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ABSTRACT

Elucidation of the proteogenomic evolution of metastatic tumors may offer insight
into the poor prognosis of patients harboring metastatic disease. We performed whole-
exome and transcriptome sequencing, copy number alterations (CNA) and mass
spectrometry-based quantitative proteomics of 37 lung adenocarcinoma (LUAD) and
thymic carcinoma (TC) metastases obtained by rapid autopsy and found evidence of
patient-specific, multi-dimensional heterogeneity. Extreme mutational heterogeneity was
evident in a subset of patients whose tumors showed increased APOBEC-signature
mutations and expression of APOBECS3 region transcripts compared to patients with
lesser mutational heterogeneity. TP53 mutation status was associated with APOBEC
hypermutators in our cohort and in three independent LUAD datasets. In a thymic
carcinoma patient, extreme heterogeneity and increased APOBEC3AB expression was
associated with a high-risk germline APOBEC3AB variant allele. Patients with CNA
occurring late in tumor evolution had corresponding changes in gene expression and
protein abundance indicating genomic instability as a mechanism of downstream
transcriptomic and proteomic heterogeneity between metastases. Across all tumors,
proteomic heterogeneity was greater than copy number and transcriptomic heterogeneity.
Enrichment of interferon pathways was evident both in the transcriptome and proteome
of the tumors enriched for APOBEC mutagenesis despite a heterogeneous immune
microenvironment across metastases suggesting a role for the immune
microenvironment in the expression of APOBEC transcripts and generation of mutational
heterogeneity. The evolving, heterogeneous nature of LUAD and TC, through APOBEC-

mutagenesis and CNA illustrate the challenges facing treatment outcomes.
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INTRODUCTION

Metastatic lung adenocarcinoma (LUAD) and thymic carcinoma (TC) have a poor
prognosis and treatment options are limited. Understanding the mechanisms by which
metastatic LUAD and TC evolve may provide greater insight into tumor progression and
may guide novel therapeutic avenues. Previous work characterizing the evolution of
primary non-small cell lung cancer (NSCLC) has demonstrated significant intra-tumor
heterogeneity1'3. However, metastatic lineages are known to occur early in primary tumor
development?; thus, it is critical to understand the evolution of metastatic NSCLC and
other metastatic cancer types. Autopsy programs®'? established to harvest tumor tissue
from metastatic sites at the end of life, have demonstrated significant heterogeneity
depending on tumor type'''®. For example, metastatic pancreatic cancer has high inter-
metastatic heterogeneity of genomic rearrangements12 but not of driver mutations'’,
whereas metastatic clear cell renal carcinoma has recurrent driver mutations that occur
late within individual metastases’® resulting in high inter-metastatic heterogeneity. These
and other tumor heterogeneity studies have largely focused on whole-exome or genome
sequencing approaches. The evolution of tumors at the level of the transcriptome or
proteome and the underlying mechanisms that may generate multidimensional
heterogeneity remain largely unknown.

Here, we sought to address the following questions: (i) What is the degree of
genomic (mutational and copy number), transcriptomic and proteomic heterogeneity
within and between metastases of a given patient? (ii) What is the relationship between

these three levels of heterogeneity? and (iii) What are the potential drivers of such
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heterogeneity? To address these questions, we performed rapid (“warm”) autopsies on
four patients with lung adenocarcinoma and one patient with thymic carcinoma. The
autopsies were initiated within three hours of death, which allowed for procurement of
sufficient quantity and quality of DNA, RNA and protein from metastatic tumor tissue for
whole-exome and transcriptome sequencing, DNA copy number analysis, and mass
spectrometry-based proteomics. Our integrated analysis of the genome, transcriptome
and proteome uncovered key mechanisms likely driving proteogenomic heterogeneity

within and across metastatic sites.

RESULTS

Sampling of metastatic tumors through rapid autopsy protocol

We have established a rapid (“warm") autopsy protocol for thoracic malignancies
(including lung cancers and thymic epithelial tumors, among others) at the NIH Clinical
Center. Under this protocol, patients with metastatic disease who are near the end of life
receive inpatient hospice care. Upon death, an autopsy is performed within three hours
to procure sufficient quantity and high-quality of DNA, RNA and protein from all possible
sites of metastatic disease. For this study, we enrolled four patients with lung
adenocarcinoma (LUAD) - patients RAOOO and RA004 who were previous smokers
known to harbor oncogenic KRAS mutations and patients RA003 and RA005 who were
both non-smokers with EGFR mutations. We additionally enrolled squamous cell thymic
carcinoma patient RA006, a non-smoker, who had an aggressive disease course marked
by no response to treatment and who died within 1.5 years of diagnosis (Supplementary

Table 1). All of our study patients were initially diagnosed with stage IV disease, had
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received chemotherapy and/or targeted therapy (range 2-8 lines of therapy) and were
previously enrolled in a clinical trial at the NIH Clinical Center, except for patient RA0O0O
(Supplementary Table 1). For each patient, we harvested between 44-183 metastatic
tumor lesions from multiple organs, including lung, liver and kidney (Supplementary Table
1). We selected a total of 40 tumor samples for further analyses based on tumor content
by histology (Fig. 1 and Supplementary Fig. 1). Three samples were removed from the
study after sequencing and further downstream analysis due to low tumor content.
Additional tumor tissue collected at the time of diagnosis, likely from the primary site, was

available for whole-exome sequencing in three patients (RA000, RA0O03 and RA00G).

Intra- and inter-metastatic mutational tumor heterogeneity is highly variable within

patients and can be extreme

We performed whole-exome sequencing (WES) on the metastatic tumors, primary
tumors, where available, and matched germline DNA from each patient. A range of 182
(RAO0%5) to 1058 (RA003) non-silent mutations were identified per patient (Supplementary
Table 2). RNA-seq demonstrated a high, independent validation rate of WES
(Supplementary Fig. 2), similar to previous studies'®. We found significant mutational
heterogeneity within each patient, with the percentage of non-truncal variants ranging
from 67% in RA0OO to 99% in RA003 (Fig. 2a).

Activating mutations in EGFR (RA003), and KRAS (RA000, RA004) were present
in all tumors — primary and metastatic. However, an activating HRAS mutation was
present in all metastatic sites of patient RAOO6 at autopsy, but not in the primary tumor at

the time of diagnosis. Patients RA0O03 and RA006 had an average of 12 and 14 non-
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truncal driver mutations, respectively. In contrast, there was an average of only 3.7 non-
truncal driver mutations in the other three patients (RA005, RA004, and RAO000),
demonstrating variability in driver mutation acquisition among patients (Fig. 2a). Intra-
tumor mutational heterogeneity in driver mutations was found when tested in RA003
tumors L2d/L2e (Fig. 2a).

We next calculated Jaccard similarity coefficients (defined as the ratio of shared to
all mutations between two metastatic tumors) for each patient to quantitatively assess
intra- and inter-metastatic tumor genomic heterogeneity (values O - 1 correspond to the

range from minimal to maximal heterogeneity'"?°) (

Supplementary Table 3). The means
of the Jaccard similarity coefficients for each patient ranged from 0.25 (RA003) to 0.73
(RA000) and were significantly different between patients (P=2.2x107"°, Kruskal-Wallis
rank sum test, Fig. 2b). Two patients, RAOO3 and RAOO6, were clear outliers and
exhibited what we termed “extreme” mutational heterogeneity. These two patients had
significantly lower combined mean Jaccard similarity coefficients compared to the other
patients (mean 0.28 vs. 0.57, P=2x10""°, Chi squared test) (Fig. 2b). Jaccard similarity
coefficients exhibited a similar trend based on expressed mutations identified by RNA-
seq analysis (Fig. 2c). Additional sequencing resulting in a median exome coverage of
487x (range 435 to 528) for the tumors from patients RAOO3 and RA006 did not
substantially alter the observed extreme level of heterogeneity (Supplementary Fig. 3 and
Supplementary Table 3). Collectively, these results indicate that intra- and inter-

metastatic mutational heterogeneity can vary considerably among patients, with extreme

heterogeneity evident in a subset of patients.
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APOBEC mutagenesis strongly correlates with mutational tumor heterogeneity

We next analyzed mutational signature profiles for each tumor and generated
phylogenetic trees layered with mutational signatures'? to elucidate whether specific
mutational processes could explain the observed variability in mutational tumor
heterogeneity. Smoking signature mutations (C->A) were highly prevalent in patients
RAO000 and RA004, who were smokers (Supplementary Fig. 4a, c). Mutations generated
by the cytosine deaminase activity of APOBEC (apolipoprotein B mRNA editing enzyme,
catalytic polypeptide-like) family of enzymes (substitutions of C with Tor Gin TCA or TCT
motifs®') were most prevalent in patients RA003, RA005 and RA006, who were all non-
smokers (Supplementary Fig. 4b, d, e). Smoking signature mutations were generally
truncal whereas APOBEC-signature mutations were largely in the shared and private
branches of the phylogenetic trees (Fig. 3a-e).

To further assess the timing of APOBEC-induced mutagenesis, we evaluated
mutational signatures in available tumors collected at the time of diagnosis. We found no
evidence of APOBEC mutagenesis in these samples, including those from patients
RAOO03 and RA006 (Fig. 3a, b), indicating that APOBEC-signature mutations were
acquired later, either during further progression of metastatic disease or upon subsequent
treatment. We next evaluated the relationship between APOBEC mutagenesis and
heterogeneity. APOBEC mutation fold enrichment, a measure of APOBEC mutagenesis®’
(Supplementary Table 4), strongly correlated with Jaccard similarity coefficients based on
WES variants (Pearson rho = -0.66, p = 2.2e-16) and expressed variants by RNA-seq

(Pearson rho = -0.55, p = 7.704e-08) (Fig. 3f, g). Taken together, these results suggest
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APOBEC mutagenesis significantly contributes to the generation of intra- and inter-

metastatic mutational heterogeneity.

Expression of APOBEC3 region transcripts correlates with APOBEC mutagenesis

Next, we examined RNA-seq data to determine whether APOBECS3 region
transcript expression contributes to variability in APOBEC mutagenesis. Among the
LUAD patients, we found APOBEC3B to be expressed at higher levels than APOBEC3A,;
this was particularly evident in the tumors of patient RA003 (Fig. 4a). APOBEC

)" was

mutagenesis (measured here by the counts of tCw to tTw and tGw mutations
highly correlated with APOBEC3B expression (Pearson rho=0.68, P=9.4x10%) but not
with APOBEC3A expression (Pearson rho =0.19, P=0.34) (Supplementary Fig. 5a, b).
Analysis of isoform-specific expression of APOBEC3A and APOBEC3B with custom
TagMan assays confirmed these results (Supplementary Fig. 5c, d). Moreover, within
patient RA003, who displayed multiple tumors with significant APOBEC mutagenesis
(Fig. 4a), APOBEC3B was expressed 20 to 50-fold higher than APOBECS3A (Fig. 4b).
To elucidate factors affecting APOBEC mutagenesis in our patients, we genotyped
an APOBEC3 germline variant, rs12628403, associated with increased APOBEC
mutagenesis®. This germline variant is a proxy for a 30-kb deletion that fuses the coding
region of APOBECS3A with the 3’ UTR of APOBECS3B to generate a chimeric APOBEC3A-
APOBEC3B (APOBEC3AB) transcript. This chimeric APOBECS3AB transcript is more
stable than the APOBECS3A transcript and leads to higher APOBECS3A protein levels in
vitro?>.  Only patient RA006, the thymic carcinoma patient, was a carrier of the

rs12628403 allele, and was predicted to generate the APOBEC3AB transcript (Fig. 4a).
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Indeed, we found expression of APOBECS3AB transcripts in patient RAO06 tumors from
RNA-seq data (Fig. 4a) and validated expression of this transcript using a TagMan assay
(Fig. 4c). However, the APOBECS3B transcript was also expressed in tumors from patient
RAO006, suggesting that both may have contributed to APOBEC mutagenesis. Expression
of APOBEC3B (Pearson rho=0.77, P=0.08) and APOBEC3AB (Pearson rho=0.62,
P=0.18) but not APOBEC3A (Pearson rho=0.23, P=0.67) significantly correlated with
APOBEC mutagenesis (Supplementary Fig. 6a-c).

Although expression of APOBEC3AB was lower than APOBEC3B (Fig. 4c),
APOBEC3A encoded by APOBEC3AB is considered a more potent inducer of
mutagenesis than APOBEC3B?*%/. Therefore, we quantified the contribution of
APOBEC3A and APOBEC3B to APOBEC mutagenesis by calculating YTCA and RTCA
enrichment (where Y is a purine and R is a pyrimidine), attributed to differential activity of
these enzymes?°. In all tumors with high APOBEC mutagenesis from patient RA006, there
was significant enrichment of YTCA compared to RTCA (Supplementary Fig. 6d), thereby
suggesting APOBEC3A-like mutagenesis as a likely driver of extreme heterogeneity in
this metastatic thymic carcinoma patient with a germline APOBEC3AB deletion. Together,
our results implicate expression of APOBECS3 region transcripts as a mediator of

APOBEC mutagenesis in metastatic lung adenocarcinoma and thymic carcinoma.

TP53 mutations are associated with APOBEC hypermutators in lung adenocarcinoma
We hypothesized that mutant TP53, present only in LUAD patient RAOO3, may be

contributing to high APOBEC3B expression and increased APOBEC mutagenesis. Using
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three independent LUAD datasets'®2%%’

, we found TP53 mutations correlated with higher
counts of APOBEC-signature mutations (Fig. 4d-f). Moreover, mutant TP53 was
associated with APOBEC ‘hypermutators’® in our cohort and in all three datasets (Table
1). Mutant TP53 was also associated with significantly higher expression of APOBEC3B,
as well as an increase in APOBEC3A, compared to wild-type TP53 tumors in the TCGA
dataset (Fig. 4g, h). Thus, our results suggest mutant TP53 contributes to increased

APOBEC3B expression, APOBEC mutagenesis and is associated with APOBEC

hypermutators in lung adenocarcinoma.

Integration of copy number, transcript and protein abundance highlights mechanisms of

proteomic heterogeneity

To evaluate multi-dimensional heterogeneity, we plotted Pearson correlation
coefficients (PCCs) for each data type between pairs of tumors for each patient across
all genes for which copy number, transcript expression, and protein abundance data were
available (Fig. 5a-e). Each patient displayed variable patterns of heterogeneity across
each data type. Patient RAOO3 exhibited the least (Fig. 5a), whereas patient RA004 the
most (Fig. 5d) heterogeneity. Patient RAO0OS showed the most heterogeneity in gene
expression and protein abundance only between tumor L5d and tumors L2a/L2b/L5c (Fig.
5c). Patient RAO06 showed lower heterogeneity in copy number, gene expression and
protein abundance within three pairs of tumors (L20b/L5a, Li3c/Li1a, L12a/L3a) compared
to other pairs (Fig. 5b).

Next, we plotted PCCs within each patient for each data type. Protein

heterogeneity was significantly greater than gene expression and CNA heterogeneity
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within all patients (Fig. 5f). We then performed pairwise comparison of the PCCs of each
data type (Supplementary Fig. 7). We found a strong, positive linear correlation between
CNA heterogeneity and protein heterogeneity for patients RA004 (Pearson rho=0.68,
p=7.5e-04) and RA006 (Pearson rho=0.80, p=3.74e-4) but not for the other patients
(Supplementary Fig. 7a, d, g, j, m), providing evidence that CNAs can lead to protein
heterogeneity in these patients. Gene expression heterogeneity was also associated with
protein heterogeneity but only in patients RA005, RA006 and RA000 (Supplementary Fig.
7b, k, n). Together, these results demonstrate high heterogeneity in protein abundance
between metastases of these patients which could stem from heterogeneity in CNA and

gene expression.

Late-event CNAs contribute to heterogeneity in gene expression and protein abundance

We next performed hierarchical clustering by chromosomal cytoband, gene
expression and protein abundance to further evaluate heterogeneity within each data
type. Metastases from each patient clustered together for CNA, gene expression and
protein abundance (Fig. 6a, Supplementary Fig. 8, 9a-b). Metastases from patients
RA004 and RA006 showed the lowest correlation in protein abundance (Supplementary
Fig. 9c, d) and clear differences in CNAs (Fig. 6a and Supplementary Table 5). To explore
the downstream effects of CNAs, we plotted gene expression and protein abundance
ratios of genes within each chromosomal arm between metastatic lineages of each
patient (Fig. 6b, c and Supplementary Tables 6 and 7). Arm-level CNAs within tumors of
patients RA0O06 and RA004 corresponded with changes in gene expression and protein

abundance of genes at the corresponding arm-level. For example, copy number
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differences in arm 4p between RA006 tumors corresponded with changes in expression
and protein abundance (Fig. 6b). Where there were no copy number differences, such
as in arm 7q in patient RA006 and arms 4p/7q of patient RA003, there were no
corresponding changes in gene expression and protein abundance (Fig. 6c¢).

Heterogeneity in focal-level CNAs also corresponded with changes in RNA and
protein. For example, CCND1 was highly amplified in patient RA004 tumors L2a, L3a and
L8b (Supplementary Table 8) which corresponded with high gene and protein expression.
On the other hand, tumors L1b and L1c in which there was minimal increase in CCND1
copy number, gene and protein expression were low (Fig. 6d, e). Interestingly, among
patient RAOO4 liver and kidney tumors, Li1b and K1, CCND1 was highly amplified with
correspondingly high protein but moderate gene expression, suggesting tissue specific
discordance of gene and protein expression of select genes (Fig. 6d, e).

We next constructed phylogenetic trees based on CNAs for each patient. Both arm
and focal-level CNAs largely occurred early in tumor development (i.e. truncal) in patients
RAO000, RA003 and RA00S (Supplementary Fig. 10, 11, 12 a-b) but occurred later in tumor
development (i.e. shared and private) in patients RA004 and RAO006 (Fig. 3,
Supplementary Fig. 13 and 14 a, b). These results suggest that late, not early, CNAs
likely contributed to the observed changes in gene expression and protein abundance
between metastases of these patients. Differential focal and arm-level CNAs may reflect
ongoing chromosomal instability as well as selective pressure during evolution of

metastatic lineages.
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Enrichment of interferon signaling pathways in tumors with high APOBEC3 expression

and immune heterogeneity

We next sought to decipher any common gene sets or pathways within the RNA-
seq and mass-spectrometry proteomics data that were heterogeneously enriched within
each patient. Using an unbiased approach with single-sample gene set enrichment
analysis (ssGSEA)*®%, we found interferon (IFN)-signaling pathways (related to activity
of IFN-a, IFN-B and IFN-y), were the most significantly and differentially enriched
pathways within patient RAOO3 (tumors L1 and L4a) and RA006 (tumors L20b, L5a, Li1a
and Li3c) (Fig. 7a-d) at both gene expression and protein abundance levels. No common
outlier gene sets were identified for the negatively enriched pathways. Within the tumors
from patients RA0O00O, RA004 and RA005, no recurrent, common pathways were identified
by GSEA of both the transcriptome and proteome (Supplementary Table 9). The six
tumors from patients RAO0O3 and RA006G that were enriched in IFN-signaling pathways
also had the highest expression of APOBECS3 region transcripts (Fig. 3a, b, c). Given that
APOBEC3A and APOBEC3B are IFN-stimulated genes®®*?, our results suggest IFN-
signaling within the tumor immune microenvironment as a potential mechanism of
heterogeneity in APOBECS3 region transcript expression.

To further interrogate heterogeneity in the immune microenvironment between
tumors of each patient in an unbiased manner, we analyzed the gene expression and
protein abundance data using ssGSEA based on CIBERSORT immune genes®. The
overall immune signature score for tumors within each patient varied considerably
between transcriptome and proteome in patients RA003 and RA00S5 (Fig. 7e, f). Patients

RAO00 and RA004 showed low and high overall immune signature scores, respectively
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(Fig. 7e, f). In contrast, tumors from patient RAOO6 showed large and consistent
differences in immune signature scores across both the transcriptome and proteome
(high in L20b and L5a vs. low in L12a, L3a, Li1a, Li3c), demonstrating heterogeneous

immune cell infiltration in the tumor microenvironment of this patient.

DISCUSSION

Genomic, transcriptomic and proteomic analyses of tumors from multiple anatomic
sites sampled through rapid autopsy offer a unique opportunity to comprehensively
explore the biological processes that shape the evolution of metastatic tumors. Here,
through rapid autopsy, we have characterized, for the first time, the proteogenomic
evolution of metastatic lung and thymic carcinoma through exome and transcriptome
sequencing, CNA analysis, and unbiased quantitative mass spectrometry-based
proteomics of 37 metastatic tumors. Most importantly, we have uncovered mechanisms
likely driving the mutational, transcriptomic and proteomic landscape of these metastatic
tumors.

At the genomic level, we provide evidence that APOBEC mutagenesis may be a
driver of mutational heterogeneity in metastatic lung and thymic carcinoma tumors.
APOBEC mutagenesis has been described as one of the most common mutational
processes second only to “ageing”™*. To date, however, within thoracic tumors, this
process has been described mostly in primary tumors’*>¢. These studies have shown
APOBEC mutagenesis to be associated with subclonal mutations that occur late in the
evolution of primary tumors and within spatially distinct regions1'2. In our study, we

identified a subset of patients with high APOBEC-mutagenesis in metastases, but not in
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the primary tumor, suggesting APOBEC-mutagenesis can generate mutations late in the
evolution of metastatic disease. Given that all patients in our cohort received prior
treatment, we cannot exclude the possibility that therapy contributed to the observed
findings. However, recent studies assessing tumors pre- and post- chemotherapy in
multiple tumor types did not find an increase in overall mutational load or a significant
increase in APOBEC-signature mutations®'*®. Moreover, the patients in our cohort with
the highest level of APOBEC-mutagenesis, RA003 and RA00G, received the least therapy
prior to autopsy.

While the existence of mutational heterogeneity in metastases has been previously
described'®'?, the mechanisms have not been clear®. Our data suggest APOBEC
mutagenesis can generate both putative driver and passenger mutations late in
metastases, thereby generating inter-metastatic mutational heterogeneity that in some
cases can be extreme. These results stand in contrast to recent genomic studies of the
metastases of patients with pancreatic'” and prostate'® cancer, which have shown limited
mutational heterogeneity and no significant APOBEC mutagenesis?’. Both of these tumor
types have also shown no evidence of APOBEC mutagenesis within primary tumors
highlighting the likely histologic specificity of this process. Ultimately, the clinical
importance of APOBEC mutagenesis will be determined by the response of
heterogeneous metastatic tumors - with and without APOBEC-signature mutations - to
chemotherapy, targeted agents and/or immunotherapy.

Both APOBEC3A and APOBEC3B have been shown to localize to the nucleus®
leading to potent DNA damage*!, deaminase activity and base substitutions in the

35,42

genome Upregulation of APOBEC3B causes APOBEC-signature mutations in
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vitro®>. Expression of APOBEC3A and APOBEC3B has also been associated with
APOBEC-signature mutations in primary tumors from multiple cancer types including
LUAD?3%3844 "However, it is unclear whether these same transcripts promote APOBEC
mutagenesis in metastatic lung and thymic carcinoma tumors. In our set of metastatic
tumors, we observed a strong correlation between expression of APOBEC3B and
APOBECS3AB transcripts and APOBEC mutagenesis suggesting expression of such
transcripts may be a more dominant mechanism of APOBEC mutagenesis in metastatic
thoracic tumors as opposed to earlier stage disease. These results are in line with recent
work in breast cancer that has shown higher APOBEC mutagenesis in metastatic disease
compared to early stage primary tumors®.

Mutant TP53 has previously been associated with higher APOBEC-signature
mutations in breast cancer®® and there is recent evidence that TP53 can repress
APOBEC3B expression through direct transcriptional regulation of its promoter®>#®4”_ Qur
results suggest mutant TP53 may be an important contributor of increased APOBEC3B
and subsequent generation of APOBEC-signature mutations in LUAD. In particular, we
show mutant TP53 is associated with APOBEC hypermutators in LUAD using three large-
scale independent datasets. Whether such APOBEC hypermutators also display extreme
mutational heterogeneity similar to patient RA0O03, and how these patients may respond
to therapy will be important to assess in future clinical trials.

Expression of the APOBECS3AB transcript was captured in our study by the
presence of the APOBECS3 germline variant, rs1262840, within thymic carcinoma patient
RAO006. This germline variant has previously been associated with increased APOBEC-

signature mutations in primary breast cancer tumors®. Whether this variant is also
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associated with high APOBEC-mutagenesis and mutational heterogeneity within thymic
carcinoma is unknown, as no previous multi-region sequencing study has been performed
on this rare tumor type. Additionally, to our knowledge, apart from the current study, this
variant has not been examined in relation to APOBEC-mutagenesis in metastatic disease.
Given that this germline variant can easily be tested utilizing blood DNA, our results
warrant further testing of the association between this APOBEC3 germline variant with
APOBEC mutagenesis and mutational tumor heterogeneity in thymic carcinoma as well
as other metastatic tumor types.

Our integrated CNA, RNA-seq and quantitative mass spectrometry study
demonstrate that late-event CNAs can be important drivers in the evolution of metastatic
cancer through downstream changes in transcript and protein abundance. Early studies
in yeast showed CNAs for a given gene lead to proportional increases in protein
abundance®®®". More recently, studies in primary tumors demonstrated variability in CNA
to protein cis-effects®>>*. In metastatic disease, multiple studies have reported late-event
CNAs'21835%8 Kyt the effect of CNAs on transcript and protein abundance has not been
examined.

In one recent metastatic pancreatic cancer study, CNA differences among tumor
suppressor genes were not evident at the protein level by IHC suggesting late-event
CNAs can be stochastic changes rather than evolutionary selected events'. In the
current study, all patients had some evidence of late-event CNAs. However, only patients
with significant differences in late-event CNAs between tumors exhibited corresponding
differences in transcript and protein abundance. In light of the recent association between

copy number heterogeneity and increased recurrence and death in early stage NSCLC?,
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our results raise the question of whether late-event CNAs, through downstream effects
on gene expression and protein abundance, can result in worse outcomes for a subset of
patients with metastatic cancer. Proteomic heterogeneity induced in part by CNAs may
also explain why chromosomal instability (CIN) has been associated with poor outcomes
in cancer>>®®'. Importantly, proteomic heterogeneity in our set of metastatic tumors, was
much higher than CNA and transcriptomic heterogeneity, suggesting other mechanisms
such as epigenetic and post-translational modifications may also be important drivers of
proteomic heterogeneity.

Through our unbiased analysis of transcriptomic and proteomic data, we found
enrichment of IFN signaling within the microenvironment of tumors of patients with the
highest APOBECS3 region transcript expression. APOBEC3A and APOBEC3B are IFN-
stimulated genes induced in vitro by IFN stimulation and viral infections that activate an

IFN response®®*

. These data support the known role of APOBEC mutagenesis
contributing to non-cytolytic viral clearance®®. Our data suggests IFN signaling within the
tumor microenvironment may, in part, influence APOBECS3 region transcript expression
and thereby contribute to heterogeneity in APOBEC-signature mutations within the
tumors of a given patient.

We also found transcriptomic and proteomic heterogeneity in immune signatures
within and between patients. Major advances have been made in the treatment of
metastatic tumors, including lung adenocarcinoma and thymic carcinoma, through
immunotherapies such as immune checkpoint blockade®®*. Nonetheless, only a subset

of patients responds and metastases within a given patient may respond differently due

to immune heterogeneityﬁs. Even without immunotherapy, metastases within a patient
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may also have differing tumor immune microenvironments, as we demonstrate within
thymic carcinoma patient RAOO6 and as has been recently shown within an ovarian
cancer patient®®. We further demonstrate that, within a given patient, the tumor immune
microenvironment may exhibit substantial differences between the transcript and protein
expression, adding to the complexity of assessing the immune microenvironment.

One strength of our study is the comprehensive examination of tumor
heterogeneity by integrating genomic (exome, CNA), transcriptomic (RNA-seq) and
proteomic (global mass spectrometry analysis for protein abundance) data from multiple
metastatic tumors procured through rapid autopsy. One of the limitations of our study is
that all autopsy patients in this study were diagnosed at the late stage of metastatic
disease. Hence, we were unable to conduct a complete temporal analysis of tumor

226 and co-

evolution from early to late stage disease. The ongoing TRACER, study
recruitment of those patients to the PEACE (Posthumous Evaluation of Advanced Cancer
Environment) post-mortem study®” will allow for better elucidation of the evolution primary
tumor to metastatic advanced disease, including at the end of life.

In conclusion, in this report, we present the heterogeneous genomic,
transcriptomic and proteomic landscape of metastatic lung and thymic carcinoma as well
as identify possible mechanisms underlying such multi-level heterogeneity. High activity
of the APOBEC3 enzymes, represented by transcript expression, and modulated by
germline variants, mutant TP53, and the immune microenvironment, can greatly alter the
genomic landscape between metastatic tumors of a given patient. Arm-level and focal

CNAs occurring later in tumor evolution can generate significant downstream

heterogeneity through effects on gene expression and protein abundance. Further studies
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by comprehensive analyses of multiple metastatic sites from larger patient populations,
including different tumor types, are warranted to validate these mechanisms. Such an
endeavor requires development of rapid autopsy programs, meticulous collection and
processing of tumors from all possible sites of disease and integrated “omics” analyses.
These tumor heterogeneity studies will be integral for evaluating the outcomes of ongoing
clinical trials, developing new paradigms in clinical trial design and ultimately to improve

survival for patients with metastatic cancer.

METHODS

Rapid Autopsy

Samples were obtained from five patients diagnosed with thoracic malignancies
who underwent rapid autopsy. Informed consent for rapid autopsy was obtained under an
IRB approved protocol 13-C-0131 (NCT01851395) entitled “A Pilot Study of Inpatient
Hospice with Procurement of Tissue on Expiration in Thoracic Malignancies.” Patients
previously treated at the NCI and with life expectancy less than 3 months were offered
inpatient hospice treatment at the Clinical Center of the National Institutes of Health and
upon death autopsies were initiated within 3 hours. One patient, RA003, elected to
receive end of life care at home and was subsequently transported to the NIH Clinical
Center post-mortem. Prioritization of lesions removed at autopsy was based on CT scan
performed within one month before death. All tumors within each patient were removed
by an experienced pathologist and macro dissected to remove surrounding non-

neoplastic tissue. Punch biopsy needles were used to obtain spatially distinct cores from
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each tumor. One-third of each tissue core sample was fixed in 10% buffered formalin,
one-third in optimal cutting temperature compound (OCT) and the remaining tissue was
immediately flash frozen in liquid nitrogen and stored at —80 °C. For each tissue sample,
a 5-um section was taken to create a hematoxylin and eosin slide to visualize neoplastic
cellularity using a microscope.

A normal control for each patient was represented by a normal tissue, if available,
and/or a blood sample. DNA and RNA was isolated from approximately 30 mg of snap-
frozen tumor tissue using the All Prep DNA/RNA Mini Kit (Qiagen). RNA was partially
degraded with an average RNA integrity number 5.17 but was comparable between
organs of different patients and similar in quality to previous post-mortem studies (van
der Linden et al., 2014). To ensure adequate quality, samples RA003_L2f, RA0O06_LNZ2a,
RAO005_L4a were removed post-sequencing but before analyses due to low tumor content

(less than 20 percent) based on Sequenza purity estimates.

Whole-exome sequencing data processing, variants calling, filtering and annotation

Whole-exome sequencing of tumor and normal samples was performed at a
sequencing core at the NCI Frederick National Laboratory at the National Cancer Institute
(NCI). Libraries were constructed and then sequenced as 2 x 126 nt paired-end reads
with lllumina HiSeq2500 sequencers. Mean coverage depth was 161x (range 114x to
231x). Raw sequencing data in FASTQ format were aligned against the reference human
genome (hg19) with BWA®®, The alignment BAM files were further processed following
GATK’s best practices®® with Picard tools, namely MarkDuplicates, IndelRealigner, and

BaseQRecalibrator. Somatic variants were then called from the processed BAM files
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using Strelka (v1.0.10)"° with the default version of BWA configuration file. The identified
somatic variants reported in the “passed” vcf files by Strelka were used for further
analysis. Variants were functionally annotated using snpEff/snpSift version 3.4 (see
URLSs) with databases of GRCh37.70 and dbNSFP version 3.4, and the types of variants
were filtered using snpSift”!. If a variant was also reported in one of the three public
databases: 1000 Genome Project, EXAC, and ESP-NHLBI with a MAF greater than 5%,
the variant was removed. For each patient, variants identified by Strelka’® from all tumor
regions were combined to get a unique variant list. Using this patient-specific list, if a
variant in a particular tumor site was not called by Strelka, the Samtools mpileup was
used to retrieve the reference and alternative reads coverage for each SNV site. If the
site had >= 2 alternative reads and VAF >=1%, the SNV was considered present in the
tumor site. For short indels, if the variant site was not in the “passed” vcf file, the Strelka
called “all” vcf file is used to retrieve the reference and alternative reads coverage; if
missing in the “all” vcf file, the indel site was considered absent. Patient RAO0O was
previously known to have a KRAS G12C mutation based on molecular profiling. Although
this mutation did not pass variant filtering, it was noted on manual review. Identified
missense mutations were manually reviewed using the Integrative Genomics Viewer

version 2.4773,

Phylogenetic analysis

Phylogenetic analysis was conducted using Phangorn™ and phytools R packages
with all identified variants (silent and non-silent) from all tumor sites in each patient after

converting the mutation profile into binary format. The initial phylogenetic relationships
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between tumor regions for an individual patient was inferred using both the Maximum
Parsimony and the Unweighted Pair Group Methods (UPGMA). Phylogenetic trees were
then redrawn by hand in Adobe lllustrator with branch length proportional to the number
of mutations specific to one tumor (private), two or more tumors (shared) or all tumors
(trunk). Driver mutations and focal CNAs were added to the branches. All non-
synonymous and synonymous mutations were used for tree construction. Signature
analysis was performed for each individual tumor as well as trunks and each subsequent
branch point for each tumor using deconstructSigs’>. Mutations that were not signature
1, 2, 4, 5, or 13-type were labeled as “unclassified”. Mutational signature analysis was
restricted to branches with at least 10 mutations. COSMIC mutational signatures were
calculated for each branch using the R “deconstrucSigs” package’. Copy number
phylogenetic trees were generated by hand. Branch lengths were drawn for visualization

purposes only.

Identification and classification of driver mutations

All identified nonsynonymous mutations were filtered to include only driver genes

19,27,76-80 and |n the

based on large-scale non-small cell lung cancer sequencing studies
COSMIC cancer gene census (downloaded June 2016). We classified all
nonsynonymous mutations into categories as previously described'. Category 1 ‘high-
confidence driver mutations’ contained all disrupting mutations (nonsense, frameshift,
splicing or ‘deleterious’ missense) in tumor suppressor genes or activating amino acid

substitutions in non-small cell lung cancer oncogenes as described in lung cancer

sequencing studies. Category 2 ‘putative driver mutations’ contained amino acid
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substitutions located at the same position or up to 5 amino acids away from a substitution
present in COSMIC. Category 3 ‘low confidence driver mutations’ contained all other
nonsilent mutations in genes that were present in the lists of cancer-related genes
described above. Mutations were then analyzed using COSMIC to determine whether the
amino acid substitution has been previously identified. Category 2 were further scored
as ‘deleterious’ when at least two out of the three predictors classified the mutation as
deleterious Functional prediction scores (SIFT, Polyphen2, and Provean). All category 1
mutations were considered deleterious and category 3 mutations were not included as

driver mutations in any analyses.

APOBEC germline allele determination

Germline APOBEC3AB deletion was genotyped by a proxy SNP rs12628403 and
was genotyped using a custom-designed TagMan genotyping assay, as described
previously3°. For patient RA00G, the deletion status was also confirmed in all six tumors

by Sanger sequencing, and expression analysis.

gRT—PCR analysis

Total RNA for all experiments was isolated with the Qiagen All Prep DNA/RNA Mini
Kit with on-column DNase | treatment. RNA quantity and quality as determined by RNA
Integrity Number (RIN) were evaluated by Bioanalyzer RNA kit (Agilent). cDNA was
prepared from equal amounts of total RNA for each sample with the RT2 first-strand cDNA
kit and random hexamers with an additional DNA removal step (Qiagen). Expression of

APOBEC3A, APOBEC3B, and APOBEC3AB deletion and endogenous controls GAPDH
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and PPIA was measured in each cDNA with TagMan expression assays from Thermo
Fisher: custom assays were used for APOBECS3B: (F:
TGCTGGGAAAACTTTGTGTACAAT; R: ATGTGTCTGGATCCATCAGGTATCT; Probe:
ATTCATGCCTTGGTACAAA), and APOBEC3AB (F:
ATCATGACCTACGATGAATTTAAGCA; R: AGCACATTGCTTTGCTGGTG; Probe:
FAM- CATTCTCCAGAATCAGGG), and commercial assays Hs00377444 m1 for
APOBEC3A, 4326317E for GAPDH and 4326316E for PPIA (Thermo Fisher Scientific).
Reactions were performed in four technical replicates on QuantStudio 7 (Life
Technologies) using TagMan Gene Expression buffer (Life Technologies); water and
genomic DNA were used as negative controls for all assays. Expression was measured
by Ct values (PCR cycle at detection threshold). Expression of APOBEC3A, APOBEC3B
and APOBEC3AB was individually normalized by the mean of endogenous controls
(GAPDH and PPIA). Changes in expression were calculated using relative quantification

method, as ACt = Ct (control) — Ct (target).

Analysis of APOBEC mutagenesis

APOBEC-signature mutation analysis for all autopsy tumor samples was
determined using an R software package kindly provided by Dr. Dmitry A. Gordenin?'2>#'.
We wused two variables in the file *_sorted_sum_all_fisher_Pcorr.txt: the
'tCw_to_G+tCw_to_T' variable, which represents total counts of APOBEC-signature
mutations, and the '"APOBEC_Enrich’ variable, which accounts for statistical significance

of enrichment and represents the level APOBEC mutagenesis pattern per sample. This

second variable is more stringent, as many samples were not enriched at a statistically
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significant level and were classified as negative for APOBEC-signature mutations. We
identified APOBEC ‘hypermutators’ as those with signature 2 + 13 mutations (TCGA and
Broad datasets) or total APOBEC mutations (TRACERXx and our dataset) exceeding 1.5
times the length of the interquartile range from the 75th percentile. This method to identify
outliers has been previously described?.

We also used the same R software package to determine RTCA and YTCA
enrichment for patient RAOOG6. A less stringent filtering of whole-exome variants was used
to provide sufficient sample size for this analysis. A Benjamin-Hochberg P value of 0.05
was used as a threshold for significance, unless specified otherwise, and all tests were

two-sided.

Copy Number Alteration Analysis

Copy number alteration (CNA) analysis was performed using MIP array technology
(Affymetrix OncoScan FFPE Express 2.0) with 334,183 sequence tag site probes which
were used to measure DNA copy number at different loci across the human genome.
Copy number data were processed and normalized using the Affymetrix OSCHP-SNP-
FASST2 algorithm within the Nexus Copy Number Software. We used a log2 ratio cut-off
of +/- 0.5 to define focal copy number amplifications and deletions and +/- 0.25 to define
arm-level copy number amplifications and deletions. To minimize overcalling
heterogeneity of copy number alterations, we employed the following methods: 1) tumors
without +/- 0.5 focal amplification/deletion were included if they had at log2 ratio +/- 0.2
and tumors without +/- 0.25 arm-level amplification/deletion were included if they had a

log2 ratio +/- 0.10; 2) at least two tumors within a patient were required to have an
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amplification or deletion above the threshold of +/- 0.5 for focal and +/- 0.25 for arm; 3)
an amplification/deletion was considered truncal if present in >80% of the tumors within
a given patient. Allele-specific focal copy number profiles were determined for primary
tumors (available for three patients) using the Sequenza package. Circos plots were
generated using segmented GISTIC-output file for all tumors using circos v0.69-4, for
every track the min and max are set to -1 and 1 respectively, values between -0.2 and
0.2 are not shown in the figure. Arm-level changes as depicted in the copy number

phylogenetic trees were determined using GISTIC.

RNA-sequencing and data processing

RNA-seq sequencing was performed on 31 out of 37 tumor sites. RNA-seq was
done on lllumina HiSeqg2500 platform to yield at least 100 million reads/sample using
lllumina TruSeq V4 chemistry at 2 x 125 nt paired-end. Sequencing reads were aligned
with TopHat version 2.0.13% against the reference human genome hg19, with UCSC
known gene transcripts as the gene model annotation. Expression on gene and isoform

level was quantified with Cufflinks version 2.2.1%3.

RNA-seq variant calling and mutation validation

For RNASeq variants calling, sequencing reads were first aligned to hg19 with
STAR version 2.4.2a and then with a second pass alignment to the transcriptome
generated by STAR for each patient. For each identified SNV in WES, its expression was
confirmed by the presence of sequencing reads of the alternative allele assessed by

Samtools mpileup on TopHat generated BAM files from RNASeq data, whereas
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alternative reads coverage for indels were extracted from vcf files generated by the GATK
best practices variant calling on RNASeq (see URLs). 69% of whole exome variants had
a minimum 1X RNA depth and of these expressed variants 59% were confirmed by RNA-
seq (Supplementary Fig. 2a). 55% of whole exome variants had minimum of 5X RNA
depth and of these expressed variants 69% were confirmed by RNA-seq (Supplementary
Fig. 2b). Validation rates for different variant types across all tumor samples were similar

(range 42% silent to 56% nonsense) (Supplementary Fig. 2c).

RNA-seq data analysis

Cufflinks outputted FPKM values for each gene were normalized for all samples
within each patient using limma package voom quantile method®. This expression data
was used to predict enrichment scores among immune genes obtained from CIBERSORT
for each sample®® and then using single-sample GSEA (ssGSEA) from GenePattern.
Using the R package “fgsea”, GSEA preranked we performed to determine enrichment
scores for REACTOME pathways. Principal component analysis (PCA) was used to

combine clustered samples prior to conducting this analysis.

Protein Extraction

All but one tumor (RA004 — Li1a) had sufficient tissue for mass-spectrometry (MS)-
based proteomic characterization. About 10-15 mg of tumor tissue fresh-frozen in liquid
nitrogen was lysed in 400pl of urea lysis buffer (20 mM HEPES pH 8.0, 8 M urea, 1 mM
sodium orthovanadate, 2.5 mM sodium pyrophosphate and 1 mM R-glycerophosphate)

using a tissue lyser (Qiagen). Lysates were centrifuged at 14,000 rpm at 4°C for 10 mins
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and the clear supernatants were transferred to new tubes. Protein concentrations were

determined by the Modified Lowry method (BioRad).

Enzymatic Digestion

The protein lysate was reduced with 45 mM dithriothreitol (Sigma Aldrich, MO),
alkylated with 100 mM iodoacetamide (Sigma Aldrich, MO), and subsequently digested
with modified sequencing grade Trypsin (Promega, Madison, WI) at 30°C overnight. The
digest was then acidified using 0.1% TFA and the peptides were desalted using solid
phase extraction C18 column (Supelco, Bellefonte, PA), and vacuum dried in a centrifugal

evaporator.

TMT-Labeling

TMT10plex amine reactive reagents (0.8 mg per vial) (Thermo Fisher Scientific)
were resuspended in 41 yL of anhydrous acetonitrile (ACN) and all 41 yL of each reagent
was added to each sample and mixed briefly on a vortexer. Reactions were incubated at
room temperature for 1 h, and then quenched by the addition of 8 yL of 5% hydroxylamine
for 15 min and then combined at equal amount. All tumor tissues of LUAD patients RA0QO,
RAO003, RA005 and RAOO6 were pooled together to make a reference channel and
labeled with TMT'°-126. In a separate TMT labeling experiment, tumor tissues from

patient RAOO6 were pooled together to make a reference channel.

Basic reversed phase liquid chromatography (RPLC) fractionation
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Basic RPLC separation was performed with a XBridge C18, 100 x 2.1 mm
analytical column containing 5um particles and equipped with a 10 x 2.1 mm guard
column (Waters, Milford, MA) with a flow rate of 0.25 mL/min. The solvent consisted of
10 mM triethylammonium bicarbonate (TEABC) as mobile phase A, and 10 mM TEABC
in ACN as mobile phase B. Sample separation was accomplished using the following
linear gradient: from 0 to 1% B in 5min, from 1 to 10% B in 5min, from 10 to 35% B in
30min, and from 35 to 100% B in 5min, and held at 100% B for an additional 3min. A total
of 96 fractions were collected during the LC separation in a 96-well plate in the presence
of 12.5 uL of 1% formic acid. The collected fractions were concatenated into 12 fractions
and dried in a vacuum centrifuge. One tenth of the peptides were injected directly for LC-

MS/MS analysis.

LC-MS/MS analyses

Peptides separated/fractionated by basic reversed-phase chromatography were
analyzed on an LTQ-Orbitrap Elite interfaced with an Ultimate™ 3000 RSLCnano System
(Thermo Scientific, San Jose, CA). The dried peptides were loaded onto a nano-trap
column (Acclaim PepMap100 Nano Trap Column, C18, 5 um, 100 A, 100 ym i.d. x 2 cm)
and separated on an Easy-sprayT'\’I C18 LC column (Acclaim PepMap100, C18, 2 um,
100 A, 75 ymi.d. x 25 cm). Mobile phases A and B consisted of 0.1% formic acid in water
and 0.1% formic acid in 90% ACN, respectively. Peptides were eluted from the column at
300 nL/min using the following linear gradient: from 4 to 35% B in 60min, from 35 to 45%
B in Smin, from 45 to 90% B in 5min, and held at 90% B for an additional 5min. The heated

capillary temperature and spray voltage were 275°C and 2kV, respectively. Full spectra
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were collected from m/z 350 to 1800 in the Orbitrap analyzer at a resolution of 120,000,

followed by data-dependent HCD MS/MS scans of the fifteen most abundant ions at a

resolution of 30,000, using 40% collision energy and dynamic exclusion time of 30s.

Proteomic Data Analysis

Peptides and proteins were identified and quantified using the Maxquant software
package (version 1.5.3.30) with the Andromeda search engine®®>. MS/MS spectra were
searched against the Uniprot human protein database (May 2013, 38523 entries) and
quantification was performed using default parameters for TMT10plex in MaxQuant.
Corrected intensities of the reporter ions from TMT labels were obtained from the
MaxQuant search. The relative ratios were calculated for each channel to the reference
channel. These ratios were then used to predict enrichment scores of overall immune
signatures obtained from CIBERSORT>® using single-sample GSEA (ssGSEA) from
GenePattern and for REACTOME pathways by GSEA preranked through the R package
“fgsea”. Samples were similarly combined as described for the RNA-seq data analysis.
Cufflinks outputted FPKM values for each gene were normalized for all samples within

each patient using limma package voom quantile method.

Construction and Immunohistochemistry of Tissue Microarray

The physical construction of the TMA followed the guidelines previously used by
the NCI Tissue Array Project. Each tumor from each autopsy patient was represented by

1 tumor core of Tmm that was taken from the original paraffin block. Serial Sum sections

31


https://doi.org/10.1101/301390
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/301390; this version posted May 11, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

were cut from the TMA block and used for immunohistochemical analysis. We used

previously reported methods for immunohistochemical staining of TMAs®.

Integrating copy number, gene expression and protein abundance

Pearson correlation coefficients (PCCs) were calculated across all common genes
in copy number, gene expression and protein abundance data for each patient. Prior to
calculating PCCs, gene expression data (RNA-seq FPKM) and protein abundance
(protein ratios) were further normalized within each patient using the limma package with
its voom quantile method. 3DPlots were created using the R package “scatterplot3d”. For
arm-level analyses, normalized gene expression and protein abundance data was
categorized by chromosomal arm. The mean of clusters of tumors, as determined
previously by PCA, were calculated for both sets of data. Ratios were calculated between
clusters and then log2 transformed. Probability density plots were generated with 1%
outliers removed and x-axis of plots were restricted to -1 to 1 (log2 scale) for gene
expression and -0.1 and +0.1 (log2 scale) for protein abundance for visualization

purposes.

Statistics and graphics

All figures and graphs were generated using the “ggplot2” package available
through the R statistical program. Linear regression, correlations and t-tests were
conducted though the R base packages. All tests were two-tailed and p-values less than

0.05 were considered significant.
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URLs

Firehose Broad GDAC, https://gdac.broadinstitute.org/

Webgestalt, http://webgestalt.org/

Gene pattern, https://software.broadinstitute.org/cancer/software/genepattern/

SnpEff, http://snpeff.sourceforge.net

Gatk, https://software.broadinstitute.org/gatk/

National Cancer Institute’s Tissue Array Project,

http://ccr.cancer.gov/tech initiatives/tarp/default.asp

Data Availability

The sequencing and genotype data have been deposited at the database of Genotypes
and Phenotypes (dbGaP), which is hosted by the National Center for Biotechnology

Information (NCBI), under accession number phs001432.v1.p1.
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Main Figure Legends

Figure 1: Flowchart of Study. Five patients underwent rapid autopsy (defined here as
within 3 hours of patient death). Thirty-three metastatic lung adenocarcinoma (LUAD) and
7 metastatic thymic carcinoma tumors from lung, liver and kidney were subjected to
whole-exome sequencing (WES), RNA-sequencing, copy number analysis, and mass-
spectrometry based proteomics followed by assessment of intra- and inter-metastatic
tumor heterogeneity. Three samples were removed from the study after sequencing due

to low tumor content.

Figure 2: Intra- and inter-metastatic heterogeneity of somatic mutations of tumors from all
autopsy patients. (a) Heat maps depict the distribution of non-silent somatic mutations
among metastatic, and where available, primary tumors for each patient. Driver mutations
are listed to the left of each heat map. The total number of non-silent mutations and the
percentage of non-truncal mutations are shown below each heat map. The bars to the
right of each heat map summarizes intra- and inter-metastatic heterogeneity; mutations
present in all regions (purple), in more than one but not all (green), or only in one region
(brown). Jaccard similarity coefficients of metastases within each patient based on
mutations identified by (b) exome sequencing and (c) expressed variants by RNA-seq.
Each circle represents the Jaccard similarity coefficient between two metastases.
Coefficients range from zero to one representing highest and lowest heterogeneity,
respectively. The P-value for the difference in mean Jaccard similarity coefficients
between two groups of patients is shown. P: tumor sample obtained at diagnosis; L: lung

tumor at autopsy; Li: liver tumor at autopsy; K: kidney tumor at autopsy
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Figure 3: Inferred phylogeny, mutational signatures and APOBEC associated
heterogeneity. Phylogenetic trees were generated from all validated mutations identified
by whole-exome sequencing from tumors within patient (a) RA003, (b) RA006, (c) RA0OS5,
(d) RA00O, and (e) RA004 using the maximum parsimony method. Trees are rooted in
mutations common to all tumors within each patient. Trunk and branch lengths are
proportional to the numbers of mutations acquired on the corresponding trunk or branch.
Each private branch represents mutations unique to each individual tumor. Colors
represent COSMIC mutational signatures. Driver mutations and focal copy number
amplifications/deletions are mapped to the trunks and branches as indicated. Asterisks
denote nonsense mutations. APOBEC fold enrichment correlates with (f) DNA Jaccard
similarity coefficients and (g) RNA Jaccard similarity coefficients across tumors of all
autopsy patients. Each circle represents mean APOBEC fold enrichment and the Jaccard
similarity coefficient between two tumors from a given patient. P: tumor sample obtained
at diagnosis; L: lung tumor at autopsy; Li: liver tumor at autopsy; K: kidney tumor at

autopsy.

Figure 4: Relationship between APOBEC fold enrichment, mutational signatures,
APOBECS3 region transcript expression, APOBEC3AB germline variant and mutant
TP53. (a) APOBEC fold enrichment of each tumor. Asterisks denote significant
enrichment. Dashed line denotes zero enrichment of APOBEC mutations. Proportion of
COSMIC signatures for each tumor appear below APOBEC fold enrichment. Number of
risk alleles for APOBEC3 germline variant rs12628403 is shown below the proportion of

COSMIC signatures. Expression of APOBEC3B, APOBEC3A and APOBEC3AB are
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shown below the proportion of COSMIC signatures. Relative expression of isoforms
APOBEC3B1, APOBEC3A1 and APOBECS3AB in tumor relative to normal lung or liver by
custom TagMan assays in (b) patient RAOO3 and (c) patient RA006. Six of the 37 tumors
are not included here due to insufficient RNA for sequencing. (d) APOBEC signature
mutations per megabase in TCGA and (e) Broad dataset and (f) total APOBEC mutations
in TRACERXx dataset in TP53 mutant compared to TP53 wildtype tumors. (g) APOBEC3B
expression and (h) APOBECS3A expression in TP53 wildtype and mutant tumors in the
TCGA dataset. P-values shown are adjusted for patient age and number of pack years
smoked. tvisual inspection of RNA-seq data shows expression of APOBEC3AB; see

Supplementary Note for details.

Figure 5: Intra-patient multi-omic tumor relationships. Pearson correlation coefficients
(PCCs) are shown on each axis across all common genes identified in copy number, gene
expression and protein abundance datasets between all tumors within patient (a) RA003,
(b) RAOOG, (c) RA0O0S, (d) RA004, and (e) RA00O. Each circle represents the relationship
between two tumors. Previously designated tumor clusters are assigned the same color.
Colors are assigned independently for each patient. (f) PCCs between tumors from each
patient grouped by data type: copy number, gene expression and protein abundance. P-

values for the difference in mean PCCs between data types are shown for each patient.

Figure 6: Copy number heterogeneity corresponds with transcriptomic and proteomic

heterogeneity. (a) Hierarchical clustering by copy number across the genome across all

tumors from all patients (at cytoband resolution). Losses (purple) and gains (red) in log2
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scale are depicted relative to mean ploidy. Mean ploidy is shown in the top row (rounded
to nearest integer). Copy number differences in chromosomal arms 4p and 7q between
tumors of (b) patient RA006 and (c) patient RAOO3 and corresponding changes in FPKM
and protein abundance. Probability density plots show log ratios of mean FPKM by
chromosomal arm for sets of tumors as displayed. X-axis dashed line denotes ratio of 1
(or log ratio 0). For visualization purposes, X-axis was cut at log -1 and 1 for RNA and log
-0.1 and 0.1 for Protein. Y-axis was cut at probability density of 2. (d) Phylogenetic tree
depicts tumors of patient RA004 with corresponding copy number and RNA-seq FPKM
of CCND1 for each tumor. (e) Protein expression of CCND1 for tumors of patient RA004

as assessed by immunohistochemistry from tissue microarrays.

Figure 7: Site specific enrichment of interferon signaling pathways and immune signature
heterogeneity. Single-sample gene set enrichment (ssGSEA) analysis of transcriptome
and proteome using the REACTOME databases are shown for tumors from patients
RAO003 (a, b) and RAQ06 (c, d). Significantly enriched interferon pathways (q < 0.05 for
transcriptome, p < 0.10 for proteome) are colored red. Immune signature scores within
the (e) transcriptome and (f) proteome are shown between all tumors of patients RA00O,
RAO003, RA004, RA005 and RA006. Scores were normalized across all tumors separately
for transcriptome and proteome. ES: enrichment score. Symbols denote comparisons

between groups of tumors as indicated.
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Table 1: Relationship between TP53 mutation status and APOBEC hypermutators in lung
adenocarcionoma

Hypermutator Non-hypermutator Test for trend
Dataset TP53 TP53 | Total | TP53 TP53 | Total | X statistic | Pvalue
Mutant | WT Mutant | WT

TCGA 34 11 44 237 217 455 8.09 0.0044
Broad 7 0 7 49 47 96 4.48 0.03
TRACERX® | 5 0 5 23 33 56 4.27 0.04
NCI 4 0 4 1 32 33 21.62 3.2e-06
Autopsy

TCGA: The Cancer Genome Atlas; Broad: Broad Institute; TRACERx: TRAcking Cancer Evolution through therapy
(Rx); WT: wildtype; tTumors grouped by patient
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Supplementary Table Legends

Supplementary Table 1: Clinical characteristics, autopsy findings and treatment history of

all study patients

Supplementary Table 2: Variants identified within each patient by whole-exome and RNA-

sequencing

Supplementary Table 3: Jaccard similarity coefficients of metastases within each patient

based on whole-exome, deep whole-exome and RNA sequencing

Supplementary Table 4: Summary of APOBEC mutagenesis within each tumor based on

whole-exome and RNA-sequencing

Supplementary Table 5: Log2 copy number ratios of chromosomal arms within each

patient

Supplementary Table 6: Normalized FPKM of all genes within each patient categorized

by chromosomal arm location

Supplementary Table 7: Normalized protein abundance data of all genes within each

patient categorized by chromosomal arm location
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Supplementary Table 8: Log2 copy number ratios of amplified or deleted genes previously

determined to be significant in lung cancer by GISTIC

Supplementary Table 9: Common pathways identified by gene set enrichment analysis

within transcriptomic and proteomic datasets between tumors of each patient
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