

Pervolaraki et al.

# 1 The within-subject application of diffusion tensor MRI and

## 2 CLARITY reveals brain structural changes in *Nrxn2* deletion

### 3 mice

5 Eleftheria Pervolaraki Ph.D<sup>1\*</sup>, Adam L. Tyson MRes<sup>2,3,4\*</sup>, Francesca Pibiri  
6 Ph.D<sup>5</sup>, Steven L. Poulter Ph.D<sup>5</sup>, Amy C. Reichelt Ph.D<sup>6</sup>, R. John Rodgers  
7 Ph.D<sup>7</sup>, Steven J. Clapcote Ph.D<sup>1</sup>, Colin Lever Ph.D<sup>5</sup>, Laura C. Andreae MBBS  
8 Ph.D<sup>2,3\*</sup>, James Dachtler Ph.D<sup>1,5\*</sup>

10 <sup>1</sup>School of Biomedical Sciences, University of Leeds, LS2 9JT, UK

11 <sup>2</sup>Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology  
12 and Neuroscience, King's College London, London SE1 1UL, UK

13 <sup>3</sup>MRC Centre for Neurodevelopmental Disorders, King's College London,  
14 London SE1 1UL, UK

15 <sup>4</sup>Department of Forensic and Neurodevelopmental Sciences, Institute of  
16 Psychiatry, Psychology and Neuroscience, King's College London, London  
17 SE5 8AF, UK

18 <sup>5</sup>Department of Psychology, Durham University, South Road, Durham, DH1  
19 3LE, UK

20 <sup>6</sup>Robarts Research Institute, Western University, London, Ontario, Canada,  
21 N6A 5B7, Canada

22 <sup>7</sup>School of Psychology, University of Leeds, LS2 9JT, UK

23

<sup>24</sup> \*These authors contributed equally.

25

Pervolaraki et al.

26 Address for Correspondence: Dr J Dachtler, Department of Psychology,

27 Durham University, South Road, Durham, DH1 3LE, UK. Email:

28 [james.dachtler@durham.ac.uk](mailto:james.dachtler@durham.ac.uk)

29

Pervolaraki et al.

30 **Abstract**

31 **Background**

32 Of the many genetic mutations known to increase the risk of autism spectrum  
33 disorder, a large proportion cluster upon synaptic proteins. One such family of  
34 presynaptic proteins are the neurexins (NRXN), and recent genetic and  
35 mouse evidence has suggested a causative role for *NRXN2* in generating  
36 altered social behaviours. Autism has been conceptualised as a disorder of  
37 atypical connectivity, yet how single-gene mutations affect such connectivity  
38 remains under-explored. To attempt to address this, we have developed a  
39 quantitative analysis of microstructure and structural connectivity leveraging  
40 diffusion tensor MRI (DTI) with high-resolution 3D imaging in optically cleared  
41 (CLARITY) brain tissue in the same mouse, applied here to the *Nrxn2α*  
42 knockout (KO) model.

43 **Methods**

44 Fixed brains of *Nrxn2α* KO mice underwent DTI using 9.4T MRI, and diffusion  
45 properties of socially-relevant brain regions were quantified. The same tissue  
46 was then subjected to CLARITY to immunolabel axons and cell bodies, which  
47 were also quantified.

48 **Results**

49 DTI revealed increases in fractional anisotropy in the amygdala (including the  
50 basolateral nuclei), the anterior cingulate cortex, the orbitofrontal cortex and  
51 the hippocampus. Axial diffusivity of the anterior cingulate cortex and  
52 orbitofrontal cortex was significantly increased in *Nrxn2α* KO mice, as were  
53 tracts between the amygdala and the orbitofrontal cortex. Using CLARITY, we

Pervolaraki et al.

54 find significantly altered axonal orientation in the amygdala, orbitofrontal  
55 cortex and the anterior cingulate cortex, which was unrelated to cell density.

56 **Conclusions**

57 Our findings demonstrate that deleting a single neurexin gene (*Nrxn2α*)  
58 induces atypical structural connectivity within socially-relevant brain regions.  
59 More generally, our combined within-subject DTI and CLARITY approach  
60 presents a new, more sensitive method of revealing hitherto undetectable  
61 differences in the autistic brain.

62

63 **Key Words**

64 MRI, CLARITY, social, autism, axons, diffusion, structure, imaging

65

66 **Background**

67 Autism is a common neurodevelopmental disorder, which is highly heritable  
68 (1). While heritability is high, it is also clear that autism is highly polygenic.  
69 Around ~400-1000 genes are involved in autism susceptibility (2-5). Many of  
70 these genes cluster upon proteins relating to synaptic signaling (6). A family of  
71 presynaptic proteins garnering recent interest have been the neurexins  
72 (*NRXNs*). NRXNs are encoded by three genes (*NRXN1*, *NRXN2*, *NRXN3*;  
73 note that *CNTNAP1* and *CNTNAP2* are sometimes referred to as *NRXN4*), of  
74 which two major isoforms exist: the longer  $\alpha$  proteins with six  
75 laminin/neurexin/sex hormone (LNS) binding domains, and the shorter  $\beta$   
76 proteins with one LNS binding domain (7, 8).

77

Pervolaraki et al.

78 Mutations within all three *NRXN* genes have been linked to autism (6).  
79 Heterozygous deletions within *NRXN2* have been identified in a number of  
80 individuals with autistic phenotypes. These include an autistic boy and his  
81 father (who had severe language delay but not autism) who both had a  
82 frameshift mutation within exon 12 of *NRXN2* (9); a 570-kb de novo deletion  
83 of 24 genes at chromosome 11q13.1, including *NRXN2*, in a 21-year old man  
84 displaying a clinical phenotype including autistic traits (10); a 1.6Mb deletion  
85 at chromosome region 11q12.3-11q13.1, including *NRXN2*, in a 23-year old  
86 man with intellectual disability and behavioral problems (11); a de novo  
87 frameshift mutation identified in a Chinese man with autism spectrum disorder  
88 (ASD) (12), a 921 kb microdeletion at 11q13 in a 2 year old boy who had  
89 language and developmental delay (although did not meet the autism  
90 diagnosis criteria) (13) and a paternally inherited microRNA miR-873-5p  
91 variant in an ASD individual which altered binding affinity for several risk-  
92 genes including *NRXN2* and *CNTNAP2* (*NRXN4*) (14). Furthermore, recently,  
93 two large-scale reports have identified *NRXN2* with ASD risk. A study of 529  
94 ASD patients and 1,923 controls in a Chinese population identified two  
95 *NRXN2* variants which significantly increase ASD risk (15). The second study  
96 employed machine learning approaches across 5000 ASD families to rank the  
97 importance of ASD candidate genes, and ranks *NRXN2* in the top ~0.5% of  
98 genes, i.e. 113<sup>th</sup> (16). For comparison, *NRXN1*, for which the evidence base  
99 for its links to ASD is broader and stronger, ranks 45, and *CNTNAP2* ranks  
100 211<sup>th</sup> (16). Consistent with these association studies, we and others have  
101 previously found that homozygous or heterozygous deletion of *Nrxn2α*  
102 induces impairment in social approach and social recognition (17-19). In

Pervolaraki et al.

103 summary, although mutations within *NRXN2* are rare, understanding how they  
104 may drive social, ASD-relevant behavioural changes is important. One  
105 important goal is to help elucidate how apparently convergent  
106 pathophysiology in ASD emerges despite marked genetic heterogeneity  
107 (Insert ref Geschwind & State, 2015 cited above); mapping brain alterations  
108 driven by different single genes is thus a crucial task.

109

110 Currently it is unknown whether deletion of *Nrxn2α* changes the brain's  
111 microstructure and connectivity. One previous study found coarse alterations  
112 to cell layer thickness within the hippocampus of *Nrxn2α* homozygous KOs  
113 (20). However, cell density measurements are unlikely to reveal the true  
114 extent of changes within the autistic brain. Within the current study, we have  
115 addressed this by developing a dual imaging approach (DTI and CLARITY)  
116 that quantifies the alignment and density of white matter, applied here to brain  
117 regions known to support social behavior in a mouse model of autism.

118

119 Diffusion tensor MRI (or DTI) is based upon the movement of water  
120 molecules, a measure that is termed fractional anisotropy (FA). Apparent  
121 diffusion coefficient (ADC) is similar to FA, but quantifies diffusion restriction  
122 as opposed to the spatial symmetry of diffusion. This approach has been used  
123 to explore neuropathological markers in autistic patients; alterations in  
124 myelination, axonal abundance, size and orientation all modify FA and ADC  
125 values (21-23). Using the preferred direction of the diffusion of tensors  
126 between brain regions can be used to explore their potential connection.  
127 Quantification of those computed streamlines by FA and axial and/or radial

Pervolaraki et al.

128 diffusion can indicate impairments in regional structural connectivity. Since  
129 aberrant brain connectivity is likely a core feature of autism (24), we reasoned  
130 that the candidate method for probing the autistic brain should combine  
131 tractographic techniques. Accordingly, here, we combined high resolution  
132 imaging of labelled neuronal tracts in brains rendered transparent by  
133 CLARITY with DTI.

134

135 CLARITY is a recent development that renders tissue optically transparent  
136 and macromolecule permeable (25). This permits antibody staining and  
137 imaging of much larger tissue volumes than possible under traditional  
138 immunofluorescence techniques. By examining fiber orientation without  
139 sectioning-related artefacts and biases, axonal staining in cleared tissue  
140 affords a deeper understanding of the microstructure and structural  
141 connectivity of a brain region.

142

143 Given the social impairments found within *Nrxn2α* mice, we sought to  
144 examine those brain regions most closely linked with social behavior (See  
145 Supplemental Materials). Briefly, we identified four regions of interest (ROIs):  
146 the amygdala, and three brain regions strongly and directly connected to the  
147 amygdala; the hippocampus, orbitofrontal cortex (OFC), and anterior cingulate  
148 cortex (ACC). As predicted, structural connectivity was abnormal in *Nrxn2α*  
149 mice.

150

151 **Methods**

152 **Ethics**

Pervolaraki et al.

153 All procedures were approved by the University of Leeds and Durham  
154 University Animal Ethical and Welfare Review Boards and were performed  
155 under UK Home Office Project and Personal Licenses in accordance with the  
156 Animals (Scientific Procedures) Act 1986.

157

158 **Animals**

159 Full details of the animals, their background, genotyping and housing can be  
160 found elsewhere (17). In brief, male B6;129-  
161 *Nrxn3tm1Sud/Nrxn1tm1Sud/Nrxn2tm1Sud/J* mice (JAX #006377) were  
162 purchased from the Jackson Laboratory and outbred once to the  
163 C57BL/6NCrl strain (Charles River, Margate, United Kingdom) to obtain mice  
164 that were individually *Nrxn2α* KO heterozygotes. Subsequently, HET knockout  
165 males were bred with HET females (cousin mating).

166

167 **Experimental animals**

168 6 adult wild-type males (Charles River, Margate, UK) and 6 age matched  
169 littermate *Nrxn2α* KO homozygotes (71 days  $\pm$  6 days old (SEM)) were  
170 perfused-fixed with 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer  
171 saline (PBS) and the brains extracted. The brains were immersed in 4%  
172 PFA/0.1 M PBS for a minimum of 48 hours prior to imaging. Mouse weights  
173 were not specifically taken prior to perfusion. However, in a separate cohort,  
174 wild-type and *Nrxn2α* KO homozygotes did not significantly differ in body  
175 mass (wild-type, n = 15, 30.9  $\pm$  4.1 g; *Nrxn2* KO, n = 10, 28.6  $\pm$  4.3 g, t-test p  
176 = 0.167). We did not specifically time perfusions, although as a matter of  
177 process, each mouse was perfused with ~60 ml of fixative. We cannot rule out

Pervolaraki et al.

178 that variance in perfusion timings may have influenced the results, which is a  
179 limitation of the current study. During imaging, the samples were placed in  
180 custom-built MR-compatible tubes containing Fomblin Y (Sigma, Poole,  
181 Dorset, UK).

182

183 Due to the relatively low variance, and owing to the complexity and  
184 methodological nature in our experimental approach, we achieved  
185 significance by groups of 6 (power provided in Results). No data was  
186 excluded from the study. Sample randomisation was performed by JD, with  
187 experimenters (EP and ALT) blinded to genotype.

188

#### 189 **Data Acquisition**

190 Image acquisition has been described elsewhere (26). Each brain was 3D  
191 imaged using the protocol TE: 35 ms, TR: 700 ms and 10 signal averages.  
192 The field of view was set at 128 x 128 x 128, with a cubic resolution of 100  
193  $\mu\text{m}/\text{pixel}$  and a  $b$  value of 1200  $\text{s}/\text{mm}^2$ . Further details can be found in  
194 Supplemental Materials.

195

#### 196 **Image Processing**

197 Parsing of the raw data was semi-automated using DSI Studio, in order to  
198 obtain  $b$ -values for every normalized gradient vector on the x, y and z  
199 orientations. Unwanted background, setting a threshold, smoothing of the  
200 data and definition of tissue boundaries was performed prior to the  
201 reconstruction of the final 3D image. DTI analysis parameters were calculated  
202 as previously described (27).

Pervolaraki et al.

203

204 The *ex vivo* mouse brain 3D diffusion-weighted images were reconstructed  
205 from the Bruker binary file using DSI Studio (<http://dsi-studio.labsolver.org>)  
206 (28). Direction Encoded Colour Map (DEC) images were generated by  
207 combining the information from the primary eigenvectors, diffusion images  
208 and the FA. Images of the primary vectors and their orientation were  
209 reconstructed and superimposed on corresponding FA images to guide the  
210 segmentation of discrete anatomical locations according to the brain atlas  
211 (Figure 1B-D). Region of interest definition was performed by author EP and  
212 corroborated independently by JD, with region area compared between the  
213 experimenters (data not shown). For whole brain region analysis, we used a  
214 similar approach, except regions were segmented for every other slice in the  
215 anterior to posterior extent (Figure 1A-D; Supp. Figure 1) (29). The DSI Studio  
216 DTI reconstruction characterizes the major diffusion direction of the fibre  
217 within the brain (30, 31). Extraction of FA (calculated (26)) and ADC was  
218 performed within selected segmented brain areas for every 3D reconstructed  
219 mouse brain.

220

## 221 **Regions of Interest (ROIs)**

222 Our DTI approach was to undertake an *a posteriori* analysis of neural  
223 organization in regions of interest (ROIs) identified by previous literature as  
224 socially-relevant. Given the social impairments found within *Nrxn2α* mice, for  
225 the current study, we identified the brain regions of interest (ROIs) most  
226 closely linked with social behavior, using previously published reports of brain  
227 region involvement in social behaviour. Quantification of c-Fos

Pervolaraki et al.

228 immunoreactivity has highlighted the importance of several amygdala nuclei  
229 (including the basolateral) following social exposure (32), but also the anterior  
230 cingulate cortex (ACC), prefrontal cortex and the hippocampus (33). Lesions  
231 to the primate amygdala alter social interactions (34, 35), and amygdala  
232 neurons in primates including humans increase firing rates during social  
233 scenarios (36-38). Consistent with these animal studies, amygdala damage in  
234 humans (39) and amygdala dysfunction in ASD patients (40) impair social  
235 responses. Other socially-important brain regions have also been proposed.  
236 Notably, several studies have implicated the rodent hippocampus in social  
237 behavior, including social memory and sociability (41-43). For instance,  
238 intrahippocampal administration of neurolide-2, which interacts with  $\alpha$ -  
239 neurexin, specifically impairs sociability, but not anxiety and spatial learning in  
240 rats (44). These findings are consistent with reports of social deficits in  
241 humans with hippocampal damage (45) and hippocampal abnormalities in  
242 ASD (46, 47). Finally, several studies link the frontal cortex, particularly the  
243 orbitofrontal cortex, which is strongly anatomically connected with the  
244 amygdala(48), to social processing (49, 50), consistent with findings of  
245 abnormalities in orbitofrontal cortex in ASD (48, 51). Control regions of the  
246 primary motor cortex (M1), primary sensory cortex (S1) and the barrel field  
247 were chosen for CLARITY (Supp. Figure 7N-O).

248

## 249 **CLARITY**

250 Following MR imaging, the brains were washed in PBS to remove all Fomblin  
251 Y and then incubated for 7 days in hydrogel solution at 4°C prior to  
252 polymerisation at 37°C for 3.5 hours. The tissue was cut into 1.5 mm coronal

Pervolaraki et al.

253 sections using a custom 3D-printed brain-slicing matrix based on MRI scans  
254 of an adult C57BL/6 mouse brain (52) and incubated in clearing buffer for 24  
255 days at 37°C with shaking. The cleared tissue was then washed in PBSTN<sub>3</sub>  
256 (0.1% TritonX-100 and 1.5 mM sodium azide in PBS) for 24 hours at room  
257 temperature and incubated in primary antibody solution (neurofilament (Aves  
258 NF-H) 1:100 in PBSTN<sub>3</sub>) at 37°C with shaking for 13 days. Samples were  
259 washed, and then incubated in secondary antibody (AlexaFluor 488 goat anti-  
260 chicken IgY) as per the primary. Sections were washed again, and incubated  
261 in 3.6 µM DAPI (4',6-diamidino-2-phenylindole) followed by 85% glycerol in  
262 PBS for refractive index matching.

263

264 Cleared samples were imaged using a Zeiss 7MP multiphoton microscope at  
265 770 nm using a 20x objective lens (W Plan-Apochromat, NA 1.0, WD 1.7  
266 mm). Images (512 x 512 x 512 voxels or 265 x 265 x 265 µm with an isotropic  
267 resolution of 520 nm) were acquired in ACC, basolateral (BLA) and  
268 basomedial amygdala and OFC) in both hemispheres. DAPI and  
269 neurofilament signal was segmented into cell nuclei and axons, and the  
270 resulting binary images were used to generate values for cell density, axonal  
271 density and axonal alignment.

272

273 Full CLARITY methodological details are available within Supplemental  
274 Materials.

275

276 **Data Availability**

Pervolaraki et al.

277 Codes to analyse CLARITY datasets are made available by author LCA by  
278 email request to either JD or LCA, subject to reference to the current paper.

279 The datasets used and/or analysed during the current study are available  
280 from the corresponding author on reasonable request.

281

## 282 **Data Analysis**

283 All data are expressed as mean  $\pm$  standard error of the mean (SEM). To  
284 assess the variance between genotypes within a single brain structure across  
285 hemispheres (given the importance of hemispheric differences in ASD (53)),  
286 data was analyzed by within subject repeated measures two-way ANOVAs,  
287 with Sidak multiple corrections employed on post hoc testing, or unpaired T-  
288 tests. To correct for multiple comparisons, we employed the Benjamini-  
289 Hochberg Procedure (corrected P values stated). Non-significant statistical  
290 results, particularly hemisphere comparisons, can be found in Supplemental  
291 Materials. Statistical testing and graphs were made using GraphPad Prism  
292 version 6 and SPSS v22.

293

## 294 **Results**

### 295 ***Nrxn2α* deletion disrupts DTI measures of microstructure in social brain 296 regions**

297 To assess whether *Nrxn2α* deletion alters gross morphology, we quantified  
298 whole brain volume using DTI. We found total brain volume for wild-types and  
299 *Nrxn2α* KOs was similar ( $456.0 \pm 14.76$  vs.  $466.2 \pm 11.0$  mm<sup>3</sup> (respectively);  
300  $t_{(10)} = 0.55$ ,  $p = 0.59$ ). Thus, *Nrxn2α* deletion does not change total brain size.

301

Pervolaraki et al.

302 To quantitatively measure DTI, we examined FA and ADC. FA analyses  
303 changes in the linear orientation (i.e. along an axonal tract), whereas ADC  
304 (mean diffusivity) averages diffusion in all directions (i.e. the X, Y and Z axis),  
305 which is sensitive to changes such as altered alignment. The amygdala is  
306 critically important for social behaviours. To assess whether amygdalar  
307 alterations might account for social impairments in *Nrxn2α* KO mice, we  
308 segmented the whole amygdala structure and the basolateral nuclei along the  
309 anterior-posterior axis.

310

311 The amygdala showed a significant increase in FA in *Nrxn2α* KO mice (Figure  
312 2A) (genotype ( $F_{(1, 10)} = 11.15$ ,  $p = 0.022$ , power = 85.2%)). There was a FA  
313 reduction was observed specifically in the BLA, a region strongly associated  
314 with social behaviours (Figure 2B; genotype ( $F_{(1, 10)} = 6.31$ ,  $p = 0.049$ )). ADC  
315 was not significantly altered in the whole amygdala or BLA (Figure 2C&D; all  
316 genotype:  $F_{(1, 10)} < 1$ ).

317

318 We conducted the same analysis for the two prefrontal regions implicated in  
319 social behaviour and autism: the OFC and ACC. The pattern of results was  
320 similar for both regions: FA was significantly altered, while ADC was  
321 unaffected (Figure 3A&B) and the ACC (Figure 3E&F). FA for the OFC was  
322 significantly increased (genotype: ( $F_{(1, 10)} = 16.14$ ,  $p = 0.009$ , power = 95.0%))  
323 but ADC was similar between the genotypes (genotype: ( $F_{(1, 10)} = 1.43$ ,  $p =$   
324 0.11)). The ACC also had significantly increased FA ( $t_{(10)} = 2.55$ ,  $p = 0.03$ ,  
325 power = 71.0%) but ADC was unaltered ( $t_{(10)} = 0.51$ ,  $p = 0.618$ ).

326

Pervolaraki et al.

327 We sought to examine whether changes in the amygdala, OFC or ACC FA  
328 and ADC were driven by diffusion in the primary axis ( $\lambda_1$ ) or the radial  
329 orientations ( $\lambda_2$  and  $\lambda_3$ ) by characterisation of AD (primary) and RD (radial).  
330 Within the amygdala, neither AD or RD was significantly altered in *Nrxn2α* KO  
331 mice (Figure 2E AD: genotype:  $F_{(1,10)} = 3.06$ ,  $p = 0.111$ , Figure 2F RD:  
332 genotype:  $F_{(1,10)} = 2.47$ ,  $p = 0.147$ ). Within the OFC (Figure 3C&D), AD was  
333 significantly increased (genotype:  $(F_{(1,10)} = 6.71$ ,  $p = 0.032$ , power = 64.7%)),  
334 whereas RD was significantly decreased (genotype:  $(F_{(1,10)} = 10.07$ ,  $p =$   
335 0.025, power = 81.5%)), suggesting that both along-tract diffusion and tract  
336 branching were affected. However, in the ACC (Figure 3G-H), only AD was  
337 significantly increased ( $t_{(10)} = 3.89$ ,  $p = 0.019$ , power = 96.9%), with no  
338 alteration in RD ( $t_{(10)} = 1.35$ ,  $p = 0.10$ ). Increased AD and decreased RD is  
339 thought to reflect changes in axonal density or orientation (54).  
340

341 **DTI reveals altered hippocampal microstructure in *Nrxn2α* KO mice**

342 The hippocampus has recently been associated with social motivation and  
343 social recognition. Since the specific contributions of the dorsal and ventral  
344 hippocampal poles remain unclear, we segmented the whole hippocampus  
345 into anterior (Bregma -1.06 mm – -2.46 mm) (incorporating dorsal) and  
346 posterior (Bregma -2.54 mm – -3.16 mm) (incorporating ventral regions) levels.  
347

348 FA values in the anterior and posterior hippocampus were significantly  
349 increased (Supp. Figure 4A&E; see figure legend for statistics). However,  
350 ADC was unaltered for the anterior and posterior hippocampus (Supp. Figure  
351 4B&F). AD was significantly increased in both the anterior and posterior

Pervolaraki et al.

352 hippocampal regions (Supp. Figure 4C&G). RD was significantly also  
353 significantly decreased in the anterior and posterior hippocampus in *Nrxn2α*  
354 KO mice (Supp. Figure 4D&H).

355

356 Lastly, given DTI is most commonly associated with analysis of white matter  
357 tracts, we also quantified the corpus callosum. Changes within the corpus  
358 callosum have repeatedly been highlighted in autism (55, 56), including  
359 mouse models of autism (57, 58). Here, we found significantly increased FA  
360 and reduced ADC in *Nrxn2α* KO mice, which were driven by a significant  
361 reduction in RD (Supp. Figure 6).

362

363 In summary, the microstructural measures most altered by *Nrxn2α* deletion  
364 were increases in FA, AD and RD, including in the hippocampus, in line with  
365 recent work suggesting a role for ventral hippocampus in social memory (43).

366

367 **DTI tractography reveals *Nrxn2α* deletion affects structural connectivity  
368 between the amygdala and orbitofrontal cortex**

369 The amygdala is strongly and bidirectionally connected to both the  
370 hippocampus (59) and the OFC (60). As all three regions are themselves  
371 important for social behaviour, and autism is thought to be, at least in part,  
372 related to abnormal structural connectivity (24), we performed tractography  
373 analysis between the amygdala (and specifically the BLA) and the  
374 hippocampus, and between the amygdala and the OFC.

375

Pervolaraki et al.

376 From the anterior amygdala, we examined the diffusivity (AD and RD) of  
377 connections to the anterior and posterior hippocampus (Supp. Figure 6). We  
378 did not observe differences in RD in the tracts connecting the amygdala with  
379 the hippocampus (see Supp. Table 1 for non-significant statistics). Although  
380 AD between the anterior amygdala and anterior hippocampus did not differ by  
381 genotype, there was a significant interaction between genotype and  
382 hemisphere (genotype x hemisphere ( $F_{(1, 10)} = 12.12$ ,  $p = 0.023$ , power =  
383 88.0%; Figure 4A); post hoc analysis shows this was driven by larger right-vs-  
384 left hemisphere AD values within the *Nrxn2α* KOs only ( $p = 0.012$ ). This  
385 difference could be driven by the BLA; there was increased AD in both the  
386 BLA/anterior hippocampus tracts (genotype x hemisphere ( $F_{(1, 10)} = 10.53$ ,  $p =$   
387 0.032, power = 83.2%) and the BLA/posterior hippocampus tracts (genotype x  
388 hemisphere ( $F_{(1, 10)} = 12.97$ ,  $p = 0.020$ , power = 90%), which again was  
389 related to larger right-vs-left hemisphere values in the *Nrxn2α* KOs  
390 (BLA/anterior hippocampus:  $p = 0.004$  and BLA/posterior hippocampus:  $p =$   
391 0.001, (Figure 4C-D)) but not the wild-type (anterior:  $p = 0.87$ ; posterior:  $p =$   
392 1.00). These results indicate that there are differences for the structural  
393 connectivity of the amygdala with the hippocampus within the left and right  
394 hemisphere in *Nrxn2α* KO mice, with increased axial diffusivity in the right  
395 hemisphere. This finding is particularly interesting, as hemispheric differences  
396 in functional connectivity, particularly affecting connections from the right  
397 amygdala, have been found children with ASD (61, 62).  
398  
399 Finally, we tested connections between the amygdala and the OFC. For AD,  
400 wild-type and *Nrxn2α* KO mice did not differ by genotype (Figure 4E:

Pervolaraki et al.

401 genotype: ( $F_{(1, 10)} = 2.85$ ,  $p = 0.09$ ), hemisphere: ( $F_{(1, 10)} = 6.38$ ,  $p = 0.052$ ). RD  
402 was strikingly higher in *Nrxn2α* KO mice (Figure 4F: genotype: ( $F_{(1, 10)} = 26.06$ ,  
403  $p = 0.023$ , power = 99.5%)), indicative of a change in demyelination, axonal  
404 density or orientation (54).

405

406 **CLARITY reveals fibre disruption in *Nrxn2α* KO mice in the amygdala,  
407 orbitofrontal cortex, and anterior cingulate cortex**

408 To further explore the differences as revealed by DTI, we performed CLARITY  
409 on the same brain tissue used in DTI, and stained with neurofilament and  
410 DAPI to label axons and cell bodies, respectively. We were then able to derive  
411 both the axonal alignment (as in, the geometric alignment of axons (from  
412 linear alignment to random) within 3D space (see Supp. Figure 2)) and  
413 density of the stained fibers, in addition to the cell density.

414

415 The pattern of results was broadly similar for both the prefrontal cortical ROIs.  
416 That is, first, axonal alignment was increased in *Nrxn2α* KO mice in the ACC  
417 (Figure 5D: genotype: ( $F_{(1, 10)} = 16.06$ ,  $p = 0.011$ , power = 94.9%) but not the  
418 OFC (Figure 5G: genotype: ( $F_{(1, 10)} = 5.56$ ,  $p = 0.059$ )). Second, this could not  
419 be explained by a difference in cell density, since that was similar between the  
420 KO and wild-type mice in both the ACC (Figure 5F: genotype: ( $F_{(1, 10)} < 1$ ),  
421 hemisphere: ( $F_{(1, 10)} = 1.73$ ,  $p = 0.11$ ) and the OFC (Figure 5H: genotype: ( $F_{(1, 10)} = 3.09$ ,  
422  $p = 0.08$ )). An increase in axonal density in *Nrxn2α* KO mice was  
423 reliable in the ACC (Figure 5E: genotype: ( $F_{(1, 10)} = 14.64$ ,  $p = 0.014$ , power =  
424 93.0%), but not in the OFC (Figure 5H: genotype: ( $F_{(1, 10)} = 3.09$ ,  $p = 0.083$ )).

425

Pervolaraki et al.

426 We further examined two regions of the anterior amygdala, the BLA and  
427 basomedial (BMA) nuclei, where altered social cellular responses have been  
428 reported in human autism (38). We did not observe any significant differences  
429 for axonal alignment or fibre density in the BLA (see Supp. Figure 7A-C), but  
430 whereas axonal alignment (Figure 5J, genotype:  $F_{(1, 10)} = 7.70$ ,  $p = 0.045$ ,  
431 power = 70.6%) but not axonal density (Figure 5K: genotype:  $F_{(1, 10)} = 6.10$ ,  $p$   
432 = 0.054) was increased in *Nrxn2α* KO mice in the basomedial nuclei, while  
433 cell density was unaffected (Figure 5L: genotype:  $F_{(1, 10)} < 1$ ). Alterations in  
434 axonal alignment and density as directly revealed by CLARITY could explain  
435 the increases in diffusivity and RD in the prefrontal regions, as measured by  
436 DTI.

437

438 To test the specificity of these alterations, we examined three further brain  
439 regions; the primary motor cortex (M1; Supp. Figure 7D-F), the primary  
440 somatosensory cortex (S1; Supp. Figure 7H-J) and the barrel field (BF; Supp.  
441 Figure 7K-M). Interestingly, although there were differences between the  
442 hemispheres, there were no statistical differences between the genotypes or  
443 genotype x hemisphere interactions for any measure (Supp. Table 2),  
444 suggesting some specificity of the alterations in social-relevant brain regions  
445 in *Nrxn2α* KO mice.

446

447 In summary, in both the prefrontal ROIs, namely the OFC, and the ACC, DTI  
448 showed that ADC and RD were increased in *Nrxn2α* KO mice, likely related to  
449 complementary analysis from CLARITY showing that axonal alignment was  
450 altered in *Nrxn2α* KO mice in both prefrontal ROIs.

451

452 **Discussion**

453 Interestingly, the single-gene deletion of *Nrxn2α* captures several key aspects  
454 of human ASD. In terms of behaviour, three studies have now found social  
455 deficits associated with *Nrxn2α* KO (17-19); in terms of brain structure, as  
456 reported here (summarised below), the *Nrxn2α* KO mouse model shows  
457 altered microstructure and structural connectivity patterns in socially-relevant  
458 brain regions reminiscent of changes in ASD.

459

460 A DTI approach has been used for some time to explore neuropathological  
461 markers in autistic patients; alterations in myelination, axonal abundance, size  
462 and orientation all modify FA and ADC values (21, 63), specifically by  
463 reducing amygdala FA (23, 63), and have been used as a quantitative  
464 measure of changes to brain white matter integrity (23, 24). However, several  
465 studies have noted increases in FA in ASD patients (see Table 1 of 64).  
466 Furthermore, both increased RD of various white matter tracts (65, 66) and  
467 increased whole-brain AD (66) have been observed in ASD. The *Nrxn2α* KO  
468 mouse reproduces some of these specific changes, including altered FA and  
469 increases in ADC, AD and RD. Whole brain increases in ADC, AD and RD  
470 (but not FA) have been reported in ASD children, as have increases in ADC  
471 and RD in frontal cortex tracts (66). FA has been noted as reduced in the  
472 amygdala in ASD children and adolescents (67), and right-sided lateralisation  
473 of abnormal amygdala/hippocampus-related connections, as seen in our  
474 *Nrxn2α* KO mouse, has been noted in high-functioning adolescents/adults  
475 with autism (68).

Pervolaraki et al.

476

477 Whilst the current study specifically explores structural connectivity, it is  
478 difficult to extrapolate as to what these structural changes mean for functional  
479 connectivity in the *Nrxn2α* KO mouse. Hyper and hypo connectivity theories of  
480 autism have remained contentious, and vary in humans by cohort studied  
481 (e.g. by age of participant) (69). Further, in studies that have combined resting  
482 state functional MRI (rsfMRI) and DTI, functional and structural connectivity  
483 do not always overlap (70-72). Our current data suggests that DTI differences  
484 can be explained by altered axonal patterning (i.e. CLARITY). Others have  
485 explored the biological mechanisms linking structural connectivity to altered  
486 functional connectivity. Zhan et al. (2014) found that deletion of the  
487 chemokine receptor Cx3cr1 resulted in impaired synaptic pruning of long-  
488 range connections during development, which manifested as impaired social  
489 behavior caused by decreased frontal functional connectivity, reduced  
490 synaptic multiplicity and weakened coherence of local field potentials (73).  
491 Thus, it is possible that impairments in neuronal structural maturation can  
492 generate functional connectivity deficits that encapsulate core autism  
493 phenotypes.

494

495 Our findings corroborate these quantifications of clinical autism, but highlights  
496 the question of what do the different measures of ADC, FA, AD and RD  
497 represent? Importantly, we observed these microstructural changes in various  
498 socially-relevant brain regions against a background of unchanged cell  
499 density in all our study's ROIs. Unexpectedly, this highlights the power of our  
500 new approach. Dudanova et al. (2007) concluded from measures of cell

Pervolaraki et al.

501 counting and cortical cell layer thickness that NRXN2 played little role in  
502 normal brain development (20). Indeed, in earlier studies, it was suggested  
503 that deletion of all *Nrxns* was unlikely to affect synaptic development but  
504 instead disrupts synaptic function (74). We propose that measures such as  
505 two-dimensional cell counting may be underestimating the impact of genetic  
506 mutations upon normal development. By staining cleared brain tissue with a  
507 nuclear marker and performing automated three-dimensional cell counting, we  
508 found no effect of *Nrxn2α* deletion on cell density in any region of interest  
509 examined. But this belies the clear effects upon microstructure integrity across  
510 multiple regions as measured by both DTI and CLARITY, and its specificity;  
511 only the socially-relevant brain regions we tested were disrupted, and not  
512 primary sensory or motor regions. Future studies will benefit from employing  
513 more sensitive measures of brain structural connectivity to determine the  
514 relevance of genetic mutations in development.

515

516 FA and ADC can be influenced by changes in axonal density and alignment  
517 (e.g. by myelination, demyelination, axonal damage, loss of white matter  
518 coherence (75)). It is likely that the axonal alignment metric used to quantify  
519 CLARITY more closely reflects the ADC measure of DTI, given that ADC (or  
520 mean diffusivity) equally weights diffusion across all eigenvectors and does  
521 not bias the primary eigenvector as FA does. Thus, it is likely that alterations  
522 in the properties of axons in *Nrxn2α* KO mice are driving these changes in FA  
523 and ADC. Given we see differences in RD, thought to reflect tract branching  
524 and myelination (as it measures  $\lambda_2$  and  $\lambda_3$ ), it is possible that the orientation in  
525 the perpendicular not parallel orientation of fibres is mostly affected. Given the

Pervolaraki et al.

526 differences in the amygdala, OFC and ACC, it is possible that even though  
527 neuronal densities are similar in the *Nrxn2α* KO brain, it is the connections  
528 between neurones and brain regions that are perturbed. This would be  
529 consistent with the idea that structural connectivity disruption may represent a  
530 core feature of autism (76). A broader question is how does the loss of  
531 *Nrxn2α* account for changes in axonal organisation? Ultimately, this question  
532 requires further studies. Others have shown that in *Nrxn2α* KO mice,  
533 excitatory transmitter release is reduced, as is short-term plasticity (18).  
534 Reduced glutamatergic release, even at a relatively long range to the  
535 synapse, can change the complexity of dendritic arbors (77). As this is a gene  
536 deletion model, it is conceivable that altered glutamatergic signalling during  
537 early development impairs appropriate synapse maturation, leading to the  
538 structural changes we see herein. Further, how or whether these structural  
539 changes fully explain the social impairments of *Nrxn2α* KO mice would require  
540 new studies. Conceivably, inducible knock-down of *Nrxn2* (by inducible  
541 knockout, siRNA, optogenetics etc.) within a specific brain region would  
542 provide evidence that social abnormalities are being driven by *Nrxn2* loss.  
543 However, developmentally-dependent altered structural connectivity would be  
544 harder to definitively manipulate to explain changes in social behaviours.  
545  
546 Here we have developed a new application of CLARITY to quantitatively  
547 investigate disease models by combining DTI with high resolution 3D imaging  
548 and automated analysis of axonal fibres in a within subject study. Inevitably,  
549 there are some technical limitations that will require future refinement as this  
550 technology matures.

Pervolaraki et al.

551

552 First, while we used CLARITY and immunolabeling to identify axons, we  
553 cannot know whether axon-related changes alone reflect all the changes we  
554 observed for our DTI measures. Second, whilst we can segment entire brain  
555 regions for DTI analysis, it was not practical to image larger brain areas at the  
556 necessary resolution for CLARITY. While it is theoretically possible that we  
557 may bias sampling of each brain region by picking ROIs for multiphoton  
558 imaging, this was done using atlas-defined coordinates and by an  
559 experimenter blind to the DTI results, so minimising any bias. However, within  
560 the current study, we were only able to apply the CLARITY approach to the  
561 amygdala, OFC and ACC. It was not practical to apply this methodology to the  
562 hippocampus, due to its extremely heterogeneous structure. The small cubic  
563 ROIs could not be reproducibly positioned, and larger ROIs to average across  
564 larger areas of the hippocampus were not possible. Although imaging of fibre  
565 tracts in large volumes of cleared tissue is possible (78), fluorescent labelling  
566 limitations make it impractical for a study of this nature. Despite this, as the  
567 adoption of the CLARITY technique increases, we hope that the use of DTI  
568 and CLARITY to study structural connectivity across spatial scales will  
569 become commonplace.

570

571 As yet, no one DTI protocol has emerged as the standard for *in vivo* or *ex vivo*  
572 imaging. Indeed, there has been debate regarding the best number of  
573 diffusion gradients to use, among other parameters (79). Undoubtedly, more  
574 directions than what we used here would facilitate better interpretations, and  
575 this is a limitation of the current work. Despite this, the major purpose of the

Pervolaraki et al.

576 current paper is to develop a new generation of CLARITY analysis. We hope  
577 that future studies will refine on both DTI and CLARITY parameters to  
578 maximise analysis methodology. A further potential limitation of the current  
579 study is that groups of six animals may be underpowered. We argue for our  
580 approach here as follows. First, low variance in the datasets permits smaller  
581 group sizes. Second, for most of our significant results, the observed power  
582 was more than 80%. Third, given the technical complexity of this approach,  
583 particularly in its early adoption and refinement stages, large sample  
584 throughput of multiple brain regions is challenging.

585

586 In summary, our combined use of DTI and CLARITY has revealed changes in  
587 microstructure and structural connectivity of socially-relevant brain regions in  
588 *Nrxn2α* KO mice that may underlie their deficits in social behaviour. It is hard  
589 to conceive how these changes could have been observed using classical  
590 experimental approaches. We envisage this approach will deliver a new level  
591 of detail in structural connectivity approaches to understanding autism.

592

### 593 **Abbreviations**

594 ACC: anterior cingulate cortex  
595 AD: axial diffusivity  
596 ADC: apparent diffusion coefficient  
597 ASD: autism spectrum disorder  
598 BLA: basolateral amygdala  
599 CLARITY: optically cleared brain tissue  
600 DTI: diffusion tensor imaging

Pervolaraki et al.

601 FA: fractional anisotropy

602 OFC: orbitofrontal cortex

603 Nrnx2: neurexin II

604 RD: radial diffusivity

605 ROI: region of interest

606

607 **Declarations**

608 **Ethics approval and consent to participate**

609 All experiments were performed under UK Home Office Project and Personal

610 Licenses in accordance with the Animals (Scientific Procedures) Act 1986,

611 and with the approval of the University of Leeds and Durham University

612 Animal Ethical and Welfare Review Boards.

613

614 **Consent for publication**

615 Not applicable

616

617 **Availability of data and material**

618 The codes used to quantify the CLARITY datasets are made available by

619 author LCA by email request to authors LCA or JD, subject to reference to the

620 current paper. The datasets used and/or analysed during the current study

621 are available from the corresponding author on reasonable request.

622

623 **Competing interests**

624 The authors declare no competing interests.

625

Pervolaraki et al.

626 **Funding**

627 This work was supported by the Guy's and St. Thomas' Charity Prize PhD  
628 scholarship to ALT, a Medical Research Council (UK) grant (G0900625) to  
629 SJC and RJR, a University of Leeds Wellcome Trust ISSF (UK) Fellowship, a  
630 Royal Society (UK) grant (RG130316), an Alzheimer's Society Fellowship  
631 (AS-JF-15-008) to JD, a British Pharmacological Society (UK) grant to JD and  
632 CL, a BBSRC grant to LCA (BB/P000479/1) and a BBSRC grant to CL  
633 (BB/M008975/1). We acknowledge financial support from the Innovative  
634 Medicines Initiative Joint Undertaking under grant agreement no. 115300,  
635 resources of which are composed of financial contribution from the European  
636 Union's Seventh Framework Programme (FP7/2007–2013) and EFPIA  
637 companies' in kind contribution, the Mortimer D Sackler Foundation and the  
638 Sackler Institute for Translational Neurodevelopment (ALT and LCA). Some  
639 analysis scripts were provided to ALT at the Computational Image Analysis in  
640 Cellular and Developmental Biology course at the Marine Biological  
641 Laboratory (Woods Hole, MA, USA), funded by National Institutes of Health  
642 (R25 GM103792-01).

643

644 **Authors' contribution**

645 EP, ALT, LCA and JD conceived the study. EP and ALT performed the  
646 experiments. EP, ALT, LCA and JD analysed the data. SJC, RJR, LCA and  
647 JD funded the study. All authors contributed to writing the paper. All authors  
648 have read and approved the final manuscript.

649

650 **Acknowledgements**

651 Not applicable.

652

653 **References**

- 654 1. Sandin S, Lichtenstein P, Kuja-Halkola R, Larsson H, Hultman CM,  
655 Reichenberg A. The familial risk of autism. *Jama*. 2014;311(17):1770-7.
- 656 2. Cardno AG, Gottesman, II. Twin studies of schizophrenia: from bow-and-  
657 arrow concordances to star wars Mx and functional genomics. *American journal of*  
658 *medical genetics*. 2000;97(1):12-7.
- 659 3. Ronald A, Happé F, Bolton P, Butcher LM, Price TS, Wheelwright S, et al.  
660 Genetic heterogeneity between the three components of the autism spectrum: a twin  
661 study. *Journal of the American Academy of Child and Adolescent Psychiatry*.  
662 2006;45(6):691-9.
- 663 4. Ronemus M, Iossifov I, Levy D, Wigler M. The role of de novo mutations in  
664 the genetics of autism spectrum disorders. *Nature reviews Genetics*. 2014;15(2):133-  
665 41.
- 666 5. Geschwind DH, State MW. Gene hunting in autism spectrum disorder: on the  
667 path to precision medicine. *The Lancet Neurology*. 2015;14(11):1109-20.
- 668 6. Sahin M, Sur M. Genes, circuits, and precision therapies for autism and  
669 related neurodevelopmental disorders. *Science*. 2015;350(6263).
- 670 7. Lise MF, El-Husseini A. The neuroligin and neurexin families: from structure  
671 to function at the synapse. *Cellular and molecular life sciences : CMLS*.  
672 2006;63(16):1833-49.
- 673 8. Sudhof TC. Synaptic Neurexin Complexes: A Molecular Code for the Logic  
674 of Neural Circuits. *Cell*. 2017;171(4):745-69.
- 675 9. Gauthier J, Siddiqui TJ, Huashan P, Yokomaku D, Hamdan FF, Champagne  
676 N, et al. Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders  
677 and schizophrenia. *Human genetics*. 2011;130(4):563-73.
- 678 10. Mohrmann I, Gillessen-Kaesbach G, Siebert R, Caliebe A, Hellenbroich Y. A  
679 de novo 0.57 Mb microdeletion in chromosome 11q13.1 in a patient with speech  
680 problems, autistic traits, dysmorphic features and multiple endocrine neoplasia type 1.  
681 *European journal of medical genetics*. 2011;54(4):e461-4.
- 682 11. Boyle MI, Jespersgaard C, Nazaryan L, Ravn K, Brondum-Nielsen K,  
683 Bisgaard AM, et al. Deletion of 11q12.3-11q13.1 in a patient with intellectual  
684 disability and childhood facial features resembling Cornelia de Lange syndrome.  
685 *Gene*. 2015;572(1):130-4.
- 686 12. Li J, Wang L, Gou H, Shi L, Zhang K, Tang M, et al. Targeted sequencing and  
687 functional analysis reveal brain-size-related genes and their networks in autism  
688 spectrum disorders. *Molecular Psychiatry*. 2017;22:1282-90.
- 689 13. Yuan H, Li X, Wang Q, Yang W, Song J, Hu X, et al. A de novo 921Kb  
690 microdeletion at 11q13.1 including neurexin 2 in a boy with developmental delay,  
691 deficits in speech and language without autistic behaviors. *European journal of*  
692 *medical genetics*. 2018.
- 693 14. Williams SM, An JY, Edson J, Watts M, Murigneux V, Whitehouse AJO, et  
694 al. An integrative analysis of non-coding regulatory DNA variations associated with  
695 autism spectrum disorder. *Molecular psychiatry*. 2018.

696 15. Wang J, Gong J, Li L, Chen Y, Liu L, Gu H, et al. Neurexin gene family  
697 variants as risk factors for autism spectrum disorder. *Autism research : official journal*  
698 of the International Society for Autism Research. 2018;11(1):37-43.

699 16. Duda M, Zhang H, Li HD, Wall DP, Burmeister M, Guan Y. Brain-specific  
700 functional relationship networks inform autism spectrum disorder gene prediction.  
701 *Translational psychiatry*. 2018;8(1):56.

702 17. Dachtler J, Glasper J, Cohen RN, Ivorra JL, Swiffen DJ, Jackson AJ, et al.  
703 Deletion of alpha-neurexin II results in autism-related behaviors in mice.  
704 *Translational psychiatry*. 2014;4:e484.

705 18. Born G, Grayton HM, Langhorst H, Dudanova I, Rohlmann A, Woodward  
706 BW, et al. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical  
707 synapse function and social behaviors. *Frontiers in synaptic neuroscience*. 2015;7:3.

708 19. Dachtler J, Ivorra JL, Rowland TE, Lever C, Rodgers RJ, Clapcote SJ.  
709 Heterozygous deletion of alpha-neurexin I or alpha-neurexin II results in behaviors  
710 relevant to autism and schizophrenia. *Behavioral neuroscience*. 2015;129(6):765-76.

711 20. Dudanova I, Tabuchi K, Rohlmann A, Sudhof TC, Missler M. Deletion of  
712 alpha-neurexins does not cause a major impairment of axonal pathfinding or synapse  
713 formation. *The Journal of comparative neurology*. 2007;502(2):261-74.

714 21. Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a  
715 technical review. *NMR in biomedicine*. 2002;15(7-8):435-55.

716 22. Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss AL. White  
717 matter structure in autism: preliminary evidence from diffusion tensor imaging.  
718 *Biological psychiatry*. 2004;55(3):323-6.

719 23. Noriuchi M, Kikuchi Y, Yoshiura T, Kira R, Shigeto H, Hara T, et al. Altered  
720 white matter fractional anisotropy and social impairment in children with autism  
721 spectrum disorder. *Brain research*. 2010;1362:141-9.

722 24. Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA,  
723 Webb SJ. Autism and abnormal development of brain connectivity. *The Journal of  
724 neuroscience : the official journal of the Society for Neuroscience*. 2004;24(42):9228-  
725 31.

726 25. Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andelman AS, Davidson  
727 TJ, et al. Structural and molecular interrogation of intact biological systems. *Nature*.  
728 2013;497(7449):332-7.

729 26. Pervolaraki E, Anderson RA, Benson AP, Hayes-Gill B, Holden AV, Moore  
730 BJ, et al. Antenatal architecture and activity of the human heart. *Interface focus*.  
731 2013;3(2):20120065.

732 27. Pervolaraki E, Dachtler J, Anderson RA, Holden AV. Ventricular myocardium  
733 development and the role of connexins in the human fetal heart. *Scientific reports*.  
734 2017;7(1):12272.

735 28. Yeh FC, Verstynen TD, Wang Y, Fernandez-Miranda JC, Tseng WY.  
736 Deterministic diffusion fiber tracking improved by quantitative anisotropy. *PloS one*.  
737 2013;8(11):e80713.

738 29. Paxinos G, Franklin K. *The Mouse Brain in Stereotaxic Coordinates*. Third ed: Academic Press; 2008.

740 30. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion  
741 tensor from the NMR spin echo. *Journal of magnetic resonance Series B*.  
742 1994;103(3):247-54.

743 31. Jiang H, van Zijl PC, Kim J, Pearlson GD, Mori S. DtiStudio: resource  
744 program for diffusion tensor computation and fiber bundle tracking. *Computer  
745 methods and programs in biomedicine*. 2006;81(2):106-16.

746 32. Ferguson JN, Aldag JM, Insel TR, Young LJ. Oxytocin in the medial  
747 amygdala is essential for social recognition in the mouse. *The Journal of neuroscience*  
748 : the official journal of the Society for Neuroscience. 2001;21(20):8278-85.

749 33. Tanimizu T, Kenney JW, Okano E, Kadoma K, Frankland PW, Kida S.  
750 Functional Connectivity of Multiple Brain Regions Required for the Consolidation of  
751 Social Recognition Memory. *The Journal of neuroscience* : the official journal of the  
752 Society for Neuroscience. 2017;37(15):4103-16.

753 34. Emery NJ, Capitanio JP, Mason WA, Machado CJ, Mendoza SP, Amaral DG.  
754 The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus  
755 monkeys (*Macaca mulatta*). *Behavioral neuroscience*. 2001;115(3):515-44.

756 35. Rosvold HE, Mirsky AF, Pribram KH. Influence of amygdalectomy on social  
757 behavior in monkeys. *Journal of comparative and physiological psychology*.  
758 1954;47(3):173-8.

759 36. Mosher CP, Zimmerman PE, Gothard KM. Neurons in the monkey amygdala  
760 detect eye contact during naturalistic social interactions. *Current biology* : CB.  
761 2014;24(20):2459-64.

762 37. Rutishauser U, Mamelak AN, Adolphs R. The primate amygdala in social  
763 perception - insights from electrophysiological recordings and stimulation. *Trends in  
764 neurosciences*. 2015;38(5):295-306.

765 38. Rutishauser U, Tudusciuc O, Wang S, Mamelak AN, Ross IB, Adolphs R.  
766 Single-neuron correlates of atypical face processing in autism. *Neuron*.  
767 2013;80(4):887-99.

768 39. Adolphs R, Tranel D, Damasio AR. The human amygdala in social judgment.  
769 *Nature*. 1998;393(6684):470-4.

770 40. Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams  
771 SC. The amygdala theory of autism. *Neuroscience and biobehavioral reviews*.  
772 2000;24(3):355-64.

773 41. Maaswinkel H, Baars AM, Gispen WH, Spruijt BM. Roles of the basolateral  
774 amygdala and hippocampus in social recognition in rats. *Physiology & behavior*.  
775 1996;60(1):55-63.

776 42. Kogan JH, Frankland PW, Silva AJ. Long-term memory underlying  
777 hippocampus-dependent social recognition in mice. *Hippocampus*. 2000;10(1):47-56.

778 43. Okuyama T, Kitamura T, Roy DS, Itohara S, Tonegawa S. Ventral CA1  
779 neurons store social memory. *Science*. 2016;353(6307):1536-41.

780 44. van der Kooij MA, Fantin M, Kraev I, Korshunova I, Grosse J, Zanoletti O, et  
781 al. Impaired hippocampal neuroligin-2 function by chronic stress or synthetic peptide  
782 treatment is linked to social deficits and increased aggression. *Neuropsychopharmacology* :  
783 official publication of the American College of  
784 Neuropsychopharmacology. 2014;39(5):1148-58.

785 45. Rubin RD, Watson PD, Duff MC, Cohen NJ. The role of the hippocampus in  
786 flexible cognition and social behavior. *Frontiers in human neuroscience*. 2014;8:742.

787 46. Nicolson R, DeVito TJ, Vidal CN, Sui Y, Hayashi KM, Drost DJ, et al.  
788 Detection and mapping of hippocampal abnormalities in autism. *Psychiatry research*.  
789 2006;148(1):11-21.

790 47. Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H,  
791 Buonocore MH, et al. The amygdala is enlarged in children but not adolescents with  
792 autism; the hippocampus is enlarged at all ages. *The Journal of neuroscience* : the  
793 official journal of the Society for Neuroscience. 2004;24(28):6392-401.

794 48. Bachevalier J, Loveland KA. The orbitofrontal-amygdala circuit and self-  
795 regulation of social-emotional behavior in autism. *Neuroscience and biobehavioral*  
796 *reviews*. 2006;30(1):97-117.

797 49. Beer JS, John OP, Scabini D, Knight RT. Orbitofrontal cortex and social  
798 behavior: integrating self-monitoring and emotion-cognition interactions. *Journal of*  
799 *cognitive neuroscience*. 2006;18(6):871-9.

800 50. Watson KK, Platt ML. Social signals in primate orbitofrontal cortex. *Current*  
801 *biology : CB*. 2012;22(23):2268-73.

802 51. Girgis RR, Minshew NJ, Melhem NM, Nutche JJ, Keshavan MS, Hardan AY.  
803 Volumetric alterations of the orbitofrontal cortex in autism. *Progress in neuro-*  
804 *psychopharmacology & biological psychiatry*. 2007;31(1):41-5.

805 52. Tyson AL, Hilton ST, Andreea LC. Rapid, simple and inexpensive production  
806 of custom 3D printed equipment for large-volume fluorescence microscopy.  
807 *International journal of pharmaceuticals*. 2015;494(2):651-6.

808 53. Herbert MR, Ziegler DA, Deutsch CK, O'Brien LM, Kennedy DN, Filipek  
809 PA, et al. Brain asymmetries in autism and developmental language disorder: a nested  
810 whole-brain analysis. *Brain : a journal of neurology*. 2005;128(Pt 1):213-26.

811 54. Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the  
812 brain. *Neurotherapeutics : the journal of the American Society for Experimental*  
813 *NeuroTherapeutics*. 2007;4(3):316-29.

814 55. Alexander AL, Lee JE, Lazar M, Boudos R, DuBray MB, Oakes TR, et al.  
815 Diffusion tensor imaging of the corpus callosum in Autism. *NeuroImage*.  
816 2007;34(1):61-73.

817 56. Travers BG, Tromp do PM, Adluru N, Lange N, Destiche D, Ennis C, et al.  
818 Atypical development of white matter microstructure of the corpus callosum in males  
819 with autism: a longitudinal investigation. *Molecular autism*. 2015;6:15.

820 57. Ellegood J, Babineau BA, Henkelman RM, Lerch JP, Crawley JN.  
821 Neuroanatomical analysis of the BTBR mouse model of autism using magnetic  
822 resonance imaging and diffusion tensor imaging. *NeuroImage*. 2013;70:288-300.

823 58. Kumar M, Kim S, Pickup S, Chen R, Fairless AH, Ittyerah R, et al.  
824 Longitudinal in-vivo diffusion tensor imaging for assessing brain developmental  
825 changes in BALB/cJ mice, a model of reduced sociability relevant to autism. *Brain*  
826 *research*. 2012;1455:56-67.

827 59. Pitkanen A, Pikkarainen M, Nurminen N, Ylinen A. Reciprocal connections  
828 between the amygdala and the hippocampal formation, perirhinal cortex, and  
829 postrhinal cortex in rat. A review. *Annals of the New York Academy of Sciences*.  
830 2000;911:369-91.

831 60. Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suarez F. The  
832 anatomical connections of the macaque monkey orbitofrontal cortex. A review.  
833 *Cerebral cortex*. 2000;10(3):220-42.

834 61. Abrams DA, Lynch CJ, Cheng KM, Phillips J, Supekar K, Ryali S, et al.  
835 Underconnectivity between voice-selective cortex and reward circuitry in children  
836 with autism. *Proceedings of the National Academy of Sciences of the United States of*  
837 *America*. 2013;110(29):12060-5.

838 62. Murphy ER, Foss-Feig J, Kenworthy L, Gaillard WD, Vaidya CJ. Atypical  
839 Functional Connectivity of the Amygdala in Childhood Autism Spectrum Disorders  
840 during Spontaneous Attention to Eye-Gaze. *Autism research and treatment*.  
841 2012;2012:652408.

842 63. Sundaram SK, Kumar A, Makki MI, Behen ME, Chugani HT, Chugani DC.  
843 Diffusion tensor imaging of frontal lobe in autism spectrum disorder. *Cerebral cortex*.  
844 2008;18(11):2659-65.

845 64. Travers BG, Adluru N, Ennis C, Tromp do PM, Destiche D, Doran S, et al.  
846 Diffusion tensor imaging in autism spectrum disorder: a review. *Autism research :  
847 official journal of the International Society for Autism Research*. 2012;5(5):289-313.

848 65. Ameis SH, Fan J, Rockel C, Voineskos AN, Lobaugh NJ, Soorya L, et al.  
849 Impaired structural connectivity of socio-emotional circuits in autism spectrum  
850 disorders: a diffusion tensor imaging study. *PLoS one*. 2011;6(11):e28044.

851 66. Shukla DK, Keehn B, Muller RA. Tract-specific analyses of diffusion tensor  
852 imaging show widespread white matter compromise in autism spectrum disorder.  
853 *Journal of child psychology and psychiatry, and allied disciplines*. 2011;52(3):286-95.

854 67. Jou RJ, Jackowski AP, Papademetris X, Rajeevan N, Staib LH, Volkmar FR.  
855 Diffusion tensor imaging in autism spectrum disorders: preliminary evidence of  
856 abnormal neural connectivity. *The Australian and New Zealand journal of psychiatry*.  
857 2011;45(2):153-62.

858 68. Conturo TE, Williams DL, Smith CD, Gultepe E, Akbudak E, Minshew NJ.  
859 Neuronal fiber pathway abnormalities in autism: an initial MRI diffusion tensor  
860 tracking study of hippocampo-fusiform and amygdalo-fusiform pathways. *Journal of  
861 the International Neuropsychological Society : JINS*. 2008;14(6):933-46.

862 69. Stanfield AC, McIntosh AM, Spencer MD, Philip R, Gaur S, Lawrie SM.  
863 Towards a neuroanatomy of autism: a systematic review and meta-analysis of  
864 structural magnetic resonance imaging studies. *European psychiatry : the journal of  
865 the Association of European Psychiatrists*. 2008;23(4):289-99.

866 70. Vissers ME, Cohen MX, Geurts HM. Brain connectivity and high functioning  
867 autism: a promising path of research that needs refined models, methodological  
868 convergence, and stronger behavioral links. *Neuroscience and biobehavioral reviews*.  
869 2012;36(1):604-25.

870 71. Rudie JD, Brown JA, Beck-Pancer D, Hernandez LM, Dennis EL, Thompson  
871 PM, et al. Altered functional and structural brain network organization in autism.  
872 *NeuroImage Clinical*. 2012;2:79-94.

873 72. Uddin LQ, Supekar K, Menon V. Reconceptualizing functional brain  
874 connectivity in autism from a developmental perspective. *Frontiers in human  
875 neuroscience*. 2013;7:458.

876 73. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al.  
877 Deficient neuron-microglia signaling results in impaired functional brain connectivity  
878 and social behavior. *Nature neuroscience*. 2014;17(3):400-6.

879 74. Missler M, Zhang W, Rohlmann A, Kattenstroth G, Hammer RE, Gottmann  
880 K, et al. Alpha-neurexins couple Ca<sup>2+</sup> channels to synaptic vesicle exocytosis.  
881 *Nature*. 2003;423(6943):939-48.

882 75. Alba-Ferrara LM, de Erausquin GA. What does anisotropy measure? Insights  
883 from increased and decreased anisotropy in selective fiber tracts in schizophrenia.  
884 *Frontiers in integrative neuroscience*. 2013;7:9.

885 76. Minshew NJ, Williams DL. The new neurobiology of autism: cortex,  
886 connectivity, and neuronal organization. *Archives of neurology*. 2007;64(7):945-50.

887 77. Andrae LC, Burrone J. Spontaneous Neurotransmitter Release Shapes  
888 Dendritic Arbors via Long-Range Activation of NMDA Receptors. *Cell reports*. 2015.

889 78. Ye L, Allen WE, Thompson KR, Tian Q, Hsueh B, Ramakrishnan C, et al.  
890 Wiring and Molecular Features of Prefrontal Ensembles Representing Distinct  
891 Experiences. *Cell*. 2016;165(7):1776-88.

892 79. Jones DK. The effect of gradient sampling schemes on measures derived from  
893 diffusion tensor MRI: a Monte Carlo study. *Magnetic resonance in medicine*.  
894 2004;51(4):807-15.

895 80. Wu D, Xu J, McMahon MT, van Zijl PC, Mori S, Northington FJ, et al. In  
896 vivo high-resolution diffusion tensor imaging of the mouse brain. *NeuroImage*.  
897 2013;83:18-26.

898 81. Vo A, Sako W, Dewey SL, Eidelberg D, Ulug AM. 18FDG-microPET and  
899 MR DTI findings in *Tor1a+/-* heterozygous knock-out mice. *Neurobiology of disease*.  
900 2015;73:399-406.

901 82. Kumar M, Duda JT, Hwang WT, Kenworthy C, Ittyerah R, Pickup S, et al.  
902 High resolution magnetic resonance imaging for characterization of the neuroligin-3  
903 knock-in mouse model associated with autism spectrum disorder. *PloS one*.  
904 2014;9(10):e109872.

905 83. Ruest T, Holmes WM, Barrie JA, Griffiths IR, Anderson TJ, Dewar D, et al.  
906 High-resolution diffusion tensor imaging of fixed brain in a mouse model of  
907 Pelizaeus-Merzbacher disease: comparison with quantitative measures of white matter  
908 pathology. *NMR in biomedicine*. 2011;24(10):1369-79.

909 84. Kim S, Pickup S, Fairless AH, Ittyerah R, Dow HC, Abel T, et al. Association  
910 between sociability and diffusion tensor imaging in BALB/cJ mice. *NMR in  
911 biomedicine*. 2012;25(1):104-12.

912 85. Lebel C, Benner T, Beaulieu C. Six is enough? Comparison of diffusion  
913 parameters measured using six or more diffusion-encoding gradient directions with  
914 deterministic tractography. *Magnetic resonance in medicine*. 2012;68(2):474-83.

915 86. Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J. Effects of number of diffusion  
916 gradient directions on derived diffusion tensor imaging indices in human brain. *AJNR  
917 American journal of neuroradiology*. 2006;27(8):1776-81.

918 87. Hasan KM, Parker DL, Alexander AL. Comparison of gradient encoding  
919 schemes for diffusion-tensor MRI. *Journal of magnetic resonance imaging : JMRI*.  
920 2001;13(5):769-80.

921 88. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T,  
922 et al. Fiji: an open-source platform for biological-image analysis. *Nature methods*.  
923 2012;9(7):676-82.

924 89. Peng H, Ruan Z, Long F, Simpson JH, Myers EW. V3D enables real-time 3D  
925 visualization and quantitative analysis of large-scale biological image data sets.  
926 *Nature biotechnology*. 2010;28(4):348-53.

927 90. Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, et al.  
928 Metadata matters: access to image data in the real world. *The Journal of cell biology*.  
929 2010;189(5):777-82.

930 91. Perge JA, Niven JE, Mugnaini E, Balasubramanian V, Sterling P. Why do  
931 axons differ in caliber? *The Journal of neuroscience : the official journal of the  
932 Society for Neuroscience*. 2012;32(2):626-38.

933 92. Otsu N. A Threshold Selection Method from Gray-Level Histograms. *IEEE  
934 Transactions on Systems, Man, and Cybernetics*. 1979;9(1):62-6.

935 93. Rosin P. Unimodal thresholding. *Pattern Recognition*. 2001;34(11):2083-96.

936 94. Lee T, Kashyap R, Chu C. Building Skeleton Models via 3-D Medial Surface  
937 Axis Thinning Algorithms. *CVGIP: Graphical Models and Image Processing*.  
938 1994;56(6):462-78.

939 95. Kerschnitzki M, Kollmannsberger P, Burghammer M, Duda GN, Weinkamer  
940 R, Wagermaier W, et al. Architecture of the osteocyte network correlates with bone

Pervolaraki et al.

941 material quality. *Journal of bone and mineral research : the official journal of the*  
942 *American Society for Bone and Mineral Research.* 2013;28(8):1837-45.  
943 96. Franklin K, Paxinos G. *The Mouse Brain in Stereotaxic Coordinates:*  
944 Academic Press; 2008.  
945

Pervolaraki et al.

946 **Figure Legends**

947 **Figure 1**

948 Quantification of CLARITY imaging. **A** Sections of DTI-scanned brain were  
949 segmented at different Bregma levels for (i) the orbitofrontal cortex, (ii) the  
950 anterior hippocampus and amygdala, (iii) the mid hippocampus and posterior  
951 amygdala and (iv) the posterior hippocampus. **B-D** DTI-scanned brains were  
952 computed for tracts. Tissue from wild-type and *Nrxn2α* KO mice were cleared  
953 and stained for neurofilament and DAPI (**E**). **F** Automated MATLAB scripts  
954 were used to segment the DAPI (blue) and neurofilament (purple) channels  
955 such that cell density and axonal density and orientation could be calculated.  
956 **G** is representative of a CLARITY-derived 3D stacked image of a DAPI and  
957 neurofilament of a region of interest, with **H** being the corresponding  
958 segmented image. Scale bar: 100  $\mu$ m.

959

960 **Figure 2**

961 Deletion of *Nrxn2α* increases amygdala fractional anisotropy (FA) but not  
962 apparent diffusion coefficient (ADC). DTI images of the amygdala was  
963 segmented at two regions; the whole amygdala in the anterior to posterior  
964 extent or the basolateral amygdala (BLA) centred at Bregma -1.94 mm. FA of  
965 the whole amygdala structure was significantly increased (**A**) but was  
966 decreased in the BLA (**B**). However, ADC was similar between the genotypes  
967 (**C** and **D**). Axial (AD) (**E**) and radial diffusivity (RD) (**F**) was unaltered in the  
968 amygdala. \*\*=P<0.01, \*=P<0.05. Error bars represent s.e.m. Wild-type n=6,  
969 *Nrxn2α* KO n=6.

970

Pervolaraki et al.

971 **Figure 3**

972 *Nrxn2α* KO mice have increased fractional anisotropy (FA) and axial (AD) and  
973 radial diffusivity (RD) in the orbitofrontal cortex (OFC) and the anterior  
974 cingulate cortex (ACC). FA was significant different between wild-types and  
975 *Nrxn2α* KO mice for FA in the OFC (**A**) and ACC (**E**), but ADC was not  
976 significantly changed in *Nrxn2α* KO mice in both prefrontal regions (**B** and **F**).  
977 The OFC has significantly increased AD and RD (**C&D**), whereas only AD  
978 was increased in the ACC (**G-H**). \*\*=P<0.01, \*=P<0.05. Error bars represent  
979 s.e.m. Wild-type n=6, *Nrxn2α* KO n=6.

980

981 **Figure 4**

982 Tractographic analysis of amygdala-hippocampus and amygdala-orbitofrontal  
983 cortex (OFC) connectivity. Amygdala-hippocampal connections are  
984 characterised by greater right hemisphere axial diffusivity (AD) *Nrxn2α* KO  
985 mice (**A**) but not radial diffusivity (RD) (**B**). Specific to the BLA, connections to  
986 the anterior hippocampus (**C**) and posterior hippocampus (**D**) have greater  
987 right hemisphere AD. Although the amygdala-OFC connection was similar  
988 between the genotypes for AD (**E**), *Nrxn2α* KO mice had significantly  
989 increased RD (**F**). \*=P<0.05, \*\*=P<0.001. Error bars represent s.e.m. Wild-  
990 type n=6, *Nrxn2α* KO n=6.

991

992 **Figure 5**

993 CLARITY reveals differences in axonal alignment and fibre density in *Nrxn2α*  
994 KO mice. (**A-C**) Representative images of the CLARITY-treated brain, with  
995 ROI defined for the anterior cingulate cortex (ACC), orbitofrontal cortex

Pervolaraki et al.

996 (OFC), basomedial amygdala (BMA) and basolateral amygdala (BLA). For the  
997 ACC, the axonal alignment (**D**) and axon density (**E**) were significantly altered  
998 in KO mice, but cell density was unaltered (**F**). Within the medial OFC, only  
999 axonal alignment was significantly altered in KOs (**G**), with axon density (**H**)  
1000 and cell density (**I**) being similar. For the BMA, both the axonal alignment (**J**)  
1001 and axon density (**K**) were significantly increased, whilst cell density was  
1002 unaltered (**L**). \* $=P<0.05$ , \*\* $=P<0.01$ . Error bars represent s.e.m. Wild-type  
1003 n=6, *Nrxn2α* KO n=6.

1004

Pervolaraki et al.

1005

1006

1007

1008

1009 **The within-subject application of diffusion tensor MRI and**

1010 **CLARITY reveals brain structural changes in *Nrxn2* deletion**

1011 **mice**

1012

1013

1014 **Supplemental Material**

1015

1016

1017

1018

1019

1020 Eleftheria Pervolaraki Ph.D, Adam L. Tyson MRes, Francesca Pibiri Ph.D,

1021 Steven L. Poulter Ph.D, Amy C. Reichelt Ph.D, R. John Rodgers Ph.D,

1022 Steven J. Clapcote Ph.D, Colin Lever Ph.D, Laura C. Andreae M.D. Ph.D,

1023 James Dachtler Ph.D

1024

1025

1026

1027

1028

Pervolaraki et al.

1029 **Supplemental Materials and Methods**

1030 **Diffusion Tensor MRI**

1031 **Data Acquisition**

1032 Brain MR imaging was performed on a vertical 9.4 Tesla spectrometer (Bruker  
1033 AVANCE II NMR, Ettlingen, Germany) with an 89 mm wide bore, 3 radio  
1034 frequency channels with digital broadband frequency synthesis (6-620 MHz)  
1035 and an imaging coil with diameter of 25 mm for hydrogen (1H). 3D images for  
1036 each brain were obtained using a DT-MRI protocol (TE: 35 ms, TR: 700 ms,  
1037 10 signal averages). The field of view was set at 128 x 128 x 128, with a cubic  
1038 resolution of 100  $\mu$ m/pixel and a b value of 1200 s/mm<sup>2</sup>. For each brain,  
1039 diffusion weighted images were obtained in 6 directions, based upon recent  
1040 published protocols (80-84). The subject of the number of diffusions gradients  
1041 has been debated (79), with studies suggesting limited benefits of using more  
1042 than 6 directions in biological tissue (85-87). The imaging time for each brain  
1043 was 60 hours.

1044

1045 **CLARITY**

1046 **Solutions:**

1047 **Hydrogel solution:** 2% PFA 2% acrylamide 0.05% bis-acrylamide and 0.25%  
1048 VA-044 thermal initiator (2,2'-Azobis[2-(2-imidazolin-2-yl) propane]  
1049 dihydrochloride) in PBS, pH 7.4.

1050 **Clearing buffer:** 8% Sodium dodecyl sulfate in 200mM boric acid, pH 8.5.

1051

1052 **Multiphoton imaging – methodological outline**

1053 Cleared samples were mounted in custom 3D printed chambers for two-  
1054 photon imaging. Images were acquired using ZEN Black (Zeiss, Germany).  
1055 DAPI signal was detected using a 485 nm short pass filter, and neurofilament  
1056 using a 500-550 nm band pass filter. The power of the excitation laser was  
1057 varied to maximise the dynamic range for each image, but all other  
1058 parameters were kept constant. The images were analysed using custom  
1059 MATLAB (version 9.1, The Mathworks Inc.) scripts. Two-dimensional images  
1060 were visualised using ImageJ (88) and three-dimensional images using  
1061 Vaa3D (89).

1062

Pervolaraki et al.

1063 **Multiphoton imaging and analysis – image analysis method**

1064 **Pre-processing**

1065 Image files were loaded into MATLAB (The Mathworks Ltd.) using the  
1066 BioFormats toolbox (90), and the raw image data were obtained along with  
1067 the precise voxel dimensions from the metadata. Each two-dimensional (2D)  
1068 image from the three-dimensional (3D) stack was initially corrected for uneven  
1069 background illumination by element-wise division by a 2D reference image.  
1070 This reference image was calculated as the mean 2D image through the 3D  
1071 stack, which was smoothed using a 2D Gaussian kernel with a full-width at  
1072 half maximum (FWHM) of 20 % of the geometric mean of the dimensions of  
1073 the 2D image (mean dimension). The image was denoised by filtering the  
1074 image with a Gaussian kernel with a standard deviation of one pixel.  
1075 Background subtraction was carried out by subtracting a smoothed, filtered  
1076 image (FWHM 10 % of the mean dimension). Each pixel was then smoothed  
1077 using a 3D Gaussian kernel with FWHM of 1.5  $\mu\text{m}$  (the largest axonal  
1078 diameter expected according to Perge et al. (91)).

1079 **Segmentation**

1080 The numerical gradient of the image in each dimension ( $\Delta X, \Delta Y, \Delta Z$ ) was  
1081 calculated, and these were combined to calculate the magnitude of the  
1082 gradient ( $\sqrt{\Delta X^2 + \Delta Y^2 + \Delta Z^2}$ ). The resulting image was thresholded, using  
1083 a combination of the Otsu (1979) and Rosin (2001) methods (Rosin threshold  
1084 + 2/5 Otsu threshold) (92, 93). The gradient image highlights the edge of each  
1085 axon; to combine these into a single object, the image was dilated and then  
1086 eroded with a cubic structuring element (each side being 1.5  $\mu\text{m}$ , to ‘close’ the  
1087 largest axons as per Perge et al. (91)). Very small objects (less than 50  $\mu\text{m}^3$ )  
1088 were removed from the image as they reflected noise, very small neuronal  
1089 processes and gradients around cells.

1090

1091 Owing to variations in staining intensity of different axons, the thresholding  
1092 produced segmented axons of various thicknesses that did not necessarily  
1093 reflect the true structure. To remove this bias, the thresholded image was  
1094 skeletonised using a homotopic thinning algorithm (94) implemented in  
1095 MATLAB(95). The resulting image was dilated and then eroded using a cubic

Pervolaraki et al.

1096 structuring element (10 pixels on each side for dilation, 9 for erosion) to  
1097 produce connected processes with a uniform two-pixel diameter. This dilation  
1098 ensured that the voxels in the binary image were connected via their faces (6-  
1099 connected) rather than just their corners (26-connected), which better reflects  
1100 the true structure of biological processes. This method detects most large  
1101 axons at the expense of smaller processes, and the loss of any information  
1102 about axon diameter. These steps are outlined in Supp. Figure 2.

1103 **Analysis**

1104 The density of axons was calculated as the fraction of the image volume  
1105 taken up by the segmented axons. A measure of axonal alignment was  
1106 calculated by determining the mean axonal alignment along each dimension.  
1107 This alignment was calculated by moving along the 3D image in a single  
1108 dimension, keeping the coordinates in the other dimensions constant, and  
1109 counting the number of times the pixel intensity did not change (i.e. how many  
1110 times an axon was not entered or left). This number was averaged across  
1111 each face of the image volume and scaled to the length of each dimension to  
1112 produce a metric of how constant the image intensity is in that dimension. The  
1113 perfect case of no intensity change (i.e. all axons are aligned perfectly with a  
1114 particular dimension) gives a value of 1. The greater the difference between  
1115 this measure in each three dimensions, the more aligned the axons must be  
1116 (i.e. their directions are anisotropic). The standard deviation of this measure  
1117 across the three dimensions was calculated as the axonal alignment.

1118

1119 The alignment calculation is illustrated in Supp. Figure 3 for a simple, two-  
1120 dimensional case. Supp. Figure 3a shows the case of low axonal alignment,  
1121 and Supp. Figure 3b shows the case of high axonal alignment. In each case,  
1122 for illustration, each pixel represented by a small square on the grid is classed  
1123 as either containing an axon or not. In the real images, the pixels are smaller,  
1124 and are actually binary. In each axis, the number of pixel transitions in which  
1125 the presence of an axon does not change is divided by the number of  
1126 transitions, and the average is calculated. The standard deviation of this  
1127 average for all axes is the measure of axonal alignment. When the alignment  
1128 is low, the two averages are similar, and the standard deviation is low. When  
1129 the alignment is high the two averages are very different, and the standard

Pervolaraki et al.

1130 deviation is high. To analyse the real data, this same calculation is carried out  
1131 in 3D, but in a much larger grid of voxels. Cell density was calculated as the  
1132 number of cells per mm<sup>3</sup>.

1133

1134

1135

Pervolaraki et al.

1136 **Supp. Table 1**

1137

| Brain Region                   | DTI Measure | ANOVA Comparison             | F Value                                | P Value          |
|--------------------------------|-------------|------------------------------|----------------------------------------|------------------|
| Amygdala-Anterior Hippocampus  | AD          | Genotype                     | $F_{(1,10)} < 1$                       | P = 0.164        |
|                                |             | Hemisphere                   | $F_{(1,10)} = 2.10$                    | P = 0.097        |
|                                |             | <b>Genotype x Hemisphere</b> | <b><math>F_{(1,10)} = 12.12</math></b> | <b>P = 0.023</b> |
| Amygdala-Anterior Hippocampus  | RD          | Genotype                     | $F_{(1,10)} < 1$                       | P = 0.149        |
|                                |             | Hemisphere                   | $F_{(1,10)} = 1.32$                    | P = 0.106        |
|                                |             | Genotype x Hemisphere        | $F_{(1,10)} < 1$                       | P = 0.155        |
| Amygdala-Posterior Hippocampus | AD          | Genotype                     | $F_{(1,10)} < 1$                       | P = 0.142        |
|                                |             | Hemisphere                   | $F_{(1,10)} < 1$                       | P = 0.189        |
|                                |             | Genotype x Hemisphere        | $F_{(1,10)} = 4.54$                    | P = 0.061        |
| Amygdala-Posterior Hippocampus | RD          | Genotype                     | $F_{(1,10)} < 1$                       | P = 0.151        |
|                                |             | Hemisphere                   | $F_{(1,10)} < 1$                       | P = 0.135        |
|                                |             | Genotype x Hemisphere        | $F_{(1,10)} < 1$                       | P = 0.128        |
| BLA-Anterior Hippocampus       | AD          | Genotype                     | $F_{(1,10)} < 1$                       | P = 0.167        |
|                                |             | Hemisphere                   | <b><math>F_{(1,10)} = 6.59</math></b>  | <b>P = 0.047</b> |
|                                |             | <b>Genotype x Hemisphere</b> | <b><math>F_{(1,10)} = 10.53</math></b> | <b>P = 0.032</b> |
| BLA-Anterior Hippocampus       | RD          | Genotype                     | $F_{(1,10)} < 1$                       | P = 0.158        |
|                                |             | Hemisphere                   | $F_{(1,10)} = 2.59$                    | P = 0.092        |
|                                |             | Genotype x Hemisphere        | $F_{(1,10)} < 1$                       | P = 0.173        |
| BLA-Posterior Hippocampus      | AD          | Genotype                     | $F_{(1,10)} < 1$                       | P = 0.169        |
|                                |             | Hemisphere                   | <b><math>F_{(1,10)} = 12.79</math></b> | <b>P = 0.018</b> |
|                                |             | <b>Genotype x Hemisphere</b> | <b><math>F_{(1,10)} = 12.97</math></b> | <b>P = 0.02</b>  |
| BLA-Posterior Hippocampus      | RD          | Genotype                     | $F_{(1,10)} < 1$                       | P = 0.162        |
|                                |             | Hemisphere                   | $F_{(1,10)} = 3.11$                    | P = 0.077        |
|                                |             | Genotype x Hemisphere        | $F_{(1,10)} < 1$                       | P = 0.178        |

1138

1139 Statistical analysis of the anterior (Bregma -1.94 mm), and posterior (Bregma  
 1140 -3.28 mm) amygdala-hippocampal connections, analysed for axial diffusion  
 1141 (AD) and radial diffusion (RD). Analysis was performed using repeated

Pervolaraki et al.

1142 measure two-way ANOVAs for genotype and hemisphere (Benjamini-  
1143 Hochberg corrected (corrected P values stated)).

1144 **Supp. Table 2**

1145

| Brain Region | CLARITY Measure | ANOVA Comparison | F Value              | P Value                       |
|--------------|-----------------|------------------|----------------------|-------------------------------|
| M1           | OI              | Genotype         | $F_{(1,10)} < 1$     | $P = 0.182$                   |
|              |                 | Hemisphere       | $F_{(1,10)} = 1.74$  | $P = 0.108$                   |
| M1           | Cell Density    | Genotype         | $F_{(1,10)} = 2.04$  | $P = 0.099$                   |
|              |                 | Hemisphere       | $F_{(1,10)} = 1.41$  | $P = 0.117$                   |
| M1           | Fibre Density   | Genotype         | $F_{(1,10)} < 1$     | $P = 0.171$                   |
|              |                 | Hemisphere       | $F_{(1,10)} < 1$     | $P = 0.176$                   |
| S1           | OI              | Genotype         | $F_{(1,10)} < 1$     | $P = 0.185$                   |
|              |                 | Hemisphere       | $F_{(1,10)} = 36.86$ | <b><math>P = 0.005</math></b> |
| S1           | Cell Density    | Genotype         | $F_{(1,10)} < 1$     | $P = 0.131$                   |
|              |                 | Hemisphere       | $F_{(1,10)} = 13.73$ | <b><math>P = 0.016</math></b> |
| S1           | Fibre Density   | Genotype         | $F_{(1,10)} = 1.73$  | $P = 0.110$                   |
|              |                 | Hemisphere       | $F_{(1,10)} = 8.51$  | <b><math>P = 0.038</math></b> |
| BF           | OI              | Genotype         | $F_{(1,10)} < 1$     | $P = 0.191$                   |
|              |                 | Hemisphere       | $F_{(1,10)} = 10.59$ | <b><math>P = 0.034</math></b> |
| BF           | Cell Density    | Genotype         | $F_{(1,10)} < 1$     | $P = 0.133$                   |
|              |                 | Hemisphere       | $F_{(1,10)} = 8.70$  | <b><math>P = 0.041</math></b> |
| BF           | Fibre Density   | Genotype         | $F_{(1,10)} < 1$     | $P = 0.144$                   |
|              |                 | Hemisphere       | $F_{(1,10)} < 1$     | $P = 0.126$                   |

1146

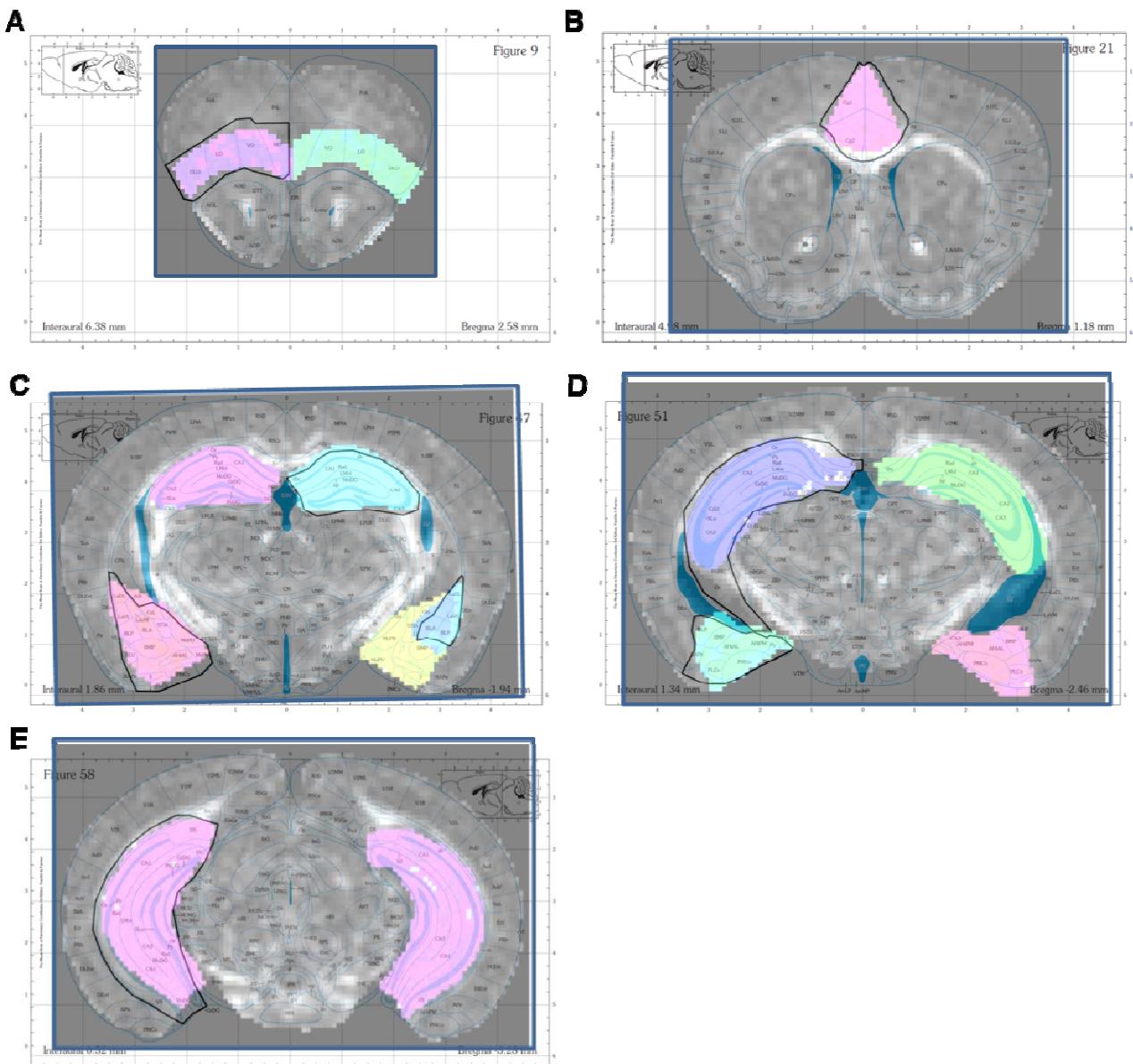
1147

1148

1149

1150

1151


1152

Statistical analysis of the primary motor cortex (M1), primary somatosensory cortex (S1) and the barrel field (BF). CLARITY imaged regions were then analysed for orientation index (OI), cell density and fibre density. Analysis was performed using repeated measure two-way ANOVAs for genotype and hemisphere (Benjamini-Hochberg corrected (corrected P values stated)).

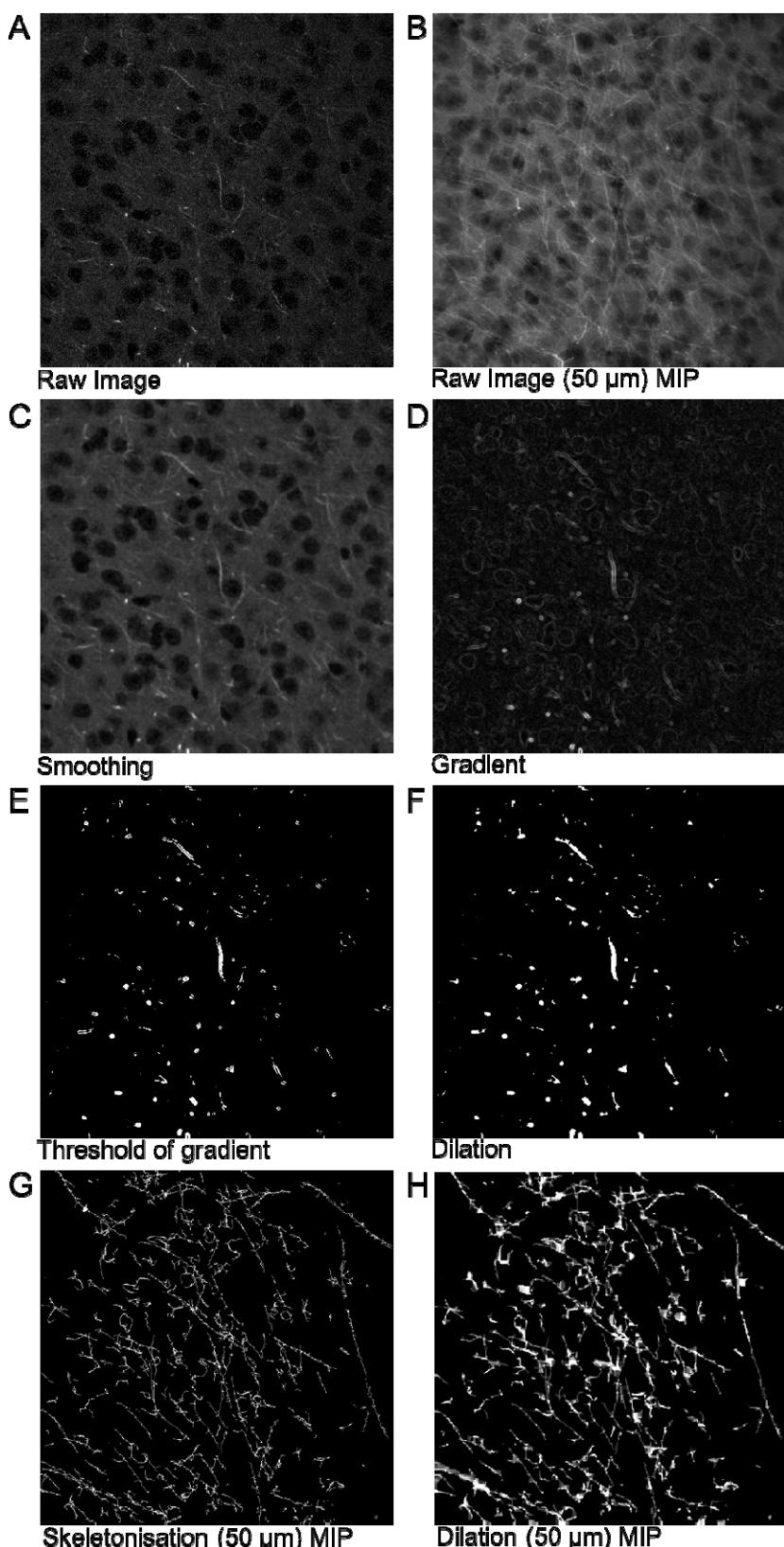
Pervolaraki et al.

1153 **Supp. Figure 1**

1154



1155


1156 Atlas maps representing manual segmentation of regions of interest (ROI),  
1157 overlaid with segmented brain regions from a fractional anisotropy-coloured  
1158 brain slice. **(A)** The orbitofrontal cortex ROI. **(B)** The ACC ROI. **(C)** The  
1159 anterior hippocampus, anterior amygdala and basolateral amygdala ROI. **(D)**  
1160 The mid hippocampus and posterior amygdala ROI. **(E)** The posterior  
1161 hippocampus ROI. The atlas maps were used with the permission of the  
1162 Authors (96).

1163

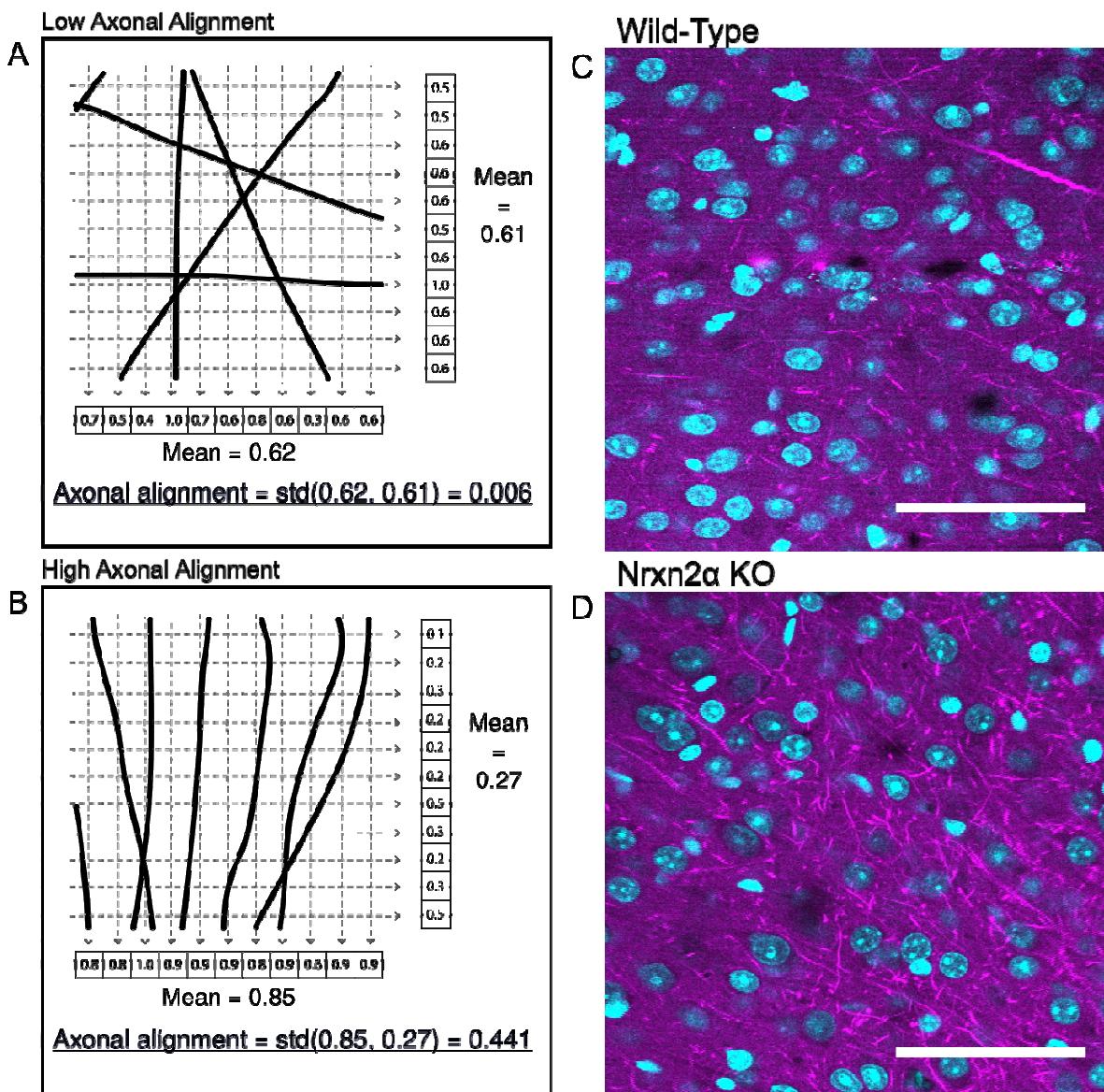
1164

Pervolaraki et al.

1165 **Supp. Figure 2**



1166

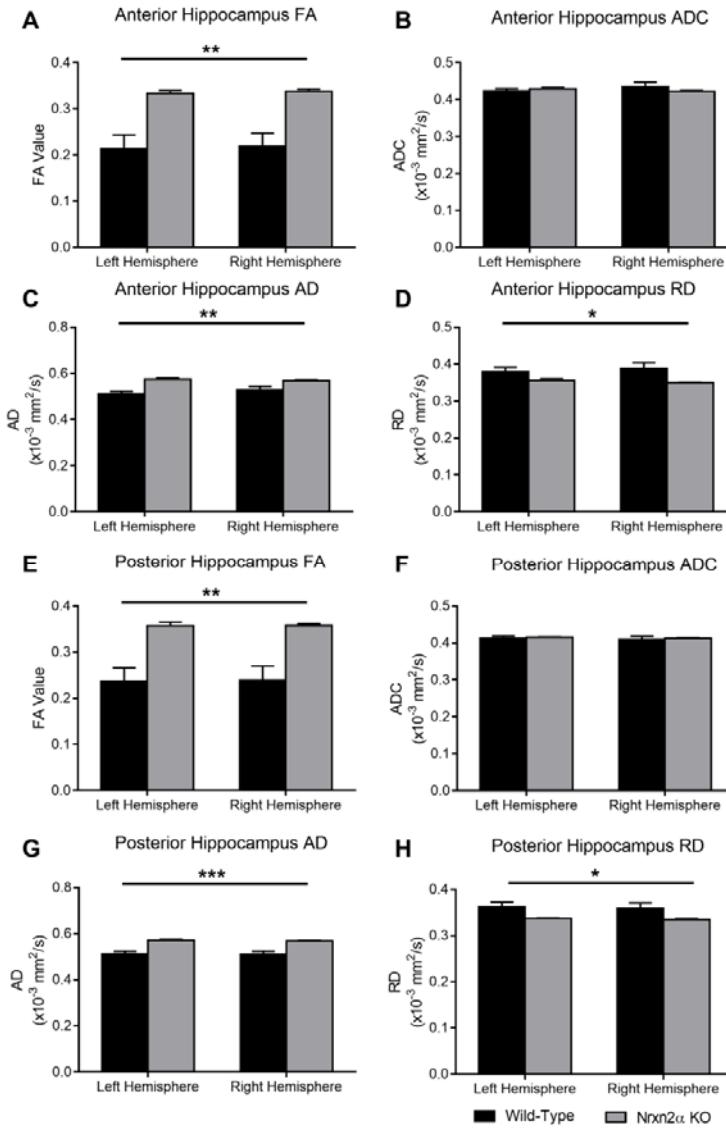

1167

Analysis methodology of axonal segmentation from multiphoton images.

Pervolaraki et al.

1168 Supp. Figure 3

1169




Pervolaraki et al.

1177 Supp. Figure 4

1178

1179

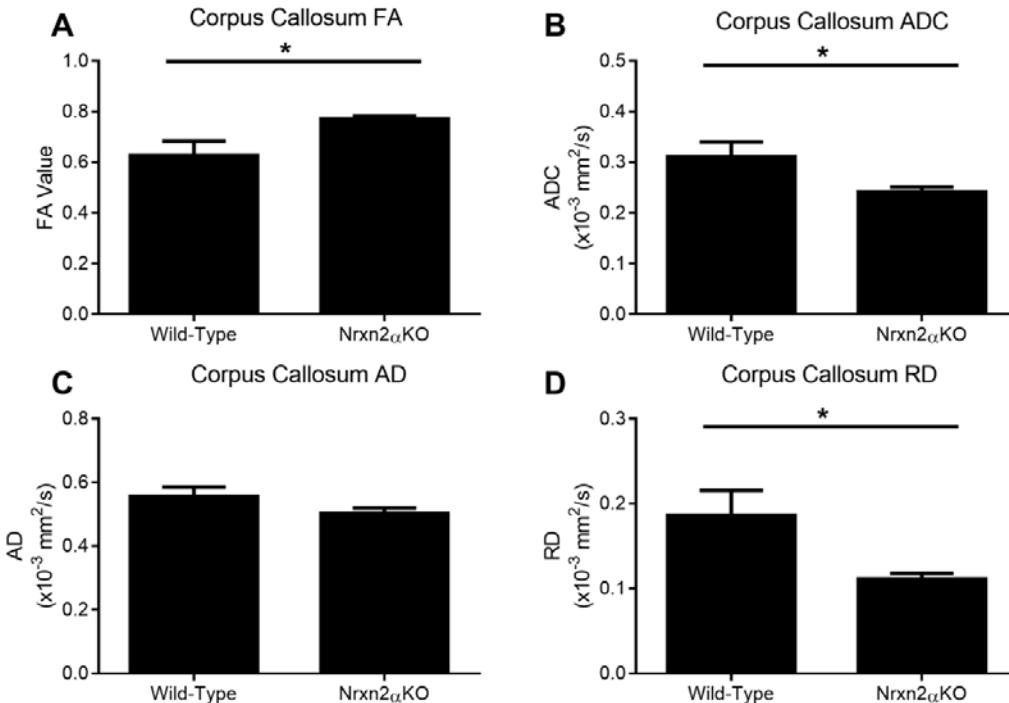


1180

1181

1182 DTI quantified for the whole anterior hippocampus (Bregma -1.06 mm – -2.46  
1183 mm) and posterior hippocampus (Bregma -2.54 mm – -3.16 mm). (A)  
1184 Fractional anisotropy (FA) in the anterior hippocampus was significantly  
1185 increased in Nrxn2α KO mice (genotype:  $F_{(1,10)} = 15.63$ ,  $p = 0.0027$ ) but (B)  
1186 apparent diffusion coefficient (ADC) was not altered (genotype:  $F_{(1,10)} < 1$ ,  $p =$   
1187 0.738). (C) Axial diffusivity (AD) (genotype:  $F_{(1,10)} = 16.17$ ,  $p = 0.0024$ ) and (D)  
1188 radial diffusivity (RD) (genotype:  $F_{(1,10)} = 5.05$ ,  $p = 0.048$ ) were both  
1189 significantly altered in Nrxn2α KO mice. In the posterior hippocampus, in  
1190 Nrxn2α KO mice, (E) FA was significant increased (genotype:  $F_{(1,10)} = 15.62$ ,  
1191  $p = 0.0027$ ), (F) ADC was similar to wild-types (genotype:  $F_{(1,10)} < 1$ ,  $p =$   
1192 0.679), (G) AD was increased (genotype:  $F_{(1,10)} = 22.31$ ,  $p = 0.0008$ ) and (H)  
1193 RD was significantly reduced (genotype:  $F_{(1,10)} = 5.34$ ,  $p = 0.043$ ). Error bars

Pervolaraki et al.


1194 represent s.e.m. \* =  $P < 0.05$ , \*\* =  $P < 0.01$ , \*\*\* =  $P < 0.001$ . Wild-type n=6,  
1195 Nrxn2 $\alpha$  KO n=6.  
1196

Pervolaraki et al.

1197 **Supp. Figure 5**

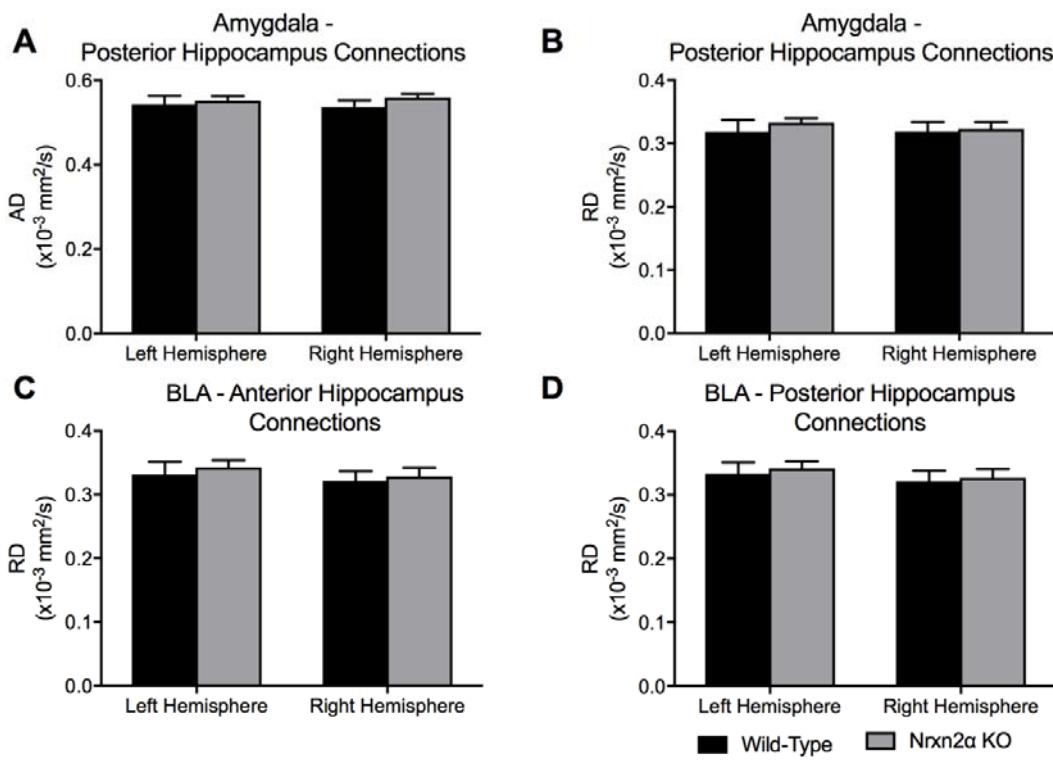
1198

1199



1200

1201


1202 DTI quantification of the corpus callosum (Bregma 0.98 mm). To examine the  
1203 integrity of white matter tracts within Nrnx2 $\alpha$  KO mice, we examined diffusivity  
1204 in the corpus callosum. (A) Fractional anisotropy (FA) was significantly  
1205 increased in Nrnx2 $\alpha$  KO mice (genotype:  $t_{(10)} = 2.50$ ,  $p = 0.032$ ) and apparent  
1206 diffusivity coefficient (ADC) (B) significantly decreased (genotype:  $t_{(10)} = 2.28$ ,  $p$   
1207 = 0.046). This difference appeared to be driven predominantly by radial  
1208 diffusivity (RD), as axial diffusion (AD) (C) was not significantly different  
1209 (genotype:  $t_{(10)} = 1.49$ ,  $p = 0.168$ ) whilst RD (D) was significantly reduced in  
1210 Nrnx2 $\alpha$  KO mice (genotype:  $t_{(10)} = 2.45$ ,  $p = 0.034$ ). Error bars represent  
1211 s.e.m. \* =  $P < 0.05$ . Wild-type n=6, Nrnx2 $\alpha$  KO n=6.

1212

Pervolaraki et al.

1213 **Supp. Figure 6**

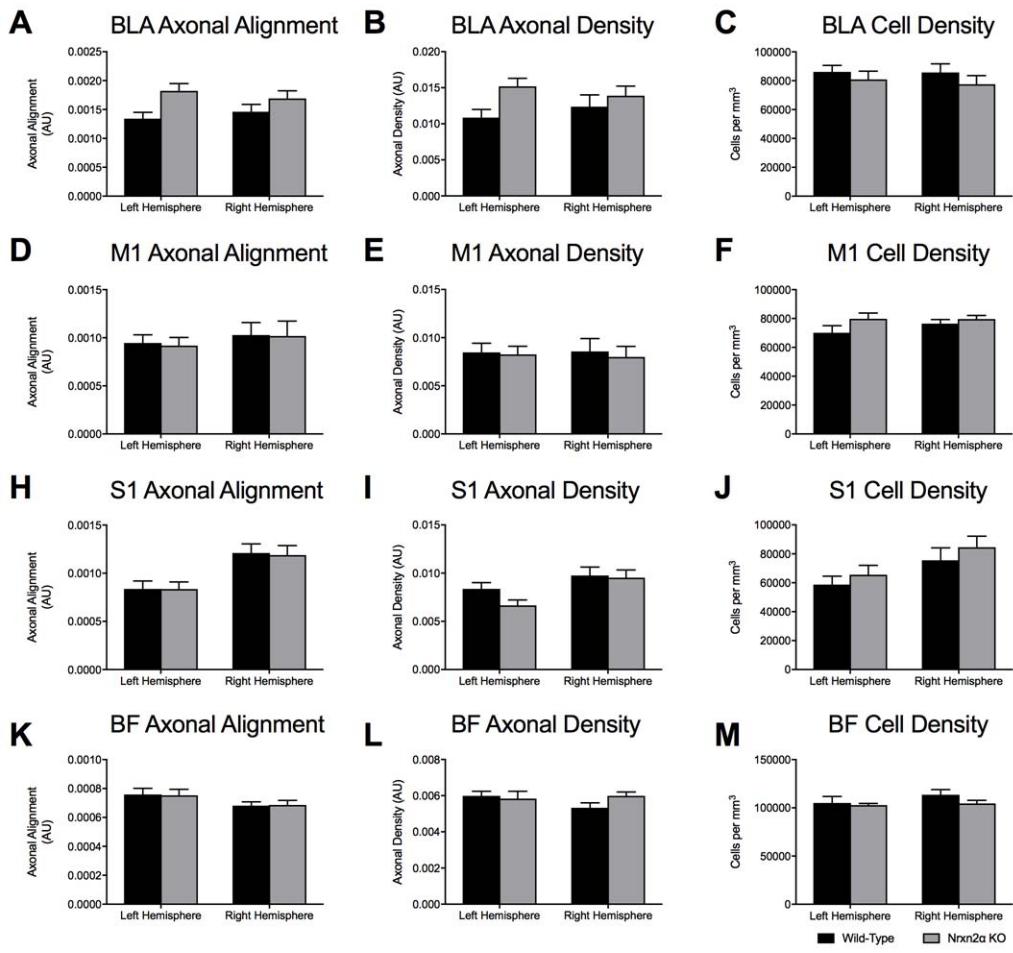
1214



1215

1216

1217 Axial diffusivity (AD) and radial diffusivity (RD) of computed tracts of  
1218 connections from the amygdala to hippocampus. Tracts from the anterior  
1219 amygdala to the posterior hippocampus (Bregma -2.46 mm) were analysed  
1220 for AD (A) and RD (B). No significant differences between the tracts of  
1221 Nrxn2 $\alpha$  KO mice were observed. No significant differences were found for RD  
1222 of tracts specifically from the basolateral nuclei of the amygdala (BLA) to the  
1223 anterior (C) or posterior (D) hippocampus. Error bars represent s.e.m. Wild-  
1224 type n=6, Nrxn2 $\alpha$  KO n=6.


1225

1226

Pervolaraki et al.

1227  
1228

Supp. Figure 7

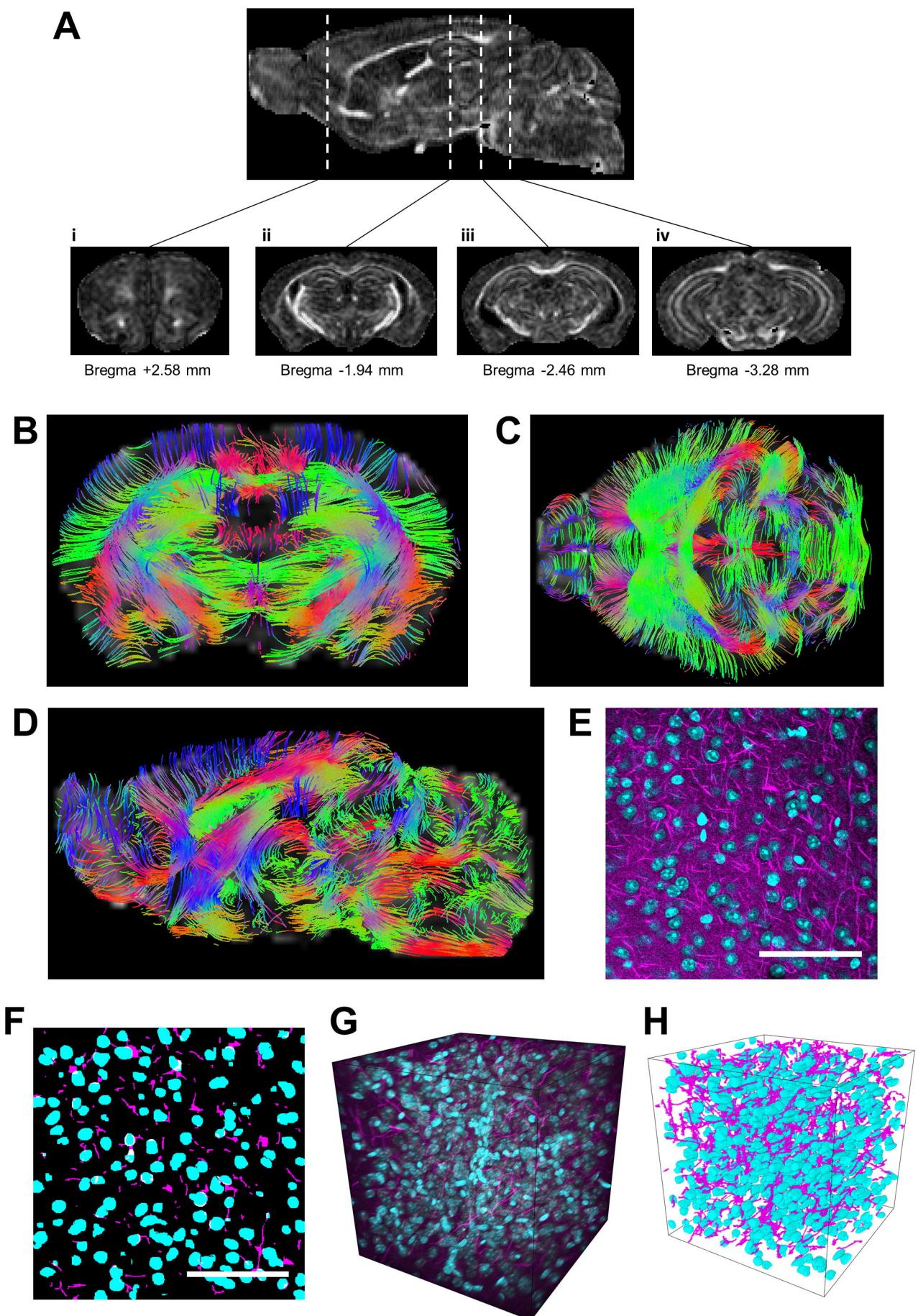


1229  
1230

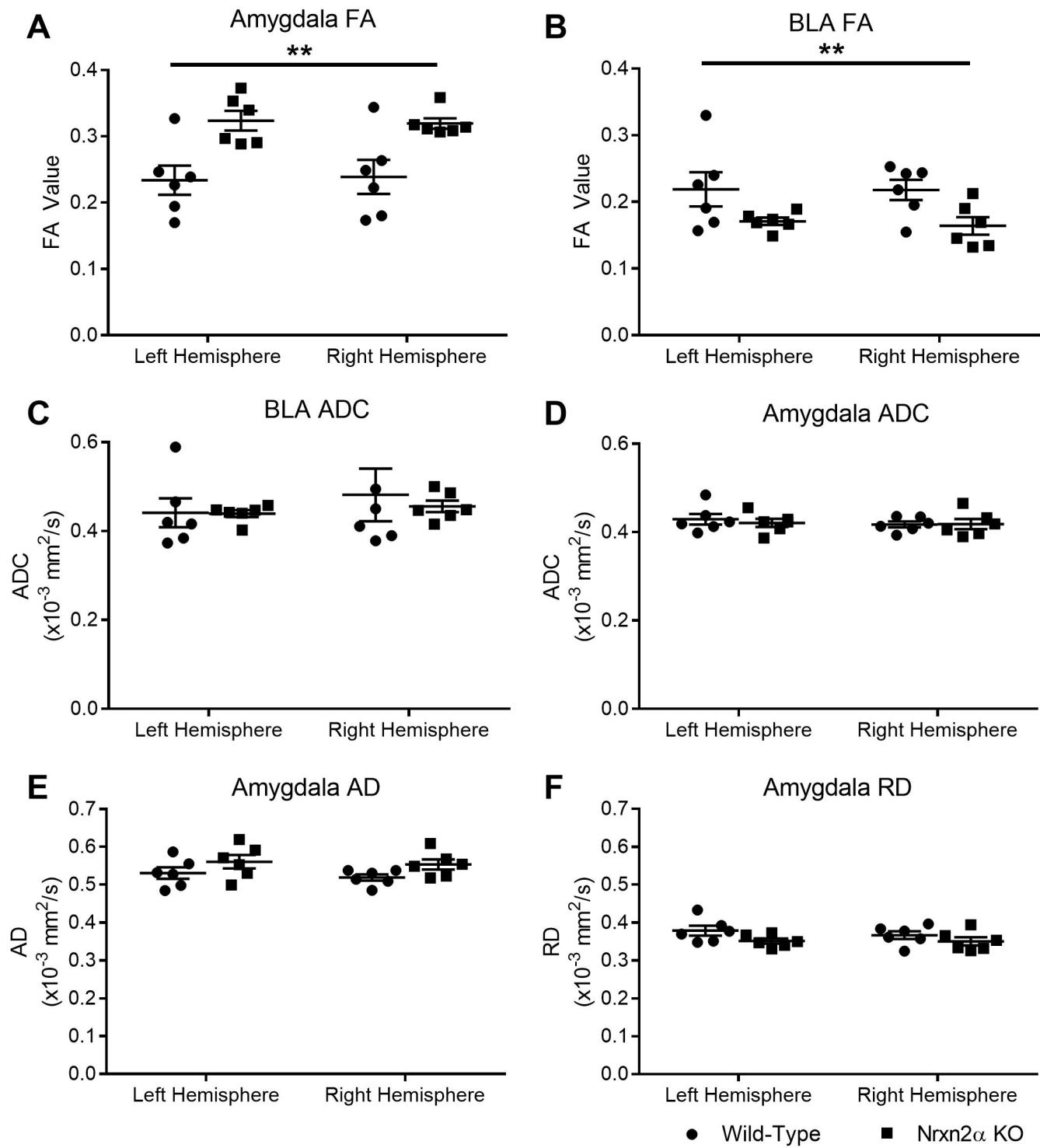
1231 CLARITY-derived quantification of fibres and cell density within the  
1232 basolateral amygdala (BLA) and control regions (A) Although there were  
1233 trends towards increased axonal alignment and fibre density (B) in Nrxn2α  
1234 KO mice, no significant differences were found. (C) Cell density in the BLA  
1235 was similar between the genotypes. Statistical analysis (Supp. Table 4) was  
1236 performed for the primary motor cortex (M1; D-F), primary somatosensory  
1237 cortex (S1; H-J) and the barrel field (BF; K-M). No genotypic differences were  
1238 found for any measure within these cortical regions. (N-O) CLARITY images  
1239 of the scanned regions of interest. Error bars represent s.e.m. Wild-type n=6,  
1240 Nrxn2α KO n=6.

Pervolaraki et al.

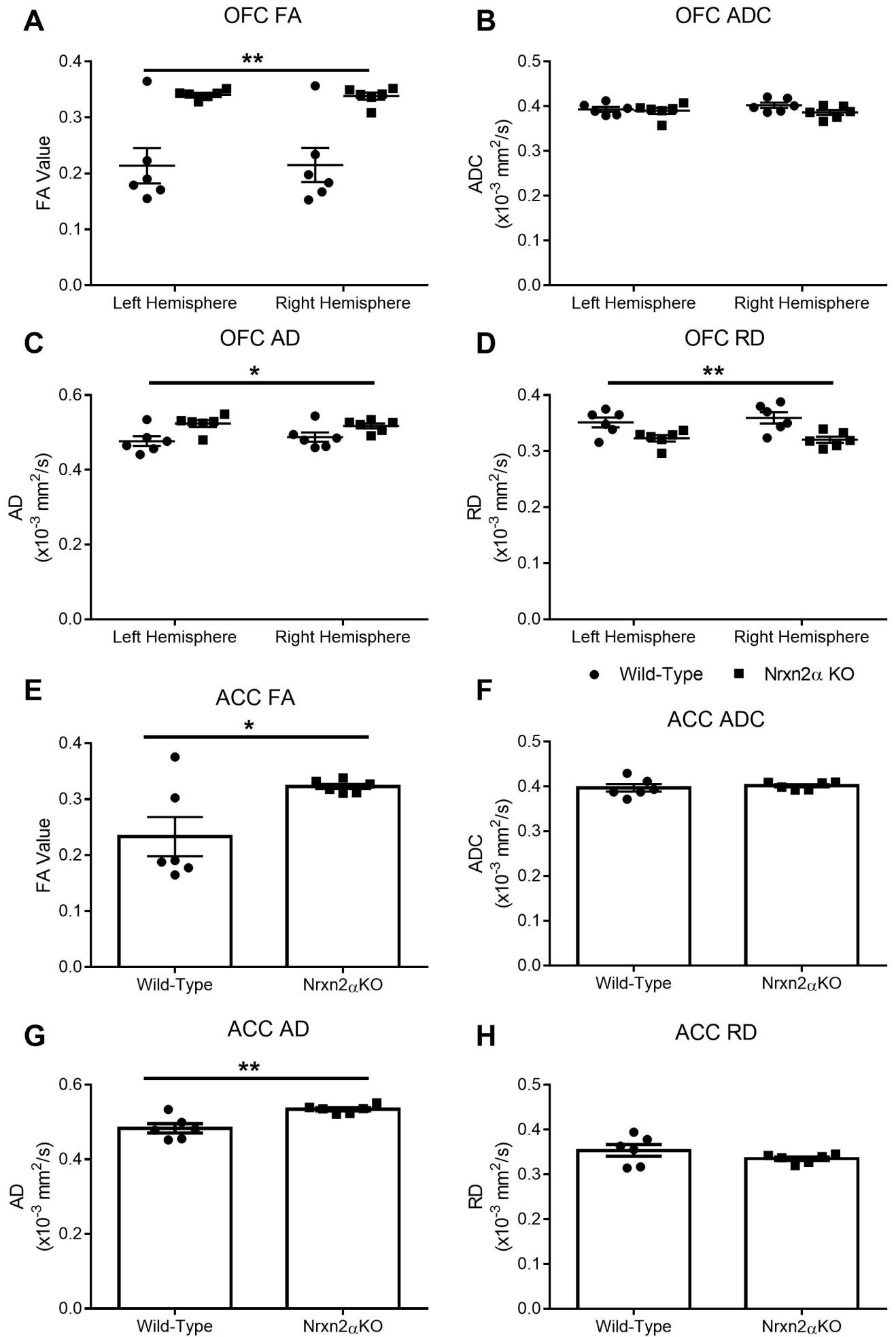
1241


1242 **References**

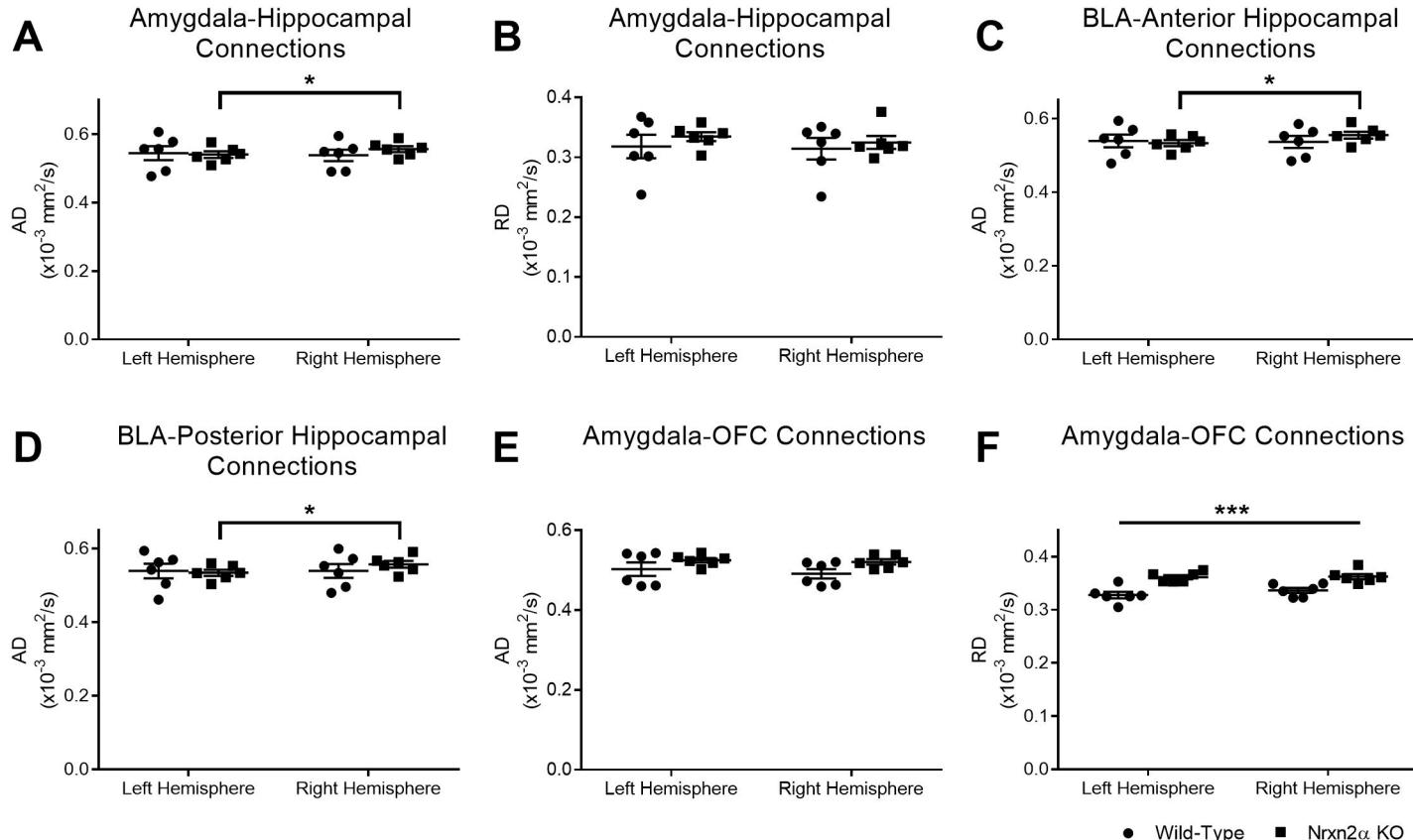
1. Wu D, Xu J, McMahon MT, van Zijl PC, Mori S, Northington FJ, et al. In vivo high-resolution diffusion tensor imaging of the mouse brain. *NeuroImage*. 2013;83:18-26.
2. Vo A, Sako W, Dewey SL, Eidelberg D, Ulug AM. 18FDG-microPET and MR DTI findings in *Tor1a*+/− heterozygous knock-out mice. *Neurobiology of disease*. 2015;73:399-406.
3. Kumar M, Duda JT, Hwang WT, Kenworthy C, Ittyerah R, Pickup S, et al. High resolution magnetic resonance imaging for characterization of the neuroligin-3 knock-in mouse model associated with autism spectrum disorder. *PloS one*. 2014;9(10):e109872.
4. Ruest T, Holmes WM, Barrie JA, Griffiths IR, Anderson TJ, Dewar D, et al. High-resolution diffusion tensor imaging of fixed brain in a mouse model of Pelizaeus-Merzbacher disease: comparison with quantitative measures of white matter pathology. *NMR in biomedicine*. 2011;24(10):1369-79.
5. Kim S, Pickup S, Fairless AH, Ittyerah R, Dow HC, Abel T, et al. Association between sociability and diffusion tensor imaging in BALB/cJ mice. *NMR in biomedicine*. 2012;25(1):104-12.
6. Jones DK. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. *Magnetic resonance in medicine*. 2004;51(4):807-15.
7. Lebel C, Benner T, Beaulieu C. Six is enough? Comparison of diffusion parameters measured using six or more diffusion-encoding gradient directions with deterministic tractography. *Magnetic resonance in medicine*. 2012;68(2):474-83.
8. Ni H, Kavcic V, Zhu T, Ekholm S, Zhong J. Effects of number of diffusion gradient directions on derived diffusion tensor imaging indices in human brain. *AJNR American journal of neuroradiology*. 2006;27(8):1776-81.
9. Hasan KM, Parker DL, Alexander AL. Comparison of gradient encoding schemes for diffusion-tensor MRI. *Journal of magnetic resonance imaging : JMRI*. 2001;13(5):769-80.
10. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. *Nature methods*. 2012;9(7):676-82.
11. Peng H, Ruan Z, Long F, Simpson JH, Myers EW. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. *Nature biotechnology*. 2010;28(4):348-53.
12. Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, et al. Metadata matters: access to image data in the real world. *The Journal of cell biology*. 2010;189(5):777-82.
13. Perge JA, Niven JE, Mugnaini E, Balasubramanian V, Sterling P. Why do axons differ in caliber? *The Journal of neuroscience : the official journal of the Society for Neuroscience*. 2012;32(2):626-38.
14. Otsu N. A Threshold Selection Method from Gray-Level Histograms. *IEEE Transactions on Systems, Man, and Cybernetics*. 1979;9(1):62-6.
15. Rosin P. Unimodal thresholding. *Pattern Recognition*. 2001;34(11):2083-96.
16. Lee T, Kashyap R, Chu C. Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms. *CVGIP: Graphical Models and Image Processing*. 1994;56(6):462-78.
17. Kerschnitzki M, Kollmannsberger P, Burghammer M, Duda GN, Weinkamer R, Wagermaier W, et al. Architecture of the osteocyte network correlates with bone


Pervolaraki et al.

1292 material quality. *Journal of bone and mineral research : the official journal of the*  
1293 *American Society for Bone and Mineral Research.* 2013;28(8):1837-45.  
1294 18. Franklin K, Paxinos G. *The Mouse Brain in Stereotaxic Coordinates:*  
1295 *Academic Press; 2008.*  
1296

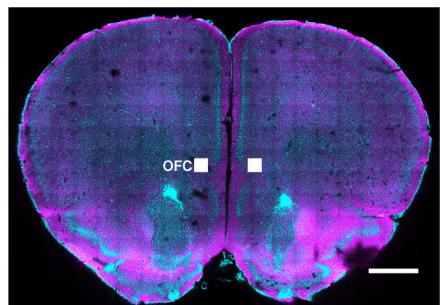

# Figure 1



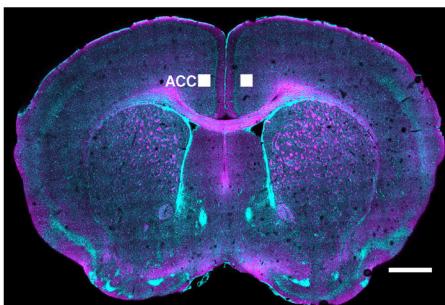

# Figure 2



**Figure 3**  
 bioRxiv preprint doi: <https://doi.org/10.1101/300806>; this version posted February 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



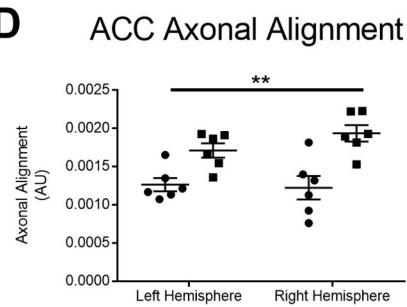

# Figure 4



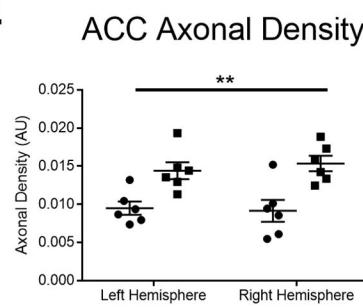

# Figure 5

**A**

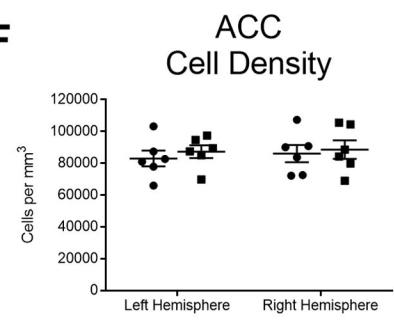



**B**

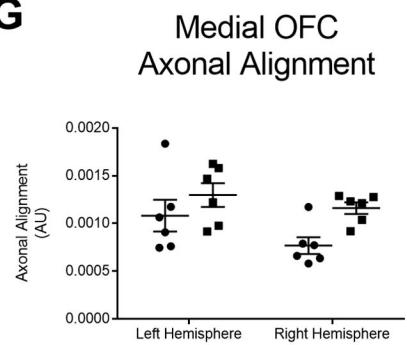



**C**

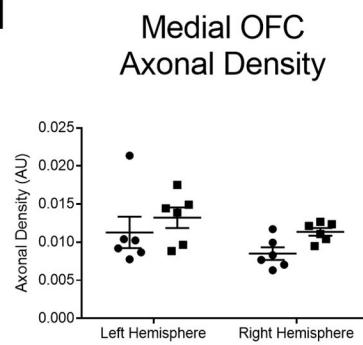



**D**

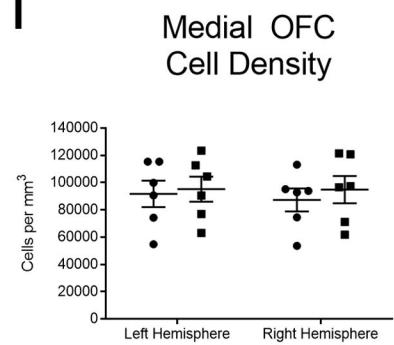



**E**

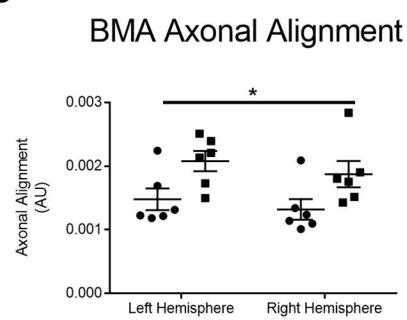



**F**

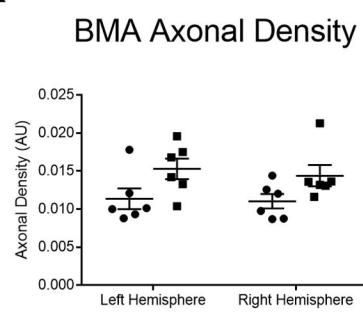



**G**

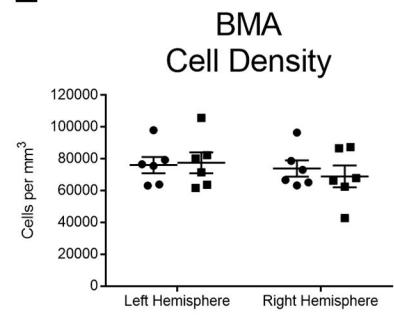



**H**




**I**




**J**



**K**



**L**



● Wild-Type ■ Nrnx2 $\alpha$  KO