and 

processing of tumors from all possible sites of disease and integrated “omics” analyses. 

These tumor heterogeneity studies will be integral for evaluating the outcomes of ongoing 

clinical trials, developing new paradigms in clinical trial design and ultimately to improve 

survival for patients with metastatic cancer.    

 

 

METHODS 

Rapid Autopsy  

Samples were obtained from five patients diagnosed with thoracic malignancies 

who underwent rapid autopsy. Informed consent for rapid autopsy was obtained under an 

IRB approved protocol 13-C-0131 (NCT01851395) entitled “A Pilot Study of Inpatient 

Hospice with Procurement of Tissue on Expiration in Thoracic Malignancies.”  Patients 

previously treated at the NCI and with life expectancy less than 3 months were offered 

inpatient hospice treatment at the Clinical Center of the National Institutes of Health and 

upon death autopsies were initiated within 3 hours. One patient, RA003, elected to 

receive end of life care at home and was subsequently transported to the NIH Clinical 

Center post-mortem. Prioritization of lesions removed at autopsy was based on CT scan 

performed within one month before death. All tumors within each patient were removed 

by an experienced pathologist and macro dissected to remove surrounding non-

neoplastic tissue. Punch biopsy needles were used to obtain spatially distinct cores from 
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each tumor. One-third of each tissue core sample was fixed in 10% buffered formalin, 

one-third in optimal cutting temperature compound (OCT) and the remaining tissue was 

immediately flash frozen in liquid nitrogen and stored at −80 °C. For each tissue sample, 

a 5-μm section was taken to create a hematoxylin and eosin slide to visualize neoplastic 

cellularity using a microscope.  

A normal control for each patient was represented by a normal tissue, if available, 

and/or a blood sample. DNA and RNA was isolated from approximately 30 mg of snap-

frozen tumor tissue using the All Prep DNA/RNA Mini Kit (Qiagen). RNA was partially 

degraded with an average RNA integrity number 5.17 but was comparable between 

organs of different patients and similar in quality to previous post-mortem studies (van 

der Linden et al., 2014). To ensure adequate quality, samples RA003_L2f, RA006_LN2a, 

RA005_L4a were removed post-sequencing but before analyses due to low tumor content 

(less than 20 percent) based on Sequenza purity estimates. 

 

Whole-exome sequencing data processing, variants calling, filtering and annotation  

 Whole-exome sequencing of tumor and normal samples was performed at a 

sequencing core at the NCI Frederick National Laboratory at the National Cancer Institute 

(NCI). Libraries were constructed and then sequenced as 2 × 126 nt paired-end reads 

with Illumina HiSeq2500 sequencers. Mean coverage depth was 161x (range 114x to 

231x). Raw sequencing data in FASTQ format were aligned against the reference human 

genome (hg19) with BWA68. The alignment BAM files were further processed following 

GATK’s best practices69 with Picard tools, namely MarkDuplicates, IndelRealigner, and 

BaseQRecalibrator. Somatic variants were then called from the processed BAM files 
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using Strelka (v1.0.10)70 with the default version of BWA configuration file. The identified 

somatic variants reported in the “passed” vcf files by Strelka were used for further 

analysis. Variants were functionally annotated using snpEff/snpSift version 3.4 (see 

URLs) with databases of GRCh37.70 and dbNSFP version 3.4, and the types of variants 

were filtered using snpSift71. If a variant was also reported in one of the three public 

databases: 1000 Genome Project, ExAC, and ESP-NHLBI with a MAF greater than 5%, 

the variant was removed.  For each patient, variants identified by Strelka70 from all tumor 

regions were combined to get a unique variant list. Using this patient-specific list, if a 

variant in a particular tumor site was not called by Strelka, the Samtools mpileup was 

used to retrieve the reference and alternative reads coverage for each SNV site. If the 

site had >= 2 alternative reads and VAF >=1%, the SNV was considered present in the 

tumor site. For short indels, if the variant site was not in the “passed” vcf file, the Strelka 

called “all” vcf file is used to retrieve the reference and alternative reads coverage; if 

missing in the “all” vcf file, the indel site was considered absent. Patient RA000 was 

previously known to have a KRAS G12C mutation based on molecular profiling. Although 

this mutation did not pass variant filtering, it was noted on manual review. Identified 

missense mutations were manually reviewed using the Integrative Genomics Viewer 

version 2.472,73. 

  

Phylogenetic analysis 

 Phylogenetic analysis was conducted using Phangorn74 and phytools R packages 

with all identified variants (silent and non-silent) from all tumor sites in each patient after 

converting the mutation profile into binary format. The initial phylogenetic relationships 
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between tumor regions for an individual patient was inferred using both the Maximum 

Parsimony and the Unweighted Pair Group Methods (UPGMA). Phylogenetic trees were 

then redrawn by hand in Adobe Illustrator with branch length proportional to the number 

of mutations specific to one tumor (private), two or more tumors (shared) or all tumors 

(trunk). Driver mutations and focal CNAs were added to the branches. All non-

synonymous and synonymous mutations were used for tree construction. Signature 

analysis was performed for each individual tumor as well as trunks and each subsequent 

branch point for each tumor using deconstructSigs75. Mutations that were not signature 

1, 2, 4, 5, or 13-type were labeled as “unclassified”. Mutational signature analysis was 

restricted to branches with at least 10 mutations.  COSMIC mutational signatures were 

calculated for each branch using the R “deconstrucSigs” package75. Copy number 

phylogenetic trees were generated by hand. Branch lengths were drawn for visualization 

purposes only.  

 

Identification and classification of driver mutations 

 All identified nonsynonymous mutations were filtered to include only driver genes 

based on large-scale non-small cell lung cancer sequencing studies 19,27,76-80 and in the 

COSMIC cancer gene census (downloaded June 2016). We classified all 

nonsynonymous mutations into categories as previously described1. Category 1 ‘high-

confidence driver mutations’ contained all disrupting mutations (nonsense, frameshift, 

splicing or ‘deleterious’ missense) in tumor suppressor genes or activating amino acid 

substitutions in non-small cell lung cancer oncogenes as described in lung cancer 

sequencing studies. Category 2 ‘putative driver mutations’ contained amino acid 
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substitutions located at the same position or up to 5 amino acids away from a substitution 

present in COSMIC. Category 3 ‘low confidence driver mutations’ contained all other 

nonsilent mutations in genes that were present in the lists of cancer-related genes 

described above. Mutations were then analyzed using COSMIC to determine whether the 

amino acid substitution has been previously identified.  Category 2 were further scored 

as ‘deleterious’ when at least two out of the three predictors classified the mutation as 

deleterious Functional prediction scores (SIFT, Polyphen2, and Provean). All category 1 

mutations were considered deleterious and category 3 mutations were not included as 

driver mutations in any analyses.   

 

APOBEC germline allele determination 

Germline APOBEC3AB deletion was genotyped by a proxy SNP rs12628403 and 

was genotyped using a custom-designed TaqMan genotyping assay, as described 

previously30. For patient RA006, the deletion status was also confirmed in all six tumors 

by Sanger sequencing, and expression analysis.  

 

qRT–PCR analysis 

Total RNA for all experiments was isolated with the Qiagen All Prep DNA/RNA Mini 

Kit with on-column DNase I treatment.  RNA quantity and quality as determined by RNA 

Integrity Number (RIN) were evaluated by Bioanalyzer RNA kit (Agilent). cDNA was 

prepared from equal amounts of total RNA for each sample with the RT2 first-strand cDNA 

kit and random hexamers with an additional DNA removal step (Qiagen). Expression of 

APOBEC3A, APOBEC3B, and APOBEC3AB deletion and endogenous controls GAPDH 
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and PPIA was measured in each cDNA with TaqMan expression assays from Thermo 

Fisher: custom assays were used for APOBEC3B:  (F: 

TGCTGGGAAAACTTTGTGTACAAT; R: ATGTGTCTGGATCCATCAGGTATCT; Probe: 

ATTCATGCCTTGGTACAAA), and APOBEC3AB  (F: 

ATCATGACCTACGATGAATTTAAGCA; R: AGCACATTGCTTTGCTGGTG; Probe: 

FAM- CATTCTCCAGAATCAGGG), and commercial assays Hs00377444_m1 for 

APOBEC3A, 4326317E for GAPDH and 4326316E for PPIA (Thermo Fisher Scientific). 

Reactions were performed in four technical replicates on QuantStudio 7 (Life 

Technologies) using TaqMan Gene Expression buffer (Life Technologies); water and 

genomic DNA were used as negative controls for all assays. Expression was measured 

by Ct values (PCR cycle at detection threshold). Expression of APOBEC3A, APOBEC3B 

and APOBEC3AB was individually normalized by the mean of endogenous controls 

(GAPDH and PPIA). Changes in expression were calculated using relative quantification 

method, as ΔCt = Ct (control) − Ct (target). 

 

Analysis of APOBEC mutagenesis 

APOBEC-signature mutation analysis for all autopsy tumor samples was 

determined using an R software package kindly provided by Dr. Dmitry A. Gordenin21,25,81. 

We used two variables in the file *_sorted_sum_all_fisher_Pcorr.txt: the 

'tCw_to_G+tCw_to_T' variable, which represents total counts of APOBEC-signature 

mutations, and the 'APOBEC_Enrich’ variable, which accounts for statistical significance 

of enrichment and represents the level APOBEC mutagenesis pattern per sample. This 

second variable is more stringent, as many samples were not enriched at a statistically 
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significant level and were classified as negative for APOBEC-signature mutations.  We 

identified APOBEC ‘hypermutators’ as those with signature 2 + 13 mutations (TCGA and 

Broad datasets) or total APOBEC mutations (TRACERx and our dataset) exceeding 1.5 

times the length of the interquartile range from the 75th percentile. This method to identify 

outliers has been previously described22.  

We also used the same R software package to determine RTCA and YTCA 

enrichment for patient RA006. A less stringent filtering of whole-exome variants was used 

to provide sufficient sample size for this analysis. A Benjamin-Hochberg P value of 0.05 

was used as a threshold for significance, unless specified otherwise, and all tests were 

two-sided.  

 

Copy Number Alteration Analysis 

Copy number alteration (CNA) analysis was performed using MIP array technology 

(Affymetrix OncoScan FFPE Express 2.0) with 334,183 sequence tag site probes which 

were used to measure DNA copy number at different loci across the human genome. 

Copy number data were processed and normalized using the Affymetrix OSCHP-SNP-

FASST2 algorithm within the Nexus Copy Number Software. We used a log2 ratio cut-off 

of +/− 0.5 to define focal copy number amplifications and deletions and +/- 0.25 to define 

arm-level copy number amplifications and deletions. To minimize overcalling 

heterogeneity of copy number alterations, we employed the following methods: 1) tumors 

without +/− 0.5 focal amplification/deletion were included if they had at log2 ratio +/- 0.2 

and tumors without +/- 0.25 arm-level amplification/deletion were included if they had a 

log2 ratio +/- 0.10; 2) at least two tumors within a patient were required to have an 
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amplification or deletion above the threshold of +/− 0.5 for focal and +/- 0.25 for arm; 3) 

an amplification/deletion was considered truncal if present in >80% of the tumors within 

a given patient.  Allele-specific focal copy number profiles were determined for primary 

tumors (available for three patients) using the Sequenza package.  Circos plots were 

generated using segmented GISTIC-output file for all tumors using circos v0.69-4, for 

every track the min and max are set to -1 and 1 respectively, values between -0.2 and 

0.2 are not shown in the figure. Arm-level changes as depicted in the copy number 

phylogenetic trees were determined using GISTIC.  

 

RNA-sequencing and data processing 

RNA-seq sequencing was performed on 31 out of 37 tumor sites. RNA-seq was 

done on Illumina HiSeq2500 platform to yield at least 100 million reads/sample using 

Illumina TruSeq V4 chemistry at 2 × 125 nt paired-end. Sequencing reads were aligned 

with TopHat version 2.0.1382 against the reference human genome hg19, with UCSC 

known gene transcripts as the gene model annotation. Expression on gene and isoform 

level was quantified with Cufflinks version 2.2.183.  

 

RNA-seq variant calling and mutation validation 

For RNASeq variants calling, sequencing reads were first aligned to hg19 with 

STAR version 2.4.2a and then with a second pass alignment to the transcriptome 

generated by STAR for each patient. For each identified SNV in WES, its expression was 

confirmed by the presence of sequencing reads of the alternative allele assessed by 

Samtools mpileup on TopHat generated BAM files from RNASeq data, whereas 
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alternative reads coverage for indels were extracted from vcf files generated by the GATK 

best practices variant calling on RNASeq (see URLs). 69% of whole exome variants had 

a minimum 1X RNA depth and of these expressed variants 59% were confirmed by RNA-

seq (Supplementary Fig. 2a).  55% of whole exome variants had minimum of 5X RNA 

depth and of these expressed variants 69% were confirmed by RNA-seq (Supplementary 

Fig. 2b). Validation rates for different variant types across all tumor samples were similar 

(range 42% silent to 56% nonsense) (Supplementary Fig. 2c).  

 

RNA-seq data analysis 

Cufflinks outputted FPKM values for each gene were normalized for all samples 

within each patient using limma package voom quantile method84. This expression data 

was used to predict enrichment scores among immune genes obtained from CIBERSORT 

for each sample33 and then using single-sample GSEA (ssGSEA) from GenePattern. 

Using the R package “fgsea”, GSEA preranked we performed to determine enrichment 

scores for REACTOME pathways. Principal component analysis (PCA) was used to 

combine clustered samples prior to conducting this analysis. 

 

Protein Extraction  

All but one tumor (RA004 – Li1a) had sufficient tissue for mass-spectrometry (MS)-

based proteomic characterization. About 10-15 mg of tumor tissue fresh-frozen in liquid 

nitrogen was lysed in 400µl of urea lysis buffer (20 mM HEPES pH 8.0, 8 M urea, 1 mM 

sodium orthovanadate, 2.5 mM sodium pyrophosphate and 1 mM ß-glycerophosphate) 

using a tissue lyser (Qiagen). Lysates were centrifuged at 14,000 rpm at 4oC for 10 mins 
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and the clear supernatants were transferred to new tubes. Protein concentrations were 

determined by the Modified Lowry method (BioRad).  

 

Enzymatic Digestion 

The protein lysate was reduced with 45 mM dithriothreitol (Sigma Aldrich, MO), 

alkylated with 100 mM iodoacetamide (Sigma Aldrich, MO), and subsequently digested 

with modified sequencing grade Trypsin (Promega, Madison, WI) at 30˚C overnight. The 

digest was then acidified using 0.1% TFA and the peptides were desalted using solid 

phase extraction C18 column (Supelco, Bellefonte, PA), and vacuum dried in a centrifugal 

evaporator. 

 

TMT-Labeling 

TMT10plex amine reactive reagents (0.8 mg per vial) (Thermo Fisher Scientific) 

were resuspended in 41 μL of anhydrous acetonitrile (ACN) and all 41 μL of each reagent 

was added to each sample and mixed briefly on a vortexer. Reactions were incubated at 

room temperature for 1 h, and then quenched by the addition of 8 μL of 5% hydroxylamine 

for 15 min and then combined at equal amount. All tumor tissues of LUAD patients RA000, 

RA003, RA005 and RA006 were pooled together to make a reference channel and 

labeled with TMT10-126. In a separate TMT labeling experiment, tumor tissues from 

patient RA006 were pooled together to make a reference channel.  

 

Basic reversed phase liquid chromatography (RPLC) fractionation 
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Basic RPLC separation was performed with a XBridge C18, 100 x 2.1 mm 

analytical column containing 5µm particles and equipped with a 10 x 2.1 mm guard 

column (Waters, Milford, MA) with a flow rate of 0.25 mL/min. The solvent consisted of 

10 mM triethylammonium bicarbonate (TEABC) as mobile phase A, and 10 mM TEABC 

in ACN as mobile phase B. Sample separation was accomplished using the following 

linear gradient: from 0 to 1% B in 5min, from 1 to 10% B in 5min, from 10 to 35% B in 

30min, and from 35 to 100% B in 5min, and held at 100% B for an additional 3min. A total 

of 96 fractions were collected during the LC separation in a 96-well plate in the presence 

of 12.5 µL of 1% formic acid. The collected fractions were concatenated into 12 fractions 

and dried in a vacuum centrifuge. One tenth of the peptides were injected directly for LC-

MS/MS analysis. 

 

LC-MS/MS analyses  

Peptides separated/fractionated by basic reversed-phase chromatography were 

analyzed on an LTQ-Orbitrap Elite interfaced with an UltimateTM 3000 RSLCnano System 

(Thermo Scientific, San Jose, CA). The dried peptides were loaded onto a nano-trap 

column (Acclaim PepMap100 Nano Trap Column, C18, 5 µm, 100 Å, 100 µm i.d. x 2 cm) 

and separated on an Easy-sprayTM C18 LC column (Acclaim PepMap100, C18, 2 μm, 

100 Å, 75 μm i.d. × 25 cm). Mobile phases A and B consisted of 0.1% formic acid in water 

and 0.1% formic acid in 90% ACN, respectively. Peptides were eluted from the column at 

300 nL/min using the following linear gradient: from 4 to 35% B in 60min, from 35 to 45% 

B in 5min, from 45 to 90% B in 5min, and held at 90% B for an additional 5min. The heated 

capillary temperature and spray voltage were 275°C and 2kV, respectively. Full spectra 
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were collected from m/z 350 to 1800 in the Orbitrap analyzer at a resolution of 120,000, 

followed by data-dependent HCD MS/MS scans of the fifteen most abundant ions at a 

resolution of 30,000, using 40% collision energy and dynamic exclusion time of 30s. 

 

Proteomic Data Analysis 

Peptides and proteins were identified and quantified using the Maxquant software 

package (version 1.5.3.30) with the Andromeda search engine85.  MS/MS spectra were 

searched against the Uniprot human protein database (May 2013, 38523 entries) and 

quantification was performed using default parameters for TMT10plex in MaxQuant. 

Corrected intensities of the reporter ions from TMT labels were obtained from the 

MaxQuant search.  The relative ratios were calculated for each channel to the reference 

channel. These ratios were then used to predict enrichment scores of overall immune 

signatures obtained from CIBERSORT33 using single-sample GSEA (ssGSEA) from 

GenePattern and for REACTOME pathways by GSEA preranked through the R package 

“fgsea”. Samples were similarly combined as described for the RNA-seq data analysis. 

Cufflinks outputted FPKM values for each gene were normalized for all samples within 

each patient using limma package voom quantile method. 

 

Construction and Immunohistochemistry of Tissue Microarray 

The physical construction of the TMA followed the guidelines previously used by 

the NCI Tissue Array Project. Each tumor from each autopsy patient was represented by 

1 tumor core of 1mm that was taken from the original paraffin block. Serial 5µm sections 
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were cut from the TMA block and used for immunohistochemical analysis.  We used 

previously reported methods for immunohistochemical staining of TMAs86. 

 

Integrating copy number, gene expression and protein abundance 

Pearson correlation coefficients (PCCs) were calculated across all common genes 

in copy number, gene expression and protein abundance data for each patient. Prior to 

calculating PCCs, gene expression data (RNA-seq FPKM) and protein abundance 

(protein ratios) were further normalized within each patient using the limma package with 

its voom quantile method. 3DPlots were created using the R package “scatterplot3d”. For 

arm-level analyses, normalized gene expression and protein abundance data was 

categorized by chromosomal arm. The mean of clusters of tumors, as determined 

previously by PCA, were calculated for both sets of data. Ratios were calculated between 

clusters and then log2 transformed. Probability density plots were generated with 1% 

outliers removed and x-axis of plots were restricted to -1 to 1 (log2 scale) for gene 

expression and -0.1 and +0.1 (log2 scale) for protein abundance for visualization 

purposes.  

 

Statistics and graphics 

All figures and graphs were generated using the “ggplot2” package available 

through the R statistical program. Linear regression, correlations and t-tests were 

conducted though the R base packages. All tests were two-tailed and p-values less than 

0.05 were considered significant.  
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URLs 

Firehose Broad GDAC, https://gdac.broadinstitute.org/ 

Webgestalt, http://webgestalt.org/ 

Gene pattern, https://software.broadinstitute.org/cancer/software/genepattern/ 

SnpEff, http://snpeff.sourceforge.net 

Gatk, https://software.broadinstitute.org/gatk/ 

National Cancer Institute’s Tissue Array Project, 

http://ccr.cancer.gov/tech_initiatives/tarp/default.asp 

 

Data Availability 

The sequencing and genotype data have been deposited at the database of Genotypes 

and Phenotypes (dbGaP), which is hosted by the National Center for Biotechnology 

Information (NCBI), under accession number phs001432.v1.p1. 
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Main Figure Legends 

Figure 1: Flowchart of Study. Five patients underwent rapid autopsy (defined here as 

within 3 hours of patient death). Thirty-three metastatic lung adenocarcinoma (LUAD) and 

7 metastatic thymic carcinoma tumors from lung, liver and kidney were subjected to 

whole-exome sequencing (WES), RNA-sequencing, copy number analysis, and mass-

spectrometry based proteomics followed by assessment of intra- and inter-metastatic 

tumor heterogeneity. Three samples were removed from the study after sequencing due 

to low tumor content. 

 

Figure 2: Intra- and inter-metastatic heterogeneity of somatic mutations of tumors from all 

autopsy patients. (a) Heat maps depict the distribution of non-silent somatic mutations 

among metastatic, and where available, primary tumors for each patient. Driver mutations 

are listed to the left of each heat map. The total number of non-silent mutations and the 

percentage of non-truncal mutations are shown below each heat map. The bars to the 

right of each heat map summarizes intra- and inter-metastatic heterogeneity; mutations 

present in all regions (purple), in more than one but not all (green), or only in one region 

(brown). Jaccard similarity coefficients of metastases within each patient based on 

mutations identified by (b) exome sequencing and (c) expressed variants by RNA-seq. 

Each circle represents the Jaccard similarity coefficient between two metastases. 

Coefficients range from zero to one representing highest and lowest heterogeneity, 

respectively.  The P-value for the difference in mean Jaccard similarity coefficients 

between two groups of patients is shown. P: tumor sample obtained at diagnosis; L: lung 

tumor at autopsy; Li: liver tumor at autopsy; K: kidney tumor at autopsy 
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Figure 3: Inferred phylogeny, mutational signatures and APOBEC associated 

heterogeneity.  Phylogenetic trees were generated from all validated mutations identified 

by whole-exome sequencing from tumors within patient (a) RA003, (b) RA006, (c) RA005, 

(d) RA000, and (e) RA004 using the maximum parsimony method. Trees are rooted in 

mutations common to all tumors within each patient. Trunk and branch lengths are 

proportional to the numbers of mutations acquired on the corresponding trunk or branch. 

Each private branch represents mutations unique to each individual tumor. Colors 

represent COSMIC mutational signatures. Driver mutations and focal copy number 

amplifications/deletions are mapped to the trunks and branches as indicated. Asterisks 

denote nonsense mutations. APOBEC fold enrichment correlates with (f) DNA Jaccard 

similarity coefficients and (g) RNA Jaccard similarity coefficients across tumors of all 

autopsy patients. Each circle represents mean APOBEC fold enrichment and the Jaccard 

similarity coefficient between two tumors from a given patient.  P: tumor sample obtained 

at diagnosis; L: lung tumor at autopsy; Li: liver tumor at autopsy; K: kidney tumor at 

autopsy. 

 

Figure 4: Relationship between APOBEC fold enrichment, mutational signatures, 

APOBEC3 region transcript expression, APOBEC3AB germline variant  and mutant 

TP53. (a) APOBEC fold enrichment of each tumor. Asterisks denote significant 

enrichment. Dashed line denotes zero enrichment of APOBEC mutations. Proportion of 

COSMIC signatures for each tumor appear below APOBEC fold enrichment. Number of 

risk alleles for APOBEC3 germline variant rs12628403 is shown below the proportion of 

COSMIC signatures. Expression of APOBEC3B, APOBEC3A and APOBEC3AB are 
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shown below the proportion of COSMIC signatures. Relative expression of isoforms 

APOBEC3B1, APOBEC3A1 and APOBEC3AB in tumor relative to normal lung or liver by 

custom TaqMan assays in (b) patient RA003 and (c) patient RA006. Six of the 37 tumors 

are not included here due to insufficient RNA for sequencing. (d) APOBEC signature 

mutations per megabase in TCGA and (e) Broad dataset and (f) total APOBEC mutations 

in TRACERx dataset in TP53 mutant compared to TP53 wildtype tumors. (g) APOBEC3B 

expression and (h) APOBEC3A expression in TP53 wildtype and mutant tumors in the 

TCGA dataset. P-values shown are adjusted for patient age and number of pack years 

smoked. ‡visual inspection of RNA-seq data shows expression of APOBEC3AB; see 

Supplementary Note for details. 

 

Figure 5: Intra-patient multi-omic tumor relationships. Pearson correlation coefficients 

(PCCs) are shown on each axis across all common genes identified in copy number, gene 

expression and protein abundance datasets between all tumors within patient (a) RA003, 

(b) RA006, (c) RA005, (d) RA004, and (e) RA000. Each circle represents the relationship 

between two tumors. Previously designated tumor clusters are assigned the same color.  

Colors are assigned independently for each patient. (f) PCCs between tumors from each 

patient grouped by data type: copy number, gene expression and protein abundance. P-

values for the difference in mean PCCs between data types are shown for each patient. 

 

Figure 6: Copy number heterogeneity corresponds with transcriptomic and proteomic 

heterogeneity. (a) Hierarchical clustering by copy number across the genome across all 

tumors from all patients (at cytoband resolution). Losses (purple) and gains (red) in log2 
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scale are depicted relative to mean ploidy. Mean ploidy is shown in the top row (rounded 

to nearest integer).  Copy number differences in chromosomal arms 4p and 7q between 

tumors of (b) patient RA006 and (c) patient RA003 and corresponding changes in FPKM 

and protein abundance. Probability density plots show log ratios of mean FPKM by 

chromosomal arm for sets of tumors as displayed. X-axis dashed line denotes ratio of 1 

(or log ratio 0). For visualization purposes, X-axis was cut at log -1 and 1 for RNA and log 

-0.1 and 0.1 for Protein. Y-axis was cut at probability density of 2. (d) Phylogenetic tree 

depicts tumors of patient RA004 with corresponding copy number and RNA-seq FPKM 

of CCND1 for each tumor. (e) Protein expression of CCND1 for tumors of patient RA004 

as assessed by immunohistochemistry from tissue microarrays. 

 

Figure 7: Site specific enrichment of interferon signaling pathways and immune signature 

heterogeneity. Single-sample gene set enrichment (ssGSEA) analysis of transcriptome 

and proteome using the REACTOME databases are shown for tumors from patients 

RA003 (a, b)  and RA006 (c, d). Significantly enriched interferon pathways (q < 0.05 for 

transcriptome, p < 0.10 for proteome) are colored red. Immune signature scores within 

the (e) transcriptome and (f) proteome are shown between all tumors of patients RA000, 

RA003, RA004, RA005 and RA006. Scores were normalized across all tumors separately 

for transcriptome and proteome. ES: enrichment score. Symbols denote comparisons 

between groups of tumors as indicated.  
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Table	1:	Relationship	between	TP53	mutation	status	and	APOBEC	hypermutators	in	lung	
adenocarcionoma	

	
TCGA:	The	Cancer	Genome	Atlas;	Broad:	Broad	Institute;	TRACERx:	TRAcking	Cancer	Evolution	through	therapy	
(Rx);	WT:	wildtype;	‡Tumors	grouped	by	patient		
	
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	 Hypermutator	 Non-hypermutator	 Test	for	trend	
Dataset	 TP53	

Mutant	
TP53	
WT	

Total	 TP53	
Mutant	

TP53	
WT	

Total	 X	statistic	 P	value	

TCGA	 34	 11	 44	 237	 217	 455	 8.09	 0.0044	
Broad	 7	 0	 7	 49	 47	 96	 4.48	 0.03	
TRACERx‡	 5	 0	 5	 23	 33	 56	 4.27	 0.04	
NCI	
Autopsy		

4	 0	 4	 1	 32	 33	 21.62	 3.2e-06	
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Supplementary Table Legends 

Supplementary Table 1: Clinical characteristics, autopsy findings and treatment history of 

all study patients 

 

Supplementary Table 2: Variants identified within each patient by whole-exome and RNA-

sequencing  

 

Supplementary Table 3: Jaccard similarity coefficients of metastases within each patient 

based on whole-exome, deep whole-exome and RNA sequencing 

 

Supplementary Table 4: Summary of APOBEC mutagenesis within each tumor based on 

whole-exome and RNA-sequencing  

 

Supplementary Table 5: Log2 copy number ratios of chromosomal arms within each 

patient  

 

Supplementary Table 6: Normalized FPKM of all genes within each patient categorized 

by chromosomal arm location 

 

Supplementary Table 7: Normalized protein abundance data of all genes within each 

patient categorized by chromosomal arm location 
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Supplementary Table 8: Log2 copy number ratios of amplified or deleted genes previously 

determined to be significant in lung cancer by GISTIC  

 

Supplementary Table 9: Common pathways identified by gene set enrichment analysis  

within transcriptomic and proteomic datasets between tumors of each patient  
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