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Abstract 

Background: The extent to which changes in gene expression can influence 

cardiovascular disease risk across different tissue types has not yet been systematically 

explored. We have developed an analytical framework that integrates tissue-specific gene 

expression, Mendelian randomization and multiple-trait colocalization to develop 

functional mechanistic insight into the causal pathway from genetic variant to complex 

trait.  

Methods: We undertook a transcriptome-wide association study in a population of young 

individuals  to uncover genetic variants associated with both nearby gene expression and 

cardiovascular traits. Two-sample Mendelian randomization was then applied using 

large-scale datasets to investigate whether changes in gene expression within certain 

tissue types may influence cardiovascular trait variation. We subsequently performed 

Bayesian multiple-trait colocalization to further interrogate findings and also gain insight 

into whether DNA methylation, as well as gene expression, may play a role in disease 

susceptibility.  

Results: Eight genetic loci were associated with changes in gene expression and early 

life measures of cardiovascular function. Our Mendelian randomization analysis provided 

evidence of tissue-specific effects at multiple loci, of which the effects at the ADCY3 and 

FADS1 loci for body mass index and cholesterol respectively were particularly insightful. 

Multiple trait colocalization uncovered evidence which suggested that changes in DNA 

methylation at the promoter region upstream of FADS1/TMEM258 may also play a role 

in cardiovascular trait variation along with gene expression. Furthermore, colocalization 
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analyses were able to uncover evidence of tissue-specificity, most prominantly between 

SORT1 expression in liver tissue and cholesterol levels. 

Conclusions: Disease susceptibility can be influenced by differential changes in tissue-

specific gene expression and DNA methylation. Our analytical framework should prove 

valuable in elucidating mechanisms in disease, as well as helping prioritize putative 

causal genes at associated loci where multiple nearby genes may be co-regulated. Future 

studies which continue to uncover quantitative trait loci for molecular traits across various 

tissue and cell types will further improve our capability to understand and prevent disease. 
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Introduction  1 

Despite recent efforts in research and development, cardiovascular disease still poses 2 

one of the greatest threats to public health throughout the world, accounting for more 3 

deaths than any other cause [1]. Since their development, genome-wide association 4 

studies (GWAS) have identified thousands of different genetic loci associated with 5 

complex disease traits [2]. An example of their successful application within 6 

cardiovascular research is the identification of numerous genetic variants associated with 7 

low density lipoprotein (LDL) cholesterol levels [3], which is a causal mediator along the 8 

coronary heart disease progression pathway [4,5]. However, the functional and clinical 9 

relevance for the vast majority of GWAS results are still unknown, emphasizing the 10 

importance of developing our understanding of the causal pathway from single nucleotide 11 

polymorphism (SNP) to disease.  12 

 13 

A large proportion of associations detected by GWAS are located in non-coding regions 14 

of the genome [6], suggesting that the underlying SNPs influence complex traits via 15 

changes in gene regulation [7]. Recent efforts have incorporated messenger ribonucleic 16 

acid (mRNA) expression data into analyses to determine whether SNPs identified by 17 

GWAS influence levels of gene expression (i.e. whether they are expression quantitative 18 

trait loci [eQTL]) as well as complex traits [8]. Novel methods have integrated eQTL data 19 

with summary association statistics from GWAS [9] to identify genes whose nearby (cis) 20 

regulated expression is associated with traits of interest (widely defined as variants within 21 

1 megabase (Mb) on either side of a genes transcription start site [TSS]) [10]. These types 22 

of studies have been referred to as transcriptome-wide association studies (TWAS).  23 
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 24 

A recent paper has highlighted some limitations that may be encountered by studies 25 

integrating transcriptome data to infer causality [11], such as intra-tissue variability and 26 

co-regulation amongst proximal genes, making it challenging to disentangle putative 27 

causal genes for association signals. This exemplifies the importance of developing 28 

methods that investigate tissue-specificity and co-regulation of association signals 29 

detected by TWAS.  Therefore, there needs to be further research into the most 30 

appropriate manner to harness eQTL data (across multiple tissue and cell types) in order 31 

to improve the biological interpretation of GWAS findings.  32 

 33 

We have developed a systematic framework which can be used to evaluate five potential 34 

scenarios that can help explain findings from TWAS (Figure 1). Firstly, we identify putative 35 

causal genes responsible for observed association signals, by evaluating the association 36 

between lead SNPs and proximal gene expression using eQTL data from the 37 

Framingham Heart Study (n=5,257) [8]. We then investigate the relationship between 38 

gene expression and complex traits at loci of interest by applying the principles of 39 

Mendelian randomization (MR); a method which uses genetic variants associated with an 40 

exposure as instrumental variables to infer causality among correlated traits [12,13]. A 41 

recent development in this paradigm is two-sample MR, by which effect estimates on 42 

exposures and outcomes are derived from two independent datasets, allowing 43 

researchers to exploit findings from large GWAS consortia [14]. Applying this approach 44 

can therefore be used to help infer whether changes in gene expression (our exposure) 45 

may influence a complex trait identified by GWAS (our outcome). Furthermore, as tissue-46 
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specificity is fundamental in understanding causal mechanisms involving gene 47 

expression, we have used data from the genotype tissue expression project (GTEx) [15] 48 

in a number of tissues that could be important in cardiovascular disease susceptibility 49 

(Additional file 2: Table S1) to try and disentangle co-regulation amongst proximal genes 50 

(i.e. differentiating between scenarios 1, 2 and 3). We refer to this approach as tissue-51 

specific MR, which should prove increasingly valuable in investigating both the 52 

determinants and consequences of changes in tissue-specific gene expression as sample 53 

sizes increase [12]. 54 

 55 

We subsequently apply colocalization analyses [16] at each locus of interest to evaluate 56 

whether the same underlying genetic variant is responsible for changes in both gene 57 

expression and complex trait, or whether association signals may be a product of linkage 58 

disequilibrium (LD) between two causal variants (scenario 4). This analysis can also 59 

complement findings from the MR analysis, particularly given that the majority of genes 60 

can only be instrumented with a single eQTL using GTEx data. In addition, there has been 61 

recent interest in the impact that DNA methylation may have on cardiovascular disease 62 

risk via modifications in gene expression [17]. Therefore, we apply multiple-trait 63 

colocalization (moloc) [16] at each locus to simultaneously investigate whether the same 64 

underlying genetic variant is driving the observed effect on all three traits of interest (i.e. 65 

the cardiovascular trait, gene expression and DNA methylation).  66 

 67 

Uncovering evidence suggesting that DNA methylation and gene expression may be 68 

working in harmony to influence complex traits can improve the reliability of causal 69 
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inference in this field, as it suggests there may be underlying mechanisms which are 70 

consistent with causality (i.e. DNA methylation acting as a transcriptional repressor). 71 

However, a major challenge in this paradigm is the lack of accessible tissue-specific DNA 72 

methylation/mQTL data akin to GTEx for gene expression. Previous studies have 73 

investigated the potential mediatory role of DNA methylation between genetic variant and 74 

gene expression using eQTL and mQTL data derived from blood which may act as a 75 

proxy for other tissue types [18–20]. Moreover, other studies have demonstrated a 76 

surprisingly high rate of replication between mQTL derived from blood and more relevant 77 

tissue types for a complex trait of interest [21]. We have therefore undertaken moloc 78 

analyses using eQTL derived from both blood and cardiovascular-specific tissue types. 79 

Finally, it is also important to note that, along with other approaches which apply causal 80 

methods to molecular data, we are currently unable to robustly differentiate mediation 81 

from horizontal pleiotropy (scenario 5) [12,22]. However, within this framework we will be 82 

able to accommodate additional eQTL as instrumental variables derived from future larger 83 

studies in order to address this.  84 

 85 

In this study, we demonstrate the value of our framework by applying it to data from the 86 

Avon Longitudinal Study of Parents and Children (ALSPAC) using early life measures of 87 

cardiovascular function as outcomes. Evaluating putative causal mechanisms apparent 88 

early in the life course can be extremely valuable for disease prevention and healthcare, 89 

particularly given that cardiovascular disease such as atherosclerosis has been shown to 90 

develop in childhood [23]. Therefore, we used ~19,000 cis-eQTL’s observed in adults at 91 

risk of cardiac events from the Framingham Heart Study [8] for our TWAS to ascertain 92 
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whether they influence these cardiovascular traits in young individuals (age  10). We 93 

have further evaluated results using our framework by harnessing summary statistics 94 

from large-scale GWAS to demonstrate the value of our approach and validate findings 95 

in independent samples. 96 

 97 

Methods  98 

The Avon Longitudinal Study of Parents and Children (ALSPAC) 99 

Detailed information about the methods and procedures of ALSPAC is available 100 

elsewhere [24–26]. In brief, ALSPAC is a prospective birth cohort study which was 101 

devised to investigate the environmental and genetic factors of health and development. 102 

In total, 14,541 pregnant women with an expected delivery date of April 1991 and 103 

December 1992, residing in the former region of Avon, UK were eligible to take part. 104 

Participants attended regular clinics where detailed information and bio-samples were 105 

obtained. The study website contains details of all the data that is available through a fully 106 

searchable data dictionary [27]. All procedures were ethically approved by the ALSPAC 107 

ethics and Law Committee and the Local Research Ethics Committees. Written informed 108 

consent was obtained from all participants.  109 

 110 

Genetic data 111 

All children were genotyped using the Illumina HumanHap550 quad genome-wide SNP 112 

genotyping platform. Samples were removed if individuals were related or of non-113 

European genetic ancestry. Imputation was performed using Impute V2.2.2 against a 114 

reference panel from 1000 genomes [28] phase 1 version 3 [29]. After imputation, we 115 
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filtered out variants and kept those with an imputation quality score  0.8 and minor allele 116 

frequency (MAF) > 0.01.  117 

 118 

Phenotypes 119 

The methods and procedures to acquire data for the 14 phenotypes analyzed in this study 120 

are as follows. All measurements were obtained at the ALSPAC clinic. Height and weight 121 

were measured at age 7 (mean age: 7.5, range: 7.1-8.8). Height was measured to the 122 

nearest 0.1 cm with a Harpenden stadiometer (Holtain Crosswell), and weight was 123 

measured to the nearest 0.1 kg on Tanita electronic scales. Body mass index (BMI) was 124 

calculated as (weight [kg]/(height[m]2). Non-fasting blood samples were taken at age 10 125 

(mean age: 9.9, range: 8.9-11.5). The methods on the assays performed on these 126 

samples which included total cholesterol, high-density lipoprotein cholesterol, LDL 127 

cholesterol (calculated using the Friedewald equation [30]), very low density lipoprotein 128 

(VLDL) cholesterol, triglycerides, Apolipoprotein A1 (ApoA1), Apolipoprotein B (ApoB), 129 

fasting glucose, fasting insulin, adiponectin, leptin, C-reactive protein (CRP) and 130 

interleukin 6 (IL-6) have been described previously [31]. 131 

 132 

The Framingham Heart Study 133 

We identified over 19,000 pruned lead cis-eQTLs from Joehanes et al [8] who provide in-134 

depth details of the Framingham Heart study and their analysis plan in their paper. Trans-135 

eQTLs were not considered for our analysis to reduce the likelihood of horizontal 136 

pleiotropy influencing our findings and also to reduce the burden of multiple testing [32]. 137 

This eQTL data was chosen for the initial analysis in ALSPAC due to the larger sample 138 
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size of transcriptome data from the Framingham Heart Study (n=5,257) using whole blood 139 

in comparison to GTEx sample sizes for other tissue types. This allowed us to maximise 140 

statistical power to detect association signals which we were then subsequently able to 141 

evaluate in detail using data from other tissue types.  142 

 143 

The Genotype-Tissue Expression (GTEx) project 144 

 145 

GTEx is a unique open-access online resource with  gene expression data for 449 human 146 

donors (83.7% European American and 15.1% African American) across 44 tissues. 147 

Sample sizes vary between tissues, thus affecting statistical power to identify eQTL. In 148 

depth information on the materials and methods for GTEx is available in the latest 149 

publication [15]. In short, RNA sequencing samples were sequenced to a median depth 150 

of 78 million reads. This is suggested to be a credible depth to quantify accurately genes 151 

that may have low expression levels [33]. DNA was genotyped at 2.2 million sites and 152 

imputed to 12.5 million sites. We used GTEx eQTL data in all downstream analysis 153 

following the discovery analysis in ALSPAC (i.e. Mendelian randomization and multiple-154 

trait colocalization). 155 

 156 

Statistical analysis  157 

Data from ALSPAC were initially cleaned using STATA [version 15] and outliers defined 158 

as ± 4 standard deviations from the mean were removed. We plotted histograms to check 159 

the data for normality and where necessary applied log-transformation. Using PLINK 160 

[version 1.9] [34,35], we undertook an age and sex adjusted TWAS to evaluate the 161 

association between cis-eQTLs known to influence gene expression and cardiovascular 162 
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traits. We applied a Bonferroni correction to account for multiple testing which equated to 163 

0.05/the total number of tests undertaken. Using a script derived from the qqman R 164 

package [36], results were plotted using a Manhattan plot. We undertook fine mapping 165 

across the region 1Mb either side of each lead SNP identified from our TWAS using 166 

FINEMAP [37] software. We used the default setting which outputs a maximum of 5 167 

putative causal variants.  168 

 169 

Tissue-specific Mendelian randomization analysis 170 

To investigate potential causal genes at association signals detected in our TWAS, we 171 

applied the principles of MR using the wald method [38] (Additional File 1: Figure S1) to 172 

assess whether changes in tissue-specific gene expression (eQTLs as instrumental 173 

variables) may be responsible for effects on associated traits. Furthermore, it can help 174 

discern whether multiple proximal genes at a region are contributing to trait variation or 175 

whether they are likely just co-regulated with causal genes in accessible tissue types such 176 

as whole blood, i.e. scenario 3. Firstly, for each lead eQTL from the TWAS we used 177 

tissue-specific data from GTEx to discern whether they were cis-eQTL for genes in tissue 178 

types which may play a role in the pathology of cardiovascular disease (P < 1 x 10-4). If 179 

this was not possible then we used eQTL for all genes within a 1MB distance of the lead 180 

eQTL. The tissue types evaluated were; adipose – subcutaneous, adipose – visceral 181 

(omentum), liver, pancreas, artery – coronary, artery – aorta, heart – atrial appendage 182 

and heart – left ventricle. The mean donor age for all tissues included in this analysis 183 

resided in the range of 50-55 years. In addition to this, we ran an additional analysis for 184 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/298687doi: bioRxiv preprint 

https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/


12 

the association with BMI but investigating effects in the following brain tissues: pituitary, 185 

anterior cingulate cortex (BA24) and frontal cortex (BA9).  186 

 187 

For this analysis, we used data from large-scale GWAS; A full list of these with details 188 

can be found within additional file 2 (Table S2) [39–41]. We then undertook a validation 189 

analysis using our ALSPAC data. As cardiovascular trait data is therefore obtained at an 190 

earlier stage in the life course compared to the tissue-specific expression data, any 191 

associations detected in the validation analysis suggest genetic liability to cardiovascular 192 

risk via changes in gene expression. These analyses were undertaken using the MR-193 

Base platform [42]. The only trait we were unable to assess in our analysis was 194 

interleukin-6, due to the lack of GWAS summary statistics for this trait. Nonetheless, we 195 

still performed MR for the IL-6 data we possessed in ALSPAC. We applied a multiple 196 

testing threshold to the MR results to define significance (p<0.05/54). We plotted the 197 

results from the validation analysis using volcano plots from the ggplot2 package in R 198 

[43]. We also applied the Stieger directionality test [44] to discern whether our exposure 199 

(i.e. gene expression) was influencing our outcome (i.e. our complex trait) as opposed to 200 

the opposite direction of effect.  201 

 202 

Multiple-trait colocalization (moloc) 203 

Blood samples were obtained from 1,018 ALSPAC mothers as part of the accessible 204 

resource for integrated epigenomics studies (ARIES) [45] from the ‘Focus on Mothers 1’ 205 

time point (mean age = 47.5). Epigenome-wide DNA methylation was derived from these 206 

samples using the Illumina HumanMethylation450 (450K) BeadChip array. From this 207 
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data, we obtained effect estimates for all genetic variants within a 1MB distance of lead 208 

eQTL from the TWAS and proximal CpG sites (again defined as < 1MB). We then used 209 

the moloc [16] method to investigate 2 questions: 210 

1) Is the same underlying genetic variant influencing changes in both proximal gene 211 

expression and cardiovascular trait (i.e. investigating scenario 4) 212 

2) Does the genetic variant responsible for these changes also appear to influence 213 

proximal DNA methylation levels, suggesting that changes in this molecular trait may also 214 

play a role along the causal pathway to disease. 215 

As such, at each locus we applied moloc using genetic effects on 2 different molecular 216 

phenotypes (gene expression and DNA methylation (referred to as eQTL and mQTL 217 

respectively) along with the associated cardiovascular trait from our GWAS summary 218 

statistics. Since we included three traits (i.e. gene expression, DNA methylation and 219 

cardiovascular trait), moloc computed 15 possible configurations of how the traits are 220 

shared: detailed information on how these are calculated can be found in the original 221 

moloc paper [16]. For each independent trait-associated locus, we extracted effect 222 

estimates for all variants within 1MB distance of the lead TWAS hit, for all molecular 223 

phenotypes and relevant cardiovascular GWAS traits. We subsequently applied moloc in 224 

a gene-centric manner, by mapping CpG sites to genes based on the 1MB regions either 225 

side of our TWAS hit. Moloc was subsequently applied to all gene-CpG combinations 226 

within each region of interest. We ran this analysis twice, once using expression data from 227 

whole blood and again using expression data from a tissue type which was associated 228 

with the corresponding trait in the tissue-specific MR analysis (Additional file 2: Table S3). 229 
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Only regions with at least 50 SNPs (MAF >= 5%) in common between all three datasets 230 

(i.e. gene expression, DNA methylation and cardiovascular trait) were assessed by moloc 231 

based on recommendations by the authors. We computed summed PPAs  for all 232 

scenarios where GWAS trait and gene expression colocalized. When summed  PPAs 233 

were >= 80%, we reported findings as evidence that genetic variation was influencing 234 

cardiovascular traits via changes in gene expression. Furthermore, when summed PPAs 235 

relating to DNA methylation were >=80%, there was evidence that DNA methylation may 236 

also reside on the causal pathway to complex trait variation via changes in gene 237 

expression. In all analyses we used prior probabilities of 1e-04, 1e-06, 1e-07 and 1e-08 238 

as recommended by the developers of moloc based on their simulations [16]. 239 

 240 

Results  241 

Identifying putative causal genes for measures of early life cardiovascular 242 

function 243 

We carried out 273,742 tests to valuate the association between previously identified cis-244 

eQTLs [8] with 14 cardiovascular traits in turn within ALSPAC (19,553 cis-eQTLs x 14 245 

traits). After multiple-testing corrections, we identified 11 association signals across 8 246 

unique genetic loci which provided strong evidence of association (p < 1.8 x10-7 247 

[Bonferroni corrected threshold: p<0.05/273,742]). These results can be found in Table 1 248 

and are illustrated in Figure 2. The region near SORT1 was associated with total 249 

cholesterol, LDL cholesterol and ApoB. Additionally, the LPL region was associated with 250 

both triglycerides and VLDL cholesterol.  251 

 252 
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We undertook fine-mapping 1Mb either side of the lead SNP at each locus identified in 253 

our initial analysis to investigate which SNP(s) may be driving the observed effects of 254 

complex traits. Posterior probability of association’s (PPA) from FINEMAP [37] suggested 255 

that there was most likely only a single variant influencing trait variation for seven of the 256 

eleven total loci. For the other four loci, FINEMAP suggested there may be multiple 257 

variants influencing traits (Additional file 2: Table S4).  258 

 259 

Disentangling causal mechanisms using tissue-specific Mendelian randomization 260 

After adjustment for the number of tests performed across all tissues and complex traits 261 

(p < 9.3x10-4 [p<0.05/54]), we identified 34 associations between tissue-specific gene 262 

expression and cardiovascular traits (Additional file 2: Tables S5-S15). In the validation 263 

analysis in ALSPAC, we observed consistent directions of effect for 30 of the 264 

associations. The potential value of this approach in terms of disentangling causal genes 265 

 

       

       

       

       

       

       

       

       

       

       

       

       

 

Table 1. Results of the TWAS between Genetic Variants Influencing Gene Expression and Cardiovascular Traits in 
ALSPAC 

Tag SNP Gene(s) Trait Sample Size Beta SE P-Value 

rs646776 SORT1; CELSR2;  
PSRC1 

Total Cholesterol 4543 -0.099 0.016 1.10 x 10-9 

rs646776 
 

SORT1; CELSR2; 
PSRC1 

LDL Cholesterol 4543 -0.110 0.015 7.74 x 10-14 

rs646776 
 

SORT1; CELSR2; 
PSRC1 

ApoB 4546 -2.695 0.328 2.66 x 10-16 

rs12129500 IL6R IL-6 4503 -0.126 0.018 4.96 x 10-12 

rs11693654 ADCY3; NCOA1; 
CENPO 

BMI 6387 0.200 0.036 3.57 x 10-8 

rs80026582 LPL Triglycerides 4334 -0.101 0.018 1.49 x 10-8 

rs80026582 LPL VLDL Cholesterol 4334 -0.100 0.018 1.57 x 10-8 

rs600038 ABO IL-6 4496 -0.207 0.021 4.12 x 1022 

rs174538 FADS1; FADS2; 
TMEM258 

Total Cholesterol 4539 -0.080 0.015 5.03 x 10-8 

rs2727784 APOA1; TAGLN ApoA1 4018 3.047 0.468 8.05 x 10-11 

rs10419998 
 

GATAD2A; MAU2; 
TM6SF2 

ApoB 4404 -2.024 0.376 7.96 x 10-8 

Abbreviations for the column headings from left to right: single nucleotide polymorphism, gene or gene cluster associated with SNP, 
associated trait, sample size for this effect, observed effect size (standard deviation), standard error of the effect size, p value for 
observed effect 
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(i.e. scenarios 2 and 3) was exemplified at the BMI associated region on chromosome 2. 266 

Of the 3 cis- and potentially causal genes for this signal, only ADCY3 provided strong 267 

evidence of being the putative causal gene in two types of adipose tissue (adipose 268 

subcutaneous (P = 6.8 x 10-40) and adipose visceral (P = 3.1 x 10-48)) (Figure 3a). This 269 

suggests that changes in ADCY3 expression in adipose tissue could influence BMI levels. 270 

In contrast, there was a lack of evidence that changes in NCOA1 expression in the 271 

analyzed tissue types influence BMI. We were unable to undertake MR of CENPO 272 

expression in this analysis as were unable to harmonise effect estimates between 273 

exposure and outcome. As an additional analysis, we repeated the MR on BMI using 274 

eQTL effect estimates derived from ADCY3 expression in brain tissue (pituitary), although 275 

there was limited evidence of association (Beta (SE): 0.008 (0.006) , P: 0.177). 276 

 277 

Figure 3b illustrates results observed at the cholesterol associated region on 278 

chromosome 11. There was evidence that FADS1 expression was associated with total 279 

cholesterol in 3 different tissues (adipose subcutaneous (P = 2.2 x 10-40), heart left 280 

ventricle (P = 1.0 x 10-35) and pancreas (P = 2.2 x 10-40)). Interestingly, the strength of 281 

evidence was comparable between subcutaneous adipose and pancreas tissues despite 282 

the differences in GTEx sample sizes (Pancreas: 220 & Adipose Subcutaenous: 385) 283 

(Additional file 1: Figure S2). TMEM258 expression provided strong evidence of 284 

association in one tissue type (adipose subcutaneous (P = 7.2 x 10-34)), whereas 285 

association between FADS2 expression and total cholesterol was observed in multiple 286 

tissue types (adipose subcutaneous (P = 5.1 x 10-11), adipose visceral (P = 4.2 x 10-20), 287 

artery aorta (P = 5.8 x 10-10), heart – atrial appendage (P = 6.3 x 10-5) and pancreas (P = 288 
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6.3 x 10-5)). The most parsimonious explanation may be that multiple genes at this locus 289 

influence cholesterol levels, however further analyses are required to robustly 290 

differentiate between scenarios 2 and 3 here (Figure 1). 291 

 292 

At other loci evaluated (Additional File 1: Figure’s S3-S9), LPL showed evidence of 293 

association with triglycerides in a single tissue (adipose subcutaneous (P = 9.6 x10-168)) 294 

implying that this effect may be more tissue-specific compared to those observed at other 295 

loci in this study (Additional file 1: Figure’s S8 & S9, Additional file 2: Tables S14 & S15). 296 

On chromosome 1, there was strong evidence that gene expression in liver influences 297 

total cholesterol (Additional file 1: Figure S6) and LDL (Additional file 1: Figure S7) (p < 298 

3.22x10-120). However, this was observed for all three genes in the region (SORT1, 299 

CELSR2 and PSRC1). In these analyses alone, we were unable to determine whether a 300 

particular gene is driving this observed effect, with the other proximal genes being co-301 

regulated, or whether there are multiple causal genes for these traits (i.e. scenario 2). 302 

However, evidence from the literature implicates SORT1 as the most likely causal gene 303 

for this association signal [11,46]. Our MR results from ALSPAC provided evidence 304 

between ABO expression and IL-6 in 4 different tissues (Additional file 2: Table S12).  305 

Although, caution is required when interpreting this signal based on previous evidence 306 

across a diverse range of traits [47]. Finally, to test the direction of effect at each locus 307 

(i.e. are changes in gene expression causing changes in trait or vice versa), we ran a 308 

causal direction test [44]. In all scenarios, the test provided evidence that gene expression 309 

influences traits at these loci rather than the opposite direction of effect (Additional file 2: 310 

Tables S5-S15). 311 

 312 
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Ascertaining whether DNA methylation resides on the causal pathway to 313 

disease 314 

We identified evidence of colocalization (PPA ≥  0.8) for 7 unique genes across 5 loci 315 

across various tissue types (Additional file 2: Tables S16-S20). Building upon results from 316 

the tissue-specific MR analysis, we found strong evidence that ADCY3 is the functional 317 

gene for the BMI associated signal on chromosome 2 (maximum PPA of 0.99 between 318 

gene expression and BMI). We identified evidence of colocalization between BMI and 319 

ADCY3 expression In both whole blood and subcutaneous adipose tissue. There was 320 

also evidence that distributions between DNA methylation at cg04553793 (at the 321 

promoter region of ADCY3) colocalized with BMI and ADCY3 expression in whole blood 322 

(PPA = 0.88). However, the lead mQTL for this observed effect (rs13401333) was not 323 

correlated with the lead eQTL and GWAS hit (rs6745073, r2=0.02), which suggests that 324 

in-depth analysis with multiple tissue types is necessary to confirm whether DNA 325 

methylation influences disease suscepbility at this locus. 326 

 327 

There was also evidence that changes in DNA methylation at a CpG site in the promoter 328 

region for FADS1 (cg19610905) colocalized with total cholesterol variation. There was 329 

evidence of colocalization for all 3 traits using gene expression for TMEM258 (PPA=0.85) 330 

(Figure4a), where the lead GWAS variant (rs174568) and mQTL were in perfect LD 331 

(rs1535, r2=1). This effect was only observed in whole blood. Evidence of colocalization 332 

between all three traits using FADS1 expression narrowly missed the cut-off (PPA=0.77). 333 

Finally, we found limited evidence that changes in DNA methylation at this CpG site 334 

colocalized with FADS2 expression, although as with the previously evaluated locus, this 335 
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was not surprising given that cg19610905 is located downstream of FADS2. Gene 336 

expression of TMEM258  in whole blood was negatively associated with DNA 337 

methylation at cg19610905. The directionality test suggested that DNA methylation 338 

influences TMEM258 expression at this locus rather than the opposite direction of effect 339 

(P<1 x 10-16). 340 

 341 

We did not identify evidence in the colocalization analysis suggesting that DNA 342 

methylation plays a role in trait variation at the SORT1 region. However, there was 343 

evidence of tissue specificity in liver tissue which supports evidence identified in our MR 344 

analysis. The first plot in Figure 4b illustrates how effects on SORT1 gene expression and 345 

total cholesterol at this region colocalizes in liver tissue. In contrast, the neighbouring plot 346 

depicts the same analysis but in whole blood, whereby no evidence of colocalization was 347 

detected. Furthermore, we see the same tissue-specific colocalization for the effect on 348 

ApoB in the same region (Additional file 2: Table S16). The CELSR2 gene showed similar 349 

evidence for tissue specificity in liver, whereas PSRC1 expression colocalized with 350 

GWAS traits in both whole blood and liver. 351 

 352 

Discussion 353 

In this study we have developed a framework to elucidate transcriptional mechanisms in 354 

disease which can help explain the functional relevance of GWAS findings. This is 355 

achieved by adapting the principles of MR to evaluating the putative effect of tissue-356 

specific gene expression on complex traits, which can be complemented with moloc and 357 

harnessing large-scale summary statistics We demonstrate the value of this approach by 358 
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evaluating 11 signals identified in a TWAS study undertaken in a cohort of young 359 

individuals from the ALSPAC cohort. Tissue-specific analyses helped infer whether 360 

individual or multiple genes were potentially responsible for observed signals at each 361 

locus. Moloc suggested that changes in gene expression and proximal DNA methylation 362 

may influence disease susceptibility at the FADS1 locus. 363 

 364 

The ADCY3 locus has been reported to be associated with BMI in young individuals in 365 

previous studies [48,49]. Our MR analyses identified evidence that changes in ADCY3 366 

expression in adipose tissues may influence BMI, whereas weaker evidence was 367 

observed based on the expression of other proximal genes (NCOA1). Specifically, we 368 

found that the magnitude of the effect for ADCY3 expression was observed most strongly 369 

in adipose tissue, aligning with other research [50,51]. Furthermore, recent work has 370 

uncovered a variant in ADCY3 associated with an increase in obesity levels [52]. In 371 

contrast, moloc showed a lack of evidence of colocalization for NCOA1 expression. 372 

Moreover, although the CENPO gene was evaluated as part of our original association 373 

analysis, there were no eQTL for this gene for any of the tissues we analyzed. From this, 374 

we believe that ADCY3 is likely the functional gene impacting BMI at this locus, although 375 

only with in-depth follow up analyses can this be determined with confidence. Our 376 

additional analysis indicated no tissue-specific effects using eQTL effect estimates 377 

derived from brain tissue, which suggests that the influence of ADCY3 expression on BMI 378 

levels may be confined to adipose tissue. However, extended analyses using molecular 379 

data derived from brain tissue is necessary to confirm this, particularly given that previous 380 

work has linked gene expression in brain tissue with obesity-related traits [50,53]. 381 
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 382 

We also identified evidence of colocalization for gene expression, DNA methylation and 383 

complex trait variation at the cholestrol associated region on chromosome 11. This was 384 

observed for TMEM258 expression in whole blood, although FADS1 narrowly missed the 385 

0.8 cut-off (PPA = 0.77). This was based on DNA methylation levels at a CpG site located 386 

in the promoter region of FADS1 (cg19610905). This effect was observed using data from 387 

whole blood (which is the only tissue we had accessible DNA methylation for in this study), 388 

which is potentially acting as a proxy for the true causal/relevant tissue type for this effect 389 

[18]. However, there was no indication that methylation played a role in the expression of 390 

FADS2. TMEM258 has been proposed as a regulatory site for cholesterol in ‘abdominal 391 

fat’ previously [54]. Interestingly, our MR analyses identified a single hit for this gene in 392 

adipose tissue, suggesting that TMEM258 expression is highly tissue-specific. FADS1 393 

has previously been associated with cholesterol levels in young individuals [55]. 394 

Additionally, genetic variation at this region is associated with DNA methylation levels at 395 

cg19610905 based on cord blood in ARIES, which suggests that these methylation 396 

changes may influence the expression of FADS1/TMEM258 from a very early age. 397 

Overall at this region, our results suggest that scenario 2 is a likely explanation for the 398 

association signal, where it is biologically plausible that multiple causal genes influence 399 

complex trait variation. Specifically, our analyses suggest that TMEM258 and FADS1 are 400 

potential causal genes, however, further work is needed to elucidate whether FADS2 is 401 

directly influencing cardiovascular traits or is simply co-regulated with the nearby 402 

functional loci.   403 

 404 
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The LPL locus was not subject to co-regulation/uncertainty over the likely causal gene 405 

and is therefore likely attributed to scenario 1. LPL has been previously reported to 406 

influence lipid and triglyceride levels [56–58] and there is also evidence from gene 407 

knockout experiments [59]. The tissue-specificity of LPL has also previously been 408 

explored, although not by recent studies [60]. 2SMR analyses provided robust evidence 409 

of highly specific gene expression in adipose tissue, corroborating previous research 410 

[60,61].  411 

 412 

For other regions evaluated in our study, there was evidence that multiple genes may 413 

potentially influence traits. The SORT1 locus has been previously studied in detail with 414 

regards to its effect on cholesterol levels [46,62]. Our MR analyses provided additional 415 

evidence of an effect using expression derived from liver tissue for SORT1, CELSR2 and 416 

PSRC1, as well as in pancreas tissue for SORT1 and CELSR2 only. Our subsequent 417 

moloc analysis identified evidence of colocalization for SORT1 and CELSR2 expression 418 

with cholesterol only in liver tissue, suggesting that PSRC1 could be less tissue-specific 419 

than the other 2 genes in this region. Previous research supports these observations with 420 

regards to the effects of SORT1 and CELSR2 in liver [11,63], as well as the lack of tissue-421 

specificity for the PSRC1 locus [64]. There was limited evidence that DNA methylation 422 

was affecting gene expression at this region, although future work with methylation data 423 

derived from liver tissue is warranted.  424 

This study has demonstrated the value of our systematic framework in terms of 425 

distinguishing between scenarios 1, 2, 3 and 4. However, an important limiting factor, as 426 

with any study applying single-instrument MR, is the inability to separate mediation from 427 
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horizontal pleiotropy (i.e. scenario 5). Given that trans-eQTLs likely regulate genes 428 

through a non-allele-specific mechanism [65], we selected only eQTLs that were 429 

influencing proximal genes. As more eQTL are uncovered across the genome by future 430 

studies, across a wide range of tissue and cell types, our framework should become 431 

increasingly powerful to evaluate all 5 outlined scenarios. 432 

 433 

In terms of limitations in this study, we recognise the varying sample sizes between 434 

tissues in GTEx will determine the relative power to detect eQTL (Additional file 1: Figure 435 

S2). Increased sample sizes in GTEx  [66] and similar endeavours will help address this 436 

limitation. Furthermore, the DNA methylation data we incorporated within our framework 437 

from the accessible resource for ARIES [45] project was only obtained in whole blood. 438 

However, in general, investigating the potential mediatory role of DNA methylation in 439 

whole blood is a limitation, as this assumes that whole blood is acting as a proxy for 440 

another, more relevant tissue type [67] . Furthermore, recent work has suggested that 441 

promoter DNA methylation may not be sufficient on its own to influence transcriptional 442 

changes [68]. Future work will need to incorporate DNA methylation data from various 443 

tissues as and when these data become available so we can better understand the role 444 

of this epigenetic process on transcriptional activity. For this purpose, a resource 445 

concerning tissue-specific DNA methylation would be extremely valuable. 446 

 447 

Another constraint of relatively modest sample sizes in GTEx is that we did not detect 448 

evidence of co-localization at some loci despite investigating the functionally relevant 449 

gene. For example, we can be reasonably certain that circulating ApoA1 levels are 450 
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influenced by the expression of APOA1. The complexity of gene regulation is often under-451 

estimated due to factors such as feedback loops, hidden confounders in expression data 452 

and regulatory activity not always being detected in relevant tissues [69]. However, we 453 

are beginning to better understand regulation across tissues [64], which should provide 454 

us with further opportunities to detect cross-tissue regulatory activity and develop our 455 

biological understanding of disease. 456 

 457 

Conclusions 458 

 We have identified a number of tissue-specific effects at several regions throughout the 459 

genome. Our results suggest that DNA methylation may also influence complex traits 460 

through gene expression pathways for observed effects on BMI and cholesterol. In-depth 461 

evaluations of the loci identified in our study should help fully understand the causal 462 

pathway to disease for these effects. Furthermore, as these genetic loci influence 463 

cardiovascular traits early in the life course, these endeavours should allow a long window 464 

of intervention for disease susceptibility. Finally, the framework outlined in this study 465 

should prove particularly valuable for future studies as increasingly large datasets 466 

concerning tissue-specific gene expression become available.  467 
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increases (R2 = 0.84). Figure adapted from the Genotype Tissue Expression Project (Aguet et al 2017). 
Figure S3. Volcano plot from our tissue-specific Mendelian randomization analysis for the Apolipoprotein 
A1 associated region (rs2727784). Outcome data from Kettunen et al (2016). Figure S4. Volcano plot 
from our tissue-specific Mendelian randomization analysis for the Apolipoprotein B associated region 
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region (rs80026582). Outcome data from Willer CJ et al (2016). Figure S9. Volcano plot from our tissue-
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(rs80026582). Outcome data from Kettunen et al (2016). 
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on chromosome 2. Table S19. Moloc results for the cholesterol associated region on chromosome 11. 
Table S20. Moloc results for the low density lipoprotein associated region on chromosome 1.  

 
 
 
 
 

468 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/298687doi: bioRxiv preprint 

https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/


29 

References  
 
1. World Health Organization. Cardiovascular Disease: Global Atlas on Cardiovascular 
Disease Prevention and Control. Geneva, Switzerland; 2012.  
2. Altshuler D, Daly MJ, Lander E. Genetic Mapping in Human Disease. Science (80- ). 
2009;322:881–8.  
3. Smith JG, Newton-Cheh C. Genome-wide association studies of late-onset 
cardiovascular disease. J. Mol. Cell. Cardiol. 2015. p. 131–41.  
4. Holmes M V., Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson CP, et al. 
Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J. 
2015;36:539–50.  
5. Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, et al. The 
effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular 
disease: meta-analysis of individual data from 27 randomised trials. Lancet [Internet]. 
2012;380:581–90. Available from: 
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3437972&tool=pmcentrez&re
ndertype=abstract%0Ahttp://www.sciencedirect.com/science/article/pii/S014067361260
3675 
6. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. 
Potential etiologic and functional implications of genome-wide association loci for 
human diseases and traits. Proc Natl Acad Sci [Internet]. 2009;106:9362–7. Available 
from: http://www.pnas.org/cgi/doi/10.1073/pnas.0903103106 
7. Edwards SL, Beesley J, French JD, Dunning M. Beyond GWASs: Illuminating the 
dark road from association to function. Am. J. Hum. Genet. 2013. p. 779–97.  
8. Joehanes R, Zhang X, Huan T, Yao C, Ying S, Nguyen QT, et al. Integrated genome-
wide analysis of expression quantitative trait loci aids interpretation of genomic 
association studies. Genome Biol [Internet]. 2017;18:16. Available from: 
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1142-6 
9. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, et al. Integrative 
approaches for large-scale transcriptome-wide association studies. Nat Genet [Internet]. 
Nature Publishing Group; 2016;48:245–52. Available from: 
http://www.nature.com/doifinder/10.1038/ng.3506 
10. Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future. 
Philos Trans R Soc Lond B Biol Sci [Internet]. 2013;368:20120362. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/23650636%5Cnhttp://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=PMC3682727%5Cnhttp://rstb.royalsocietypublishing.org/content
/368/1620/20120362 
11. Wainberg M, Sinnott-Armstrong N, Knowles D, Golan D, Ermel R, Ruusalepp A, et 
al. Vulnerabilities of transcriptome-wide association studies. bioRxiv [Internet]. 2017; 
Available from: http://biorxiv.org/content/early/2017/10/20/206961.abstract 
12. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal 
inference in epidemiological studies. Hum Mol Genet [Internet]. 2014;23:R89-98. 
Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/25064373%5Cnhttp://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=PMC4170722 
13. Davey Smith G, Ebrahim S. “Mendelian randomization”: Can genetic epidemiology 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/298687doi: bioRxiv preprint 

https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/


30 

contribute to understanding environmental determinants of disease? Int J Epidemiol. 
2003;32:1–22.  
14. Lawlor DA. Commentary: Two-sample Mendelian randomization: opportunities and 
challenges. Int J Epidemiol [Internet]. 2016;45:908–15. Available from: 
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyw127 
15. Aguet F, Ardlie KG, Cummings BB, Gelfand ET, Getz G, Hadley K, et al. Genetic 
effects on gene expression across human tissues. Nature [Internet]. 2017;550:204–13. 
Available from: http://www.nature.com/doifinder/10.1038/nature24277 
16. Giambartolomei C, Zhenli Liu J, Zhang W, Hauberg M, Shi H, Boocock J, et al. A 
Bayesian Framework for Multiple Trait Colocalization from Summary Association 
Statistics. bioRxiv [Internet]. 2017; Available from: 
http://biorxiv.org/content/early/2017/06/26/155481.abstract 
17. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, et al. Epigenome-wide 
association study of body mass index, and the adverse outcomes of adiposity. Nature 
[Internet]. 2016;541:81–6. Available from: 
http://www.nature.com/doifinder/10.1038/nature20784 
18. Qi T, Wu Y, Zeng J, Zhang F, Xue A, Jiang L, et al. Identifying gene targets for 
brain-related traits using transcriptomic and methylomic data from blood. Nat Commun. 
2018;1–26.  
19. Bonder MJ, Luijk R, Zhernakova D V., Moed M, Deelen P, Vermaat M, et al. 
Disease variants alter transcription factor levels and methylation of their binding sites. 
Nat Genet. 2017;49:131–8.  
20. Acharya CR, Owzar K, Allen AS. Mapping eQTL by leveraging multiple tissues and 
DNA methylation. BMC Bioinformatics. 2017;18.  
21. Hannon E, Dempster E, Viana J, Burrage J, Smith AR, Macdonald R, et al. An 
integrated genetic-epigenetic analysis of schizophrenia: Evidence for co-localization of 
genetic associations and differential DNA methylation. Genome Biol. 2016;17.  
22. Hodgkin J. Seven types of pleiotropy. Int. J. Dev. Biol. 1998. p. 501–5.  
23. Hong YM. Atherosclerotic cardiovascular disease beginning in childhood. Korean 
Circ. J. 2010. p. 1–9.  
24. Golding J, Pembrey M, Jones R. ALSPAC--the Avon Longitudinal Study of Parents 
and Children. I. Study methodology. Paediatr Perinat Epidemiol. 2001;15:74–87.  
25. Fraser A, Macdonald-wallis C, Tilling K, Boyd A, Golding J, Davey smith G, et al. 
Cohort profile: The avon longitudinal study of parents and children: ALSPAC mothers 
cohort. Int J Epidemiol. 2013;42:97–110.  
26. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort 
profile: The ’Children of the 90s’-The index offspring of the avon longitudinal study of 
parents and children. Int J Epidemiol. 2013;42:111–27.  
27. University of Bristol. Accessing the resource [Internet]. [cited 2018 Jan 29]. 
Available from: http://www.bristol.ac.uk/alspac/researchers/access/ 
28. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, 
Kang HM, et al. A global reference for human genetic variation. Nature [Internet]. 
2015;526:68–74. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/26432245%0Ahttp://www.pubmedcentral.nih.gov/a
rticlerender.fcgi?artid=PMC4750478 
29. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/298687doi: bioRxiv preprint 

https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/


31 

reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 
2016;48:1279–83.  
30. Warnick GR, Knopp RH, Fitzpatrick V, Branson L. Estimating low-density lipoprotein 
cholesterol by the Friedewald equation is adequate for classifying patients on the basis 
of nationally recommended cutpoints. Clin Chem. 1990;36:15–9.  
31. Falaschetti E, Hingorani AD, Jones A, Charakida M, Finer N, Whincup P, et al. 
Adiposity and cardiovascular risk factors in a large contemporary population of pre-
pubertal children. Eur Heart J. 2010;31:3063–72.  
32. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. 
Systematic identification of trans eQTLs as putative drivers of known disease 
associations. Nat Genet. 2013;45:1238–43.  
33. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et 
al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016.  
34. Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-
generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience. 
2015;4.  
35. Purcell S, Chang C. PLINK 1.9 [Internet]. 2015 [cited 2018 Jan 9]. Available from: 
www.cog-genomics.org/plink/1.9/ 
36. Turner SD. qqman: an R package for visualizing GWAS results using Q-Q and 
manhattan plots [Internet]. bioRxiv. 2014. Available from: 
http://biorxiv.org/lookup/doi/10.1101/005165 
37. Benner C, Spencer CCA, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. 
FINEMAP: Efficient variable selection using summary data from genome-wide 
association studies. Bioinformatics. 2016;32:1493–501.  
38. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators 
for Mendelian randomization. Stat. Methods Med. Res. 2017.  
39. Kettunen J, Demirkan A, Würtz P, Draisma HHM, Haller T, Rawal R, et al. Genome-
wide study for circulating metabolites identifies 62 loci and reveals novel systemic 
effects of LPA. Nat Commun. 2016;7.  
40. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. 
Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–
85.  
41. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. Genome-wide 
genetic data on ~500,000 UK Biobank participants. bioRxiv [Internet]. 2017; Available 
from: http://biorxiv.org/content/early/2017/07/20/166298.abstract 
42. Hemani G, Zheng J, Wade KH, Laurin C, Elsworth B, Burgess S, et al. MR-Base: a 
platform for systematic causal inference across the phenome using billions of genetic 
associations. bioRxiv [Internet]. 2016;078972. Available from: 
https://www.biorxiv.org/content/early/2016/12/16/078972 
43. Wickham H. ggplot2 Elegant Graphics for Data Analysis [Internet]. Media. 2009. 
Available from: http://had.co.nz/ggplot2/book 
44. Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between 
imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13.  
45. Relton CL, Gaunt T, McArdle W, Ho K, Duggirala A, Shihab H, et al. Data resource 
profile: Accessible resource for integrated epigenomic studies (ARIES). Int J Epidemiol. 
2015;44:1181–90.  

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/298687doi: bioRxiv preprint 

https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/


32 

46. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs K V., et al. 
From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 
2010;466:714–9.  
47. Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and 
interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48:709–
17.  
48. Stergiakouli E, Gaillard R, Tavaré JM, Balthasar N, Loos RJ, Taal HR, et al. 
Genome-wide association study of height-adjusted BMI in childhood identifies functional 
variant in ADCY3. Obesity. 2014;22:2252–9.  
49. Namjou B, Keddache M, Marsolo K, Wagner M, Lingren T, Cobb B, et al. EMR-
linked GWAS study: Investigation of variation landscape of loci for body mass index in 
children. Front Genet. 2013;4.  
50. Hao R-H, Yang T-L, Rong Y, Yao S, Dong S-S, Chen H, et al. Gene expression 
profiles indicate tissue-specific obesity regulation changes and strong obesity relevant 
tissues. Int J Obes [Internet]. 2018;1–7. Available from: 
http://www.nature.com/doifinder/10.1038/ijo.2017.283 
51. Vink RG, Roumans NJ, Fazelzadeh P, Tareen SH, Boekschoten M V, van Baak MA, 
et al. Adipose tissue gene expression is differentially regulated with different rates of 
weight loss in overweight and obese humans. Int J Obes [Internet]. 2017;41:309–16. 
Available from: https://www.ncbi.nlm.nih.gov/pubmed/27840413 
52. Grarup N, Moltke I, Andersen MK, Dalby M, Vitting-Seerup K, Kern T, et al. Loss-of-
function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat Genet. 
2018;  
53. Samad F, Pandey M, Loskutoff DJ. Regulation of tissue factor gene expression in 
obesity. Blood. 2001;98:3353–8.  
54. Franzén O, Ermel R, Cohain A, Akers NK, Di Narzo A, Talukdar HA, et al. 
Cardiometabolic risk loci share downstream cis- and trans-gene regulation across 
tissues and diseases. Science (80- ). 2016;353:827–30.  
55. Dumont J, Huybrechts I, Spinneker A, Gottrand F, Grammatikaki E, Bevilacqua N, et 
al. FADS1 Genetic Variability Interacts with Dietary  -Linolenic Acid Intake to Affect 
Serum Non-HDL-Cholesterol Concentrations in European Adolescents. J Nutr [Internet]. 
2011;141:1247–53. Available from: http://jn.nutrition.org/cgi/doi/10.3945/jn.111.140392 
56. Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma 
triglycerides. J Lipid Res [Internet]. 2011;52:189–206. Available from: 
http://www.jlr.org/lookup/doi/10.1194/jlr.R009720 
57. Humphries SE, Nicaud V, Margalef J, Tiret L, Talmud PJ. Lipoprotein lipase gene 
variation is associated with a paternal history of premature coronary artery disease and 
fasting and postprandial plasma triglycerides: the European Atherosclerosis Research 
Study (EARS). Arterioscler Thromb Vasc Biol. 1998;18:526–34.  
58. Mead JR, Irvine S a, Ramji DP. Lipoprotein lipase: structure, function, regulation, 
and role in disease. J Mol Med (Berl) [Internet]. 2002;80:753–69. Available from: 
http://www.ncbi.nlm.nih.gov/pubmed/12483461 
59. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, et al. Variations in DNA 
elucidate molecular networks that cause disease. Nature. 2008;452:429–35.  
60. Ranganathan G, Ong JM, Yukht A, Saghizadeh M, Simsolo RB, Pauer A, et al. 
Tissue-specific expression of human lipoprotein lipase: Effect of the 3???-untranslated 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/298687doi: bioRxiv preprint 

https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/


33 

region on translation. J Biol Chem. 1995;270:7149–55.  
61. Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol 
Endocrinol Metab [Internet]. 2009;297:E271-88. Available from: 
http://ajpendo.physiology.org/content/297/2/E271 
62. Arvind P, Nair J, Jambunathan S, Kakkar V V., Shanker J. CELSR2-PSRC1-SORT1 
gene expression and association with coronary artery disease and plasma lipid levels in 
an Asian Indian cohort. J Cardiol. 2014;64:339–46.  
63. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al. Mapping the 
genetic architecture of gene expression in human liver. PLoS Biol. 2008;6:1020–32.  
64. Ongen H, Brown AA, Delaneau O, Panousis NI, Nica AC, Dermitzakis ET. 
Estimating the causal tissues for complex traits and diseases. Nat Genet. 
2017;49:1676–83.  
65. Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease. 
Nat. Rev. Genet. 2015. p. 197–212.  
66. Stranger BE, Brigham LE, Hasz R, Hunter M, Johns C, Johnson M, et al. Enhancing 
GTEx by bridging the gaps between genotype, gene expression, and disease. Nat. 
Genet. 2017. p. 1664–70.  
67. Teschendorff AE, Relton CL. Statistical and integrative system-level analysis of 
DNA methylation data. Nat Rev Genet [Internet]. 2017; Available from: 
http://www.nature.com/doifinder/10.1038/nrg.2017.86 
68. Ford EE, Grimmer MR, Stolzenburg S, Bogdanovic O, de Mendoza A, Farnham PJ, 
et al. Frequent lack of repressive capacity of promoter DNA methylation identified 
through genome-wide epigenomic manipulation. bioRxiv [Internet]. 2017; Available 
from: http://biorxiv.org/content/early/2017/09/20/170506.abstract 
69. Torres JM, Barbeira AN, Bonazzola R, Morris AP, Shah KP, Wheeler HE, et al. 
Integrative cross tissue analysis of gene expression identifies novel type 2 diabetes 
genes. bioRxiv [Internet]. 2017;108134. Available from: 
http://biorxiv.org/content/early/2017/02/27/108134 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2018. ; https://doi.org/10.1101/298687doi: bioRxiv preprint 

https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/


34 

Figure legends  
 
Figure 1. Explanations for observed associations between SNPs and traits. 

1) The genetic variant influences the trait, mediated by the expression of a single 
gene at a locus. 

2) The genetic variant influences the trait via multiple genes which are co-regulated 
with one another. 

3) The genetic variant influences the trait via a single gene which is co-regulated with 
other non-causal genes. 

4) The genetic variant that influences the trait is in linkage disequilibrium with another 
variant which is responsible for changes in gene expression that does not affect 
the trait. 

5) The genetic variant influences both gene expression and the trait outcome by two 
independent biological pathways (horizontal pleiotropy).  

 
 
Figure 2. Manhattan plot illustrating observed associations between eQTLs and 
cardiovascular traits in ALSPAC 
Analysed SNPs are plotted on the x-axis ordered by chromosomal position against -log10 
p values which are plotted on the y-axis. SNPs that survived the multiple testing threshold 
(1.8 x 10-7 – represented by the red horizontal line) are coloured according to their 
associated trait and annotated with potential causal gene symbols.  
 
 
Figure 3. Volcano plots illustrating tissue-specific MR results 
(a) Tissue-specific MR results for the observed effect on BMI. ADCY3 gene expression 
provided strong evidence that it influenced BMI in comparison to the NCOA1 gene. 
(b) Tissue-specific MR results for the observed effect on total cholesterol. All 3 genes 
provided strong evidence of association with total cholesterol at this region across various 
cardiovascular-specific tissue types.  
 
Figure 4. Multiple-trait colocalization analyses between cardiovascular traits and 
molecular phenotypes  
(a) Evidence of colocalization between TMEM258 expression and total cholesterol (left) 
as well as DNA methylation at cg19610905 and total cholesterol (right) using data derived 
from whole blood. 
(b) Evidence of colocalization between SORT1 expression using data derived from liver 
and total cholesterol (left). However, this evidence diminished when undertaking the same 
analysis for SORT1 expression data derived from whole blood (right).  
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