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Non-random mate-choice with respect to complex traits is widely observed in
humans, but whether this reflects true phenotypic assortment, environment
(social homogamy) or convergence after choosing a partner is not known.
Understanding the causes of mate choice is important, because assortative
mating (AM) if based upon heritable traits, has genetic and evolutionary
consequences. AM is predicted under Fisher’s classical theory' to induce a
signature in the genome at trait-associated loci that can be detected and
quantified. Here, we develop and apply a method to quantify AM on a specific
trait by estimating the correlation (#) between genetic predictors of the trait
from SNPs on odd versus even chromosomes. We show by theory and ssimulation
that the effect of AM can be distinguished from population stratification. We
applied this approach to 32 complex traits and diseases using SNP data from
~400,000 unrelated individuals of European ancestry. We found significant
evidence of AM for height (=3.2%) and educational attainment (6=2.7%), both
consistent with theoretical predictions. Overall, our results imply that AM
involves multiple traits, affects the genomic architecture of loci that are
associated with these traits and that the consequence of mate choice can be

detected from arandom sample of genomes.
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Non-random mating in natural populations has short and long-term evolutionary
consequences. In many species, including humans, mate choice is often associated
with phenotypic similarities between mates™®. Such phenotypic similarities have
multiple sources, for example social homogamy, the preference for a mate from the
same environment, or because of primary assortment on certain traits observable at
the time of mate choice. Contrary to social homogamy, primary phenotypic
assortment, here referred to as assortative mating (AM), has genetic and evolutionary
consequences and therefore is the focus of our study. In humans, AM involves
multiple complex traits*® and can sometimes lead to similar susceptibility to
diseases®™. The genetic effects of AM were first studied in the seminal articles of
Fisher (1918)" and Wright (1921)". Those two founding contributions, further
complemented by Crow & Kimura (1970)* and others™ ™" have set the basis of the
theory of AM on complex traits. AM theory predicts three main genetic consequences
of a positive correlation between the phenotypes of mates in a population: (i) an
increase of the genetic variance in the population, (ii) an increase in the correlation
between relatives and (iii) an increase of homozygosity (deviation from Hardy-
Weinberg Equilibrium; HWE), in particular at causal loci. These seemingly distinct
consequences are nonetheless explained by the same cause: directional correlation
between trait-increasing aleles (TIA), also referred to as gametic phase
disequilibrium (GPD), induced both within and between loci (Fig. 1). AM-induced
GPD implies correlations between physically distant loci (between chromosomes for
example) and is thus distinct from linkage disequilibrium. Therefore, AM leads to a

genomic signature of trait-associated loci that can be quantified by estimating GPD.


https://doi.org/10.1101/300020
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/300020; this version posted April 13, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Previous studies'®?® have been successful at detecting GPD by direct quantification
of increased homozygosity at ancestry-associated loci. Beyond ancestry-related traits,
such endeavour is particularly challenging for polygenic traits as theory™ predicts an
increase of homozygosity due to AM inversely proportional to the number M of
causal variants™?'. For a highly polygenic trait like height with an estimated
M~100,000 for common variants, the expected increase in homozygosity would be
of the order of ~1/2M =5x107, i.e. negligible (Supplementary Note 1). Extremely
large studies would therefore be required to quantify systematic deviation from HWE
at height-associated single-nucleotide polymorphism (SNP) as shown in a recent
study™ that failed to detect such an effect. Another study®® in ~6,800 participants of
European ancestry, reported evidence of deviation from HWE at height associated
loci. This study however did not account for within-sample population stratification
and therefore their reported estimates are likely inflated for this reason. Overall, study
designs using deviation from HWE for quantifying GPD can be successful for
detecting ancestry-based AM (ancestral endogamy) because the number of loci

1#, and ancestral endogamy is strong™, but

distinguishing ancestries is relatively smal
are less powerful to detect trait-specific AM. In contrast to HWE-based estimation
strategies, quantifying GPD on the basis of pairwise correlations between TIAS is
much more tractable as the number of pairs of loci involved, of the order of ~M?,
compensates for the magnitude of the expected covariance for each pair, ~1/2M.
This compensation explains in essence why AM increases the genetic variance in a

14,21

population

GPD due to AM causes individuals that carry TIAs at one locus to be more likely to

cary TIAs a other loci than expected under gametic phase equilibrium.
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Consequently, individuals with many TIAs on even chromosomes are likely to have
more than average TIAs on odd chromosomes. We quantify this effect by calculating
genetic predictors for a trait from the SNPs on odd chromosomes and from the SNPs
on even chromosomes and then calculating the correlation (6) between these two
predictors. To calculate these predictors we use estimates of the effect of each SNP on
a trait from publicly available summary statistics from genome-wide association
studies (GWAYS) of large sample size. We apply these estimated SNP effects to
individuals in a separate sample who have SNP genotypes available. We can calculate
the trait predictor based on odd and even chromosomes separately and estimate the
correlation between them (i.e. 8). Our method measures the effect on the genome due
to AM in previous generations and thus does not require observed phenotypes or the
use of mate pairs. Under the null hypothesis of random mating (RM), the correlation
between alleles on different chromosomes is expected to be 0 as a consequence of the
independent segregation of chromosomes. However, population stratification can
induce spurious correlations between aleles, even at distant loci. Intuitively, if 6 is
estimated from a mixture of two sub-populations with distinct allele frequencies, then
having TIAs more frequent in one of the sub-populations (even by chance) would
result in an apparent correlation between TIAs even when such correlation is absent in
each sub-population (Supplementary Note 2). We show through simulations how the
effect of population stratification can be corrected with our method. We then applied
our method to estimate AM-induced GPD for 32 traits and diseases in samples of
unrelated genomes from three independent cohorts: ~350,000 participants of the UK
Biobank (UKB), ~54,000 participants of the Genetic Epidemiology Research on

Adult Health and Aging (GERA) cohort and ~8,500 participants of the US Health and
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Retirement Study (HRS). We find evidence of AM for a number of complex traits,

including height and educational attainment.
Results

Theory underlying the estimation of GPD from SNP data

We derived (Supplementary Note 1) the expected value of the correlation across
individuals between the trait predictors from SNPs on odd () and even (S)
chromosomes as a function of the phenotypic correlation between mates (r), the
equilibrium heritability of the trait (h2,), the fraction of that heritability captured by
SNPs(f,,), the sample size (N) of the reference GWAS in which effect sizes are
estimated using classical linear regression, one SNP at a time; and the number of
causal loci (M) contributing to the trait (which differs from the number of statistically

associated loci). The main result isthat for alarge number of trait loci,
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with p = rhZ, being the correlation between additive genetic values of mates
expected under AMY" and f, ~ f.,/(1 — p), the fraction of heritability captured by
SNPs in the base population (Supplementary Note 1). These parameters do not need
to be known or estimated, but can be used to provide a priori expectation of 8 or a
posteriori rationalisation. Hence, quantification of GPD can be directly obtained from
estimates of # using empirical data. For the sake of simplicity, we hereafter refer to

estimates of 6 as estimates of GPD. Equation (1) implies that the expected correlation
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6 between S, and S increases with N, i.e. with better estimation of SNP effects from
the reference GWAS, and with f,,, i.e. with better tagging of causal variants

underlying the full narrow sense heritability.

We derived (Supplementary Note 2) that estimates of € from the regression of S on
S can be inflated by population stratification, especially when TIAs are highly
differentiated between sub-populations. We performed a number of simulations
(Supplementary Notes 2 and 3) to validate the impact of population stratification on
our estimator of GPD and show how to adjust for it using principal components
derived separately for odd and even chromosomes (Fig. S1 and Fig. S2). We used this
strategy to quantify GPD in real data, and therefore adjusted all GPD estimates for 20
genotypic principal components to correct within sample population stratification
(Materials and Methods). Also, given that most GPD estimates are small, all GPD
estimates (correlations) reported below are expressed as percentages (e.g. 3% instead

of 0.03).

Quantifying AM-induced GPD in complex traits

We first analysed height and educational attainment (EA), two reference traits with
long-standing evidence of a positive correlation between mates. For height, we used
estimated effect sizes, from summary statistics of the latest GWAS meta-analysis of
the GIANT consortium (Wood et al. 2014)*, of 9,447 near independent HapMap3
(HM3) SNPs selected using the LD clumping algorithm implemented in the software
PLINK? (linkage disequilibrium (LD) r?<0.1 for SNPs < 1 Mb apart and association
p-value < 0.005). We thus selected these SNPs to be enriched for true association with

height. We estimated in UKB participants the correlation between height increasing
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alleles on odd versus even chromosomes to be Gign=3.0% (s.e. 0.2%; Fig. 2) and
replicated this finding in GERA (Gegni=4.1%, s.e. 0.4%; Fig. 2) and HRS
(Gheigh=4.4%, s.e. 1.1%; Fig. 2). A meta-analysis of these three estimates yields a
combined GPD among height-increasing aleles of 3.2% (s.e. 0.2%, p=6.5x10%). To
dismiss possible biases due to cryptic sample overlap or residual population
stratification in summary statistics from the Wood et al. study, we re-estimated Geignt
using summary statistics of a family-based GWAS that provide stringent control for
population stratification?’. We therefore meta-analysed summary statistics from the
Robinson et al. (2015) study?’ in 17,500 quasi-independent sib pairs with that from a
similar analysis performed in 21,783 quasi-independent sib-pairs identified in the
UKB (Materials and Methods). Using effect sizes of the 9,447 selected SNPs, re-
estimated in the combined family-based GWAS, we found consistent GPD estimates
between UKB not including sib-pairs (Gheign=2.1%, s.e. 0.2%; p=8.4x10%%), GERA
(bhegh=2.1%, s.e. 0.4%; p=1.4x10"°) and HRS (Grign=2.5%, s.e. 1.1%; p=0.02). The
meta-analysis of these three estimates yields 6hagn=2.1% (s.e. 0.2%; p=4.7x10"%).
Note that lower estimates (2.1% vs 3.4%) are expected here because of the smaller

sample size (N=39,283) of this family-based GWAS, as predicted by equation (1).

For EA, we used estimated effect sizes, from the summary statistics of alarge GWAS
meta-analysis of the number of years of education (Okbay et al. 2016)%, of 4,618 near
independent HM3 SNPs selected using the same LD clumping procedure described
above. Using genotypes of 238,193 UKB participants not included in the Okbay et al.
study (Materials and Methods), we found that 6e.a=2.9% (s.e. 0.2%; Fig. 2) and
replicated this finding in GERA (6:4=1.8%, s.e. 0.4%; Fig. 2). We also attempted

replication in HRS but the estimate we found (0ea=8.9%, s.e. 1.1%; Fig. 2) was likely
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inflated given that HRS was part of the Okbay et al. meta-analysis (Supplementary
note 4). We therefore only meta-analysed GPD estimates from UKB and GERA and
found the average correlation between EA increasing alleles on odd versus even
chromosomes to be 6:a=2.7% (s.e. 0.3%, p=6x10"*°; Fig. 2). We also re-estimated the
effect sizes of the 4,618 selected SNPs on EA, using the same within-family
procedure described above. We found GPD estimates of ~0.4% (s.e. 0.4%) in GERA
and ~0.3% (s.e. 0.1%) in UKB participants unrelated with any of the 21,783 sib-pairs
used to estimate effect sizes. The meta-analysis of the latter two estimates is
0e2=0.31% (s.e. 0.16%; p=0.05). As shown below, this lower estimate is expected as

the conseguence of the smaller sample size used to estimate SNPs effects.

We compared GPD estimates with theoretical predictions of 6 from equation (1).
Equation (1) predicts 8 from the sample size of the reference GWAS (N=253,288 for
height and 293,723 for EA), the correlation between mates, the equilibrium
heritability (80% and 40% for height and EA respectively®), the number of causal
variants SNPs (M~100,000 assumed for both traits) and the heritability captured by
SNPs used to estimate 6. Using ~1,000 unrelated trios (two parents and one offspring)
from UKB™® we estimated the correlation between mates for height and EA to be 0.24
(s.e. 0.03) and 0.35 (s.e. 0.03), respectively. We estimated the SNP heritability
captured by each set of SNPs used to estimate 6in HRS using the software GCTA,
resulting in estimates of hﬁeight =27.3% (s.e. 1.7%) and h3, = 15.1% (s.e. 1.3%).
With these five input parameters, equation (1) predicts 6 to be ~3.2% for height and
~1.9% for EA. Using estimated effective sample sizes of within-family GWAS (Nt =
39,283 for height and 15,559 for EA; Materials and M ethods), equation (1) predicts

6 to be ~1.3% for height and ~0.2% for EA. Our estimates of GPD among trait-
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associated (Gheigni=3.2%, s.e. 0.2, Ga=2.7%, s.e. 0.3%) are therefore consistent with
these predictions. Everything held constant, equation (1) also predicts that with a
much larger sample size of the discovery GWAS, for instance >1,000,000

participants, Ghegh Would be ~4% and G:a~3%.

We extended our primary analysis of height and EA to detect GPD in 30 additional
complex traits and diseases (Table S1) using the same strategy. Among these traits,
we analysed bone mineral density (BMD)* as a null trait given that non-significant
mate correlation was previously reported®. As expected, we did not find significant
GPD associated with BMD (meta-analysis of UKB, GERA and HRS: &svp=0.09%,
s.e. 0.2%; p=0.64). After Bonferroni correction applied to the meta-analysis of UKB,
GERA and HRS (p<0.05/32~1.56x10"%), we did not detect significant GPD for any of
these other traits. We believe that this observation is likely explained by lack of
statistical power, in particular resulting from the smaller sizes of GWAS used for
these traits (on average ~73,000 participants compared to ~273,000 on average for
height and EA) or from smaller variance explained by SNPs selected to calculate
genetic predictors of these traits. As an example, although the GWAS of body mass
index (BMI) used in this study is similar in size with that of height (Table S3), our
estimation in HRS participants of the variance explained by the 2,362 SNPs BMI-
associated SNPs selected (Table S1) is only ~6.2% (s.e. 0.9%) versus ~27.3% (s.e.
1.7%) for height. A much larger GWAS would therefore be required to detect any

GPD among BM-associated alleles using our method.

Confirmation using mate pairs

10
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Another experimental design to quantify the genetic effect of AM on a particular trait
consists of estimating the correlation of genetic predictors of this trait between
mates®™*, We quantified the mate correlation (r,) of genetic predictors of all 32 traits
(Table S2) using 18,984 unrelated couples identified in the UKB (Materials and
Methods). We found significant correlations between mates for genetic predictors of
height (r=5.9%, s.e. 0.8%, p=9.2x10"*) and EA (r,=6.1%, s.e. 0.9%, p=7.3x10").
Across all traits, we estimated the regression slope of ry, estimates onto 6 estimates to
be 1.8 (s.e. 0.2) (Fig. 3). Both these results are consistent with our derivation that the
expected mate correlation of genetic predictors is approximately twice the expected

value of @ (Supplementary note 4).

Discussion

We have shown in this study that the genomic signature of AM can be detected and
quantified using SNP data in a random sample of genomes from the population, even
in the absence of data on mate pairs. This is an important aspect of our method since
large datasets on mate pairs are rare and may be absent in natural populations. We
confirm the genetic basis for AM for height and EA, consistent with the assumption
of primary assortment on these traits. We showed that our estimates of GPD from real
data are consistent with theoretical predictions made under simplifying assumptions
such as equal SNP effect sizes, population being at equilibrium and that the number of
common causal variants of the order of ~100,000 (Supplementary Note 1). We did
not however detect significant GPD for the other traits and diseases analysed in this
study. Beyond true negatives such as bone mineral density, we believe that the

relatively smaller size of GWAS used in our inference has reduced the power to
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detect the genetic signature of AM in more traits and diseases. We cannot therefore
draw firm conclusion from our observations on the importance of primary assortment
(as opposed to environmental correlation) to the resemblance between mates for some
of these traits such as smoking habits®, alcohol consumption® or susceptibility to
psychiatric disorders™. Overall, our methodology is straightforward and can be
applied to a wider variety of traits and in other species, provided that summaries of
trait-variant associations are available. AM is multi-dimensional in essence as mate
choice depends on multiple physical and behavioural traits which may or may not

share a common genetic basis™®

. Studying networks of traits and genes driving AM
is one of the challenges to meet for improving our understanding of the genetic
consequences of AM in a population. As a step in this direction, our method can be

for example applied to quantify consequences of AM on gene expression or at any

other molecular level, through the use of SNP predictors of these endogenous traits.

Our study predicts that for traits affected by AM the estimates of SNP effects from
within-family experimental designs tend to be smaller than those from a population
sample, and that a genetic predictor generated from a population sample will explain
less variation than expected when applied to a population not undergoing assortative

mating.

Our study has a number of limitations. The first one is that certain aspects of our
approach are very conservative. We have attempted to quantify GPD induced by AM
while applying stringent correction for population stratification. Although such a
strategy is expected to yield unbiased estimates it still faces the difficulty of

distinguishing AM on population stratification related features from AM on trait
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specific features. Height is a typical example. AM on height occurs but, in addition,
people tend to marry within geographical sub-populations (countries for example)
which differ in mean height®’. Correcting for population stratification using principal
components would consequently remove part of the signal that we want to detect. We
have nevertheless been able to detect GPD among height increasing aleles as a
consequence of the large sample size of the discovery GWAS, the strength of

assortment of mates, and the high heritability of thistrait.

The second limitation relates to our strategy for SNP selection. We have included in
our analyses SNPs using a low and arbitrary threshold (p<0.005) on the significance
of association with the trait. Although this strategy is not expected to bias the
covariance between S, and S,, it may increase both their variances and thus potentially
induces downward biases in GPD estimates. We chose nonetheless this strategy to
maximize the fraction of heritability captured by SNPs, which influences the expected
correlation between S and S, as derived in equation (1). As an example, if GPD is
inferred using genome-wide significant SNPs from Okbay et al. (2016), which
explain ~3% of the variance of EA, the expected correlation between S, and S would
only be ~0.45% under assumptions made above. Such small correlation is nearly
undetectable in cohorts with less than 300,000 participants (M aterials and M ethods).
Another SNP selection strategy could have been used to reach a better trade-off
between bias and power but this would generally require observed phenotypes to
optimize genetic predictors®™* (find the best p-value threshold or shrinkage

parameter).
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In conclusion, our study provides empirical quantification of GPD induced among
trait-associated alleles, a phenomenon predicted by theory exactly a century ago by
Fisher (1918)". The human genome has a pattern of trait-associated loci that is shaped
by human behaviour (mate choice), as well as natural selection®****. The imprint of
assortative mating on the contemporary human genome reflects mate choice in the
1930-1970s and in generations prior to that. Although there is much more mobility
within and between human populations in the 21% century, the underlying factors that

11,35
€

determine mate choice remain stabl , and we may expect to continue to see its

effect in the genome.

14


https://doi.org/10.1101/300020
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/300020; this version posted April 13, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Materials and Methods

Estimation of GPD from SNP data

Our inference of GPD in a given sample of genomes is based on the correlation 8
between polygenic scores S and S calculated from SNPs on even and odd
chromosomes respectively. For each individual from the study population, these
scores are obtained as linear combinations of SNPs allele counts weighted by their
estimated effect sizes from publicly available GWAS of complex traits and diseases
(Supplementary Note 1). We used publicly available summary statistics (regression
coefficients for each tested SNP and p-values) from large GWAS on 32 traits (Table
S3; URLs to download these summary statistics are given in Supplementary Note 1).
These include GWAS on cognitive traits (educational attainment, intelligence
quotient), anthropometric traits (height, body mass index, waist-to-hip ratio),
psychiaric disorders (attention deficit hyperactivity disorder, autism spectrum
disorder, bipolar disorder, anxiety, major depressive disorder, post-traumatic stress
disorder and schizophrenia), other common diseases (coronary artery disease, type 2
diabetes, Crohn’s disease and rheumatoid arthritis), blood pressure, reproductive
traits, personality traits, alcohol and smoking, and bone mineral density as anull trait.
It is important that the sample of people whose genotypes were used was independent
of the sample of people used to estimate SNP effects on each trait. Otherwise large
biases can be expected as shown in Supplementary Note 4. We applied LD score
regression (LDSC) for quality control and only kept summary statistics with a
corresponding ratio statistic (ratio = (LDSC intercept — 1) /(mean chi-square statistic
over al SNPs - 1)) non-significant from O (i.e. estimate / standard error < 2) or < 0.2
(Table S3). Significance of the GPD estimates was assessed using p-values from

Wald-tests, with the null hypothesis “Ho: 6= 0" versus the alternative “Hq: 8+ 0.
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Correction of population structure

We used genotypic principal components to correct for population stratification. We
calculated 20 principal components from 70,531 near independent SNPs (35,301 on
odd chromosomes and 35,230 on even chromosomes) selected using the LD pruning
agorithm implemented in PLINK (r°<0.1 for SNPs < 1Mb apart). We denote these
principal components as PCO for SNPs on odd chromosomes and PCE for SNPs on
even chromosomes. When @ is estimated from the regression of S onto &, the effect
of population stratification is corrected by adjusting the regression for PCOs (and vice
versa). This can be summarised using the following regression equations: S, =
6S, + PCO; + -+ PCO,p Or S, = 0SS, + PCE; + ---+ PCE,,. Since & and & may
not have exactly the same variance as aresult of SNPs sampling, we chose to estimate
6 from the regression onto the genetic predictor with the larger variance. We observed
nonetheless that estimates obtained from the regression of S onto S are very similar
to those obtained from regression of § and & (Fig. S3). In the simulation studies
(Supplementary Note 2) we also considered the case where principal components are
calculated from all SNPs available (odd and even chromosomes). In our simulations,
principa components were calculated using R version 3.1.2, while in real data
principal components were calculated using the fast PCA approach** implemented in

PLINK version 2.0.

Statistical power
Theory underlying statistical power to detect correlation is well established®. We
used equation (2) derived from Ref.** to determine the smallest correlation detectable

with at least 1 — § = 80% of statistical power at asignificance level of a = 5%:
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log (15) = - @

1-6 n-3
In equation (2), n represents the size of the sample used to estimate 6, and z,,/, and zg
are the a/2- and S-upper quantiles of the standard normal distribution (mean O and
variance 1). With a = 5% and g = 20%, z,/, = 1.96 and zg =~ 0.84. We can
therefore detect GPD as small as 1.2% and 0.5% in GERA and UKB respectively, and
0.4% for the meta-analysis of UKB and GERA. For the analysis of mate-pairs we can

detect correlation as small as 1.5%.

SNP Genotyping

UK Biobank data

We used genotyped and imputed alele counts at 1,312,100 HM3 SNPs in 487,409
participants of the UK Biobank®* (UK B). Extensive description of data can be found
here?’. We restricted the analysis to participants of European ancestry and SNPs with
imputation quality >0.3, minor alele frequency (MAF) >1% and Hardy-Weinberg
equilibrium test p-value > 10°. Ancestry assignment was performed as follows. We
calculated the first two principal components from 2,504 participants of the 1,000
Genomes Project™ with known ancestries, We then projected UKB participants onto
those principal components using SNP loadings of each principal component. We
assigned each individual to one of five super-populations in the 1,000 Genomes data:
European, African, East Asian, South Asian and Admixed. Our algorithm calculated,
for each participant, the probability of membership to the European super-population
conditional on their principal components coordinates. The 456,426 out of the original
487,409 participants who had a probability of membership > 0.9 for the European
cluster were assigned to the European super-population. Next, to obtain a sample of

conventionally unrelated individuals, we estimated the genetic relationship matrix
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(GRM) for individuals in the subsample of Europeans using GCTA*! version 1.9. We
iteratively dropped one member from each pair of individuals whose estimated
relationship coefficient exceeded 0.05, until no pairs of individuals with a relationship
coefficient above 0.05 remained in the sample. This restriction resulted in a sample of
348,502 conventionally unrelated Europeans. In total, we included 348,502
participants in this analysis and 1,124,803 SNPs. The North West Multi-centre
Research Ethics Committee (MREC) approved the study and all participants in the

UKB study analyzed here provided written informed consent.

Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort data

We analyzed 60,586 participants of the GERA cohort using genotype data only.
Ancestry was assigned using a procedure similar to that described for UKB. Genotype
quality control involved standard filters (exclusion of SNPs with missing rate > 0.02,
Hardy-Weinberg equilibrium test p-value > 10° or minor alele count < 1, and
removing individuals with missing rate > 0.02). We imputed genotypes data to the
1,000 Genomes reference panel using IMPUTE2 software. We used GCTA to
estimate the GRM of all participants using HM3 SNPs (MAF > 0.01 and imputation
INFO score > 0.3). We finally include in the analysis 53,991 unrelated (GRM < 0.05)

European participants with genotypes at 1,163,290 HM 3 SNPs.

Health and Retirement Sudy (HRS)

We analysed 8,552 unrelated (GRM < 0.05) participants of the HRS cohort. GRM
was calculated from 1,118,526 SNPs HM 3 imputed to the 1,000 Genomes reference
panel using IMPUTEZ2 software. SNP and samples quality control was similar to what

described above for GERA.
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S\P selection

We used the LD clumping algorithm implemented in PLINK to identify for each trait
near independent SNPs (LD threshold r’<0.1 for SNPs < 1 Mb apart and association
p-vaue < 0.005). LD clumping was performed using genotypes from HRS
participants. We restricted the analysis to 1,060,523 HM 3 SNPs that passed all quality

controlsin UKB, GERA and HRS datasets.

Sample overlap

The Okbay et al. (2016) GWAS of educational attainment, the Sniekers et al. (2017)
GWAS of intelligence quotient al. (2017) and the Kemp et al. (2017) GWAS of bone
mineral density, included ~150,000 participants of the UKB (first release of
genotypes). To avoid bias due to sample overlap, analyses performed in UKB for
these traits were restricted to 238,193 unrelated participants (UKB release 2 only),
who also were not related to any of the participants included in those studies (UKB
release 1). Participants of the HRS cohort were included in the Okbay et al. (2016)
study as well as in the Day et al. (2015) GWAS of the onset of menopause. For the
other GWAS considered in this study, no sample overlap with UKB, GERA or HRS

was reported.

Sib pairs
Selection
We used 21,783 sib pairs of European ancestry previously identified in the UKB*
using identity-by-descent sharing estimated from SNP data. We applied the within-

family QFAM procedure of PLINK, as in Robinson et al. (2015)%, to assess the
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association between HM3 SNPs and height and EA. When applied to sib pairs, this
procedure is equivalent to regressing the difference of height or EA between sibs onto
the difference of allele counts. These estimates are therefore robust to population
stratification. For height, we moreover performed a sample size weighted meta-
analysis of estimates from the Robinson et al. (2015) study in 17,500 quasi-
independent sib pairs, with those obtained in the UKB and used these newly estimated
effect sizes to re-estimate GPD in UKB (not including any of the sib-pairs), GERA

and HRS. In total we used 21,783 sib-pairs for EA and 39,283 sib-pairs for height.

Effective sample size

We defined the effective sample size (Ngr) of within-family GWAS using Ny
independent sib pairs as the sample size of a standard GWAS (where SNP effect are
estimated from simple linear regression) such that the estimated SNP effects from the
within-family GWAS have the same expected sampling variance as the estimated
SNP effects from standard GWAS. This leads to the following equation (derived in
Supplementary Note 4)

Neff = Npairs/[z(l - Tpairs)] )

In equation (3), r,qirs represents the phenotypic correlation between sibs. We
observed between sibs identified in UKB a correlation ~0.5 for height and ~0.3 for
educational attainment. Therefore, the corresponding effective sample sizes for the
within-family GWAS of height and EA are 39,283/(2%(1-0.5)) = 39,283 and

21,283/(2x(1-0.3)) = 15,559.

Mate pairs
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We first used 999 unique mate pairs from 1,065 trios composed of both parents and
one child, identified among UKB participants using identity-by-descent sharing
estimated from SNP data. Details about software and algorithms used to identify those
trios are given in Ref.*® To increase power, we also used household sharing
information to identify putative spouse pairs among UKB participants with European
ancestry. We therefore selected 18,984 (including 117 from the trios) sex-discordant
pairs of participants, recruited from the same centre, who reported living with their
Spouse or partner in the same type of accommodation, at the same location (east and
north coordinates rounded to 1 kilometre), for the same amount of time, with the same
number of people in the household, with the same household income, with the same
number of smoker in the household, with the same Townsend deprivation index and

with a genetic relationship < 0.05.

Data availability

We used genotypic data from the Resource for Genetic Epidemiology Research on
Adult Health and Aging (GERA: dbGaP phs000674.v2.p2), genotypic and phenotypic
from the Health and Retirement Study (HRS: dbGaP phs000428.v1.pl), as well as

genotypic and phenotypic data from the UK Biobank under project 12505.
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5 Fig. 1. Schematic illustration of the effect of assortative mating (AM) on the

6  correlation between trait-associated alleles. Each line represents a chromosome of an

7  individua in the population and each coloured bead represents an allele (orange: trait-

8 increasing alleles (TIA); blue: trait-decreasing alleles) at a particular locus on that

9  chromosome. Panel a represents a population undergoing AM and panel b represents
10  apopulation undergoing RM. Under RM the distribution of aleles between odd and
11  even chromosomes are uncorrelated (no-consistent pattern between chromosomes).
12 Under AM, the distributions of alleles are correlated between chromosomes, such that
13 the number of TIAs on odd chromosomes predicts the number of TIAS on even
14  chromosomes.
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Estimate of assortative mating (AM) induced gametic phase disequilibrium

among trait increasing alleles in three independent cohorts: UKB

(N=348,502), GERA (N=53,991) and HRS (N=8,552). GPD is estimated as the

correlation between trait-specific genetic predictors from SNPs on odd chromosomes

versus even chromosomes. Bone mineral density was selected as a trait on which AM

does not occur (negative control). Estimates are adjusted for 20 genotypic principal

components from SNPs on either odd or even chromosomes to correct the effect of

population stratification. *The HRS cohort was not included in the meta-analysis of

GPD estimates among educational attainment increasing alleles, as HRS was included

in the Okbay et al. study. Theoretical predictions are obtained from equation (1).
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Fig. 3. Correlation of genetic predictors in 18,984 mates pairs (y-axis; values from
Table S2) as a function of within-individual estimates of gametic phase
disequilibrium (GPD: x-axis) for 32 complex traits and diseases (meta-analysis from
Table S1 in N=411,045 participants). Theory derived in Supplementary Note 4
predicts a regression slope equal to 2. Estimated linear regression intercept and slope

are 0.002 (standard error, s.e. 0.002) and 1.8 (s.e. 0.23) respectively.
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37 Number of principal components (PC) adjusted for Number of principal components (PC) adjusted for
38 Fig. Sl1. Estimates of gametic phase disequilibrium (GPD), in simulated data
39 (N=10,000) using allele frequencies of 697 height-associated SNPs, as a function of
40 the number of genotypic principal components adjusted to correct for population
41  dratification. Data were simulated assuming either no population stratification or
42  within-Europe population stratification (Supplementary Note 2). In both cases, data
43  were simulated under pure random mating (6=0, panel a) or under assortative mating
44 (6=5%, panel b). Estimates are obtained from unadjusted linear regression or adjusted
45 for 1, 2, 5, 10 and 20 first principa components. Principal components were either
46 caculated from SNPs on odd and even chromosomes (genome-wide principal
47  components) or from SNPs on odd or even chromosomes separately. Standard Error

48 (se).
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51 Fig. S2. Estimates of gametic phase disequilibrium (GPD), in simulated data
52 (N=10,000) using allele frequencies of 1,000 randomly selected Hap Map 3 SNPs, as
53 afunction of the number of genotypic principal components adjusted to correct for
54  population stratification. Data were simulated assuming either no population
55  dratification or within-Europe population stratification (Supplementary Note 2). In
56  both cases, data were simulated under pure random mating (6=0, panel a) or under
57  assortative mating (6=5%, panel b). Estimates are obtained from unadjusted linear
58 regression or adjusted for 1, 2, 5, 10 and 20 first principal components. Principal
59  components were either calculated from SNPs on odd and even chromosomes
60 (genome-wide principal components) or from SNPs on odd or even chromosomes
61  separately. Standard Error (s.e.).
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Fig. S3. Comparison of estimates of gametic phase disequilibrium (GPD) from two
approaches. (a) from the regression of genetic predictors from SNPs on even
chromosomes (Sg) onto of genetic predictors from SNPs on odd chromosomes (S);
and (b) from the regression of S, onto Se. The x-axis corresponds to approach (a) and
y-axis to approach (b). The correlation between these two estimators is ~0.99 across

al three cohorts UKB (N=348,502), GERA (N=53,991) and HRS (N=8,552).
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Standard Error Meta-analysis Heterogeneity
Traitsy/Diseases Number of SNPs Buks OcErA OhRs OvETA
(HM ETA) p-VaI ue p-VaI ue
to estimate &

Height 9,447 3.02 4.15 4.44 3.20 0.16 6.5x10°% 0.03
Number of years of education 4,618 2.87 1.77 8.95* 2.67 0.19 6x10¢ 0.02
Intelligence Quotient 3,356 0.61 0.33 1.42 0.58 0.19 2.3x10° 0.65
Former smoker 2,011 0.44 0.82 -1.02 0.46 0.16 3.8x10° 0.30

Attention Deficit Hyperactivity 2,902
0.58 -0.79 -0.31 0.38 0.16 0.02 0.01

Disorder

Age at menopause 2,263 0.33 0.41 4.49* 0.34 0.16 0.03 0.85

Alcohol consumption 2,186
0.19 0.86 0.31 0.28 0.17 0.09 0.39

(Continuous measurement)

Bipolar Disorder 2,358 0.38 -0.58 0.39 0.25 0.16 0.13 0.14
Age at menarche 3,385 0.18 0.38 1.56 0.24 0.16 0.13 0.42

Systolic Blood Pressure 1,687 0.22 0.44 -0.24 0.24 0.17 0.17 0.84

'9sua?l| [euoneulaiu] 0’y AN-ON-AG-00e
Japun a|qejrene apew si 1| ‘Ainadiad ul uudaid ayy Aejdsip 01 asuadl| B AixHolq pajuelb sey oym ‘1spunyioyine ayl si (mainai 1aad Aq palyined
10U sem yaiym) Juudaid siyy 1o Jepjoy 1ybuAdod syl 'gToZ ‘€T |dy parsod uoisiaA siul :0Z000€/TOTT 0T/610"10p//:sdny :10p Jundaid Aixydolq

Crohn's Disease 2,669 0.14 0.60 1.20 0.22 0.16 0.17 0.45
Extraversion 1,666 0.30 -0.51 -1.30 0.16 0.16 0.33 0.10

Ever smoked 2,281 0.25 -0.60 0.72 0.15 0.16 0.35 0.18

Major Depressive Disorder 1,958 -0.11 -0.82 1.88 -0.16 0.18 0.35 0.09

Rheumatoid Arthritis 2,162 0.11 -0.09 0.85 0.10 011 0.38 0.47
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Openness
Type 2 Diabetes
Agreeableness
Anxiety case/ control
Number of Cigarettes per Day
Constientiousness
Coronary Artery Disease
Bone Mineral Density
Autism Spectrum Disorder
Age at smoking onset
Anxiety (Factor score)
Post-Traumatic Stress Disorder
Body Mass Index (BMI)
Diastolic Blood Pressure
Waist/Hip ratio (adj. BMI)
Alcohol consumption
(Dichotomous measurement)

Schizophrenia

1,674
2,904
1,651
1,872
1,947
1,688
2,158
5,859
1,811
1,925
2,005
1,814
2,362
1,663
1,940

1,614

5,617

-011

0.18

-0.01

-0.18

-0.13

0.16

0.09

0.34

0.11

-0.03

-0.09

-0.09

0.01

-0.01

0.01

0.00

0.03

-0.54

-0.17

-0.67

0.37

0.02

-0.28

0.22

-0.99

-0.11

-0.34

0.01

0.19

-0.48

0.58

0.27

-0.38

-0.34

2.09

-0.33

-0.44

045

-0.26

-0.06

-1.26

0.00

-0.17

-0.23

0.46

0.22

0.65

-1.08

-0.49

113

0.62

-0.12

0.12

-0.11

-0.10

-0.11

0.10

0.08

0.09

0.07

-0.07

-0.06

-0.05

-0.04

0.05

0.03

-0.03

-0.01

0.16

0.16

0.16

0.14

0.17

0.16

0.16

0.19

0.16

0.17

0.16

0.16

0.15

0.17

0.16

0.19

0.15

043

0.46

0.49

0.49

0.52

0.55

0.63

0.64

0.65

0.67

0.68

0.77

0.78

0.78

0.85

0.87

0.94

0.08

0.72

0.34

0.38

0.95

0.63

0.44

0.03

0.88

0.82

0.87

0.82

0.43

0.31

0.77

0.56

0.59
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Table S1. Within-individual correlation (6 in %) between trait-specific genetic predictors from SNPs on odd chromosomes versus even
chromosomes for 32 traits and diseases. Estimates from UKB (N=348,502), GERA (N=53,991) and HRS (N=8,552) are denoted fuks, fcera and
Oqrs respectively; and estimate from the meta-analysis of these three estimates is denoted vera. *As the HRS cohort was included in the
educational attainment GWAS and the age a menopause GWAS, Gvera calculations for these traits did not include data from HRS. All
estimates are adjusted for 20 genotypic principal components from SNPs on either odd or even chromosomes. Standard errors (s.e.) of estimated
correlations within each cohort are approximately inversely proportional to the square-root of the sample size (N). For UKB s.e. ~0.17%, for

GERA s.e.~0.43% and for HRS s.e.~1.1%.
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Number of
Traitg/Diseases rm (%) se. (rm) p-value .
mate pairs
Height* 5.87 0.79 9.8x10°" 18,984
Number of years of education (EA)* 6.13 0.94 7.3x10™ 10,854
Intelligence Quoatient (1Q) 1.08 0.96 0.26 10,854
Former smoker -0.51 0.74 0.48 18,984
Attention Deficit Hyperactivity Disorder 0.25 0.73 0.73 18,984
Age at menopatise -0.23 0.73 0.75 18,984
Alcohol consumption

-0.49 0.73 05 18,984

(Continuous measurement)
Bipolar Disorder 0.23 0.72 0.75 18,984
Age at menarche 0.32 0.72 0.66 18,984
Systolic Blood Pressure 0.56 0.72 0.44 18,984
Crohn's Disease 0.85 0.73 0.24 18,984
Extraversion -1.38 0.72 0.06 18,984
Ever smoked 0.68 0.74 0.36 18,984
Major Depressive Disorder 0.34 0.73 0.64 18,984
Rheumatoid Arthritis 1.10 0.75 0.14 18,984
Openness -0.12 0.73 0.87 18,984
Type 2 Diabetes 1.36 0.73 0.06 18,984
Agreeableness -0.75 0.72 0.29 18,984
Anxiety case / control 0.88 0.72 0.22 18,984
Number of Cigarettes per Day 1.20 0.72 0.96 18,984
Conscientiousness 0.08 0.72 0.91 18,984
Coronary Artery Disease 0.07 0.72 0.93 18,984
Bone Mineral Density (BMD) -1.02 1.00 0.3 10,854
Autism Spectrum Disorder 2.15 0.73 0.003 18,984
Age at smoking onset -0.36 0.73 0.62 18,984
Anxiety (Factor score) 0.27 0.72 0.71 18,984
Post-Traumatic Stress Disorder 0.58 0.72 0.42 18,984
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Body Mass Index (BMI) 0.73 0.72 0.3 18,984
Diastolic Blood Pressure -0.56 0.73 0.44 18,984
Waist/Hip ratio (adj. BMI) 0.10 0.73 0.89 18,984
Alcohol consumption
121 0.72 0.09 18,984
(Dichotomous measurement)
Schizophrenia 2.05 0.76 0.006 18,984

84

85 Table S2. Between mates correlation (in %) of genetic predictors of 32 traits and
86  diseases. Estimates are adjusted for 20 genotypic principal components from SNPs on
87  both odd and even chromosomes. Significant correlations (p-value < 0.05/30) are
88 marked with a “*”. Pairs involving UKB participants included in the EA, IQ and
89 BMD GWAS were removed.

90
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LDSC
LDSC LDSC
GWAS LDSC ratio
heritability LDSC inter cept LDSC Ratio
Traits/Diseases median heritability dtatistic
(standard inter cept (standard statistic
samplesize (h?) (standard
error) error)
error)

Number of years of education 293,723 12.7% 0.4% 0.93 0.01 -0.11
Intelligence Quotient 78,308 18.8% 1.0% 1.01 0.01 0.03 0.03
Height 252,083 34.2% 1.8% 123 0.03 0.12 0.02

Body Mass Index 233,692 13.5% 0.7% 0.66 0.01 -1.30

Waist/Hip ratio (adj. BMI) 142,438 9.0% 0.7% 0.86 0.01 -1.44

Attention Deficit Hyperactivity
55,374 23.2% 1.5% 1.03 0.01 0.10 0.03
Disorder

Autism Spectrum Disorder 13,574 33.5% 4.4% 0.99 0.01 -0.17
Bipolar Disorder 16,731 47 1% 4.1% 1.01 0.01 0.03 0.06
Anxiety case / control 17,310 7.6% 3.0% 1.00 0.01 0.10 0.25

Anxiety (Factor score) 18,186 7.0% 2.7% 1.00 0.01 -0.05
Major Depressive Disorder 18,759 17.4% 2.6% 1.00 0.01 0.05 0.09
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Post-Traumatic Stress Disorder 53,293 1.8% 0.8% 0.99 0.01 -0.48
Schizophrenia (SCZ) 150,064 24.3% 1.0% 1.04 0.01 0.05 0.02
Coronary Artery Disease 184,305 6.7% 0.5% 0.88 0.01 -0.88
Type 2 Diabetes (T2D) 152,599 7.8% 0.6% 1.00 0.01 -0.01
Crohn's Disease 20,883 50.7% 5.8% 1.02 0.01 0.09 0.05
Rheumatoid Arthritis 58,284 15.0% 2.6% 0.94 0.01 -0.50
Systolic Blood Pressure (SBP) 67,211 11.2% 0.9% 0.90 0.01 -1.77
Diastolic Blood Pressure (DBP) 67,201 11.0% 1.0% 0.91 0.01 -1.61
Age at menopause 70,000 13.4% 1.6% 0.99 0.01 -0.06
Age at menarche 182,416 11.9% 0.6% 0.97 0.01 -0.07
Conscientiousness 17,375 7.5% 3.2% 1.00 0.01 -0.06
Agreeableness 17,375 1.7% 3.0% 1.00 0.01 0.32 0.97
Openness 17,375 12.2% 2.8% 0.99 0.01 -0.40
Extraversion 17,375 4.5% 2.7% 1.00 0.01 -0.11
Ever smoked 74,053 7.5% 0.7% 1.00 0.01 -0.03
Age at smoking onset 74,053 2.0% 0.6% 1.00 0.01 -0.04
Number of Cigarettes per Day 74,053 3.1% 0.8% 1.00 0.01 0.09 0.12
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91

92

93

94

95

96

Former smoker 74,053 3.5% 0.6% 1.00 0.01 0.01 0.13

Alcohol consumption (Binary) 70,460 0.8% 0.6% 0.99 0.01 -3.52
Alcohol consumption Continuous 70,460 5.2% 0.8% 101 0.01 0.17 0.09
Bone Mineral Density (BMD) 142,487 37.6% 4.1% 1.08 0.03 0.07 0.03

Table S3. Description of summary statistics from genome-wide associations (GWAS) on 32 traits analysed in this study. LD score regression

(LDSC) was applied to each set of summary statistics to calculate SNP heritability and LDSC ratio statistics, a measure of population

stratification. The LDSC software (version 1.0) does not calculate standard errors (s.e.) of the ratio statistic when it is < 0. In these cases, s.e. of

the ratio statistics were replaced with “.”. URLSs for downloading summary statistics used in this study are given in Supplementary Note 1.
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