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Non-random mate-choice with respect to complex traits is widely observed in 

humans, but whether this reflects true phenotypic assortment, environment 

(social homogamy) or convergence after choosing a partner is not known. 

Understanding the causes of mate choice is important, because assortative 

mating (AM) if based upon heritable traits, has genetic and evolutionary 

consequences. AM is predicted under Fisher’s classical theory1 to induce a 

signature in the genome at trait-associated loci that can be detected and 

quantified. Here, we develop and apply a method to quantify AM on a specific 

trait by estimating the correlation (θ) between genetic predictors of the trait 

from SNPs on odd versus even chromosomes. We show by theory and simulation 

that the effect of AM can be distinguished from population stratification. We 

applied this approach to 32 complex traits and diseases using SNP data from 

~400,000 unrelated individuals of European ancestry. We found significant 

evidence of AM for height (θ=3.2%) and educational attainment (θ=2.7%), both 

consistent with theoretical predictions. Overall, our results imply that AM 

involves multiple traits, affects the genomic architecture of loci that are 

associated with these traits and that the consequence of mate choice can be 

detected from a random sample of genomes. 
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Non-random mating in natural populations has short and long-term evolutionary 

consequences. In many species, including humans, mate choice is often associated 

with phenotypic similarities between mates2,3. Such phenotypic similarities have 

multiple sources, for example social homogamy, the preference for a mate from the 

same environment, or because of primary assortment on certain traits observable at 

the time of mate choice. Contrary to social homogamy, primary phenotypic 

assortment, here referred to as assortative mating (AM), has genetic and evolutionary 

consequences and therefore is the focus of our study. In humans, AM involves 

multiple complex traits4–8 and can sometimes lead to similar susceptibility to 

diseases9–12. The genetic effects of AM were first studied in the seminal articles of 

Fisher (1918)1 and Wright (1921)13. Those two founding contributions, further 

complemented by Crow & Kimura (1970)14 and others15–17 have set the basis of the 

theory of AM on complex traits. AM theory predicts three main genetic consequences 

of a positive correlation between the phenotypes of mates in a population: (i) an 

increase of the genetic variance in the population, (ii) an increase in the correlation 

between relatives and (iii) an increase of homozygosity (deviation from Hardy-

Weinberg Equilibrium; HWE), in particular at causal loci. These seemingly distinct 

consequences are nonetheless explained by the same cause: directional correlation 

between trait-increasing alleles (TIA), also referred to as gametic phase 

disequilibrium (GPD), induced both within and between loci (Fig. 1). AM-induced 

GPD implies correlations between physically distant loci (between chromosomes for 

example) and is thus distinct from linkage disequilibrium. Therefore, AM leads to a 

genomic signature of trait-associated loci that can be quantified by estimating GPD.  
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Previous studies18–20 have been successful at detecting GPD by direct quantification 

of increased homozygosity at ancestry-associated loci. Beyond ancestry-related traits, 

such endeavour is particularly challenging for polygenic traits as theory14 predicts an 

increase of homozygosity due to AM inversely proportional to the number M of 

causal variants14,21. For a highly polygenic trait like height with an estimated 

M~100,000 for common variants22, the expected increase in homozygosity would be 

of the order of ~1/2� �5×10-6, i.e. negligible (Supplementary Note 1). Extremely 

large studies would therefore be required to quantify systematic deviation from HWE 

at height-associated single-nucleotide polymorphism (SNP) as shown in a recent 

study18 that failed to detect such an effect. Another study23 in ~6,800 participants of 

European ancestry, reported evidence of deviation from HWE at height associated 

loci. This study however did not account for within-sample population stratification 

and therefore their reported estimates are likely inflated for this reason. Overall, study 

designs using deviation from HWE for quantifying GPD can be successful for 

detecting ancestry-based AM (ancestral endogamy) because the number of loci 

distinguishing ancestries is relatively small24, and ancestral endogamy is strong18, but 

are less powerful to detect trait-specific AM. In contrast to HWE-based estimation 

strategies, quantifying GPD on the basis of pairwise correlations between TIAs is 

much more tractable as the number of pairs of loci involved, of the order of ~M2, 

compensates for the magnitude of the expected covariance for each pair, ~1/2�. 

This compensation explains in essence why AM increases the genetic variance in a 

population14,21. 

 

GPD due to AM causes individuals that carry TIAs at one locus to be more likely to 

carry TIAs at other loci than expected under gametic phase equilibrium. 
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Consequently, individuals with many TIAs on even chromosomes are likely to have 

more than average TIAs on odd chromosomes. We quantify this effect by calculating 

genetic predictors for a trait from the SNPs on odd chromosomes and from the SNPs 

on even chromosomes and then calculating the correlation (θ) between these two 

predictors. To calculate these predictors we use estimates of the effect of each SNP on 

a trait from publicly available summary statistics from genome-wide association 

studies (GWAS) of large sample size. We apply these estimated SNP effects to 

individuals in a separate sample who have SNP genotypes available. We can calculate 

the trait predictor based on odd and even chromosomes separately and estimate the 

correlation between them (i.e. θ). Our method measures the effect on the genome due 

to AM in previous generations and thus does not require observed phenotypes or the 

use of mate pairs. Under the null hypothesis of random mating (RM), the correlation 

between alleles on different chromosomes is expected to be 0 as a consequence of the 

independent segregation of chromosomes. However, population stratification can 

induce spurious correlations between alleles, even at distant loci. Intuitively, if θ is 

estimated from a mixture of two sub-populations with distinct allele frequencies, then 

having TIAs more frequent in one of the sub-populations (even by chance) would 

result in an apparent correlation between TIAs even when such correlation is absent in 

each sub-population (Supplementary Note 2). We show through simulations how the 

effect of population stratification can be corrected with our method. We then applied 

our method to estimate AM-induced GPD for 32 traits and diseases in samples of 

unrelated genomes from three independent cohorts: ~350,000 participants of the UK 

Biobank (UKB), ~54,000 participants of the Genetic Epidemiology Research on 

Adult Health and Aging (GERA) cohort and ~8,500 participants of the US Health and 
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Retirement Study (HRS). We find evidence of AM for a number of complex traits, 

including height and educational attainment. 

 

Results 

 

Theory underlying the estimation of GPD from SNP data 

We derived (Supplementary Note 1) the expected value of the correlation across 

individuals between the trait predictors from SNPs on odd (So) and even (Se) 

chromosomes as a function of the phenotypic correlation between mates (�), the 

equilibrium heritability of the trait (���� ), the fraction of that heritability captured by 

SNPs 	
���, the sample size (�) of the reference GWAS in which effect sizes are 

estimated using classical linear regression, one SNP at a time; and the number of 

causal loci 
�� contributing to the trait (which differs from the number of statistically 

associated loci). The main result is that for a large number of trait loci, 
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                    (1) 

 

with � � �����  being the correlation between additive genetic values of mates 

expected under AM17 and 
� � 
�� 
1 � ��⁄ , the fraction of heritability captured by 

SNPs in the base population (Supplementary Note 1). These parameters do not need 

to be known or estimated, but can be used to provide a priori expectation of θ or a 

posteriori rationalisation. Hence, quantification of GPD can be directly obtained from 

estimates of θ using empirical data. For the sake of simplicity, we hereafter refer to 

estimates of θ as estimates of GPD. Equation (1) implies that the expected correlation 
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θ between So and Se increases with �, i.e. with better estimation of SNP effects from 

the reference GWAS, and with 
�� , i.e. with better tagging of causal variants 

underlying the full narrow sense heritability. 

 

We derived (Supplementary Note 2) that estimates of θ from the regression of So on 

Se can be inflated by population stratification, especially when TIAs are highly 

differentiated between sub-populations. We performed a number of simulations 

(Supplementary Notes 2 and 3) to validate the impact of population stratification on 

our estimator of GPD and show how to adjust for it using principal components 

derived separately for odd and even chromosomes (Fig. S1 and Fig. S2). We used this 

strategy to quantify GPD in real data, and therefore adjusted all GPD estimates for 20 

genotypic principal components to correct within sample population stratification 

(Materials and Methods). Also, given that most GPD estimates are small, all GPD 

estimates (correlations) reported below are expressed as percentages (e.g. 3% instead 

of 0.03). 

 

Quantifying AM-induced GPD in complex traits 

We first analysed height and educational attainment (EA), two reference traits with 

long-standing evidence of a positive correlation between mates. For height, we used 

estimated effect sizes, from summary statistics of the latest GWAS meta-analysis of 

the GIANT consortium (Wood et al. 2014)25, of 9,447 near independent  HapMap3 

(HM3) SNPs selected using the LD clumping algorithm implemented in the software 

PLINK26 (linkage disequilibrium (LD) r2<0.1 for SNPs < 1 Mb apart and association 

p-value < 0.005). We thus selected these SNPs to be enriched for true association with 

height.  We estimated in UKB participants the correlation between height increasing 
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alleles on odd versus even chromosomes to be θheight=3.0% (s.e. 0.2%; Fig. 2) and 

replicated this finding in GERA (θheight=4.1%, s.e. 0.4%; Fig. 2) and HRS 

(θheight=4.4%, s.e. 1.1%; Fig. 2). A meta-analysis of these three estimates yields a 

combined GPD among height-increasing alleles of 3.2% (s.e. 0.2%, p=6.5×10-89). To 

dismiss possible biases due to cryptic sample overlap or residual population 

stratification in summary statistics from the Wood et al. study, we re-estimated θheight 

using summary statistics of a family-based GWAS that provide stringent control for 

population stratification27. We therefore meta-analysed summary statistics from the 

Robinson et al. (2015) study27 in 17,500 quasi-independent sib pairs with that from a 

similar analysis performed in 21,783 quasi-independent sib-pairs identified in the 

UKB (Materials and Methods). Using effect sizes of the 9,447 selected SNPs, re-

estimated in the combined family-based GWAS, we found consistent GPD estimates 

between UKB not including sib-pairs (θheight=2.1%, s.e. 0.2%; p=8.4×10-36), GERA 

(θheight=2.1%, s.e. 0.4%; p=1.4×10-6) and HRS (θheight=2.5%, s.e. 1.1%; p=0.02). The 

meta-analysis of these three estimates yields θheight=2.1% (s.e. 0.2%; p=4.7×10-42). 

Note that lower estimates (2.1% vs 3.4%) are expected here because of the smaller 

sample size (N=39,283) of this family-based GWAS, as predicted by equation (1). 

 

For EA, we used estimated effect sizes, from the summary statistics of a large GWAS 

meta-analysis of the number of years of education (Okbay et al. 2016)28, of 4,618 near 

independent HM3 SNPs selected using the same LD clumping procedure described 

above. Using genotypes of 238,193 UKB participants not included in the Okbay et al. 

study (Materials and Methods), we found that θEA=2.9% (s.e. 0.2%; Fig. 2) and 

replicated this finding in GERA (θEA=1.8%, s.e. 0.4%; Fig. 2). We also attempted 

replication in HRS but the estimate we found (θEA=8.9%, s.e. 1.1%; Fig. 2) was likely 
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inflated given that HRS was part of the Okbay et al. meta-analysis (Supplementary 

note 4). We therefore only meta-analysed GPD estimates from UKB and GERA and 

found the average correlation between EA increasing alleles on odd versus even 

chromosomes to be θEA=2.7% (s.e. 0.3%, p=6×10-46; Fig. 2). We also re-estimated the 

effect sizes of the 4,618 selected SNPs on EA, using the same within-family 

procedure described above. We found GPD estimates of ~0.4% (s.e. 0.4%) in GERA 

and ~0.3% (s.e. 0.1%) in UKB participants unrelated with any of the 21,783 sib-pairs 

used to estimate effect sizes. The meta-analysis of the latter two estimates is 

θEA=0.31% (s.e. 0.16%; p=0.05). As shown below, this lower estimate is expected as 

the consequence of the smaller sample size used to estimate SNPs effects.  

 

We compared GPD estimates with theoretical predictions of θ from equation (1). 

Equation (1) predicts θ from the sample size of the reference GWAS (N=253,288 for 

height and 293,723 for EA), the correlation between mates, the equilibrium 

heritability (80% and 40% for height and EA respectively29), the number of causal 

variants SNPs (M~100,000 assumed for both traits) and the heritability captured by 

SNPs used to estimate θ. Using ~1,000 unrelated trios (two parents and one offspring) 

from UKB30 we estimated the correlation between mates for height and EA to be 0.24 

(s.e. 0.03) and 0.35 (s.e. 0.03), respectively. We estimated the SNP heritability 

captured by each set of SNPs used to estimate θ in HRS using the software GCTA31, 

resulting in estimates of �������� � 27.3% (s.e. 1.7%) and ���� � 15.1% (s.e. 1.3%). 

With these five input parameters, equation (1) predicts θ to be ~3.2% for height and 

~1.9% for EA. Using estimated effective sample sizes of within-family GWAS (Neff = 

39,283 for height and 15,559 for EA; Materials and Methods), equation (1) predicts 

θ to be ~1.3% for height and ~0.2% for EA. Our estimates of GPD among trait-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300020doi: bioRxiv preprint 

https://doi.org/10.1101/300020
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

associated (θheight=3.2%, s.e. 0.2; θEA=2.7%, s.e. 0.3%) are therefore consistent with 

these predictions. Everything held constant, equation (1) also predicts that with a 

much larger sample size of the discovery GWAS, for instance >1,000,000 

participants, θheight would be ~4% and θEA~3%. 

  

We extended our primary analysis of height and EA to detect GPD in 30 additional 

complex traits and diseases (Table S1) using the same strategy. Among these traits, 

we analysed bone mineral density (BMD)32 as a null trait given that non-significant 

mate correlation was previously reported33. As expected, we did not find significant 

GPD associated with BMD (meta-analysis of UKB, GERA and HRS: θBMD=0.09%, 

s.e. 0.2%; p=0.64). After Bonferroni correction applied to the meta-analysis of UKB, 

GERA and HRS (p<0.05/32≈1.56×10-3), we did not detect significant GPD for any of 

these other traits. We believe that this observation is likely explained by lack of 

statistical power, in particular resulting from the smaller sizes of GWAS used for 

these traits (on average ~73,000 participants compared to ~273,000 on average for 

height and EA) or from smaller variance explained by SNPs selected to calculate 

genetic predictors of these traits. As an example, although the GWAS of body mass 

index (BMI) used in this study is similar in size with that of height (Table S3), our 

estimation in HRS participants of the variance explained by the 2,362 SNPs BMI-

associated SNPs selected (Table S1) is only ~6.2% (s.e. 0.9%) versus ~27.3% (s.e. 

1.7%) for height. A much larger GWAS would therefore be required to detect any 

GPD among BMI-associated alleles using our method. 

 

Confirmation using mate pairs 
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Another experimental design to quantify the genetic effect of AM on a particular trait 

consists of estimating the correlation of genetic predictors of this trait between 

mates33–35. We quantified the mate correlation (rm) of genetic predictors of all 32 traits 

(Table S2) using 18,984 unrelated couples identified in the UKB (Materials and 

Methods). We found significant correlations between mates for genetic predictors of 

height (rm=5.9%, s.e. 0.8%, p=9.2×10-14) and EA (rm=6.1%, s.e. 0.9%, p=7.3×10-11). 

Across all traits, we estimated the regression slope of rm estimates onto θ estimates to 

be 1.8 (s.e. 0.2) (Fig. 3). Both these results are consistent with our derivation that the 

expected mate correlation of genetic predictors is approximately twice the expected 

value of θ (Supplementary note 4).  

 

Discussion 

 

We have shown in this study that the genomic signature of AM can be detected and 

quantified using SNP data in a random sample of genomes from the population, even 

in the absence of data on mate pairs. This is an important aspect of our method since 

large datasets on mate pairs are rare and may be absent in natural populations. We 

confirm the genetic basis for AM for height and EA, consistent with the assumption 

of primary assortment on these traits. We showed that our estimates of GPD from real 

data are consistent with theoretical predictions made under simplifying assumptions 

such as equal SNP effect sizes, population being at equilibrium and that the number of 

common causal variants of the order of ~100,000 (Supplementary Note 1). We did 

not however detect significant GPD for the other traits and diseases analysed in this 

study. Beyond true negatives such as bone mineral density, we believe that the 

relatively smaller size of GWAS used in our inference has reduced the power to 
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detect the genetic signature of AM in more traits and diseases. We cannot therefore 

draw firm conclusion from our observations on the importance of primary assortment 

(as opposed to environmental correlation) to the resemblance between mates for some 

of these traits such as smoking habits36, alcohol consumption36 or susceptibility to 

psychiatric disorders12. Overall, our methodology is straightforward and can be 

applied to a wider variety of traits and in other species, provided that summaries of 

trait-variant associations are available. AM is multi-dimensional in essence as mate 

choice depends on multiple physical and behavioural traits which may or may not 

share a common genetic basis5,37. Studying networks of traits and genes driving AM 

is one of the challenges to meet for improving our understanding of the genetic 

consequences of AM in a population. As a step in this direction, our method can be 

for example applied to quantify consequences of AM on gene expression or at any 

other molecular level, through the use of SNP predictors of these endogenous traits. 

 

Our study predicts that for traits affected by AM the estimates of SNP effects from 

within-family experimental designs tend to be smaller than those from a population 

sample, and that a genetic predictor generated from a population sample will explain 

less variation than expected when applied to a population not undergoing assortative 

mating. 

 

Our study has a number of limitations. The first one is that certain aspects of our 

approach are very conservative. We have attempted to quantify GPD induced by AM 

while applying stringent correction for population stratification. Although such a 

strategy is expected to yield unbiased estimates it still faces the difficulty of 

distinguishing AM on population stratification related features from AM on trait 
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specific features. Height is a typical example. AM on height occurs but, in addition, 

people tend to marry within geographical sub-populations (countries for example) 

which differ in mean height27. Correcting for population stratification using principal 

components would consequently remove part of the signal that we want to detect. We 

have nevertheless been able to detect GPD among height increasing alleles as a 

consequence of the large sample size of the discovery GWAS, the strength of 

assortment of mates, and the high heritability of this trait.  

 

The second limitation relates to our strategy for SNP selection. We have included in 

our analyses SNPs using a low and arbitrary threshold (p<0.005) on the significance 

of association with the trait. Although this strategy is not expected to bias the 

covariance between Se and So, it may increase both their variances and thus potentially 

induces downward biases in GPD estimates. We chose nonetheless this strategy to 

maximize the fraction of heritability captured by SNPs, which influences the expected 

correlation between Se and So as derived in equation (1). As an example, if GPD is 

inferred using genome-wide significant SNPs from Okbay et al. (2016), which 

explain ~3% of the variance of EA, the expected correlation between Se and So would 

only be ~0.45% under assumptions made above. Such small correlation is nearly 

undetectable in cohorts with less than 300,000 participants (Materials and Methods).  

Another SNP selection strategy could have been used to reach a better trade-off 

between bias and power but this would generally require observed phenotypes to 

optimize genetic predictors33,34 (find the best p-value threshold or shrinkage 

parameter). 
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In conclusion, our study provides empirical quantification of GPD induced among 

trait-associated alleles, a phenomenon predicted by theory exactly a century ago by 

Fisher (1918)1. The human genome has a pattern of trait-associated loci that is shaped 

by human behaviour (mate choice), as well as natural selection33,38–40.  The imprint of 

assortative mating on the contemporary human genome reflects mate choice in the 

1930-1970s and in generations prior to that. Although there is much more mobility 

within and between human populations in the 21st century, the underlying factors that 

determine mate choice remain stable11,35, and we may expect to continue to see its 

effect in the genome.  
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Materials and Methods 

Estimation of GPD from SNP data 

Our inference of GPD in a given sample of genomes is based on the correlation θ 

between polygenic scores Se and So calculated from SNPs on even and odd 

chromosomes respectively. For each individual from the study population, these 

scores are obtained as linear combinations of SNPs allele counts weighted by their 

estimated effect sizes from publicly available GWAS of complex traits and diseases 

(Supplementary Note 1). We used publicly available summary statistics (regression 

coefficients for each tested SNP and p-values) from large GWAS on 32 traits (Table 

S3; URLs to download these summary statistics are given in Supplementary Note 1). 

These include GWAS on cognitive traits (educational attainment, intelligence 

quotient), anthropometric traits (height, body mass index, waist-to-hip ratio), 

psychiatric disorders (attention deficit hyperactivity disorder, autism spectrum 

disorder, bipolar disorder, anxiety, major depressive disorder, post-traumatic stress 

disorder and schizophrenia), other common diseases (coronary artery disease, type 2 

diabetes, Crohn’s disease and rheumatoid arthritis), blood pressure, reproductive 

traits, personality traits, alcohol and smoking, and bone mineral density as a null trait. 

It is important that the sample of people whose genotypes were used was independent 

of the sample of people used to estimate SNP effects on each trait. Otherwise large 

biases can be expected as shown in Supplementary Note 4. We applied LD score 

regression (LDSC) for quality control and only kept summary statistics with a 

corresponding ratio statistic (ratio = (LDSC intercept – 1) /(mean chi-square statistic 

over all SNPs - 1)) non-significant from 0 (i.e. estimate / standard error < 2) or < 0.2 

(Table S3). Significance of the GPD estimates was assessed using p-values from 

Wald-tests, with the null hypothesis “H0: θ = 0” versus the alternative “H1: θ ≠ 0”. 
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Correction of population structure 

We used genotypic principal components to correct for population stratification. We 

calculated 20 principal components from 70,531 near independent SNPs (35,301 on 

odd chromosomes and 35,230 on even chromosomes) selected using the LD pruning 

algorithm implemented in PLINK (r2<0.1 for SNPs < 1Mb apart). We denote these 

principal components as PCO for SNPs on odd chromosomes and PCE for SNPs on 

even chromosomes. When θ is estimated from the regression of Se onto So, the effect 

of population stratification is corrected by adjusting the regression for PCOs (and vice 

versa). This can be summarised using the following regression equations: �� �
 ��� �  PCO
 � # � PCO�� or �� �  ��� �  PCE
 � # � PCE�� . Since Se and So may 

not have exactly the same variance as a result of SNPs sampling, we chose to estimate 

θ from the regression onto the genetic predictor with the larger variance. We observed 

nonetheless that estimates obtained from the regression of Se onto So are very similar 

to those obtained from regression of So and Se (Fig. S3). In the simulation studies 

(Supplementary Note 2) we also considered the case where principal components are 

calculated from all SNPs available (odd and even chromosomes). In our simulations, 

principal components were calculated using R version 3.1.2, while in real data 

principal components were calculated using the fast PCA approach41 implemented in 

PLINK version 2.0.  

 

Statistical power 

Theory underlying statistical power to detect correlation is well established42. We 

used equation (2) derived from Ref.42 to determine the smallest correlation detectable 

with at least 1 � % � 80% of statistical power at a significance level of & � 5%: 
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log �
��

��

� �  �|��/����|
√��


                    (2) 

In equation (2), n represents the size of the sample used to estimate �, and *�/� and *�  

are the &/2- and %-upper quantiles of the standard normal distribution (mean 0 and 

variance 1). With & �  5%  and % � 20% , *�/� � 1.96 and *� �  0.84 . We can 

therefore detect GPD as small as 1.2% and 0.5% in GERA and UKB respectively, and 

0.4% for the meta-analysis of UKB and GERA. For the analysis of mate-pairs we can 

detect correlation as small as 1.5%. 

 

SNP Genotyping 

UK Biobank data 

We used genotyped and imputed allele counts at 1,312,100 HM3 SNPs in 487,409 

participants of the UKBiobank30,43 (UKB). Extensive description of data can be found 

here27. We restricted the analysis to participants of European ancestry and SNPs with 

imputation quality ≥0.3, minor allele frequency (MAF) ≥1% and Hardy-Weinberg 

equilibrium test p-value > 10-6. Ancestry assignment was performed as follows. We 

calculated the first two principal components from 2,504 participants of the 1,000 

Genomes Project44 with known ancestries. We then projected UKB participants onto 

those principal components using SNP loadings of each principal component. We 

assigned each individual to one of five super-populations in the 1,000 Genomes data: 

European, African, East Asian, South Asian and Admixed. Our algorithm calculated, 

for each participant, the probability of membership to the European super-population 

conditional on their principal components coordinates. The 456,426 out of the original 

487,409 participants who had a probability of membership > 0.9 for the European 

cluster were assigned to the European super-population. Next, to obtain a sample of 

conventionally unrelated individuals, we estimated the genetic relationship matrix 
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(GRM) for individuals in the subsample of Europeans using GCTA31 version 1.9. We 

iteratively dropped one member from each pair of individuals whose estimated 

relationship coefficient exceeded 0.05, until no pairs of individuals with a relationship 

coefficient above 0.05 remained in the sample. This restriction resulted in a sample of 

348,502 conventionally unrelated Europeans. In total, we included 348,502 

participants in this analysis and 1,124,803 SNPs. The North West Multi-centre 

Research Ethics Committee (MREC) approved the study and all participants in the 

UKB study analyzed here provided written informed consent.  

 

Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort data 

We analyzed 60,586 participants of the GERA cohort using genotype data only. 

Ancestry was assigned using a procedure similar to that described for UKB. Genotype 

quality control involved standard filters (exclusion of SNPs with missing rate ≥ 0.02, 

Hardy-Weinberg equilibrium test p-value > 10-6 or minor allele count < 1, and 

removing individuals with missing rate ≥ 0.02). We imputed genotypes data to the 

1,000 Genomes reference panel using IMPUTE2 software. We used GCTA to 

estimate the GRM of all participants using HM3 SNPs (MAF ≥ 0.01 and imputation 

INFO score ≥ 0.3). We finally include in the analysis 53,991 unrelated (GRM < 0.05) 

European participants with genotypes at 1,163,290 HM3 SNPs.  

 

Health and Retirement Study (HRS) 

We analysed 8,552 unrelated (GRM < 0.05) participants of the HRS cohort. GRM 

was calculated from 1,118,526 SNPs HM3 imputed to the 1,000 Genomes reference 

panel using IMPUTE2 software. SNP and samples quality control was similar to what 

described above for GERA. 
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SNP selection 

We used the LD clumping algorithm implemented in PLINK to identify for each trait 

near independent SNPs (LD threshold r2<0.1 for SNPs < 1 Mb apart and association 

p-value < 0.005).  LD clumping was performed using genotypes from HRS 

participants. We restricted the analysis to 1,060,523 HM3 SNPs that passed all quality 

controls in UKB, GERA and HRS datasets. 

 

Sample overlap 

The Okbay et al. (2016) GWAS of educational attainment, the Sniekers et al. (2017) 

GWAS of intelligence quotient al. (2017) and the Kemp et al. (2017) GWAS of bone 

mineral density, included ~150,000 participants of the UKB (first release of 

genotypes). To avoid bias due to sample overlap, analyses performed in UKB for 

these traits were restricted to 238,193 unrelated participants (UKB release 2 only), 

who also were not related to any of the participants included in those studies (UKB 

release 1). Participants of the HRS cohort were included in the Okbay et al. (2016) 

study as well as in the Day et al. (2015) GWAS of the onset of menopause. For the 

other GWAS considered in this study, no sample overlap with UKB, GERA or HRS 

was reported. 

 

Sib pairs 

Selection 

We used 21,783 sib pairs of European ancestry previously identified in the UKB30 

using identity-by-descent sharing estimated from SNP data. We applied the within-

family QFAM procedure of PLINK, as in Robinson et al. (2015)27, to assess the 
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association between HM3 SNPs and height and EA. When applied to sib pairs, this 

procedure is equivalent to regressing the difference of height or EA between sibs onto 

the difference of allele counts. These estimates are therefore robust to population 

stratification. For height, we moreover performed a sample size weighted meta-

analysis of estimates from the Robinson et al. (2015) study in 17,500 quasi-

independent sib pairs, with those obtained in the UKB and used these newly estimated 

effect sizes to re-estimate GPD in UKB (not including any of the sib-pairs), GERA 

and HRS. In total we used 21,783 sib-pairs for EA and 39,283 sib-pairs for height.   

 

Effective sample size 

We defined the effective sample size (Neff) of within-family GWAS using � !"#$  

independent sib pairs as the sample size of a standard GWAS (where SNP effect are 

estimated from simple linear regression) such that the estimated SNP effects from the 

within-family GWAS have the same expected sampling variance as the estimated 

SNP effects from standard GWAS. This leads to the following equation (derived in 

Supplementary Note 4) 

N��� �  � !"#$ 12
1 � � !"#$�⁄ 2                    (3) 

In equation (3), � !"#$  represents the phenotypic correlation between sibs. We 

observed between sibs identified in UKB a correlation ~0.5 for height and ~0.3 for 

educational attainment. Therefore, the corresponding effective sample sizes for the 

within-family GWAS of height and EA are 39,283/(2×(1-0.5)) = 39,283 and 

21,283/(2×(1-0.3)) = 15,559. 

 

Mate pairs 
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We first used 999 unique mate pairs from 1,065 trios composed of both parents and 

one child, identified among UKB participants using identity-by-descent sharing 

estimated from SNP data. Details about software and algorithms used to identify those 

trios are given in Ref.30 To increase power, we also used household sharing 

information to identify putative spouse pairs among UKB participants with European 

ancestry. We therefore selected 18,984 (including 117 from the trios) sex-discordant 

pairs of participants, recruited from the same centre, who reported living with their 

spouse or partner in the same type of accommodation, at the same location (east and 

north coordinates rounded to 1 kilometre), for the same amount of time, with the same 

number of people in the household, with the same household income, with the same 

number of smoker in the household, with the same Townsend deprivation index and 

with a genetic relationship < 0.05.  

 

Data availability 

We used genotypic data from the Resource for Genetic Epidemiology Research on 

Adult Health and Aging (GERA: dbGaP phs000674.v2.p2), genotypic and phenotypic 

from the Health and Retirement Study (HRS: dbGaP phs000428.v1.p1), as well as 

genotypic and phenotypic data from the UK Biobank under project 12505. 
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Figure legends 1 

 2 

 3 

 4 

Fig. 1. Schematic illustration of the effect of assortative mating (AM) on the 5 

correlation between trait-associated alleles. Each line represents a chromosome of an 6 

individual in the population and each coloured bead represents an allele (orange: trait-7 

increasing alleles (TIA); blue: trait-decreasing alleles) at a particular locus on that 8 

chromosome. Panel a represents a population undergoing AM and panel b represents 9 

a population undergoing RM. Under RM the distribution of alleles between odd and 10 

even chromosomes are uncorrelated (no-consistent pattern between chromosomes). 11 

Under AM, the distributions of alleles are correlated between chromosomes, such that 12 

the number of TIAs on odd chromosomes predicts the number of TIAs on even 13 

chromosomes.  14 

 15 
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 16 

Fig. 2. Estimate of assortative mating (AM) induced gametic phase disequilibrium 17 

(GPD) among trait increasing alleles in three independent cohorts: UKB 18 

(N=348,502), GERA (N=53,991) and HRS (N=8,552). GPD is estimated as the 19 

correlation between trait-specific genetic predictors from SNPs on odd chromosomes 20 

versus even chromosomes. Bone mineral density was selected as a trait on which AM 21 

does not occur (negative control). Estimates are adjusted for 20 genotypic principal 22 

components from SNPs on either odd or even chromosomes to correct the effect of 23 

population stratification. *The HRS cohort was not included in the meta-analysis of 24 

GPD estimates among educational attainment increasing alleles, as HRS was included 25 

in the Okbay et al. study. Theoretical predictions are obtained from equation (1). 26 
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 27 

 28 

Fig. 3. Correlation of genetic predictors in 18,984 mates pairs (y-axis; values from 29 

Table S2) as a function of within-individual estimates of gametic phase 30 

disequilibrium (GPD: x-axis) for 32 complex traits and diseases (meta-analysis from 31 

Table S1 in N=411,045 participants). Theory derived in Supplementary Note 4 32 

predicts a regression slope equal to 2. Estimated linear regression intercept and slope 33 

are 0.002 (standard error, s.e. 0.002) and 1.8 (s.e. 0.23) respectively. 34 

 35 

 36 
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 37 

Fig. S1. Estimates of gametic phase disequilibrium (GPD), in simulated data 38 

(N=10,000) using allele frequencies of 697 height-associated SNPs, as a function of 39 

the number of genotypic principal components adjusted to correct for population 40 

stratification. Data were simulated assuming either no population stratification or 41 

within-Europe population stratification (Supplementary Note 2). In both cases, data 42 

were simulated under pure random mating (θ=0, panel a) or under assortative mating 43 

(θ=5%, panel b). Estimates are obtained from unadjusted linear regression or adjusted 44 

for 1, 2, 5, 10 and 20 first principal components. Principal components were either 45 

calculated from SNPs on odd and even chromosomes (genome-wide principal 46 

components) or from SNPs on odd or even chromosomes separately. Standard Error 47 

(s.e.). 48 
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 49 

 50 

Fig. S2. Estimates of gametic phase disequilibrium (GPD), in simulated data 51 

(N=10,000) using allele frequencies of 1,000 randomly selected Hap Map 3 SNPs, as 52 

a function of the number of genotypic principal components adjusted to correct for 53 

population stratification. Data were simulated assuming either no population 54 

stratification or within-Europe population stratification (Supplementary Note 2). In 55 

both cases, data were simulated under pure random mating (θ=0, panel a) or under 56 

assortative mating (θ=5%, panel b). Estimates are obtained from unadjusted linear 57 

regression or adjusted for 1, 2, 5, 10 and 20 first principal components. Principal 58 

components were either calculated from SNPs on odd and even chromosomes 59 

(genome-wide principal components) or from SNPs on odd or even chromosomes 60 

separately. Standard Error (s.e.). 61 

 62 
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 63 

Fig. S3. Comparison of estimates of gametic phase disequilibrium (GPD) from two 64 

approaches: (a) from the regression of genetic predictors from SNPs on even 65 

chromosomes (Se) onto of genetic predictors from SNPs on odd chromosomes (So); 66 

and (b) from the regression of So onto Se. The x-axis corresponds to approach (a) and 67 

y-axis to approach (b). The correlation between these two estimators is ~0.99 across 68 

all three cohorts UKB (N=348,502), GERA (N=53,991) and HRS (N=8,552). 69 

 70 

 71 

 72 
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Traits/Diseases 

 

Number of SNPs 

to estimate θ 

θUKB  θGERA θHRS θMETA 
Standard Error 

(θMETA) 

Meta-analysis 

p-value 

Heterogeneity  

p-value 

Height 9,447 3.02 4.15 4.44 3.20 0.16 6.5×10-89 0.03 

Number of years of education 4,618 2.87 1.77 8.95* 2.67 0.19 6×10-46 0.02 

Intelligence Quotient 3,356 0.61 0.33 1.42 0.58 0.19 2.3×10-3 0.65 

Former smoker 2,011 0.44 0.82 -1.02 0.46 0.16 3.8×10-3 0.30 

Attention Deficit Hyperactivity 

Disorder 

2,902 
0.58 -0.79 -0.31 0.38 0.16 0.02 0.01 

Age at menopause 2,263 0.33 0.41 4.49* 0.34 0.16 0.03 0.85 

Alcohol consumption 

(Continuous measurement) 

2,186 
0.19 0.86 0.31 0.28 0.17 0.09 0.39 

Bipolar Disorder 2,358 0.38 -0.58 0.39 0.25 0.16 0.13 0.14 

Age at menarche 3,385 0.18 0.38 1.56 0.24 0.16 0.13 0.42 

Systolic Blood Pressure 1,687 0.22 0.44 -0.24 0.24 0.17 0.17 0.84 

Crohn's Disease 2,669 0.14 0.60 1.20 0.22 0.16 0.17 0.45 

Extraversion 1,666 0.30 -0.51 -1.30 0.16 0.16 0.33 0.10 

Ever smoked 2,281 0.25 -0.60 0.72 0.15 0.16 0.35 0.18 

Major Depressive Disorder 1,958 -0.11 -0.82 1.88 -0.16 0.18 0.35 0.09 

Rheumatoid Arthritis 2,162 0.11 -0.09 0.85 0.10 0.11 0.38 0.47 
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Openness 1,674 -0.11 -0.54 2.09 -0.12 0.16 0.43 0.08 

Type 2 Diabetes 2,904 0.18 -0.17 -0.33 0.12 0.16 0.46 0.72 

Agreeableness 1,651 -0.01 -0.67 -0.44 -0.11 0.16 0.49 0.34 

Anxiety case / control 1,872 -0.18 0.37 0.45 -0.10 0.14 0.49 0.38 

Number of Cigarettes per Day 1,947 -0.13 0.02 -0.26 -0.11 0.17 0.52 0.95 

Conscientiousness 1,688 0.16 -0.28 -0.06 0.10 0.16 0.55 0.63 

Coronary Artery Disease 2,158 0.09 0.22 -1.26 0.08 0.16 0.63 0.44 

Bone Mineral Density 5,859 0.34 -0.99 0.00 0.09 0.19 0.64 0.03 

Autism Spectrum Disorder 1,811 0.11 -0.11 -0.17 0.07 0.16 0.65 0.88 

Age at smoking onset 1,925 -0.03 -0.34 -0.23 -0.07 0.17 0.67 0.82 

Anxiety (Factor score) 2,005 -0.09 0.01 0.46 -0.06 0.16 0.68 0.87 

Post-Traumatic Stress Disorder 1,814 -0.09 0.19 0.22 -0.05 0.16 0.77 0.82 

Body Mass Index (BMI) 2,362 0.01 -0.48 0.65 -0.04 0.15 0.78 0.43 

Diastolic Blood Pressure 1,663 -0.01 0.58 -1.08 0.05 0.17 0.78 0.31 

Waist/Hip ratio (adj. BMI) 1,940 0.01 0.27 -0.49 0.03 0.16 0.85 0.77 

Alcohol consumption 

(Dichotomous measurement) 

1,614 
0.00 -0.38 1.13 -0.03 0.19 0.87 0.56 

Schizophrenia 5,617 0.03 -0.34 0.62 -0.01 0.15 0.94 0.59 
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 74 

Table S1. Within-individual correlation (θ in %) between trait-specific genetic predictors from SNPs on odd chromosomes versus even 75 

chromosomes for 32 traits and diseases. Estimates from UKB (N=348,502), GERA (N=53,991) and HRS (N=8,552) are denoted θUKB, θGERA and 76 

θHRS respectively; and estimate from the meta-analysis of these three estimates is denoted θMETA. *As the HRS cohort was included in the 77 

educational attainment GWAS and the age at menopause GWAS, θMETA calculations for these traits did not include data from HRS. All 78 

estimates are adjusted for 20 genotypic principal components from SNPs on either odd or even chromosomes. Standard errors (s.e.) of estimated 79 

correlations within each cohort are approximately inversely proportional to the square-root of the sample size (N). For UKB s.e. ~0.17%, for 80 

GERA s.e.~0.43% and for HRS s.e.~1.1%. 81 

 82 
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Traits/Diseases rm (%) s.e. (rm) p-value 
Number of 

mate pairs 

Height* 5.87 0.79 9.8×10-14 18,984 

Number of years of education (EA)* 6.13 0.94 7.3×10-11 10,854 

Intelligence Quotient (IQ) 1.08 0.96 0.26 10,854 

Former smoker -0.51 0.74 0.48 18,984 

Attention Deficit Hyperactivity Disorder 0.25 0.73 0.73 18,984 

Age at menopause -0.23 0.73 0.75 18,984 

Alcohol consumption 

(Continuous measurement) 
-0.49 0.73 0.5 18,984 

Bipolar Disorder 0.23 0.72 0.75 18,984 

Age at menarche 0.32 0.72 0.66 18,984 

Systolic Blood Pressure 0.56 0.72 0.44 18,984 

Crohn's Disease 0.85 0.73 0.24 18,984 

Extraversion -1.38 0.72 0.06 18,984 

Ever smoked 0.68 0.74 0.36 18,984 

Major Depressive Disorder 0.34 0.73 0.64 18,984 

Rheumatoid Arthritis 1.10 0.75 0.14 18,984 

Openness -0.12 0.73 0.87 18,984 

Type 2 Diabetes 1.36 0.73 0.06 18,984 

Agreeableness -0.75 0.72 0.29 18,984 

Anxiety case / control 0.88 0.72 0.22 18,984 

Number of Cigarettes per Day 1.20 0.72 0.96 18,984 

Conscientiousness 0.08 0.72 0.91 18,984 

Coronary Artery Disease 0.07 0.72 0.93 18,984 

Bone Mineral Density (BMD) -1.02 1.00 0.3 10,854 

Autism Spectrum Disorder 2.15 0.73 0.003 18,984 

Age at smoking onset -0.36 0.73 0.62 18,984 

Anxiety (Factor score) 0.27 0.72 0.71 18,984 

Post-Traumatic Stress Disorder 0.58 0.72 0.42 18,984 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300020doi: bioRxiv preprint 

https://doi.org/10.1101/300020
http://creativecommons.org/licenses/by-nc-nd/4.0/


 33

Body Mass Index (BMI) 0.73 0.72 0.3 18,984 

Diastolic Blood Pressure -0.56 0.73 0.44 18,984 

Waist/Hip ratio (adj. BMI) 0.10 0.73 0.89 18,984 

Alcohol consumption 

(Dichotomous measurement) 
1.21 0.72 0.09 18,984 

Schizophrenia 2.05 0.76 0.006 18,984 

 84 

Table S2. Between mates correlation (in %) of genetic predictors of 32 traits and 85 

diseases. Estimates are adjusted for 20 genotypic principal components from SNPs on 86 

both odd and even chromosomes. Significant correlations (p-value < 0.05/30) are 87 

marked with a “*”. Pairs involving UKB participants included in the EA, IQ and 88 

BMD GWAS were removed. 89 

 90 
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Traits/Diseases 

GWAS 

median 

sample size 

LDSC 

heritability 

(h2) 

LDSC 

heritability 

(standard 

error) 

LDSC 

intercept 

LDSC 

intercept 

(standard 

error) 

LDSC Ratio 

statistic 

LDSC 

ratio 

statistic 

(standard 

error) 

Number of years of education 293,723 12.7% 0.4% 0.93 0.01 -0.11 . 

Intelligence Quotient 78,308 18.8% 1.0% 1.01 0.01 0.03 0.03 

Height 252,083 34.2% 1.8% 1.23 0.03 0.12 0.02 

Body Mass Index 233,692 13.5% 0.7% 0.66 0.01 -1.30 . 

Waist/Hip ratio  (adj. BMI) 142,438 9.0% 0.7% 0.86 0.01 -1.44 . 

Attention Deficit Hyperactivity 

Disorder 
55,374 23.2% 1.5% 1.03 0.01 0.10 0.03 

Autism Spectrum Disorder 13,574 33.5% 4.4% 0.99 0.01 -0.17 . 

Bipolar Disorder 16,731 47.1% 4.1% 1.01 0.01 0.03 0.06 

Anxiety case / control 17,310 7.6% 3.0% 1.00 0.01 0.10 0.25 

Anxiety (Factor score) 18,186 7.0% 2.7% 1.00 0.01 -0.05 . 

Major Depressive Disorder 18,759 17.4% 2.6% 1.00 0.01 0.05 0.09 
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Post-Traumatic Stress Disorder 53,293 1.8% 0.8% 0.99 0.01 -0.48 . 

Schizophrenia (SCZ) 150,064 24.3% 1.0% 1.04 0.01 0.05 0.02 

Coronary Artery Disease 184,305 6.7% 0.5% 0.88 0.01 -0.88 . 

Type 2 Diabetes (T2D) 152,599 7.8% 0.6% 1.00 0.01 -0.01 . 

Crohn's Disease 20,883 50.7% 5.8% 1.02 0.01 0.09 0.05 

Rheumatoid Arthritis 58,284 15.0% 2.6% 0.94 0.01 -0.50 . 

Systolic Blood Pressure (SBP) 67,211 11.2% 0.9% 0.90 0.01 -1.77 . 

Diastolic Blood Pressure (DBP) 67,201 11.0% 1.0% 0.91 0.01 -1.61 . 

Age at menopause 70,000 13.4% 1.6% 0.99 0.01 -0.06 . 

Age at menarche 182,416 11.9% 0.6% 0.97 0.01 -0.07 . 

Conscientiousness 17,375 7.5% 3.2% 1.00 0.01 -0.06 . 

Agreeableness 17,375 1.7% 3.0% 1.00 0.01 0.32 0.97 

Openness 17,375 12.2% 2.8% 0.99 0.01 -0.40 . 

Extraversion 17,375 4.5% 2.7% 1.00 0.01 -0.11 . 

Ever smoked 74,053 7.5% 0.7% 1.00 0.01 -0.03 . 

Age at smoking onset 74,053 2.0% 0.6% 1.00 0.01 -0.04 . 

Number of Cigarettes per Day  74,053 3.1% 0.8% 1.00 0.01 0.09 0.12 
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Former smoker 74,053 3.5% 0.6% 1.00 0.01 0.01 0.13 

Alcohol consumption (Binary) 70,460 0.8% 0.6% 0.99 0.01 -3.52 . 

Alcohol consumption Continuous 70,460 5.2% 0.8% 1.01 0.01 0.17 0.09 

Bone Mineral Density (BMD) 142,487 37.6% 4.1% 1.08 0.03 0.07 0.03 

 91 

Table S3. Description of summary statistics from genome-wide associations (GWAS) on 32 traits analysed in this study. LD score regression 92 

(LDSC) was applied to each set of summary statistics to calculate SNP heritability and LDSC ratio statistics, a measure of population 93 

stratification. The LDSC software (version 1.0) does not calculate standard errors (s.e.) of the ratio statistic when it is < 0. In these cases, s.e. of 94 

the ratio statistics were replaced with “.”.  URLs for downloading summary statistics used in this study are given in Supplementary Note 1. 95 
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