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Abstract	
Whereas	the	composition	of	the	human	gut	microbiome	is	relatively	well	
resolved,	predictive	understanding	of	its	response	to	perturbations	such	as	diet	
shifts	is	still	lacking.	Here,	we	followed	a	bottom-up	strategy	to	explore	human	
gut	community	dynamics.	We	established	a	synthetic	community	composed	of	
three	representative	human	gut	isolates	in	well-controlled	conditions	in	vitro.	
We	then	explored	species	interactions	by	performing	all	mono-	and	pair-wise	
fermentation	experiments	and	quantified	with	a	mechanistic	community	model	
how	well	tri-culture	dynamics	was	predicted	from	mono-culture	data.	With	the	
model	as	a	reference,	we	demonstrated	that	species	grown	in	co-culture	behaved	
differently	than	in	mono-culture	and	confirmed	their	altered	behavior	at	the	
transcriptional	level.	In	addition,	we	showed	with	replicate	tri-cultures	and	in	
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simulations	that	dominance	in	tri-culture	sensitively	depends	on	initial	
conditions.	Our	work	has	important	implications	for	gut	microbial	community	
modeling	as	well	as	ecological	interaction	detection	from	batch	cultures.	

Introduction	
The	human	gut	microbiome	is	a	complex,	spatially	heterogeneous	and	dynamic	
system	consisting	of	hundreds	of	species	interacting	with	each	other	and	with	
the	human	host.	It	is	a	daunting	task	to	develop	predictive	models	for	such	a	
system,	yet	the	potential	rewards	are	high	and	would,	for	instance,	enable	
targeted	interventions	to	shift	dysbiotic	communities	towards	more	healthy	
states.	Two	conditions	need	to	be	fulfilled	for	predictive	models	to	be	successful:	
first,	the	system	has	to	be	sufficiently	well	characterized	to	build	the	model	and	
second,	the	dynamics	should	be	generally	deterministic.	First	successes	in	
modeling	the	behavior	of	gut	microbial	communities	give	reason	for	cautious	
hope	(Buffie,	Bucci	et	al.,	2015,	Cremer,	Arnoldini	et	al.,	2017,	Muñoz-Tamayo,	
Giger-Reverdin	et	al.,	2016,	Stein,	Bucci	et	al.,	2013).	Most	of	these	studies	took	a	
top	down	approach,	where	the	change	in	composition	of	an	entire	community	in	
vivo	is	modeled.	For	instance,	Cremer	and	colleagues	predicted	the	ratio	of	
Firmicutes	and	Bacteroidetes	in	fecal	samples	as	a	function	of	estimated	water	
content	and	nutrient	influx	using	a	diffusion	model	(Cremer	et	al.,	2017).	Others	
have	fitted	population	models	to	time	series	of	taxon	(mostly	genus)	abundances	
obtained	from	16S	rRNA	gene	sequencing.	For	instance,	one	study	fitted	a	
variant	of	the	generalized	Lotka-Volterra	(gLV)	model	to	a	cecal	gut	time	series	
of	mice	exposed	to	a	pathogen	(Clostridium	difficile),	an	antibiotic	or	both,	
thereby	inferring	the	interactions	between	different	genera	(Stein	et	al.,	2013).	
The	time	series	predicted	with	the	parameterized	gLV	model	agreed	well	with	
observations.	The	same	approach	was	also	used	to	predict	species	that	inhibit	C.	
difficile	growth	in	murine	and	human	microbiota,	one	of	which	significantly	
lowered	mortality	when	transferred	to	mice	before	infection	with	C.	difficile	
(Buffie	et	al.,	2015).		
	
Despite	these	successes,	the	gLV	model	and	its	variants	have	several	drawbacks	
that	limit	their	widespread	application.	Importantly,	they	assume	that	
community	dynamics	can	be	predicted	from	pair-wise	interactions	and	that	the	
interaction	mechanism	can	be	ignored.	These	assumptions	have	recently	been	
challenged	both	experimentally	and	computationally:	Friedman	and	colleagues	
experimentally	quantified	the	accuracy	reached	when	predicting	the	behavior	of	
more	complex	soil	communities	from	species	pairs	(Friedman,	Higgins	et	al.,	
2017),	whereas	Momeni	and	colleagues	systematically	compared	gLV	models	of	
metabolite-mediated	species	interactions	to	their	mechanistic	counterparts	in	
silico	(Momeni,	Xie	et	al.,	2017).	While	the	authors	in	the	former	case	concluded	
that	the	behavior	of	larger	communities	could	to	a	considerable	extent	be	
predicted	from	that	of	smaller	ones,	the	latter	showed	that	the	(extended)	gLV	
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model	cannot	describe	accurately	several	common	types	of	interaction	
mechanisms.		
	
An	alternative	to	the	gLV	model	and	its	variants	are	mechanistic	models,	which	
account	for	nutrient-mediated	interactions	by	explicitly	describing	the	dynamics	
of	the	produced	and	consumed	compounds	(see	(Momeni	et	al.,	2017)	and	
references	therein).	They	thus	require	more	system	knowledge	than	generic	gLV	
and	related	models	do.	However,	most	members	of	the	gut	community	have	not	
been	thoroughly	characterized,	and	little	is	known	about	their	responses	to	
different	nutrients,	pH	values	and	interaction	partners	-	even	for	those	that	have	
been	studied	more	closely.	It	is	challenging	to	obtain	this	type	of	biological	
knowledge	and	to	resolve	interaction	mechanisms	in	vivo.	However,	in	vitro	
studies	not	only	allow	acquiring	detailed	knowledge	of	the	microorganisms'	pH	
and	nutrient	preferences,	but	also	of	their	behavior	in	the	presence	of	other	
microorganisms.	In	vitro	studies	of	human	gut	microorganisms	have	a	long	
tradition	and	have	been	carried	out	in	several	manners.	Classical	mono-	and	co-
culture	studies	in	batch	and	chemostat	fermentors	have	explored	nutrient	
preferences	and	interaction	mechanisms	(Falony,	Calmeyn	et	al.,	2009a,	Falony,	
Vlachou	et	al.,	2006,	Moens,	Verce	et	al.,	2017,	Moens,	Weckx	et	al.,	2016,	Rivière,	
Selak	et	al.,	2016).	Artificial	gut	systems,	such	as	the	TNO	In	Vitro	Model	of	the	
Colon	(TIM-2)	(Venema,	2015)	and	the	Simulation	of	the	Human	Intestinal	
Microbial	Ecosystem	(SHIME)	(T.	Van	de	Wiele,	P.	Van	den	Abbeele	et	al.,	2015),	
seek	to	reproduce	as	closely	as	possible	the	conditions	of	the	human	gastro-
intestinal	tract	in	a	well-controlled	manner.	They	are	composed	of	several	
compartments	connected	with	peristaltic	pumps	that	vary	in	their	pH	to	mimic	
the	pH	gradient	in	the	human	intestines.	In	addition,	the	SHIME	system	can	be	
extended	with	a	module	dedicated	to	the	investigation	of	human-microbiome	
interactions	(HMI)	(Marzorati,	Vanhoecke	et	al.,	2014).	The	gut	community	has	
also	been	studied	at	smaller	scales,	in	minibioreactor	arrays	(Auchtung,	
Robinson	et	al.,	2015)	and	with	gut-on-chip	microfluidic	devices	(Kim,	Huh	et	al.,	
2012,	Shah,	Fritz	et	al.,	2016).	However,	in	most	cases,	gut	simulators	are	
inoculated	with	fecal	material.	In	the	range	from	top-down	to	bottom-up	
approaches	of	gut	microbial	community	dynamics,	these	can	be	considered	as	
intermediate	cases,	where	the	host	is	eliminated,	but	the	community	is	not	
further	simplified.	The	goal	of	these	studies	is	usually	to	quantify	the	behavior	of	
the	entire	community	under	different	conditions.	In	the	case	of	HuMiX	and	
SHIME's	HMI	module,	the	interaction	of	particular	gut	microorganisms	with	
epithelial	cells	is	targeted	(Marzorati	et	al.,	2014,	Shah	et	al.,	2016).	Since	the	
exact	composition	of	fecal	material	(which	also	includes	bacteriophages	and	
fungi)	is	difficult	to	resolve,	it	is	hard	to	track	each	member	in	such	a	community.	
Although	the	in	vitro	dynamics	of	colon	(Kettle,	Louis	et	al.,	2015)	and	rumen	
(Muñoz-Tamayo	et	al.,	2016)	communities	has	been	described	with	mechanistic	
models	previously,	these	models	did	not	account	for	the	behavior	at	species	
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level,	but	grouped	species	with	similar	metabolic	activities	into	guilds.	Whereas	
it	is	of	interest	to	model	guild	dynamics,	the	resolution	of	guild-level	models	may	
be	insufficient	to	understand	microbial	community	dynamics	in	the	gut.	Species	
in	the	same	guild	do	not	necessarily	respond	in	the	same	manner	to	altered	
environments	and	perturbations.	Guild	definitions	are	arbitrary	to	an	extent,	and	
gut	bacteria	with	flexible	metabolic	strategies	may	change	their	guild	
membership.	In	addition,	the	concepts	of	tipping	elements	(Lahti,	Salojãrvi	et	al.,	
2014)	and	strongly	interacting	species	(Gibson,	Bashan	et	al.,	2016)	suggest	that	
particular	species	can	have	a	disproportionate	impact	on	gut	community	
dynamics.	
	
In	our	opinion,	experiments	with	defined	communities	of	known	composition,	
grown	in	well-controlled	conditions,	are	crucial	to	learn	more	about	the	
interactions	of	gut	species	and	how	these	shape	community	dynamics.	Well-
controlled	in	vitro	experiments	are	also	necessary	for	the	development	and	
validation	of	predictive	models	of	gut	microbial	communities.	However,	only	few	
in	vitro	experiments	with	defined	gut	communities	have	been	reported	to	date	
(Newton,	Macfarlane	et	al.,	2013,	Trosvik,	Rudi	et	al.,	2008,	Trosvik,	Rudi	et	al.,	
2010)	and	none	have	to	our	knowledge	employed	mechanistic	models	to	predict	
community	dynamics.	
	
The	objective	of	the	present	study	was	to	establish	a	defined	gut	community	
composed	of	representative	human	gut	strains,	to	study	their	interactions	under	
well-controlled	conditions	in	vitro	and	to	validate	a	quantitative	mechanistic	
model	by	predicting	community	behavior	in	a	tri-culture	with	parameters	from	
mono-culture	data.	Whereas	mechanistic	models	have	been	tested	in	this	
manner	before	for	a	cystic	fibrosis	community	(Schmidt,	Riedele	et	al.,	2011),	
such	an	approach	has	not	yet	been	applied	to	a	synthetic	gut	community.	
	
To	reach	our	objective,	we	established	three	gut	bacterial	strains,	described	
below,	in	an	optimized	mMCB	medium	(Moens	et	al.,	2016)	in	2-L	laboratory	
fermentors	run	in	batch	mode.	To	measure	kinetic	parameters,	we	carried	out	
mono-cultures	and	then	cultivated	all	three	strains	together	in	a	tri-culture.	In	
addition,	we	quantified	the	dynamics	of	each	of	the	three	possible	pair-wise	
combinations	and	performed	all	experiments	in	at	least	two	biological	replicates.	
For	each	cultivation	experiment,	we	took	samples	at	15	to	18	time	points	over	
two	days.	For	all	samples,	we	quantified	optical	density,	counted	cells	with	flow	
cytometry,	measured	the	concentration	of	fructose	and	short-chain	fatty	acids	
(formate,	acetate,	propionate,	butyrate	and	lactate)	and	quantified	bacterial	
abundance	with	TaqMan	qPCR	using	species-specific	primers	and	probes.	In	
addition,	we	quantified	the	concentration	of	CO2	and	H2	in	the	headspace	during	
fermentation	in	a	semi-continuous	fashion.	Finally,	we	sequenced	the	total	RNA	
in	selected	samples.	Figure	1	summarizes	our	approach.	To	our	knowledge,	this	
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is	the	first	study	that	investigates	a	synthetic	gut	community	with	a	combination	
of	mono-	and	co-cultures,	mechanistic	modeling	and	gene	expression	analysis.	
	
Our	synthetic	community	was	composed	of	Faecalibacterium	prausnitzii	A2-165	
(Duncan,	Hold	et	al.,	2002b)	(FP),	Roseburia	intestinalis	L1-82	(Duncan,	Hold	et	
al.,	2002a)	(RI)	and	Blautia	hydrogenotrophica	S5a33	(Bernalier,	Willems	et	al.,	
1996)	(BH),	all	three	of	which	were	isolated	from	human	feces.	We	carefully	
selected	our	community	members	according	to	several	criteria.	First,	we	
targeted	abundant	and	typical	members	of	the	human	gut	microbiome.	
According	to	the	Flemish	Gut	Flora	Project	(FGFP),	for	which	fecal	samples	of	
1,106	healthy	Flemish	adults	were	sequenced,	Faecalibacterium	is	the	top-
abundant	genus	and	a	Faecalibacterium	OTU	the	top-abundant	OTU	in	the	
healthy	gut	(Falony*,	Joossens*	et	al.,	2016).	Roseburia	and	Blautia	are	both	
among	the	top	10	most	abundant	gut	genera.	In	addition,	Faecalibacterium	and	
Roseburia	OTUs	were	present	in	all	sequenced	samples,	whereas	Blautia	OTUs	
were	present	in	99.9%	of	the	samples.	The	selected	Faecalibacterium	and	
Roseburia	strains	were	also	among	the	strains	with	more	than	1%	abundance	in	
several	of	the	whole-genome-shotgun	sequenced	stool	samples	from	the	Human	
Microbiome	Project	(Kraal,	Abubucker	et	al.,	2014).	Thus,	our	community	is	
composed	of	representative	human	gut	strains.	
Second,	we	specifically	targeted	butyrate	producers	(RI	and	FP).	Butyrate	is	an	
important	energy	source	for	gut	epithelial	cells	and	is	beneficial	for	gut	health	
(Geirnaert,	Calatayud	et	al.,	2016,	Rivière	et	al.,	2016).	Butyrate	producers	are	
often	found	to	be	enriched	in	healthy	as	compared	to	dysbiotic	gut	microbiota	
(Antharam,	Li	et	al.,	2013,	Rivera-Chávez,	Zhang	et	al.,	2016).	Thus,	high	butyrate	
production	will	likely	be	a	quality	criterion	for	bacterial	cocktails	designed	for	
therapeutic	purposes.	Our	synthetic	community	allows	studying	more	closely	the	
factors	that	influence	butyrate	production.	
Third,	we	designed	our	community	with	a	large	number	of	potential	interactions.	
As	Figure	2	illustrates,	our	community	contains	multiple	cross-feeding	and	
competitive	interactions.	For	instance,	FP	needs	acetate,	which	is	produced	by	
BH.	Vice	versa,	BH	grows	on	the	formate	generated	by	FP.	Both	cross-feeding	
relationships	together	constitute	a	mutualistic	interaction.	In	parallel,	both	
species	compete	for	the	energy	source,	fructose.	The	same	relationships	also	
occur	between	RI	and	BH	(which	can	exchange	hydrogen	and	CO2	in	addition	to	
formate),	while	RI	and	FP	compete	for	fructose	and	acetate.	This	system	also	
constitutes	a	rare	example	of	two	species	pairs	that	simultaneously	compete	and	
mutually	cross-feed.	
Finally,	we	only	considered	human	gut	species	for	which	at	least	a	draft	genome	
was	available,	to	ease	primer	design	and	the	interpretation	of	RNA-seq	data.	

Results	
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Blautia	hydrogenotrophica	is	metabolically	versatile	
We	first	confirmed	the	cross-feeding	interactions	postulated	for	BH	with	small-
volume	screening	experiments,	where	the	pH	was	not	kept	constant	and	the	
atmosphere	contained	10%	CO2	and	10%	hydrogen	gas.	We	found	that	under	
these	conditions,	BH	was	able	to	grow	heterotrophically	on	formate	and	
autotrophically	as	described	previously	on	CO2	and	hydrogen	gas	(Bernalier	et	
al.,	1996),	presumably	in	both	cases	via	the	Wood-Ljungdahl	pathway,	of	which	
all	genes	were	located	in	BH's	genome	(Rey,	Faith	et	al.,	2010).		
We	also	found	in	agreement	with	(Rey	et	al.,	2010)	that	BH	grew	on	fructose,	
oligofructose	and	glucose,	albeit	more	slowly	than	on	formate.	In	agreement	with	
(Bernalier	et	al.,	1996),	we	detected	lactate	in	addition	to	acetate	for	these	
substrates.	We	thereby	confirmed	the	potential	for	fructose	competition	
between	BH	on	the	one	hand	and	RI	or	FP	on	the	other	in	our	medium.	BH	also	
consumed	small	concentrations	of	galactose,	but	did	not	consume	fucose,	inulin	
or	lactate.	For	BH	grown	on	fructose,	we	confirmed	slow	growth	and	lactate	
production	in	addition	to	CO2,	H2	and	acetate	in	the	fermenter.	Notably,	when	
growing	BH	on	formate	in	the	fermenter,	carbon	dioxide	and	hydrogen	gas	were	
produced	besides	acetate,	but	no	lactate.	
In	conclusion,	our	work	showed	that	Blautia	hydrogenotrophica	is	a	surprisingly	
versatile	member	of	the	human	gut	ecosystem.		
	
Mono-culture	dynamics	does	not	follow	standard	kinetics	
We	employed	pH-controlled	monocultures	to	characterize	the	properties	and	
growth	kinetics	of	the	individual	strains	in	our	model.	Table	1	provides	an	
overview	for	all	fermentation	experiments	carried	out,	whereas	Supplementary	
Table	1	gives	additional	information	for	each	experiment.	
RI	consumed	fructose	and	produced	butyrate,	CO2	and	hydrogen	gas,	as	
described	previously	(Falony,	Verschaeren	et	al.,	2009c)	as	well	as	small	
amounts	of	lactate	and	formate	(Figure	3A).	Interestingly,	there	was	no	net	
consumption	of	acetate	when	more	fructose	than	acetate	was	provided.	While	
net	acetate	consumption	has	been	found	to	correlate	negatively	with	hydrogen	
production	(Falony	et	al.,	2009c),	we	saw	here	that	it	also	depends	on	the	ratio	of	
initial	fructose	and	acetate.	When	given	in	equal	concentrations,	RI	partially	
consumed	acetate.	In	all	further	experiments,	when	adding	acetate,	it	was	added	
at	the	same	concentration	as	fructose.	
FP	in	mono-culture	produced	formate,	less	CO2	and	butyrate	than	RI	and	no	
hydrogen	gas,	but	did	not	entirely	consume	fructose	(Figure	3B).	After	having	
excluded	exposure	to	oxygen	(by	adding	oxygen	gas	via	sterile	water),	redox	
potential	(by	continuously	adding	the	oxidizing	agent	potassium	ferrocyanide	
trihydrate),	pH	(lowered	to	5.8),	a	threshold	requirement	for	fructose	(halving	
the	fructose	concentration	did	not	stop	its	consumption)	or	end-product	
inhibition	(by	adding	initial	butyrate)	as	explanations,	we	found	that	doubling	
the	concentration	of	yeast	extract	lowered	fructose	concentrations.	Since	adding	
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fresh	but	autoclaved	medium	during	the	fermentation	did	not	lower	fructose	
concentrations,	we	assume	that	FP	was	growth-limited	by	(a)	heat-labile	co-
factor(s)	present	in	the	yeast	extract.	A	recent	flux	balance	analysis	with	a	
manually	curated	metabolic	reconstruction	suggests	that	FP	requires	several	
amino	acids	(L-alanine,	L-cysteine,	L-methionine,	L-serine	and	L-tryptophan)	
and	the	co-factors	biotin	(vitamin	B7),	cobalamin	(vitamin	B12),	folic	acid	
(vitamin	B9),	hemin,	nicotinic	acid,	pantothenic	acid	and	riboflavin	(vitamin	B2)	
for	growth	(Heinken,	Khan	et	al.,	2014).	With	the	exceptions	of	cobalamin	and	
externally	supplied	hemin,	these	nutrients	should	be	present	in	yeast	extract	
according	to	the	metabolic	reconstruction	of	Saccharomyces	cerevisiae	iMM904	
(Mo,	Palsson	et	al.,	2009)	and	the	amino	acids	should	furthermore	be	present	in	
other	medium	components	(bacteriological	peptone,	soy	peptone	and	tryptone).	
Heinken	and	colleagues	also	predicted	that	FP	can	grow	in	the	presence	of	
oxygen,	which	is	in	agreement	with	our	observation	that	addition	of	low	
concentrations	of	oxygen	does	not	alter	FP's	growth	curve	(Heinken	et	al.,	2014).	
BH	produced	acetate,	hydrogen,	CO2	and	small	concentrations	of	lactate,	while	
consuming	formate	almost	entirely	(Figure	3C).	It	also	consumed	fructose,	but	
did	not	deplete	it.	Whereas	the	carbon	recovery	for	the	other	mono-cultures	was	
close	to	100%,	it	only	reached	60%	for	BH	in	mono-culture	on	formate	and	
fructose.		
These	unexpected	behaviors	defy	simple	kinetic	models	and	necessitate	further	
adjustment	of	the	equations.	
	
Prediction	accuracy	of	model	parameterized	on	mono-cultures	is	species-
dependent	
We	designed	a	model	that	described	the	dynamics	of	each	species	and	of	key	
compounds	(including	fructose,	formate,	acetate,	butyrate,	hydrogen	gas	and	
CO2)	with	ordinary	differential	equations	assuming	Monod	kinetics	(see	Material	
and	Methods).	The	model	differentiated	between	substrates	required	for	growth	
and	co-substrates	such	as	acetate	that	enhanced	growth	but	were	not	required.	It	
also	took	species-specific	differences	in	lag	phases	into	account.	Since	we	
observed	that	FP	did	not	deplete	fructose,	presumably	because	of		a	lack	of	co-
factors,	we	introduced	a	dependency	on	an	undefined	metabolite	referred	to	as	
"unknown	compound".		
We	parameterized	this	model	on	selected	mono-culture	experiments	and	then	
predicted	mono-culture	dynamics	(Figure	4	A-C,	Supplementary	Figure	1).	The	
model	reached	high	prediction	accuracy	for	FP	and	RI,	but	did	not	describe	well	
the	experimental	data	for	BH	(see	Table	1).	More	precisely,	the	model	showed	
that	BH	did	not	consume	formate	and	fructose	as	quickly	as	expected	if	its	
growth	would	follow	Monod	kinetics.	We	confirmed	culture	homogeneity	by	
analyzing	16S	rRNA	gene	sequencing	data	of	the	last	sample	(Supplementary	
Figure	2).	A	yeast	contaminant	(S.	cerevisiae	S288c)	detected	in	RNA-seq	data	of	
BH	mono-culture	samples	(Supplementary	Figure	3)	does	not	explain	the	
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incongruence	between	growth	and	energy	source	consumption,	since	i)	no	
contamination	was	observed	on	plates	inoculated	with	bioreactor	samples	and	
incubated	in	anaerobic	and	aerobic	conditions,	ii)	S.	cerevisiae	would	consume	
fructose	and	iii)	no	ethanol	production	was	measured.	We	also	found	only	small	
concentrations	of	potential	peptide	degradation	products	(isobutyric	acid	and	
isovaleric	acid).	We	therefore	assume	that	BH	in	mono-culture	initially	grew	on	
undefined	medium	components	and	only	later	switched	to	formate	and	fructose,	
but	the	time	resolution	was	too	low	to	model	this	potentially	biphasic	growth.		
We	also	compared	model	performance	for	RI	with	and	without	product	
inhibition	by	hydrogen	gas.	Since	we	found	no	differences	in	model	performance,	
we	removed	an	initial	hydrogen	gas	inhibition	term.		
	
Blautia	consumes	formate	produced	by	Roseburia	and	Faecalibacterium	
When	growing	FP	and	BH	together,	we	observed	that	fructose	was	entirely	
depleted	and	acetate,	butyrate,	hydrogen	gas,	CO2	and	small	concentrations	of	
lactate	were	produced	(Figure	3F).	Interestingly,	there	was	an	initial	production	
of	formate,	which	was	then	consumed,	confirming	that	formate	was	cross-fed	
from	FP	to	BH.	Formate	consumption	was	also	observed	without	initial	acetate	
(Figure	3H).	
In	the	bi-culture	of	RI	and	BH,	CO2,	hydrogen,	butyrate	and	small	concentrations	
of	lactate	were	produced,	whereas	fructose	and	a	small	amount	of	acetate	were	
consumed	(Figure	3D).	The	same	fermentation	products	were	also	obtained	in	
the	absence	of	initial	acetate	(Figure	3G).	In	contrast	to	RI	in	mono-culture,	no	
formate	was	detected,	suggesting	that	it	was	entirely	cross-fed	to	BH.	It	was	
unclear	whether	CO2	and	hydrogen	gas	produced	by	RI	reached	sufficiently	high	
concentrations	to	be	cross-fed	to	BH.	
Finally,	when	RI	and	FP	were	co-cultivated,	fructose	and	acetate	were	consumed	
and	butyrate,	formate,	hydrogen	gas	and	CO2	were	produced	(Figure	3E).	The	
finding	that	formate	reached	lower	concentrations	than	in	FP	mono-culture	
already	hints	at	a	negative	effect	of	RI	on	FP.		
	
Comparison	of	mono-	and	co-culture	data	suggests	ecological	interactions	
Since	Gause's	early	work	on	competition	between	yeast	and	Paramecium	species	
(Gause,	1932,	Gause,	1934),	growth	rates	in	mono-	and	bi-culture	experiments	
have	been	compared	to	determine	ecological	interactions	(e.g.	(de	Vos,	Zagorski	
et	al.,	2017,	Freilich,	Zarecki	et	al.,	2011,	Wang,	Wei	et	al.,	2017)).	The	rationale	is	
that	growth	rates	in	bi-culture	should	increase	for	mutualistic	organisms	as	
compared	to	mono-culture	growth	rates,	whereas	bi-culture	growth	rates	should	
decrease	for	competitors.	
	
When	comparing	maximal	abundances,	cross-feeding	and	competitive	
interactions	were	already	apparent.	Both	FP	and	BH	reached	significantly	higher	
maximal	bacterial	counts	in	FP-BH	bi-cultures	and	in	tri-cultures	with	FP	
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dominance	(Figure	3F,	3H	and	3J)	than	they	did	in	mono-culture	(Figure	3B	and	
3C),	suggesting	a	mutualistic	relationship	(unpaired	two-sided	Wilcoxon	FP	shift:	
0.4,	FP	95%	confidence	interval:	0.12	and	0.55,	FP	p-value:	0.03;	BH	shift:	0.5,	BH	
95%	confidence	interval:	0.33	and	0.69,	BH	p-value:	0.017).	The	maximal	cell	
number	of	FP	tended	to	be	lower	when	competing	with	RI	(Figure	3E)	than	when	
grown	alone	(unpaired	two-sided	Wilcoxon	shift:	0.47,	95%	confidence	interval:	
-0.03	and	1.42,	p-value:	0.11).	Interestingly,	there	was	no	difference	in	maximal	
bacterial	counts	for	RI	alone	versus	grown	with	FP	in	bi-cultures	and	tri-cultures	
with	RI	dominance	(unpaired	two-sided	Wilcoxon	shift:	0.07,	95%	confidence	
interval:	-0.39	and	0.31,	p-value:	0.69),	so	that	formally,	their	relationship	could	
be	described	as	amensalism	(one	organism	is	affected	negatively	whereas	the	
other	is	not	affected).	Finally,	according	to	maximal	bacterial	counts,	BH	
benefited	more	from	the	presence	of	FP	than	from	RI	(unpaired	two-sided	
Wilcoxon	shift:	0.29,	95%	confidence	interval:	0.06	and	0.93,	p-value:	0.008).		
	
Model	needs	bi-culture	data	to	accurately	predict	tri-culture	dynamics	
When	growing	all	three	gut	bacterial	strains	together,	fructose	was	consumed	
and	butyrate,	acetate,	CO2,	hydrogen	gas	as	well	as	lactate	were	produced.	
Formate	was	produced	initially,	but	quickly	consumed	(Figure	3I	and	3J).		
We	performed	the	tri-culture	six	times	with	varying	species	proportions	in	the	
inoculum	and	found	that	in	all	tri-cultures,	BH	was	always	co-dominant,	together	
with	either	RI	or	FP.	In	two	out	of	the	six	cases,	RI	won	over	FP	as	the	co-
dominant	partner	of	BH,	whereas	in	the	four	other	cases,	FP	won.	The	result	
mattered	for	the	final	butyrate	concentrations,	which	averaged	37.5	mM	when	RI	
won	and	23.5	mM	when	FP	won.	
We	attempted	to	describe	tri-culture	dynamics	with	the	model	parameterized	on	
mono-cultures,	but	failed	to	obtain	a	good	fit	(see	Table	1	and	Supplementary	
Figures	4	and	5).	After	a	series	of	tests,	we	concluded	that	incorporating	co-
culture	data	was	necessary	to	describe	tri-culture	dynamics.	We	finally	selected	
two	FP	mono-cultures	and	the	RI-BH	and	FP-BH	bi-cultures	with	initial	acetate	to	
parameterize	our	model.	As	a	validation,	we	predicted	the	behavior	of	RI-BH	and	
FP-BH	bi-cultures	in	the	absence	of	initial	acetate,	which	resulted	in	a	good	fit	
(Figure	5G	and	5H,	Supplementary	Figure	7).	The	model	parameterized	on	
mono-	and	bi-cultures	fitted	the	tri-culture	data	better	than	the	model	
parameterized	on	mono-cultures	only	(Table	1,	Figure	4I	and	4J,	Figure	5I	and	5J,	
Supplementary	Figures	5	and	8).	
	
When	inspecting	the	differences	between	the	two	parameterizations,	we	found	
that	the	model	parameterized	on	mono-cultures	predicted	lower	abundances	for	
all	three	species	in	bi-	and	tri-cultures	than	they	actually	reached	(Figure	4D-J,	
Supplementary	Figures	4	and	5).	Vice	versa,	the	model	parameterized	on	mono-	
and	bi-cultures	predicted	too	high	abundances	for	RI	and	BH	in	mono-culture	
(Figure	5A	and	5C,	Supplementary	Figure	6;	the	FP	mono-culture	was	included	in	
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the	parameterization).	According	to	the	higher	maximal	cell	counts	in	tri-culture	
predicted	with	the	second	than	the	first	parameterization	(unpaired	Wilcoxon:	
0.002),	BH	did	significantly	better	in	tri-culture	than	expected	based	on	its	
mono-culture	growth.	
	
The	fact	that	the	model	describes	well	both	mono-	and	tri-culture	dynamics	is	a	
sign	of	emergent	behavior	in	the	presence	of	interaction	partners.	When	looking	
at	the	parameters	inferred	from	mono-	and	bi-cultures	(given	in	Supplementary	
Table	2),	BH's	consumption	rates	for	formate	and	fructose	and	RI's	fructose	
consumption	rate	were	lower	compared	to	their	values	obtained	from	mono-
culture	parameterization,	whereas	their	maximal	growth	rates	were	not	much	
affected	(BH)	or	increased	(RI).	Thus,	according	to	this	analysis,	less	of	the	
energy	source	is	needed	in	the	presence	of	an	interaction	partner	than	in	mono-
culture.	
	
Initial	abundance	and	lag	phase	predict	species	dominance	in	tri-culture	
Next,	we	tested	whether	dominance	in	tri-culture	could	be	predicted	from	lag	
phase	and	initial	abundance.	Towards	this	aim,	we	computed	the	FP/RI	ratio	in	
simulations	with	varying	lag	phase	and	initial	abundance.	Experimental	
observations	of	dominance	agreed	well	with	model	predictions	(Figure	6A	and	
6B).	Our	systematic	investigation	also	showed	that	there	was	a	non-linear	
relationship	between	initial	RI	abundance	and	FP	dominance	(Figure	6C-F).	
Thus,	even	when	knowing	initial	abundances,	lag	phases	and	species	
interactions,	it	is	hard	to	predict	the	winner	(and	thereby	resulting	butyrate	
concentration)	intuitively	without	a	model	in	hand.	The	final	abundances	of	the	
three	strains	in	simulations	are	also	non-linearly	dependent	on	other	
parameters,	including	BH's	growth	rate,	its	fructose	consumption	rate	and	its	
fructose	half-saturation	constant	(Supplementary	Figure	9).	These	results	
underline	that	besides	kinetic	parameters,	initial	conditions	and	lag	phase	can	
determine	strain	abundances	in	co-culture	in	a	non-linear	way.	
	
Altered	gene	expression	in	response	to	interaction	partners	provides	first	
insights	into	emergent	behavior	
To	further	investigate	the	emergent	behavior,	we	sequenced	RNA	for	the	three	
mono-cultures	and	the	tri-culture	where	FP	co-dominated	for	three	time	points	
and	two	biological	replicates	and	assessed	significantly	differential	gene	
expression	across	all	samples	in	mono-	versus	tri-cultures	for	all	three	species	
(Supplementary	Table	3).	In	total,	6.7%,	7.9%	and	1.6%	of	RI's,	FP's	and	BH's	
proteins	respectively	were	significantly	differentially	expressed	(protein	
numbers	taken	from	UniProt	(The	UniProt	Consortium,	2017)).	Interestingly,	in	
tri-culture,	FP	down-regulated	a	series	of	enzymes	needed	for	vitamin	B12	
coenzyme	biosynthesis.	Since	cobalamin	(vitamin	B12)	was	one	of	the	co-factors	
suspected	to	limit	FP	growth	in	mono-culture,	this	finding	may	mean	that	FP	
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benefited	from	greater	co-factor	availability	in	tri-culture.	In	tri-culture,	FP	also	
up-regulated	enzymes	involved	in	amino	acid	and	oligopeptide	transport	and	
amino	acid	and	protein	biosynthesis.	BH	likewise	up-regulated	amino	acid	
biosynthesis	in	tri-culture.	For	RI,	which	reached	lower	abundances	in	the	
selected	tri-cultures	than	in	mono-culture,	the	transcription	response	was	
mixed:	some	amino	acid	biosynthesis	enzymes	were	down-regulated,	others	up-
regulated	(including	enzymes	involved	in	ornithine	biosynthesis).	However,	
expression	of	ribosomal	proteins	was	lower	than	in	RI	mono-culture,	in	
agreement	with	its	long	lag	phase	in	the	selected	tri-cultures.	In	summary,	the	
analysis	of	differential	gene	expression	uncovered	a	number	of	metabolic	
changes	in	the	presence	of	interaction	partners,	thus	supporting	further	the	
altered	behavior	detected	through	modeling.	

Discussion	
Here,	we	investigated	the	dynamics	of	a	well-defined	small	but	representative	
gut	microbial	community	in	vitro.	We	found	that	BH	was	metabolically	versatile	
and	grew	as	fast	as	primary	fermenters	such	as	RI.	We	demonstrated	
experimentally	that	formate	was	cross-fed	between	BH	on	the	one	hand	and	FP	
and	RI	on	the	other	and	confirmed	mutualistic	as	well	as	competitive	
interactions	between	these	three	bacterial	strains.	When	growing	on	formate,	we	
identified	BH	to	be	a	net	producer	of	both	hydrogen	and	carbon	dioxide,	in	
contrast	with	its	traditionally	assumed	role	in	the	gut	ecosystem.	While	formate	
is	rarely	highlighted	as	a	key	intermediate	in	gut	cross-feeding	interactions,	it	
has	been	reported	to	be	an	end-product	of	primary	polysaccharide	degradation	
by	both	Bifidobacterium	and	Lactobacillus	spp.	(Falony,	Lazidou	et	al.,	2009b,	
Moens	et	al.,	2017).	Hence,	our	results	invite	a	re-evaluation	of	the	ecological	
niche	of	BH	in	relation	with	microbial	formate	production	potential.	
	
The	model,	which	encodes	our	knowledge	of	the	system,	is	not	only	important	
for	predictions,	but	also	as	a	reference.	We	gained	insights	from	its	agreements	
as	well	as	from	its	disagreements	with	our	observations.	For	instance,	we	
assumed	initially	that	RI	would	be	inhibited	by	the	hydrogen	gas	it	generated.	
However,	a	hydrogen	gas	inhibition	term	was	not	required	to	accurately	describe	
RI	behavior	in	mono-culture,	which	implied	that	hydrogen	gas	inhibition	did	not	
affect	RI	growth	at	the	concentrations	reached	in	our	experiments.	We	also	
needed	the	model	to	ascertain	that	changes	from	mono-	to	bi-	or	tri-cultures	
were	not	just	due	to	variations	in	the	inoculum	composition	or	the	lag	phase,	but	
that	there	was	a	true	change	in	the	dynamics	that	the	model	parameterized	on	
mono-cultures	alone	could	not	capture.	We	confirmed	this	emergent	behavior	
with	RNA-seq,	which	revealed	significantly	different	gene	expression	in	tri-
culture	as	compared	to	mono-culture,	especially	for	FP	and	BH.	The	down-
regulation	of	FP's	vitamin	B12	coenzyme	biosynthesis	pathway	in	tri-culture	is	
of	particular	interest,	since	it	suggests	that	dependency	on	co-factors	changes	
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with	interaction	partners.	It	has	been	posited	that	the	majority	of	gut	
microorganisms	in	need	of	B12	precursors	is	unable	to	synthesize	them	(Degnan,	
Taga	et	al.,	2014).	If	this	need	is	altered	by	the	presence	of	interaction	partners,	it	
cannot	be	exploited	as	easily	for	selective	manipulation	as	suggested	in	(Degnan	
et	al.,	2014).	
	
Although	species-level	kinetic	models	parameterized	on	mono-cultures	may	in	
some	cases	describe	bi-culture	dynamics	correctly	(Van	Wey,	Cookson	et	al.,	
2014),	our	example	shows	that	this	is	not	a	general	property.	This	means	that	
models	of	multi-species	communities	will	probably	have	to	take	the	internal	
metabolism	and	its	response	to	interaction	partners	into	account.	Gut	bacteria	
such	as	BH	have	flexible	metabolic	strategies	that	they	employ	according	to	
circumstances.	Emergent	metabolism	in	the	presence	of	interaction	partners	has	
been	described	in	theoretical	work	before	(Chiu,	Levy	et	al.,	2014),	but	has	been	
rarely	investigated	experimentally	((Aharonovich	&	Sher,	2016)).	Constraint-
based	modeling	approaches,	which	take	the	entire	metabolism	into	account	
(Orth,	Thiele	et	al.,	2010),	require	high-quality	metabolic	reconstructions	for	
each	community	member,	which	take	months	of	curation	effort	to	obtain	(Thiele	
&	Palsson,	2010).	Thus,	scaling	species-level	quantitative	models	to	larger	
communities	will	be	a	formidable	challenge.		
	
Mono-	and	bi-cultures	are	increasingly	carried	out	in	batch	in	a	high-throughput	
fashion	to	determine	ecological	interactions	and	to	quantify	their	strengths	(de	
Vos	et	al.,	2017,	Sher,	Thompson	et	al.,	2011).	Such	systematic	quantification	is	
an	important	step	forward,	but	there	are	challenges	to	tackle.	Our	work	showed	
that	dominance	in	batch	may	sensitively	(i.e.	non-linearly)	depend	on	initial	
conditions	such	as	the	lag	phase	and	the	initial	abundance,	both	of	which	are	
hard	to	control	experimentally.	Thus,	a	growth	experiment	performed	in	
biological	replicates	but	with	the	same	inoculum	may	identify	one	species	as	the	
winner	and	another	as	the	loser.	However,	a	replicate	with	a	slightly	different	
inoculum	composition	may	reach	the	opposite	conclusion.	Such	a	dependency	on	
the	initial	conditions	(albeit	with	larger	abundance	differences)	has	also	been	
reported	in	several	competition	experiments	for	Streptomyces	species	(Wright	&	
Vetsigian,	2016)	and	may	thus	be	a	common	case.	To	ascertain	that	bacteria	
change	their	behavior	in	response	to	an	interaction	partner,	RNA-seq	can	be	
carried	out	on	mono-	and	bi-cultures	(Aharonovich	&	Sher,	2016,	Plichta,	Juncker	
et	al.,	2016).	Here,	we	showed	that	a	model	can	also	reveal	emergent	behavior	by	
its	failure	to	describe	co-culture	dynamics	when	parameterized	on	mono-
cultures	only.	It	is	an	open	question	how	to	scale	up	such	approaches	to	achieve	
the	high-throughput	needed	for	systematic	measurements	of	interaction	
strengths.	
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This	is	to	the	best	of	our	knowledge	the	first	in	vitro	investigation	of	a	defined	
bacterial	community	that	combines	mutualism	with	competition	in	two	cases.	In	
the	case	of	FP	and	BH,	mutualism	appears	to	supersede	competition,	leading	to	
increased	maximal	bacterial	numbers	coupled	with	up-regulation	of	biosynthesis	
for	both	interaction	partners.	For	RI	and	BH,	we	had	no	such	clear	experimental	
evidence,	since	RNA-seq	was	performed	on	tri-cultures	dominated	by	FP,	but	the	
comparison	of	maximum	bacterial	numbers	across	mono-,	bi-	and	tri-cultures	
suggests	that	RI	and	BH	do	not	benefit	as	much	from	each	other	as	FP	and	BH	do.	
Since	the	model	described	RI-BH	bi-culture	dynamics	well	without	taking	CO2	
and	hydrogen	gas	cross-feeding	into	account,	we	assume	that	due	to	their	low	
partial	pressure	gasses	are	less	efficiently	cross-fed	to	BH	than	formate,	although	
both	are	likely	metabolized	via	the	same	pathway	(Wood-Ljungdahl).	Thus,	
interactions	that	look	similar	on	paper	can	play	out	differently,	depending	on	the	
environment.		
In	the	two	replicates	of	the	RI-FP	bi-culture,	RI	and	FP	both	survived	(albeit	FP	in	
far	lower	numbers)	despite	competing	for	the	same	substrate,	presumably	
because	in	our	experimental	set-up,	the	time	until	nutrient	depletion	was	too	
short	for	the	competitive	exclusion	principle	to	apply.	
	
Our	tri-culture	experiments	also	demonstrated	the	importance	of	initial	
conditions	on	fermentation	end-products.	According	to	our	model,	the	initial	
abundance	and	lag	phase	determined	whether	butyrate	reached	high	or	low	
concentrations	in	the	tri-culture	fermentations.	Since	these	are	likely	to	be	
relevant	parameters	in	the	gut	environment	and	difficult	to	control,	cocktail	
communities	will	have	to	be	designed	such	that	they	will	carry	out	their	function	
across	a	wide	range	of	initial	conditions.	
	
While	our	work	highlighted	a	number	of	challenges	to	microbial	community	
modeling,	the	model's	ability	to	predict	tri-culture	dynamics	from	bi-cultures	
gives	hope	that	with	sufficient	knowledge,	we	will	ultimately	be	able	to	model	
more	complex	microbial	communities.	

Material	and	Methods	
Microorganisms	and	media		
Human	isolates	of	Roseburia	intestinalis	A2-165	(DSM	14610T),	Faecalibacterium	
prausnitzii	L1-82	(DSM	17677T)	and	Blautia	hydrogenotrophica	S5a33	(DSM	
10507T)	(abbreviated	RI,	FP	and	BH,	respectively)	were	obtained	from	the	
Deutsche	Sammlung	von	Mikroorganismen	und	Zellkulturen	(DSMZ,	Germany)	
and	stored	at	−80	°C	in	reinforced	clostridial	medium	(RCM;	Oxoid	Ltd.,	
Basingstoke,	United	Kingdom),	supplemented	with	25%	(vol/vol)	of	glycerol	as	a	
cryoprotectant.	
A	recently	published	medium	for	colon	bacteria	(mMCB)	that	allows	growth	of	
FP	(Moens	et	al.,	2016)	was	modified	by	adding	nitrogen	sources	and	trace	
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elements	as	detailed	below.	This	medium	had	the	following	composition	
(concentrations	in	g	L−1):	bacteriological	peptone	(Oxoid),	6.5;	soy	peptone	
(Oxoid),	5.0;	yeast	extract	(VWR	International,	Darmstadt,	Germany),	3.0;	
tryptone	(Oxoid),	2.5;	NaCl	(VWR	International),	1.5;	K2HPO4	(Merck,	Darmstadt,	
Germany),	1.0;	KH2PO4	(Merck),	1.0;	Na2SO4	(VWR	International),	2.0;	
MgSO4·7H2O	(Merck),	1.0;	CaCl2·2H2O	(Merck),	0.1;	NH4Cl	(Merck),	1.0;	cysteine-
HCl	(Merck),	0.4;	NaHCO3	(VWR	International),	0.2;	MnSO4·H2O	(VWR	
International),	0.05;	FeSO4·7H2O	(Merck),	0.005;	ZnSO4·7H2O	(VWR	
International),	0.005;	hemin	(Sigma-Aldrich,	Steinheim,	Germany),	0.005;	
menadione	(Sigma-Aldrich),	0.005;	and	resazurin	(Sigma-Aldrich),	0.001.	The	
medium	was	supplemented	with	1	mL	L−1	of	selenite	and	tungstate	solution	
(NaOH	(Merck),	0.5;	Na2SeO3·5H2O	(Merck),	0.003;	Na2WO4·2H2O	(Merck),	0.004	
and	1	L	distilled	water)	and	1	mL	L−1	of	trace	element	solution	SL-10	[HCl	
(Merck,	25%,	vol/vol;	7.7	M),	FeCl2·4H20	(Merck),	1.5;	ZnSO4·7H2O	(VWR	
International),	0.148;	MnSO4·H2O	(VWR	International),	0.085;	H3BO3	(Merck),	
0.006;	CoCl2·6H20	(Merck),	0.19;	CuSO4·5H20	(VWR	International),	0.0034,	
NiCl2·6H20	(Merck),	0.024,	and	Na2MoO4·2H20	(Merck),	0.036).	Acetate	(50	mM	
or	6.8	g	L−1	of	CH3COO−Na+3H2O;	Merck)	was	added	to	the	medium	for	the	
monoculture	fermentations	with	RI	and	FP,	whereas	formate	(50	mM	or	3.4	g	L−1	
of	HCOO−Na+;	VWR	International)	was	added	to	the	medium	for	the	monoculture	
fermentations	with	BH.	The	pH	of	the	medium	was	adjusted	to	6.8	and	the	
medium	was	autoclaved	at	210	kPa	and	121	°C	for	20	min.	After	sterilization,	D-
fructose	(Merck)	was	added	as	the	sole	energy	source	aseptically,	at	a	final	
concentration	of	50	mM	fructose	using	sterile	stock	solutions	obtained	through	
membrane	filtration	using	Minisart	filters	(pore	size,	0.2	μm;	Sartorius,	
Göttingen,	Germany).		
	
Cultivation	experiments	in	stationary	bottles	
Monoculture	cultivation	experiments	for	BH	were	performed	in	stationary	glass	
bottles	without	controlling	the	pH	(screening).	The	bottles	contained	50	mL	of	
heat-sterilized	pH	6.8	mMCB	medium,	supplemented	with	either	50	mM	of	D-
fructose	(Merck),	D-glucose	(Merck),	D-galactose	(Merck),	L-fucose	(Merck),	
sodium	formate	(VWR	International),	sodium	acetate	trihydrate	(Merck),	DL	
lactic	acid	(VWR	International),	oligofructose	(Raftilose	P95;	Beneo-Orafti	NV,	
Tienen,	Belgium;	(Falony	et	al.,	2009b))	or	inulin	(OraftiHP;	Beneo-Orafti;	
(Falony	et	al.,	2009b))	as	the	sole	energy	sources.	Additional	cultivation	
experiments	were	performed	in	medium	devoid	of	any	main	energy	source	to	
test	autotrophic	growth.	For	the	cultivation	experiments	in	bottles,	stock	
solutions	of	fructose,	glucose,	galactose,	fucose,	sodium	formate,	sodium	acetate	
trihydrate,	and	lactic	acid	were	initially	made	anaerobically	through	autoclaving	
at	210	kPa	and	121	°C	for	20	min.	The	solutions	were	subsequently	filter-
sterilized	and	transferred	into	glass	bottles,	which	were	sealed	with	butyl	rubber	
septa	that	were	pierced	with	a	Sterican	needle	(VWR	International)	connected	
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with	a	Millex-GP	filter	(Merck)	to	assure	sterile	conditions.	For	the	cultivation	
experiments	with	lactate,	the	pH	was	adjusted	to	6.8	under	anaerobic	conditions,	
using	sterile	solutions	of	sodium	hydroxide	(Merck).	Stock	solutions	of	
oligofructose	and	inulin	were	made	sterile	by	membrane	filtration.	The	inocula	
were	prepared	as	follows.	Cells	of	the	strains	under	study	were	transferred	from	
−80°C	to	test	tubes	containing	10	mL	of	RCM	that	were	incubated	anaerobically	
at	37	°C	for	24	h.	Subsequently,	the	strains	were	propagated	for	12	h	in	glass	
bottles	containing	50	mL	of	heat-sterilized	pH	6.8	mMCB	medium,	supplemented	
with	the	energy	source	under	study,	always	at	a	final	concentration	of	50	mM	
fructose	equivalents.	These	pre-cultures	were	finally	added	to	the	glass	bottles	
aseptically.	During	the	inoculum	build-up,	the	transferred	volume	was	always	
5%	(vol/vol).	All	bottles	were	incubated	anaerobically	at	37°C	in	a	modular	
atmosphere-controlled	system	(MG	anaerobic	work	station;	DonWithley	
Scientific	Ltd.,	West	Yorkshire,	United	Kingdom)	that	was	continuously	sparged	
with	a	mixture	of	80%	N2,	10%	CO2,	and	10%	H2	(Air	Liquide,	Paris,	France).	
Samples	for	further	analyses	were	withdrawn	after	0,	6,	12,	24,	48,	and	100	h.	All	
experiments	were	performed	at	least	in	duplicate.		
	
Fermentation	experiments		
To	prepare	inocula,	cells	were	transferred	from	−80	°C	to	test	tubes	containing	
10	mL	of	RCM,	and	incubated	at	37	°C	for	24	h.	Subsequently,	the	strains	were	
propagated	twice	for	12	h	in	glass	bottles	containing	100	mL	of	mMCB	medium	
(with	acetate	in	the	case	of	RI	and	FP,	and	with	formate	in	the	case	of	BH),	
supplemented	with	fructose.	All	incubations	were	performed	anaerobically	in	a	
modular	atmosphere-controlled	system	(MG	anaerobic	workstation)	that	was	
continuously	sparged	with	a	mixture	of	80%	N2,	10%	CO2,	and	10%	H2	(Air	
Liquide).	The	inocula	were	finally	added	aseptically	to	the	fermentors.	During	
the	inoculum	build-up,	the	transferred	volume	was	always	5%	(vol/vol).	
Fermentations	were	carried	out	in	2-L	Biostat	B-DCU	fermentors	(Sartorius)	
containing	1.5	L	of	mMCB	medium	supplemented	with	the	co-substrates	(acetate	
and/or	formate)	if	necessary	and	50	mM	of	D-fructose	as	the	energy	source.	
Anaerobic	conditions	during	fermentations	were	assured	by	continuously	
sparging	the	medium	with	N2	(PraxAir,	Schoten,	Belgium)	at	a	flow	rate	of	70	mL	
min−1.	The	fermentation	temperature	was	kept	constant	at	37	°C.	A	constant	pH	
of	6.8	was	imposed	and	controlled	automatically,	using	1.5	M	solutions	of	NaOH	
and	H3PO4.	To	keep	the	medium	homogeneous,	a	gentle	stirring	of	200	rpm	was	
applied.	Temperature,	pH,	and	agitation	speed	were	controlled	online	
(MFCS/win	2.1	software,	Sartorius).	Fermentations	were	followed	for	48	h,	with	
samples	taken	at	10	min	and	2	h,	3	h,	5	h,	6	h,	7	h,	9	h,	10	h,	11	h,	13	h,	14	h,	15	h,	
17	h,	18	h,	24	h,	30	h	and	48	h	after	inoculation.	At	selected	time	points	(3	h,	9	h	
and	15	h	after	inoculation),	subsamples	were	treated	for	RNA	extraction	by	
adding	5	vol	of	RNAlater®	(xxx	company).		
All	mono	and	tri-culture	fermentations	were	performed	in	triplicate.	All	bi-
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culture	fermentations	were	performed	in	duplicate,	except	for	the	bi-culture	
fermentations	using	medium	lacking	acetate	with	FP	and	BH	that	were	
performed	only	once.		
	
Quantification	of	bacterial	abundance	
During	all	experiments,	the	optical	density	at	600	nm	(OD600)	was	measured	
against	ultrapure	water	as	blank	with	a	VIS	spectrophotometer	(Genesys	20;	
Thermo	Scientific,	Waltham,	MA,	USA).	Each	measurement	was	performed	in	
triplicate.	Total	bacterial	abundance	was	also	measured	by	flow	cytometry,	using	
an	Accuri	C6	flow	cytometer	(BD	Biosciences,	Erembodegem,	Belgium),	as	
described	previously	(Moens	et	al.,	2016).	All	samples	were	diluted	in	filter-
sterilized	water	(Vittel,	France)	to	obtain	a	concentration	between	1.0	×	103	and	
5.0	×	106	cells	mL−1.	Flow	cytometric	analysis	was	performed	by	mixing	500	μL	
of	sample	with	5	μL	of	a	100×	SYBR	Green	I	solution	(Sigma-Aldrich)	and	5	μL	of	
a	500	mM	ethylenediaminetetra	acetic	acid	(EDTA)	solution	(Sigma-Aldrich).	
Afterwards,	samples	were	left	in	the	dark	at	room	temperature	for	15	min.	Flow	
cytometric	counts	were	obtained	using	an	Accuri	C6	flow	cytometer	(BD	
Biosciences),	equipped	with	a	50	mW	solid	state	laser	(488	nm).	Green	
fluorescence	was	measured	in	the	FL1	channel	(530	±	15	nm)	and	all	data	were	
processed	with	the	Cflow	Plus	software	(Accuri).	Gating	was	performed	to	
distinguish	signals	from	noise.	All	data	were	collected	as	a	FL1/SSC	density	plot	
with	a	primary	threshold	of	10,000	on	the	FL1	channel.	Measurements	were	
performed	in	triplicate.	
qPCR	assays	with	species-specific	TaqMan	primers	and	probes	were	performed	
to	quantify	the	abundance	of	each	species	separately.	For	this,	2	mL	of	
fermentation	sample	was	centrifuged	at	20,570	×	g	for	20	min.	Cells	were	
washed	in	2	mL	of	physiological	solution	(NaCl,	8.5	g	L−1)	and	centrifuged	again	
at	20,570	×	g	for	20	min	to	obtain	washed	cell	pellets.	Subsequently,	these	cell	
pellets	were	resuspended	in	2	mL	of	physiological	solution	and	diluted	20	times	
for	DNA	extraction.	Direct	DNA	extractions	by	alkaline	thermal	lysis	were	
performed	based	on	(Girish,	Haunshi	et	al.,	2013,	Rudbeck	&	Dissing,	1998),	
modified	as	follows:	100	μL	of	the	sample	was	mixed	with	100	μL	of	0.2	M	NaOH	
in	a	sterile	micro	centrifuge	tube.	The	mixture	was	vortexed	and	heated	at	90°C	
for	10	min,	after	which	eight	volumes	(1600	μL)	of	0.04	M	Tris	HCl	pH	7.5	
(Thermo	Fisher	Scientific)	was	added	for	pH	neutralization.	4	μL	of	final	mixture	
was	used	for	qPCR.	The	extracted	genomic	DNA	was	stored	at	-20°C	until	qPCR	
amplification.		
Calibration	curves	were	obtained	by	initially	growing	all	strains	in	RCM	for	24	h,	
and	two-fold	propagation	in	medium	for	12	h,	as	described	above.	From	each	of	
these	grown	cultures,	separate	fourfold	decimal	and	nine-fold	binary	dilution	
series	were	prepared.	The	generation	of	cell	pellets,	direct	extraction	of	DNA,	
and	subsequent	quantification	of	cell	concentrations	by	flow	cytometry	were	
performed	as	described	above,	with	the	exception	that,	prior	to	DNA	extraction,	
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samples	for	calibration	were	diluted	less	than	fermentation	samples,	to	
accommodate	a	wider	qPCR	quantification	range.		
Primers	and	oligoprobes	(Supplementary	Table	S4)	were	manually	designed	
using	the	online	Primer3Plus	software	(Untergasser,	Nijveen	et	al.,	2007)	and	the	
genome	sequences	of	the	strains.	Melting	temperatures	and	presence	of	hairpins,	
self-dimers,	and	pair-dimers	were	double-checked	using	the	online	OligoCalc	
software	(Kibbe,	2007).	Secondary	structures	of	the	generated	amplicons	was	
investigated	using	the	online	Mfold	program	(Zuker,	2003).	Primers	and	probes	
were	synthesized	by	Thermo	Fisher	Scientific.	Strain	specificity	of	primers	and	
probes	was	confirmed	in	silico	by	Primer-BLAST	(Ye,	Coulouris	et	al.,	2012)	and	
in	vitro	by	PCR	and	qPCR	analysis	on	genomic	DNA	of	the	strains	(Supplementary	
Table	S1).	qPCR	assays	were	carried	out	using	a	7500	FAST	Real-Time	PCR	
system	(Applied	Biosystems,	Carlsbad,	CA,	USA), equipped	with	96-well	plates.	
Each	qPCR	assay	mixture	of	20	μL	contained	10.0	μL	of	TaqMan®	Fast	Universal	
PCR	Master	Mix	(2X),	no	AmpErase®	UNG		(Thermo	Fisher	Scientific),	2.0	μL	of	
each	primer	(3.0	μM),	2.0	μL	of	the	TaqMan	probe	(1.5	μM),	and	4.0	μL	of	
extracted	genomic	DNA	solution	or	sterile	nuclease-free	water	(Thermo	Fisher	
Scientific).	The	qPCR	amplification	program	consisted	of	an	initial	denaturation	
step	at	95°C	for	20	s,	followed	by	45	two-step	cycles	at	95°C	for	3	s	and	at	60°C	
for	30	s.	In	each	run,	negative	(sterile	nuclease-free	water	without	genomic	DNA)	
and	positive	controls	(with	extracted	genomic	DNA	from	the	relevant	strains)	
were	used.	The	cycle	threshold	(Ct)	values	were	determined	using	the	
automatically	determined	thresholds	from	the	7500	software	v2.0.6	(Applied	
Biosystems).	Finally,	during	a	re-analysis	of	all	qPCR	runs,	Ct	values	were	
normalized	using	an	inter-plate	calibrator	to	account	for	differences	among	
qPCR	runs.	The	above-described	generation	of	cell	pellets,	direct	extraction	of	
DNA,	and	qPCR	assays	were	performed	in	triplicate.	
Contamination	was	checked	by	aerobic	and	anaerobic	plating	on	RCM	agar	and	
16S	rRNA	gene	amplicon	sequencing	of	end	point	fermentation	samples	(48	h).	
Sequencing	was	performed	as	described	previously	(D’hoe,	Conterno	et	al.,	
2018).		
	
Metabolite	profiling	
Concentrations	of	fructose,	as	well	as	concentrations	of	formate,	acetate,	
butyrate,	lactate,	and	ethanol	were	determined	through	high-performance	liquid	
chromatography	(HPLC)	with	refractive	index	(RI)	detection,	using	a	Waters	
chromatograph	(Waters,	Milford,	MA,	USA)	equipped	with	an	ICSep	ICE	ORH-801	
column	(Transgenomic	North	America,	Omaha,	NE,	USA),	and	applying	external	
standards,	as	described	previously	(Falony	et	al.,	2009b).	Briefly,	the	mobile	
phase	consisted	of	5	mM	H2SO4	at	a	flow	rate	of	0.4	mL	min-1.	The	column	
temperature	was	kept	constant	at	35°C.	Sample	preparation	involved	a	first	
centrifugation	(4,618	x	g	for	20	min	at	10°C)	for	removal	of	cells	and	debris,	
followed	by	the	addition	of	an	equal	volume	of	20%	(mass/vol)	trichloroacetic	
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acid	for	protein	removal.	For	determining	oligofructose	and	inulin	consumption,	
samples	were	incubated	at	room	temperature	for	24	h	to	assure	complete	
hydrolysis	of	polysaccharides.	Subsequently	the	samples	were	centrifuged	
(21,912	x	g,	20	min,	4°C)	and	filtered	(pore	size	of	0.2	μm;	Uniflo	13	Filter	Unit;	
GE	Healthcare,	Little	Chalfont,	United	Kingdom),	prior	to	injection	(30	μL)	into	
the	column.	Samples	were	analyzed	in	triplicate.	
For	an	additional	screening	experiment	with	BH	grown	in	the	presence	of	350	
mM	formate,	the	concentrations	of	ethanol,	acetoin,	acetic	acid,	propionic	acid,	
butyric	acid,	isobutyric	acid	and	isovaleric	acid	produced	were	determined	via	
gas	chromatography	with	flame	ionization	detection	(GC-FID),	using	a	FocusGC	
chromatograph	(Interscience,	Breda,	The	Netherlands)	equipped	with	a	
Stabilwax-DA	column	(Restek,	Bellefonte,	PA,	USA),	and	applying	external	
standards,	as	described	previously	(Moens,	Lefeber	et	al.,	2014).	The	samples	
were	analyzed	in	triplicate.	
	
Model	definition	
We	modeled	change	of	species	abundances	over	time	with	the	following	three	
ordinary	differential	equations:	

		

where	X	denotes	species	abundance,	S	metabolite	concentration	and	Q	a	lag	
phase	parameter.	
The	growth	rates	are	then	defined	as	nonlinear	growth	functions	as	in	(Grivet,	
2001,	Smith	&	Waltman,	1995),	which	assume	Monod	kinetics	(Monod,	1950):	

	

where	K	is	the	Monod	(half-saturation)	constant,	μ	is	the	maximal	specific	
growth	rate	and	ω	a	weight	parameter.	Nutrient	dependency	can	be	either	
obligatory	(growth	without	nutrient	is	not	possible)	or	facultative	(growth	
without	nutrient	is	possible).	For	instance,	the	fructose	uptake	is	multiplied	with	
RI's	maximal	growth	rate,	whereas	its	acetate	uptake	is	modeled	with	an	additive	
term.	Therefore,	in	the	absence	of	fructose,	RI's	growth	rate	is	zero,	but	not	in	the	
absence	of	acetate.	The	weight	parameter	adjusts	how	strongly	a	facultative	
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(1+ω FP

Sacetate
KFP _acetate + Sacetate

)

ΦBH(QBH ,S fructose ,S formate )= ΓBH(QBH )µBH(
S fructose

KBH _ fructose + S fructose
+ωBH

S formate
KBH _ formate + S formate

)
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substrate	contributes	to	the	overall	growth	rate.	The	unknown	compound	
models	the	dependency	of	FP	on	an	undetermined	co-factor.	
	
The	lag	phase	function	is	defined	as	in	(Baranyi	&	Roberts,	1994):	

,	where	i	stands	for	RI,	FP	or	BH.	

The	Qi	variables	follow	exponential	growth:	

	

Thus,	the	larger	the	initial	value	of	Qi,	the	shorter	the	lag	phase.		
The	changes	of	metabolite	concentrations	are	then	modeled	as	follows:	

		

dS fructose
dt

= −νRI _ fructoseΦRI XRI −νFP _ fructoseΦFPXFP −νBH _ fructoseΦBHXBH

dS formate
dt

=αRI _ formateΦRI XRI +αFP _ formateΦFPXFP −νBH _ formateΦBHXBH

dSacetate
dt

= −νRI _acetateΦRI XRI −νFP _acetateΦFPXFP +αBH _acetateΦBHXBH

dSbutyrate
dt

=αRI _butyrateΦRI XRI +αFP _butyrateΦFPXFP

dSunknown
dt

= −νFP _unknownΦFPXFP

dSH2
dt

=αRI _H2ΦRI XRI +αBH _H2ΦBHXBH

dSCO2
dt

=αRI _CO2ΦRI XRI +αFP _CO2ΦFPXFP +αBH _CO2ΦBHXBH

	

The	α	and	ν	parameters	are	production	and	consumption	rates,	respectively.	
Species	abundance	is	measured	in	108	bacterial	counts/mL,	metabolite	
concentration	in	mM,	the	unit	of	μ	is	1/h,	the	unit	of	K	is	mM,	the	unit	of	α	and	of	
ν	is	mM/(108	bacterial	counts/mL)	and	ω	is	dimensionless.	
The	model	assumes	that	death	rates	are	negligible.	CO2	and	hydrogen	
consumption	by	BH	is	not	included	in	the	final	version	of	the	model.	We	tried	to	
account	for	CO2	consumption	with	a	multiplicative	term	in	BH's	growth	rate.	
However,	this	did	not	improve	the	model	fit.	Since	the	model	without	CO2	
describes	RI-BH	bi-culture	dynamics	well,	we	assume	that	BH	grows	mostly	
heterotrophically	on	fructose	and	on	the	formate	produced	by	RI	and	that	the	
hydrogen	gas	and	CO2	produced	by	RI	did	not	reach	sufficient	concentrations	in	
the	head	space	to	allow	autotrophic	growth	as	observed	during	the	screening,	
where	the	atmosphere	contained	10%	of	hydrogen	gas	and	10%	of	CO2.	
The	model	definition	is	available	as	Source	Code	File	in	python	(Model	
definition).	
	

		
Γ i(Qi )=

Qi
1+Qi

	

dQi
dt

= µiQi
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Model	parameterization		
We	parameterized	our	model	on	mono-cultures	alone	(parameterization	1)	and	
on	mono-	and	bi-cultures	(parameterization	2).	The	goodness	of	fit	of	both	
parameterizations	are	summarized	in	Table	1.		
The	model	was	fitted	using	the	function	fmin()	from	the	scipy	Python	package	
(Jones,	Oliphant	et	al.,	2001),	to	minimize	the	normalized	root	mean	square	
error.	An	initial	estimate	of	the	parameters	was	obtained	by	manually	fitting	the	
data	iteratively.	The	initial	concentration	of	the	unknown	compound	was	set	to	
30	mM.	Samples	after	the	end	of	the	log	phase,	when	the	bacterial	counts	started	
to	decline,	were	omitted	from	the	fitting.	Parameterization	2	consisted	of	several	
steps,	as	fitting	all	parameters	at	once	did	not	lead	to	convergence,	due	to	the	
nonlinear	growth	rates.	For	this,	FP	was	first	fitted	on	two	FP	mono-cultures	and	
cross-validated	on	the	third	one.	The	consumption	parameters	of	BH	were	
obtained	from	FP-BH	bi-cultures	with	initial	acetate,	afterwards	the	maximal	
specific	growth	rates	and	half-saturation	constants	were	obtained	from	the	same	
bi-cultures.	RI	was	fitted	on	a	RI-BH	bi-culture	with	acetate.	Lag	phases	were	
calculated	as	the	time	to	reach			Γ i(Qi )=0.5 :	

		lag	phase= − ln(Qi(0))/µi 	
Qi(0)	was	estimated	by	visual	inspection	of	the	log	plots.	Model	parameters	
obtained	and	maximal	abundances	predicted	with	both	parameterizations	as	
well	as	estimated	lag	phases	are	provided	in	Supplementary	Table	2.	Data	and	
model	fits	were	plotted	with	Python's	matplotlib	(Hunter,	2007).	
	
RNA	extraction	and	sequencing	
Total	RNA	was	extracted	from	RNAlater®-treated	samples	using	the	phenol-free	
total	RNA	purification	kit	coupled	with	DNase	I	treatment	(VWR	International)	
according	to	the	manufacturer’s	protocol	for	Gram-positive	bacteria.	A	
secondary	DNAse	digestion	was	performed	using	the	Ambion®	TURBO	DNA-
free™	DNase	Treatment	and	Removal	Reagents	Kit	(Thermo	Fisher	Scientific),	
after	which	the	samples	were	purified	using	the	RNA	Clean	&	Concentrator™-25	
kit	(Zymo	Research,	Irvine,	CA,	USA)	according	to	the	manufacturer’s	
instructions.	
The	eluted	RNA	was	stored	at	-80°C.	The	absence	of	DNA	contamination	was	
evaluated	using	PCR	(35	or	40	cycles)	and	gel	electrophoresis.	The	
concentrations	of	the	samples	were	determined	with	a	Nanodrop,	and	with	a	
Qubit	2.0	fluorometer	using	the	Qubit	dsDNA	HS	Assay	Kit	(Thermo	Fisher	
Scientific).	RNA	integrity,	expressed	as	the	RNA	integrity	number	(RIN),	and	
yield	were	determined	using	RNA	Nano/Pico	6000	LabChips	(Agilent	
Technologies,	Santa	Clara,	CA,	USA)	that	were	run	in	an	Agilent	2100	Bioanalyzer	
(Agilent	Technologies).	Whereas	most	of	the	RINs	were	above	7,	RINs	of	three	
BH	mono-culture	samples	at	3	h,	9	h	and	15	h	were	around	2.6	and	in	four	cases	
(BH	mono-culture	at	15	h,	FP	mono-culture	at	9	h,	and	for	both	tri-culture	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 11, 2018. ; https://doi.org/10.1101/299644doi: bioRxiv preprint 

https://doi.org/10.1101/299644
http://creativecommons.org/licenses/by/4.0/


replicates	at	3	h)	the	RINs	could	not	be	determined.	However,	by	pooling	over	
three	extraction	rounds,	sufficient	RNA	for	sequencing	(minimum	of	536	ng	and	
median	of	2800	ng)	was	obtained	for	all	samples.	
Library	preparation	encompassed	the	use	of	Ribozero	rRNA	removal	for	Gram-
positive	Bacteria	and	the	Illumina	TruSeq	stranded	mRNA	Library	preparation	
kit	(IIlumina,	San	Diego,	CA,	USA).	Library	preparation	was	performed	without	
the	mRNA	purification	step,	according	to	the	manufacturer’s	instructions.	The	
enriched	libraries	were	sequenced	on	an	Illumina	NextSeq	500	instrument	
(paired-end,	2×76	bp	reads,	Mid	output	kit,	Illumina).	From	the	Illumina	
platform,	paired-end	reads	in	FASTQ	format	(CASAVA	1.8,	Phred	+	33)	were	
obtained	and	separated	into	distinct	files	for	each	single-end	read	and	for	each	
sample.		
	
RNA-seq	analysis	
The	analysis	of	the	raw	sequencing	reads	was	performed	as	follows:	reads	were	
trimmed	using	Trimmomatic	(Bolger,	Lohse	et	al.,	2014)	with	the	following	
parameters	“CROP:74	HEADCROP:10	SLIDINGWINDOW:4:15	MINLEN:51”,	to	
remove	initial	and	last	bases	which	had	biases	in	their	nucleotide	content	as	
reported	by	FastQC	(Andrews,	2010),	to	remove	stretches	of	low-quality	bases	
and	to	keep	reads	with	at	least	51	bases	after	trimming.	FastQC	was	re-run	on	
the	trimmed	data	to	ensure	the	previous	biases	were	corrected.	SortMeRNA	
(Kopylova,	Noé	et	al.,	2012)	was	used	with	default	parameters	and	included	
databases	to	remove	rRNA	reads.	
With	the	remaining	non-rRNA	reads,	we	ran	MetaPhlAn2	(Truong,	Franzosa	et	
al.,	2015)	with	default	parameters	and	database,	and	mash	screen	(Ondov	&	
Philippy,	2017,	Ondov,	Treangen	et	al.,	2016)	with	default	parameters	against	
the	complete	RefSeq	genomes	and	plasmids	database,	to	search	for	potential	
contaminants.	Both	MetaPhlAn2	and	the	top	hits	from	mash	screen	found	the	
correct	bacterial	genomes	from	the	three	strains	used	in	this	study,	together	with	
reads	from	yeast	(S.	cerevisiae	S288c).	Additionally,	low	amounts	of	the	phage	
PhiX174	were	reported	by	mash	screen.	To	accurately	quantify	the	presence	of	
these	potential	contaminants	in	our	samples,	and	to	quantify	gene	expression	
from	the	cultured	bacteria,	we	mapped	the	non-rRNA	reads	to	these	five	species	
using	Bowtie2	(Langmead	&	Salzberg,	2012)	with	default	parameters	except	for	
“–X	800”	to	allow	for	longer	insert	sizes.	The	reference	genomes	used	are	the	
following:	GCF_000156535.1_ASM15653v1_genomic.fna	(RI),	
GCF_000157975.1_ASM15797v1_genomic.fna	(BH),	
GCF_000162015.1_ASM16201v1_genomic.fna	(FP),		
CF_000146045.2_R64_genomic.fna	(yeast)	and	NC_001422.1	(PhiX174).	Gene	
expression	was	quantified	using	the	htseq-count	Python	script	(Anders,	Pyl	et	al.,	
2015)	(with	parameter	–a	2	to	exclude	multimapping	reads)	for	all	species	using	
their	available	*.gff	reference	annotation	files.	Given	the	small	size	of	the	
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PhiX174,	we	quantified	the	reads	mapping	to	its	entire	genome	rather	than	its	
gene	expression.		
Differential	gene	expression	analysis	of	the	three	cultured	strains	was	performed	
with	DESeq2	(Love,	Huber	et	al.,	2014).	To	remove	the	effect	of	the	different	
bacterial	compositions	in	the	tri-culture	samples,	we	extracted	the	reads	from	
each	strain	prior	to	the	differential	expression	analysis,	and	analyzed	each	strain	
separately.	In	the	DESeq2	design	formula	we	included	two	factors:	type	of	
culture	(mono-	or	tri-culture)	and	time	(3	h,	6	h	and	15	h).	The	results	of	the	
differential	expression	analyses	were	computed	using	a	Wald	test	of	the	tri-
culture	versus	the	mono-culture	samples.	
For	each	strain,	we	extracted	the	genes	significantly	changing	their	expression	
(with	Benjamini-Hochberg	adjusted	p-value	<	0.05)	in	tri-culture	and	mapped	
them	to	different	functional	annotations	downloaded	from	the	IMG	database	
(Markowitz,	Chen	et	al.,	2012):	COG	categories,	COG	numbers	and	KO	numbers.	
The	RNA-seq	data	processing	code	is	available	on	GitHub	
(https://github.com/vllorens/syntheticGutCommunity).	
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Figure	Legends	
	
Figure	1	
Scheme	summarizing	the	experimental	set-up	and	modeling	approach.	A	
mechanistic	model	of	a	three-strain	community	consisting	of	Roseburia	
intestinalis	(RI),	Faecalibacterium	prausnitzii	(FP)	and	Blautia	hydrogenotrophica	
(BH)	is	parameterized	on	mono-cultures,	but	does	not	describe	tri-culture	
dynamics	well.	Data	from	co-cultures	are	taken	into	account	to	improve	the	
goodness	of	fit	to	the	tri-culture	data,	thereby	indicating	emergent	behavior.					
	
Figure	2:	Overview	of	metabolite-mediated	strain	interactions.	(A-C)	Strain-
specific	metabolite	consumption	and	production.	(D)	Metabolite-mediated	
interactions	present	in	the	tri-culture.	(E)	Cross-feeding	interactions	between	
Faecalibacterium	prausnitzii	(FP)	and	Blautia	hydrogenotrophica	(BH)	as	well	as	
Roseburia	intestinalis	(RI)	and	BH.	The	dashed	arrow	from	acetate	to	Roseburia	
intestinalis	denotes	net	acetate	consumption.	The	dashed	arrows	from	hydrogen	
and	CO2	to	Blautia	hydrogenotrophica	indicate	the	potential	of	this	bacterium	to	
grow	autotrophically	on	these	gasses.		
	
Figure	3:	Summary	of	fermentation	data.	Biological	replicates	are	plotted	
together	in	one	panel,	with	their	mean	shown	in	bold.	For	each	set	of	
experiments,	species	abundances	quantified	by	qPCR	are	plotted	in	the	top	half	
of	the	panel	and	metabolite	concentrations	in	the	bottom	half.	(A-C)	Mono-
cultures	of	Roseburia	intestinalis	(RI),	Faecalibacterium	prausnitzii	(FP)	and	
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Blautia	hydrogenotrophica	(BH).	(D-F)	The	three	co-culture	combinations	of	RI,	
FP	and	BH	with	initial	acetate.	(G-H)	Co-cultures	of	RI	versus	BH	and	FP	versus	
BH	without	initial	acetate.	(I-J)	The	tri-culture	replicates	are	separated	into	those	
dominated	by	RI	and	BH	(I)	and	those	dominated	by	FP	and	BH	(J).		
	
Figure	4:	Model	parameterized	on	mono-cultures	does	not	fit	co-culture	data	
well.	(A-C)	Fit	to	mono-culture	experiments	selected	for	parameterization.	(D-F)	
Fit	to	selected	co-culture	experiments	with	initial	acetate.	(G-H)	Fit	to	selected	
co-culture	experiments	without	initial	acetate.	(I-J)	Fit	to	tri-cultures	dominated	
by	RI	and	BH	versus	FP	and	BH,	respectively.	Lines	represent	model	predictions	
and	dots	represent	observations.	The	whiskers	represent	technical	variation	
across	triplicates.	The	whiskers	represent	technical	variation	across	triplicates.	
Transparent	points	indicate	declining	cell	numbers;	corresponding	samples	were	
not	taken	into	account	for	model	fitting.	The	unknown	compound	represents	an	
unspecified	co-substrate	assumed	to	be	required	by	Faecalibacterium	prausnitzii.	
Metabolites	not	included	in	the	model	are	omitted	from	the	plot.	Experiment	
identifiers	indicate	which	of	the	biological	replicates	is	displayed.	The	model	was	
parameterized	on	experiments	RI_8,	RI_14,	FP_4,	FP_15	and	BH_14.	
	
Figure	5:	Model	parameterized	on	mono-	and	bi-cultures	improves	fit	to	co-
culture	data	as	compared	to	parameterization	on	mono-cultures	alone.	(A-C)	Fit	
to	selected	mono-culture	experiments.	(D-F)	Fit	to	selected	co-culture	
experiments	with	initial	acetate	(D	and	F	were	included	in	parameterization).	(G-
H)	Fit	to	selected	co-culture	experiments	without	initial	acetate,	which	were	not	
part	of	the	parameterization.	(I-J)	Fit	to	tri-cultures	dominated	by	RI	and	BH	
versus	FP	and	BH,	respectively.	Lines	represent	model	predictions	and	dots	
represent	observations.	The	whiskers	represent	technical	variation	across	
triplicates.	The	whiskers	represent	technical	variation	across	triplicates.	
Transparent	points	indicate	declining	cell	numbers;	corresponding	samples	were	
not	taken	into	account	for	model	fitting.	The	unknown	compound	represents	an	
unspecified	co-substrate	assumed	to	be	required	by	Faecalibacterium	prausnitzii.	
Metabolites	not	included	in	the	model	are	omitted	from	the	plot.	Experiment	
identifiers	indicate	which	of	the	biological	replicates	is	displayed.	The	model	was	
parameterized	on	experiments	FP_4,	FP_15,	FP_BH_1,	FP_BH_2	and	RI_BH_4.	
	
Figure	6:	Initial	conditions	determine	dominance	in	tri-culture.	(A)	The	tri-
culture	dynamics	is	simulated	with	different	lag	phase	values	for	
Faecalibacterium	prausnitzii	(FP)	and	Roseburia	intestinalis	(RI)	and	the	resulting	
end	point	abundance	ratio	of	FP	and	RI	is	plotted	in	a	heat	map	that	is	colored	in	
blue	for	FP	dominance	and	in	red	for	RI	dominance.	The	observed	tri-culture	
data	(black	circles)	are	plotted	according	to	the	estimated	experimental	lag	
phases	for	RI	and	FP.	The	predicted	RI	or	FP	dominance	agrees	with	the	
observed	dominance	in	all	six	cases.	(B)	The	tri-culture	dynamics	is	simulated	for	
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varying	initial	abundances	(init.	conc.)	of	FP	and	RI	and	their	resulting	end	point	
abundance	ratio	is	visualized	in	a	heat	map.	Three	of	the	four	FP-dominated	
experiments	(13-15)	and	both	RI-	dominated	experiments	(10	and	11)	are	
situated	within	their	predicted	region	of	dominance.	(D-F)	The	dependency	of	
the	end	point	abundances	of	the	three	species	on	the	lag	phase	and	initial	
abundance	of	FP	and	RI	is	shown	with	simulations.	This	dependency	is	non-
linear,	especially	for	initial	abundances	of	FP	and	RI,	illustrating	that	dominance	
in	batch	is	highly	sensitive	to	initial	conditions.	The	simulations	were	carried	out	
with	the	model	parameterized	on	mono-	and	bi-culture	data.	For	the	simulations	
in	(A),	the	initial	abundances	of	RI,	FP	and	BH	were	set	to	0.58,	0.04	and	0.21,	
respectively,	whereas	for	the	simulations	in	(B),	the	lag	phases	for	RI,	FP	and	BH	
were	set	to	0.33,	0.08	and	0.1,	respectively.	These	initial	abundance	and	lag	
phase	values	represent	the	averages	of	observed	initial	abundances	and	
estimated	lag	phases	across	all	tri-culture	experiments.	
	
Table	Legends	
	
Table	1	
Overview	of	fermentation	experiments	and	model	fitting	results	(RMSE:	root	
mean	square	error).	Mean	and	standard	deviations	across	biological	replicates	
are	reported.		
	
Supplementary	Figure	Legends	
	
Supplementary	Figure	1	
Fit	to	mono-culture	experiments	for	the	model	parameterized	on	mono-cultures	
only.	(A-C)	Fit	to	Roseburia	intestinalis	mono-culture	experiments.	(D-F)	Fit	to	
Faecalibacterium	prausnitzii	mono-culture	experiments.	(G-I)	Fit	to	Blautia	
hydrogenotrophica	mono-culture	experiments.	Lines	represent	model	
predictions	and	dots	represent	observations.	The	whiskers	represent	technical	
variation	across	triplicates.	The	shaded	regions	indicate	the	length	of	the	
estimated	species-specific	lag	phases.	The	unknown	compound	represents	an	
unspecified	co-substrate	assumed	to	be	required	by	Faecalibacterium	prausnitzii.	
Metabolites	not	included	in	the	model	are	omitted	from	the	plot.	Experiment	
identifiers	indicate	which	of	the	biological	replicates	is	displayed.	The	model	was	
parameterized	on	experiments	RI_8,	RI_14,	FP_4,	FP_15	and	BH_14.	
	
Supplementary	Figure	2	
Test	for	prokaryotic	contamination	with	16S	rRNA	gene	sequencing.	For	samples	
taken	at	the	last	time	point,	DNA	was	extracted	and	the	V4	region	of	the	16S	
rRNA	gene	was	amplified	and	sequenced.	Raw	reads	are	rarefied	to	15,339	
counts	per	sample	and	then	converted	into	relative	abundances.	The	top	10	taxa	
in	each	sample	are	shown.	The	abbreviations	RI,	FP	and	BH	in	sample	identifiers	
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stand	for	Roseburia	intestinalis,	Faecalibacterium	prausnitzii	and	Blautia	
hydrogenotrophica,	respectively.	The	taxon	Lachnospiraceae	incertae	sedis	
contains	BH.	High	relative	abundances	of	potential	contaminants	(>	10%)	were	
found	in	one	RI	monoculture	(RI_16),	one	RI-FP	co-culture	(RI_FP_9)	and	one	tri-
culture	(RI_FP_BH_10).	
	
Supplementary	Figure	3	
Test	for	viral,	prokaryotic	and	eukaryotic	contamination	in	RNA-seq	data.	The	
RNA	of	two	non-prokaryotic	organisms	reached	noticeable	abundances:	the	
bacteriophage	phiX174,	which	is	used	as	a	control	in	Illumina	sequencing,	and	
the	yeast	S.	cerevisiae	S288c,	which	probably	came	from	the	yeast	extract	
employed	in	the	medium.	In	most	of	the	samples,	these	potential	contaminants	
have	transcriptome-size-corrected	abundances	below	5%,	but	in	one	sample	
(Blautia	hydrogenotrophica	at	3	h)	the	yeast	RNA	abundance	reached	18%.	
Taxonomic	assignment	was	carried	out	with	MetaPhlAn2	and	mash	screen	
against	the	complete	RefSeq	genomes	and	plasmids	database.	Total	read	counts	
were	corrected	for	transcriptome	size	(genome	size	in	the	case	of	the	
bacteriophage).	The	bacterial	contamination	observed	in	the	Roseburia	
intestinalis	mono-culture	with	16S	rRNA	gene	sequencing	was	not	confirmed	
with	RNA-seq.	Row	1	refers	to	experiments	RI_16,	FP_14,	BH_16	and	
RI_FP_BH_14,	while	row	2	refers	to	experiments	RI_15,	FP_15,	BH_15	and	
RI_FP_BH_15.	
	
Supplementary	Figure	4	
Fit	to	bi-culture	experiments	for	the	model	parameterized	on	mono-cultures	
only.	(A-B)	Fit	to	Roseburia	intestinalis	and	Faecalibacterium	prausnitzii	bi-
culture	experiments.	(C-F)	Fit	to	Roseburia	intestinalis	and	Blautia	
hydrogenotrophica	bi-culture	experiments.	(G-I)	Fit	to	Faecalibacterium	
prausnitzii	and	Blautia	hydrogenotrophica	bi-culture	experiments.	Lines	
represent	model	predictions	and	dots	represent	observations.	The	whiskers	
represent	technical	variation	across	triplicates.	The	shaded	regions	indicate	the	
length	of	the	estimated	species-specific	lag	phases.	The	unknown	compound	
represents	an	unspecified	co-substrate	assumed	to	be	required	by	
Faecalibacterium	prausnitzii.	Metabolites	not	included	in	the	model	are	omitted	
from	the	plot.	Experiment	identifiers	indicate	which	of	the	biological	replicates	is	
displayed.	The	model	was	parameterized	on	experiments	RI_8,	RI_14,	FP_4,	
FP_15	and	BH_14.	
	
Supplementary	Figure	5	
Fit	to	tri-culture	experiments	for	the	model	parameterized	on	mono-cultures	
only.	(A-B)	Fit	to	tri-culture	experiments	dominated	by	Roseburia	intestinalis	and	
Blautia	hydrogenotrophica.	(C-F)	Fit	to	tri-culture	experiments	dominated	by	
Faecalibacterium	prausnitzii	and	Blautia	hydrogenotrophica.	Lines	represent	
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model	predictions	and	dots	represent	observations.	The	whiskers	represent	
technical	variation	across	triplicates.	The	shaded	regions	indicate	the	length	of	
the	estimated	species-specific	lag	phases.	The	unknown	compound	represents	an	
unspecified	co-substrate	assumed	to	be	required	by	Faecalibacterium	prausnitzii.	
Metabolites	not	included	in	the	model	are	omitted	from	the	plot.	Experiment	
identifiers	indicate	which	of	the	biological	replicates	is	displayed.	The	model	was	
parameterized	on	experiments	RI_8,	RI_14,	FP_4,	FP_15	and	BH_14.	
	
Supplementary	Figure	6	
Fit	to	mono-culture	experiments	for	the	model	parameterized	on	selected	mono-
cultures	and	bi-cultures.	(A-C)	Fit	to	Roseburia	intestinalis	mono-culture	
experiments.	(D-F)	Fit	to	Faecalibacterium	prausnitzii	mono-culture	
experiments.	(G-I)	Fit	to	Blautia	hydrogenotrophica	mono-culture	experiments.	
Lines	represent	model	predictions	and	dots	represent	observations.	The	
whiskers	represent	technical	variation	across	triplicates.	The	shaded	regions	
indicate	the	length	of	the	estimated	species-specific	lag	phases.	The	unknown	
compound	represents	an	unspecified	co-substrate	assumed	to	be	required	by	
Faecalibacterium	prausnitzii.	Metabolites	not	included	in	the	model	are	omitted	
from	the	plot.	Experiment	identifiers	indicate	which	of	the	biological	replicates	is	
displayed.	The	model	was	parameterized	on	experiments	FP_4,	FP_15,	FP_BH_1,	
FP_BH_2	and	RI_BH_4.	
	
Supplementary	Figure	7	
Fit	to	bi-culture	experiments	for	the	model	parameterized	on	selected	mono-
cultures	and	bi-cultures.	(A-B)	Fit	to	Roseburia	intestinalis	and	Faecalibacterium	
prausnitzii	bi-culture	experiments.	(C-F)	Fit	to	Roseburia	intestinalis	and	Blautia	
hydrogenotrophica	bi-culture	experiments.	(G-I)	Fit	to	Faecalibacterium	
prausnitzii	and	Blautia	hydrogenotrophica	bi-culture	experiments.	Lines	
represent	model	predictions	and	dots	represent	observations.	The	shaded	
regions	indicate	the	length	of	the	estimated	species-specific	lag	phases.	The	
whiskers	represent	technical	variation	across	triplicates.	The	unknown	
compound	represents	an	unspecified	co-substrate	assumed	to	be	required	by	
Faecalibacterium	prausnitzii.	Metabolites	not	included	in	the	model	are	omitted	
from	the	plot.	Experiment	identifiers	indicate	which	of	the	biological	replicates	is	
displayed.	The	model	was	parameterized	on	experiments	FP_4,	FP_15,	FP_BH_1,	
FP_BH_2	and	RI_BH_4.	
	
	
Supplementary	Figure	8	
Fit	to	tri-culture	experiments	for	the	model	parameterized	on	selected	mono-
cultures	and	bi-cultures.	(A-B)	Fit	to	tri-culture	experiments	dominated	by	
Roseburia	intestinalis	and	Blautia	hydrogenotrophica.	(C-F)	Fit	to	tri-culture	
experiments	dominated	by	Faecalibacterium	prausnitzii	and	Blautia	
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hydrogenotrophica.	Lines	represent	model	predictions	and	dots	represent	
observations.	The	shaded	regions	indicate	the	length	of	the	estimated	species-
specific	lag	phases.	The	whiskers	represent	technical	variation	across	triplicates.	
The	unknown	compound	represents	an	unspecified	co-substrate	assumed	to	be	
required	by	Faecalibacterium	prausnitzii.	Metabolites	not	included	in	the	model	
are	omitted	from	the	plot.	Experiment	identifiers	indicate	which	of	the	biological	
replicates	is	displayed.	The	model	was	parameterized	on	experiments	FP_4,	
FP_15,	FP_BH_1,	FP_BH_2	and	RI_BH_4.	
	
Supplementary	Figure	9		
Sensitivity	analysis.	The	abundance	of	Roseburia	intestinalis,	Faecalibacterium	
prausnitzii	and	Blautia	hydrogenotrophica	at	the	final	time	point	is	plotted,	
depending	on	the	values	of	the	maximal	specific	growth	rate	μ	(A-C),	the	fructose	
half-saturation	constant	K	(D-F)	and	the	fructose	uptake	rate	v	(G-I).	
	
Supplementary	Table	Legends	
	
Supplementary	Table	1	
A	summary	of	all	fermentation	experiments	is	provided.	Fermentation	
experiments	selected	for	RNA-seq	or	model	parameterization	are	marked	
accordingly.	
	
Supplementary	Table	2	
The	table	provides	parameter	values	after	model	parameterization	on	mono-
cultures	only	and	on	mono-	and	bi-cultures	(sheet	1),	lag	phases	estimated	from	
experiments	(sheet	2)	and	predicted	maximal	abundances	for	the	two	
parameterizations	(sheet	3).	
	
Supplementary	Table	3	
Table	3	lists	genes	that	are	significantly	up-	or	down-regulated	in	tri-culture	as	
compared	to	mono-culture	for	all	three	strains	across	all	time	points.	
	
Supplementary	Table	4	
The	sequences	for	species-specific	primers	and	probes	as	well	as	their	
specificities	are	provided.	
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Table	1:	Overview	of	fermentation	experiments	and	model	fitting	results	(RMSE:	root	mean	square	error).	Mean	and	standard	deviations	across	biological	replicates	are	reported.		

Strains	

Number	of	
biological	
replicates	

Added	energy	source	
and/or	co-substrate	

Mean	consumption/production	±	standard	deviation	(mM)	of	metabolites		 Carbon	
recovery	
(%)	

Selected	
for	
parame-
terization	1	

RMSE	
parame-
terization	1	
	

Selected	
for	
parame-
terization	2	

RMSE	
parame-
terization	2	

	 Fructose		 Acetate	 Butyrate	 Formate	 Lactate	 H2	 CO2	 	 	
Monoculture	fermentations	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
R.	intestinalis	DSM	14610T	 4	 Fructose/	Acetate	 -48.8	±	0.9	 -20.6	±	2.4	 58.5	±	3.9	 6.8	±	1.2	 3.9	±	1.1	 72.2	±	4.9	 84.0	±	0.8	 98.3	±	6.5	 Yes	 0.17	±	0.04	 No	 0.83	±	0.13	
F.	prausnitzii	DSM	17677T	 3	 Fructose/	Acetate	 -23.1	±	1.1	 -13.5	±	0.8	 29.8	±	0.2	 22.7	±	0.9	 1.8	±	0.2	 0.2	±	0.2	 19.3	±	1.6	 100.9	±	3.4	 Yes	 0.15	±	0.08	 Yes	 0.15	±	0.08	
B.	hydrogenotrophica	DSM	10507	T	 3	 Fructose/	Formate	 -19.0	±	5.6	 23.0	±	6.6	 0.0	±	0.0	 -36.1	±	1.8	 6.0	±	1.2	 31.5	±	7.7	 26.0	±	5.3	 60.0	±	2.1	 Yes	 1.43	±	0.27		 No	 3.53	±	1.04	

Bi-culture	fermentations	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
R.	intestinalis	DSM	14610T/	F.	
prausnitzii	DSM	17677T	

2	 Fructose/	Acetate	 -47.7	±	2.2	 -18.1	±	2.7	 56.3	±	4.5	 7.6	±	2.7	 4.3	±	3.3	 114	±	16	 85.7	±	4.1	 102.8	±	0.3	 No	 0.77	±	0.06	 No	 0.68	±	0.03	

R.	intestinalis	DSM	14610T/	B.	
hydrogenotrophica	DSM	10507	T	

2	 Fructose/	Acetate	 -46.5	±	1.5	 -7.5		±	1.9	 53.5	±	4.7	 -0.5	±	0.8	 2.2	±	0.3	 53.0	±	3.0	 74.9	±	4.1	 100.2	±	0.6	 No	 0.78	±	0.36	 Yes	 0.3	±	0.04		

R.	intestinalis	DSM	14610T/	B.	
hydrogenotrophica	DSM	10507	T	

2	 Fructose	 -48.0	±	0.2	 44.9	±	5.4	 27.9	±	3.0	 -1.0	±	0.0	 5.4	±	2.4	 33.1	±	3.2	 47.4	±	3.9	 91.6	±	1.1	 No	 0.9	±	0.17	 No	 0.32	±	0.04	

F.	prausnitzii	DSM	17677T/	B.	
hydrogenotrophica	DSM	10507	T	

2	 Fructose/	Acetate	 -49.3	±	1.0	 41.4	±	11.7	 30.7	±	1.8	 -1.2	±	0.0	 3.9	±	1.6	 56.2	±	37.1	 54.8	±	33.3	 91.6	±	9.4	 No	 0.6	±	0.14	 Yes	 0.26	±	0.13	

F.	prausnitzii	DSM	17677T/	B.	
hydrogenotrophica	DSM	10507	T	

1	 Fructose	 -47.0	 62.5	 25.5	 -1.1	 4.5	 62.9	 63.6	 107.4	 No	 0.63			 No	 0.46	

Tri-culture	fermentations	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
R.	intestinalis	DSM	14610T/	F.	
prausnitzii	DSM	17677T/	B.	
hydrogenotrophica	DSM	10507	T	

6	 Fructose	 -48.9	±	1.3	 38.4	±	16.9	 32.5	±	5.5	 -1.2	±	0.1	 7.4	±	1.7	 61.9	±	3.2	 57.1	±	9.2	 97.0	±	3.1	 No	 0.78	±	0.27	 No	 0.58	±	0.11	
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