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Abstract

Background: The extent to which changes in gene expression can influence
cardiovascular disease risk across different tissue types has not yet been systematically
explored. We have developed an analytical framework that integrates tissue-specific gene
expression, Mendelian randomization and multiple-trait colocalization to develop
functional mechanistic insight into the causal pathway from genetic variant to complex
trait.

Methods: We undertook a transcriptome-wide association study in a population of young
individuals to uncover genetic variants associated with both nearby gene expression and
cardiovascular traits. Two-sample Mendelian randomization was then applied using
large-scale datasets to investigate whether changes in gene expression within certain
tissue types may influence cardiovascular trait variation. We subsequently performed
Bayesian multiple-trait colocalization to further interrogate findings and also gain insight
into whether DNA methylation, as well as gene expression, may play a role in disease
susceptibility.

Results: Eight genetic loci were associated with changes in gene expression and early
life measures of cardiovascular function. Our Mendelian randomization analysis provided
evidence of tissue-specific effects at multiple loci, of which the effects at the ADCY3 and
FADS1 loci for body mass index and cholesterol respectively were particularly insightful.
Multiple trait colocalization uncovered evidence which suggested that changes in DNA
methylation at the promoter region upstream of FADS1/TMEM258 may also play a role

in cardiovascular trait variation along with gene expression. Furthermore, colocalization
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analyses were able to uncover evidence of tissue-specificity, most prominantly between
SORT1 expression in liver tissue and cholesterol levels.

Conclusions: Disease susceptibility can be influenced by differential changes in tissue-
specific gene expression and DNA methylation. Our analytical framework should prove
valuable in elucidating mechanisms in disease, as well as helping prioritize putative
causal genes at associated loci where multiple nearby genes may be co-regulated. Future
studies which continue to uncover quantitative trait loci for molecular traits across various

tissue and cell types will further improve our capability to understand and prevent disease.

Keywords: gene expression, DNA methylation, tissue-specificity, cardiovascular

disease, Mendelian randomization, quantitative trait loci, ALSPAC
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Introduction

Despite recent efforts in research and development, cardiovascular disease still poses
one of the greatest threats to public health throughout the world, accounting for more
deaths than any other cause [1]. Since their development, genome-wide association
studies (GWAS) have identified thousands of different genetic loci associated with
complex disease traits [2]. An example of their successful application within
cardiovascular research is the identification of numerous genetic variants associated with
low density lipoprotein (LDL) cholesterol levels [3], which is a causal mediator along the
coronary heart disease progression pathway [4,5]. However, the functional and clinical
relevance for the vast majority of GWAS results are still unknown, emphasizing the
importance of developing our understanding of the causal pathway from single nucleotide

polymorphism (SNP) to disease.

A large proportion of associations detected by GWAS are located in non-coding regions
of the genome [6], suggesting that the underlying SNPs influence complex traits via
changes in gene regulation [7]. Recent efforts have incorporated messenger ribonucleic
acid (mMRNA) expression data into analyses to determine whether SNPs identified by
GWAS influence levels of gene expression (i.e. whether they are expression quantitative
trait loci [eQTL]) as well as complex traits [8]. Novel methods have integrated eQTL data
with summary association statistics from GWAS [9] to identify genes whose nearby (cis)
regulated expression is associated with traits of interest (widely defined as variants within
1 megabase (Mb) on either side of a genes transcription start site [TSS]) [10]. These types

of studies have been referred to as transcriptome-wide association studies (TWAS).
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A recent paper has highlighted some limitations that may be encountered by studies
integrating transcriptome data to infer causality [11], such as intra-tissue variability and
co-regulation amongst proximal genes, making it challenging to disentangle putative
causal genes for association signals. This exemplifies the importance of developing
methods that investigate tissue-specificity and co-regulation of association signals
detected by TWAS. Therefore, there needs to be further research into the most
appropriate manner to harness eQTL data (across multiple tissue and cell types) in order

to improve the biological interpretation of GWAS findings.

We have developed a systematic framework which can be used to evaluate five potential
scenarios that can help explain findings from TWAS (Figure 1). Firstly, we identify putative
causal genes responsible for observed association signals, by evaluating the association
between lead SNPs and proximal gene expression using eQTL data from the
Framingham Heart Study (n=5,257) [8]. We then investigate the relationship between
gene expression and complex traits at loci of interest by applying the principles of
Mendelian randomization (MR); a method which uses genetic variants associated with an
exposure as instrumental variables to infer causality among correlated traits [12,13]. A
recent development in this paradigm is two-sample MR, by which effect estimates on
exposures and outcomes are derived from two independent datasets, allowing
researchers to exploit findings from large GWAS consortia [14]. Applying this approach
can therefore be used to help infer whether changes in gene expression (our exposure)

may influence a complex trait identified by GWAS (our outcome). Furthermore, as tissue-
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specificity is fundamental in understanding causal mechanisms involving gene
expression, we have used data from the genotype tissue expression project (GTEX) [15]
in a number of tissues that could be important in cardiovascular disease susceptibility
(Additional file 2: Table S1) to try and disentangle co-regulation amongst proximal genes
(i.e. differentiating between scenarios 1, 2 and 3). We refer to this approach as tissue-
specific MR, which should prove increasingly valuable in investigating both the
determinants and consequences of changes in tissue-specific gene expression as sample

sizes increase [12].

We subsequently apply colocalization analyses [16] at each locus of interest to evaluate
whether the same underlying genetic variant is responsible for changes in both gene
expression and complex trait, or whether association signals may be a product of linkage
disequilibrium (LD) between two causal variants (scenario 4). This analysis can also
complement findings from the MR analysis, particularly given that the majority of genes
can only be instrumented with a single eQTL using GTEx data. In addition, there has been
recent interest in the impact that DNA methylation may have on cardiovascular disease
risk via modifications in gene expression [17]. Therefore, we apply multiple-trait
colocalization (moloc) [16] at each locus to simultaneously investigate whether the same
underlying genetic variant is driving the observed effect on all three traits of interest (i.e.

the cardiovascular trait, gene expression and DNA methylation).

Uncovering evidence suggesting that DNA methylation and gene expression may be

working in harmony to influence complex traits can improve the reliability of causal
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inference in this field, as it suggests there may be underlying mechanisms which are
consistent with causality (i.e. DNA methylation acting as a transcriptional repressor).
However, a major challenge in this paradigm is the lack of accessible tissue-specific DNA
methylation/mQTL data akin to GTEx for gene expression. Previous studies have
investigated the potential mediatory role of DNA methylation between genetic variant and
gene expression using eQTL and mQTL data derived from blood which may act as a
proxy for other tissue types [18—20]. Moreover, other studies have demonstrated a
surprisingly high rate of replication between mQTL derived from blood and more relevant
tissue types for a complex trait of interest [21]. We have therefore undertaken moloc
analyses using eQTL derived from both blood and cardiovascular-specific tissue types.
Finally, it is also important to note that, along with other approaches which apply causal
methods to molecular data, we are currently unable to robustly differentiate mediation
from horizontal pleiotropy (scenario 5) [12,22]. However, within this framework we will be
able to accommodate additional eQTL as instrumental variables derived from future larger

studies in order to address this.

In this study, we demonstrate the value of our framework by applying it to data from the
Avon Longitudinal Study of Parents and Children (ALSPAC) using early life measures of
cardiovascular function as outcomes. Evaluating putative causal mechanisms apparent
early in the life course can be extremely valuable for disease prevention and healthcare,
particularly given that cardiovascular disease such as atherosclerosis has been shown to
develop in childhood [23]. Therefore, we used ~19,000 cis-eQTL'’s observed in adults at

risk of cardiac events from the Framingham Heart Study [8] for our TWAS to ascertain
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93 whether they influence these cardiovascular traits in young individuals (age < 10). We
94  have further evaluated results using our framework by harnessing summary statistics
95 from large-scale GWAS to demonstrate the value of our approach and validate findings
96 inindependent samples.

97

98 Methods

99 The Avon Longitudinal Study of Parents and Children (ALSPAC)

100 Detailed information about the methods and procedures of ALSPAC is available
101 elsewhere [24-26]. In brief, ALSPAC is a prospective birth cohort study which was
102 devised to investigate the environmental and genetic factors of health and development.
103 In total, 14,541 pregnant women with an expected delivery date of April 1991 and
104 December 1992, residing in the former region of Avon, UK were eligible to take part.
105 Participants attended regular clinics where detailed information and bio-samples were
106  obtained. The study website contains details of all the data that is available through a fully
107 searchable data dictionary [27]. All procedures were ethically approved by the ALSPAC
108  ethics and Law Committee and the Local Research Ethics Committees. Written informed
109 consent was obtained from all participants.

110

111  Genetic data

112 All children were genotyped using the lllumina HumanHap550 quad genome-wide SNP
113  genotyping platform. Samples were removed if individuals were related or of non-
114  European genetic ancestry. Imputation was performed using Impute V2.2.2 against a

115 reference panel from 1000 genomes [28] phase 1 version 3 [29]. After imputation, we
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116 filtered out variants and kept those with an imputation quality score > 0.8 and minor allele
117  frequency (MAF) > 0.01.

118

119 Phenotypes

120 The methods and procedures to acquire data for the 14 phenotypes analyzed in this study
121  are as follows. All measurements were obtained at the ALSPAC clinic. Height and weight
122  were measured at age 7 (mean age: 7.5, range: 7.1-8.8). Height was measured to the
123 nearest 0.1 cm with a Harpenden stadiometer (Holtain Crosswell), and weight was
124  measured to the nearest 0.1 kg on Tanita electronic scales. Body mass index (BMI) was
125 calculated as (weight [kg]/(height[m]?). Non-fasting blood samples were taken at age 10
126 (mean age: 9.9, range: 8.9-11.5). The methods on the assays performed on these
127 samples which included total cholesterol, high-density lipoprotein cholesterol, LDL
128 cholesterol (calculated using the Friedewald equation [30]), very low density lipoprotein
129  (VLDL) cholesterol, triglycerides, Apolipoprotein A1 (ApoAl), Apolipoprotein B (ApoB),
130 fasting glucose, fasting insulin, adiponectin, leptin, C-reactive protein (CRP) and
131 interleukin 6 (IL-6) have been described previously [31].

132

133 The Framingham Heart Study

134  We identified over 19,000 pruned lead cis-eQTLs from Joehanes et al [8] who provide in-
135 depth details of the Framingham Heart study and their analysis plan in their paper. Trans-
136 eQTLs were not considered for our analysis to reduce the likelihood of horizontal
137  pleiotropy influencing our findings and also to reduce the burden of multiple testing [32].

138 This eQTL data was chosen for the initial analysis in ALSPAC due to the larger sample
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139 size of transcriptome data from the Framingham Heart Study (n=5,257) using whole blood
140 in comparison to GTEx sample sizes for other tissue types. This allowed us to maximise
141  statistical power to detect association signals which we were then subsequently able to
142  evaluate in detail using data from other tissue types.

143

144  The Genotype-Tissue Expression (GTEX) project

iig GTEXx is a unique open-access online resource with gene expression data for 449 human
147  donors (83.7% European American and 15.1% African American) across 44 tissues.
148 Sample sizes vary between tissues, thus affecting statistical power to identify eQTL. In
149  depth information on the materials and methods for GTEx is available in the latest
150 publication [15]. In short, RNA sequencing samples were sequenced to a median depth
151  of 78 million reads. This is suggested to be a credible depth to quantify accurately genes
152 that may have low expression levels [33]. DNA was genotyped at 2.2 million sites and
153 imputed to 12.5 million sites. We used GTEx eQTL data in all downstream analysis
154  following the discovery analysis in ALSPAC (i.e. Mendelian randomization and multiple-
155 trait colocalization).

156

157  Statistical analysis

158 Data from ALSPAC were initially cleaned using STATA [version 15] and outliers defined
159 as 4 standard deviations from the mean were removed. We plotted histograms to check
160 the data for normality and where necessary applied log-transformation. Using PLINK
161  [version 1.9] [34,35], we undertook an age and sex adjusted TWAS to evaluate the

162  association between cis-eQTLs known to influence gene expression and cardiovascular

10
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163 traits. We applied a Bonferroni correction to account for multiple testing which equated to
164  0.05/the total number of tests undertaken. Using a script derived from the qgman R
165 package [36], results were plotted using a Manhattan plot. We undertook fine mapping
166 across the region 1Mb either side of each lead SNP identified from our TWAS using
167 FINEMAP [37] software. We used the default setting which outputs a maximum of 5
168 putative causal variants.

169

170 Tissue-specific Mendelian randomization analysis

171  To investigate potential causal genes at association signals detected in our TWAS, we
172  applied the principles of MR using the wald method [38] (Additional File 1: Figure S1) to
173  assess whether changes in tissue-specific gene expression (eQTLs as instrumental
174  variables) may be responsible for effects on associated traits. Furthermore, it can help
175 discern whether multiple proximal genes at a region are contributing to trait variation or
176  whether they are likely just co-regulated with causal genes in accessible tissue types such
177 as whole blood, i.e. scenario 3. Firstly, for each lead eQTL from the TWAS we used
178 tissue-specific data from GTEX to discern whether they were cis-eQTL for genes in tissue
179  types which may play a role in the pathology of cardiovascular disease (P < 1 x 104). If
180 this was not possible then we used eQTL for all genes within a 1MB distance of the lead
181 eQTL. The tissue types evaluated were; adipose — subcutaneous, adipose — visceral
182  (omentum), liver, pancreas, artery — coronary, artery — aorta, heart — atrial appendage
183 and heart — left ventricle. The mean donor age for all tissues included in this analysis

184 resided in the range of 50-55 years. In addition to this, we ran an additional analysis for

11
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185 the association with BMI but investigating effects in the following brain tissues: pituitary,
186  anterior cingulate cortex (BA24) and frontal cortex (BA9).

187

188  For this analysis, we used data from large-scale GWAS; A full list of these with details
189 can be found within additional file 2 (Table S2) [39—41]. We then undertook a validation
190 analysis using our ALSPAC data. As cardiovascular trait data is therefore obtained at an
191 earlier stage in the life course compared to the tissue-specific expression data, any
192 associations detected in the validation analysis suggest genetic liability to cardiovascular
193 risk via changes in gene expression. These analyses were undertaken using the MR-
194 Base platform [42]. The only trait we were unable to assess in our analysis was
195 interleukin-6, due to the lack of GWAS summary statistics for this trait. Nonetheless, we
196 still performed MR for the IL-6 data we possessed in ALSPAC. We applied a multiple
197 testing threshold to the MR results to define significance (p<0.05/54). We plotted the
198 results from the validation analysis using volcano plots from the ggplot2 package in R
199 [43]. We also applied the Stieger directionality test [44] to discern whether our exposure
200 (i.e. gene expression) was influencing our outcome (i.e. our complex trait) as opposed to
201  the opposite direction of effect.

202

203  Multiple-trait colocalization (moloc)

204 Blood samples were obtained from 1,018 ALSPAC mothers as part of the accessible
205 resource for integrated epigenomics studies (ARIES) [45] from the ‘Focus on Mothers 1’
206  time point (mean age = 47.5). Epigenome-wide DNA methylation was derived from these

207  samples using the Illlumina HumanMethylation450 (450K) BeadChip array. From this

12
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208 data, we obtained effect estimates for all genetic variants within a 1MB distance of lead
209 eQTL from the TWAS and proximal CpG sites (again defined as < 1MB). We then used

210 the moloc [16] method to investigate 2 questions:

211 1) Is the same underlying genetic variant influencing changes in both proximal gene

212  expression and cardiovascular trait (i.e. investigating scenario 4)

213  2) Does the genetic variant responsible for these changes also appear to influence
214  proximal DNA methylation levels, suggesting that changes in this molecular trait may also

215 play a role along the causal pathway to disease.

216  As such, at each locus we applied moloc using genetic effects on 2 different molecular
217  phenotypes (gene expression and DNA methylation (referred to as eQTL and mQTL
218 respectively) along with the associated cardiovascular trait from our GWAS summary
219  statistics. Since we included three traits (i.e. gene expression, DNA methylation and
220 cardiovascular trait), moloc computed 15 possible configurations of how the traits are
221  shared: detailed information on how these are calculated can be found in the original
222  moloc paper [16]. For each independent trait-associated locus, we extracted effect
223  estimates for all variants within 1MB distance of the lead TWAS hit, for all molecular
224  phenotypes and relevant cardiovascular GWAS traits. We subsequently applied moloc in
225 agene-centric manner, by mapping CpG sites to genes based on the 1MB regions either
226  side of our TWAS hit. Moloc was subsequently applied to all gene-CpG combinations
227  within each region of interest. We ran this analysis twice, once using expression data from
228 whole blood and again using expression data from a tissue type which was associated

229  with the corresponding trait in the tissue-specific MR analysis (Additional file 2: Table S3).

13
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230  Only regions with at least 50 SNPs (MAF >= 5%) in common between all three datasets
231  (i.e. gene expression, DNA methylation and cardiovascular trait) were assessed by moloc
232 based on recommendations by the authors. We computed summed PPAs for all
233  scenarios where GWAS trait and gene expression colocalized. When summed PPAs
234  were >= 80%, we reported findings as evidence that genetic variation was influencing
235 cardiovascular traits via changes in gene expression. Furthermore, when summed PPAs
236 relating to DNA methylation were >=80%, there was evidence that DNA methylation may
237 also reside on the causal pathway to complex trait variation via changes in gene
238 expression. In all analyses we used prior probabilities of 1e-04, 1e-06, 1e-07 and 1e-08
239 as recommended by the developers of moloc based on their simulations [16].

240

241 Results

242 Identifying putative causal genes for measures of early life cardiovascular
243  function

244  We carried out 273,742 tests to valuate the association between previously identified cis-
245 eQTLs [8] with 14 cardiovascular traits in turn within ALSPAC (19,553 cis-eQTLs x 14
246  traits). After multiple-testing corrections, we identified 11 association signals across 8
247 unique genetic loci which provided strong evidence of association (p < 1.8 x10°
248  [Bonferroni corrected threshold: p<0.05/273,742]). These results can be found in Table 1
249 and are illustrated in Figure 2. The region near SORT1 was associated with total
250 cholesterol, LDL cholesterol and ApoB. Additionally, the LPL region was associated with

251  both triglycerides and VLDL cholesterol.

252

14
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We undertook fine-mapping 1Mb either side of the lead SNP at each locus identified in
our initial analysis to investigate which SNP(s) may be driving the observed effects of
complex traits. Posterior probability of association’s (PPA) from FINEMAP [37] suggested
that there was most likely only a single variant influencing trait variation for seven of the
eleven total loci. For the other four loci, FINEMAP suggested there may be multiple

variants influencing traits (Additional file 2: Table S4).

Table 1. Results of the TWAS between Genetic Variants Influencing Gene Expression and Cardiovascular Traits in

ALSPAC
Tag SNP Gene(s) Trait Sample Size Beta SE P-Value
rs646776 SORT1; CELSR2; Total Cholesterol 4543 -0.099 0.016 1.10 x 10°
PSRC1
rs646776 SORT1; CELSR2; LDL Cholesterol 4543 -0.110 0.015 7.74 x 1014
PSRC1
rs646776 SORT1; CELSR2; ApoB 4546 -2.695 0.328 2.66 x 1016
PSRC1
rs12129500 IL6R IL-6 4503 -0.126 0.018 4.96 x 10712
rs11693654 ADCY3; NCOAL; BMI 6387 0.200 0.036 3.57 x108
CENPO
rs80026582 LPL Triglycerides 4334 -0.101 0.018 1.49x108
rs80026582 LPL VLDL Cholesterol 4334 -0.100 0.018 1.57 x 108
rs600038 ABO IL-6 4496 -0.207 0.021 4,12 x 1022
rs174538 FADS1; FADSZ2; Total Cholesterol 4539 -0.080 0.015 5.03 x 108
TMEM258
rs2727784 APOAL; TAGLN ApoAl 4018 3.047 0.468 8.05 x 1011
rs10419998 GATAD2A; MAUZ2; ApoB 4404 -2.024 0.376 7.96 x 108
TM6SF2

Abbreviations for the column headings from left to right: single nucleotide polymorphism, gene or gene cluster associated with SNP,
associated trait, sample size for this effect, observed effect size (standard deviation), standard error of the effect size, p value for

observed effect

259

260

261

262

263

264

265

Disentangling causal mechanisms using tissue-specific Mendelian randomization
After adjustment for the number of tests performed across all tissues and complex traits
(p < 9.3x10* [p<0.05/54]), we identified 34 associations between tissue-specific gene
expression and cardiovascular traits (Additional file 2: Tables S5-S15). In the validation
analysis in ALSPAC, we observed consistent directions of effect for 30 of the

associations. The potential value of this approach in terms of disentangling causal genes

15
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266  (i.e. scenarios 2 and 3) was exemplified at the BMI associated region on chromosome 2.
267  Of the 3 cis- and potentially causal genes for this signal, only ADCY3 provided strong
268 evidence of being the putative causal gene in two types of adipose tissue (adipose
269  subcutaneous (P = 6.8 x 10%%) and adipose visceral (P = 3.1 x 10%®)) (Figure 3a). This
270  suggests that changes in ADCY 3 expression in adipose tissue could influence BMl levels.
271 In contrast, there was a lack of evidence that changes in NCOALl expression in the
272 analyzed tissue types influence BMI. We were unable to undertake MR of CENPO
273  expression in this analysis as were unable to harmonise effect estimates between
274  exposure and outcome. As an additional analysis, we repeated the MR on BMI using
275 eQTL effect estimates derived from ADCY 3 expression in brain tissue (pituitary), although
276  there was limited evidence of association (Beta (SE): 0.008 (0.006) , P: 0.177).

277

278 Figure 3b illustrates results observed at the cholesterol associated region on
279 chromosome 11. There was evidence that FADS1 expression was associated with total
280 cholesterol in 3 different tissues (adipose subcutaneous (P = 2.2 x 109, heart left
281 ventricle (P = 1.0 x 10-%) and pancreas (P = 2.2 x 10°%9)). Interestingly, the strength of
282 evidence was comparable between subcutaneous adipose and pancreas tissues despite
283 the differences in GTEx sample sizes (Pancreas: 220 & Adipose Subcutaenous: 385)
284  (Additional file 1: Figure S2). TMEM258 expression provided strong evidence of
285 association in one tissue type (adipose subcutaneous (P = 7.2 x 10734)), whereas
286  association between FADS2 expression and total cholesterol was observed in multiple
287 tissue types (adipose subcutaneous (P = 5.1 x 10'11), adipose visceral (P = 4.2 x 1020),

288 artery aorta (P = 5.8 x 10'19), heart — atrial appendage (P = 6.3 x 10°) and pancreas (P =
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289 6.3 x 10®)). The most parsimonious explanation may be that multiple genes at this locus
290 influence cholesterol levels, however further analyses are required to robustly
291 differentiate between scenarios 2 and 3 here (Figure 1).

292

293 At other loci evaluated (Additional File 1: Figure’s S3-S9), LPL showed evidence of
294  association with triglycerides in a single tissue (adipose subcutaneous (P = 9.6 x10-168))
295 implying that this effect may be more tissue-specific compared to those observed at other
296 loci in this study (Additional file 1: Figure’s S8 & S9, Additional file 2: Tables S14 & S15).
297  On chromosome 1, there was strong evidence that gene expression in liver influences
298 total cholesterol (Additional file 1: Figure S6) and LDL (Additional file 1: Figure S7) (p <
299  3.22x10'?%). However, this was observed for all three genes in the region (SORTL,
300 CELSR2 and PSRC1). In these analyses alone, we were unable to determine whether a
301 particular gene is driving this observed effect, with the other proximal genes being co-
302 regulated, or whether there are multiple causal genes for these traits (i.e. scenario 2).
303 However, evidence from the literature implicates SORT1 as the most likely causal gene
304  for this association signal [11,46]. Our MR results from ALSPAC provided evidence
305 between ABO expression and IL-6 in 4 different tissues (Additional file 2: Table S12).
306  Although, caution is required when interpreting this signal based on previous evidence
307 across a diverse range of traits [47]. Finally, to test the direction of effect at each locus
308 (i.e. are changes in gene expression causing changes in trait or vice versa), we ran a
309 causal direction test [44]. In all scenarios, the test provided evidence that gene expression
310 influences traits at these loci rather than the opposite direction of effect (Additional file 2:

311 Tables S5-S15).

312
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313 Ascertaining whether DNA methylation resides on the causal pathway to
314 disease

315 We identified evidence of colocalization (PPA = 0.8) for 7 unique genes across 5 loci
316 across various tissue types (Additional file 2: Tables S16-S20). Building upon results from
317 the tissue-specific MR analysis, we found strong evidence that ADCY3 is the functional
318 gene for the BMI associated signal on chromosome 2 (maximum PPA of 0.99 between
319 gene expression and BMI). We identified evidence of colocalization between BMI and
320 ADCY3 expression In both whole blood and subcutaneous adipose tissue. There was
321 also evidence that distributions between DNA methylation at cg04553793 (at the
322  promoter region of ADCY3) colocalized with BMI and ADCY3 expression in whole blood
323  (PPA = 0.88). However, the lead mQTL for this observed effect (rs13401333) was not
324  correlated with the lead eQTL and GWAS hit (rs6745073, r°=0.02), which suggests that
325 in-depth analysis with multiple tissue types is necessary to confirm whether DNA
326  methylation influences disease suscepbility at this locus.

327

328 There was also evidence that changes in DNA methylation at a CpG site in the promoter
329 region for FADS1 (cg19610905) colocalized with total cholesterol variation. There was
330 evidence of colocalization for all 3 traits using gene expression for TMEM258 (PPA=0.85)
331 (Figureda), where the lead GWAS variant (rs174568) and mQTL were in perfect LD
332 (rs1535, r¥71). This effect was only observed in whole blood. Evidence of colocalization
333  between all three traits using FADS1 expression narrowly missed the cut-off (PPA=0.77).
334  Finally, we found limited evidence that changes in DNA methylation at this CpG site

335 colocalized with FADS2 expression, although as with the previously evaluated locus, this

18


https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/298687; this version posted June 22, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

336 was not surprising given that cg19610905 is located downstream of FADS2. Gene
337 expression of TMEM258 in whole blood was negatively associated with DNA
338 methylation at cg19610905. The directionality test suggested that DNA methylation
339 influences TMEM258 expression at this locus rather than the opposite direction of effect
340 (P<1x1019),

341

342 We did not identify evidence in the colocalization analysis suggesting that DNA
343 methylation plays a role in trait variation at the SORT1 region. However, there was
344  evidence of tissue specificity in liver tissue which supports evidence identified in our MR
345 analysis. The first plot in Figure 4b illustrates how effects on SORT1 gene expression and
346 total cholesterol at this region colocalizes in liver tissue. In contrast, the neighbouring plot
347  depicts the same analysis but in whole blood, whereby no evidence of colocalization was
348 detected. Furthermore, we see the same tissue-specific colocalization for the effect on
349  ApoB in the same region (Additional file 2: Table S16). The CELSR2 gene showed similar
350 evidence for tissue specificity in liver, whereas PSRC1 expression colocalized with
351 GWAS traits in both whole blood and liver.

352

353 Discussion

354 In this study we have developed a framework to elucidate transcriptional mechanisms in
355 disease which can help explain the functional relevance of GWAS findings. This is
356 achieved by adapting the principles of MR to evaluating the putative effect of tissue-
357  specific gene expression on complex traits, which can be complemented with moloc and

358 harnessing large-scale summary statistics We demonstrate the value of this approach by
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359 evaluating 11 signals identified in a TWAS study undertaken in a cohort of young
360 individuals from the ALSPAC cohort. Tissue-specific analyses helped infer whether
361 individual or multiple genes were potentially responsible for observed signals at each
362 locus. Moloc suggested that changes in gene expression and proximal DNA methylation
363 may influence disease susceptibility at the FADS1 locus.

364

365 The ADCY3 locus has been reported to be associated with BMI in young individuals in
366  previous studies [48,49]. Our MR analyses identified evidence that changes in ADCY3
367 expression in adipose tissues may influence BMI, whereas weaker evidence was
368 observed based on the expression of other proximal genes (NCOAL). Specifically, we
369 found that the magnitude of the effect for ADCY3 expression was observed most strongly
370 in adipose tissue, aligning with other research [50,51]. Furthermore, recent work has
371 uncovered a variant in ADCY3 associated with an increase in obesity levels [52]. In
372  contrast, moloc showed a lack of evidence of colocalization for NCOAL1 expression.
373  Moreover, although the CENPO gene was evaluated as part of our original association
374  analysis, there were no eQTL for this gene for any of the tissues we analyzed. From this,
375 we believe that ADCY3 is likely the functional gene impacting BMI at this locus, although
376  only with in-depth follow up analyses can this be determined with confidence. Our
377 additional analysis indicated no tissue-specific effects using eQTL effect estimates
378 derived from brain tissue, which suggests that the influence of ADCY3 expression on BMI
379 levels may be confined to adipose tissue. However, extended analyses using molecular
380 data derived from brain tissue is necessary to confirm this, particularly given that previous

381 work has linked gene expression in brain tissue with obesity-related traits [50,53].
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382

383 We also identified evidence of colocalization for gene expression, DNA methylation and
384  complex trait variation at the cholestrol associated region on chromosome 11. This was
385 observed for TMEM258 expression in whole blood, although FADS1 narrowly missed the
386 0.8 cut-off (PPA =0.77). This was based on DNA methylation levels at a CpG site located
387 inthe promoter region of FADS1 (cg19610905). This effect was observed using data from
388  whole blood (which is the only tissue we had accessible DNA methylation for in this study),
389  which is potentially acting as a proxy for the true causal/relevant tissue type for this effect
390 [18]. However, there was no indication that methylation played a role in the expression of
391 FADS2. TMEM258 has been proposed as a regulatory site for cholesterol in ‘abdominal
392 fat’ previously [54]. Interestingly, our MR analyses identified a single hit for this gene in
393 adipose tissue, suggesting that TMEM258 expression is highly tissue-specific. FADS1
394 has previously been associated with cholesterol levels in young individuals [55].
395 Additionally, genetic variation at this region is associated with DNA methylation levels at
396 ¢g19610905 based on cord blood in ARIES, which suggests that these methylation
397 changes may influence the expression of FADS1/TMEM258 from a very early age.
398 Overall at this region, our results suggest that scenario 2 is a likely explanation for the
399 association signal, where it is biologically plausible that multiple causal genes influence
400 complex trait variation. Specifically, our analyses suggest that TMEM258 and FADS1 are
401 potential causal genes, however, further work is needed to elucidate whether FADS2 is
402 directly influencing cardiovascular traits or is simply co-regulated with the nearby
403  functional loci.

404
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405 The LPL locus was not subject to co-regulation/uncertainty over the likely causal gene
406 and is therefore likely attributed to scenario 1. LPL has been previously reported to
407 influence lipid and triglyceride levels [56-58] and there is also evidence from gene
408 knockout experiments [59]. The tissue-specificity of LPL has also previously been
409 explored, although not by recent studies [60]. 2SMR analyses provided robust evidence
410  of highly specific gene expression in adipose tissue, corroborating previous research
411  [60,61].

412

413  For other regions evaluated in our study, there was evidence that multiple genes may
414  potentially influence traits. The SORTL1 locus has been previously studied in detail with
415 regards to its effect on cholesterol levels [46,62]. Our MR analyses provided additional
416  evidence of an effect using expression derived from liver tissue for SORT1, CELSR2 and
417 PSRC1, as well as in pancreas tissue for SORT1 and CELSR2 only. Our subsequent
418 moloc analysis identified evidence of colocalization for SORT1 and CELSR2 expression
419  with cholesterol only in liver tissue, suggesting that PSRC1 could be less tissue-specific
420 than the other 2 genes in this region. Previous research supports these observations with
421 regards to the effects of SORT1 and CELSR2 inliver [11,63], as well as the lack of tissue-
422  specificity for the PSRC1 locus [64]. There was limited evidence that DNA methylation
423  was affecting gene expression at this region, although future work with methylation data
424 derived from liver tissue is warranted.

425 This study has demonstrated the value of our systematic framework in terms of
426  distinguishing between scenarios 1, 2, 3 and 4. However, an important limiting factor, as

427  with any study applying single-instrument MR, is the inability to separate mediation from
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428 horizontal pleiotropy (i.e. scenario 5). Given that trans-eQTLs likely regulate genes
429 through a non-allele-specific mechanism [65], we selected only eQTLs that were
430 influencing proximal genes. As more eQTL are uncovered across the genome by future
431 studies, across a wide range of tissue and cell types, our framework should become
432  increasingly powerful to evaluate all 5 outlined scenarios.

433

434 In terms of limitations in this study, we recognise the varying sample sizes between
435 tissues in GTEx will determine the relative power to detect eQTL (Additional file 1: Figure
436  S2). Increased sample sizes in GTEx [66] and similar endeavours will help address this
437 limitation. Furthermore, the DNA methylation data we incorporated within our framework
438 from the accessible resource for ARIES [45] project was only obtained in whole blood.
439 However, in general, investigating the potential mediatory role of DNA methylation in
440 whole blood is a limitation, as this assumes that whole blood is acting as a proxy for
441  another, more relevant tissue type [67] . Furthermore, recent work has suggested that
442  promoter DNA methylation may not be sufficient on its own to influence transcriptional
443  changes [68]. Future work will need to incorporate DNA methylation data from various
444  tissues as and when these data become available so we can better understand the role
445 of this epigenetic process on transcriptional activity. For this purpose, a resource
446  concerning tissue-specific DNA methylation would be extremely valuable.

447

448  Another constraint of relatively modest sample sizes in GTEX is that we did not detect
449  evidence of co-localization at some loci despite investigating the functionally relevant

450 gene. For example, we can be reasonably certain that circulating ApoAl levels are
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451 influenced by the expression of APOAL. The complexity of gene regulation is often under-
452  estimated due to factors such as feedback loops, hidden confounders in expression data
453  and regulatory activity not always being detected in relevant tissues [69]. However, we
454  are beginning to better understand regulation across tissues [64], which should provide
455  us with further opportunities to detect cross-tissue regulatory activity and develop our

456  biological understanding of disease.

457

458 Conclusions

459  We have identified a number of tissue-specific effects at several regions throughout the
460 genome. Our results suggest that DNA methylation may also influence complex traits
461 through gene expression pathways for observed effects on BMI and cholesterol. In-depth
462 evaluations of the loci identified in our study should help fully understand the causal
463 pathway to disease for these effects. Furthermore, as these genetic loci influence
464  cardiovascular traits early in the life course, these endeavours should allow a long window
465  of intervention for disease susceptibility. Finally, the framework outlined in this study
466  should prove particularly valuable for future studies as increasingly large datasets

467  concerning tissue-specific gene expression become available.
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Additional files

Additional file 1 — Supplementary figures: Figure S1. MR effect estimates are based on the Wald ratio
test, where /3 Y|Z is the coefficient of the genetic variant in the regression of the exposure (e.g. gene
expression) and 8 X|Z is the coefficient of the genetic variant in the regression of the outcome (e.g.
cardiovascular trait). Figure S2. Scatter plot illustrating how eGene discovery increases as sample size
increases (R? = 0.84). Figure adapted from the Genotype Tissue Expression Project (Aguet et al 2017).
Figure S3. Volcano plot from our tissue-specific Mendelian randomization analysis for the Apolipoprotein
Al associated region (rs2727784). Outcome data from Kettunen et al (2016). Figure S4. Volcano plot
from our tissue-specific Mendelian randomization analysis for the Apolipoprotein B associated region
(rs646776). Outcome data from Kettunen et al (2016). Figure S5. Volcano plot from our tissue-specific
Mendelian randomization analysis for the Apolipoprotein B associated region (rs10419998). Outcome
data from Kettunen et al (2016). Figure S6. Volcano plot from our tissue-specific Mendelian
randomization analysis for the cholesterol associated region (rs646776). Outcome data from Willer CJ et
al (2016). Figure S7. Volcano plot from our tissue-specific Mendelian randomization analysis for the low
density lipoprotein associated region (rs646776). Outcome data from Willer CJ et al (2016). Figure S8.
Volcano plot from our tissue-specific Mendelian randomization analysis for the triglyceride associated
region (rs80026582). Outcome data from Willer CJ et al (2016). Figure S9. Volcano plot from our tissue-
specific Mendelian randomization analysis for the very low density lipoprotein associated region
(rs80026582). Outcome data from Kettunen et al (2016).

Additional file 2 — Supplementary tables: Table S1. Tissues used for tissue-specific Mendelian
randomization. Table S2. Results of fine mapping analysis. Table S3. Tissues used for moloc analysis.
Table S4. Details on the GWAS datasets used. Table S5. Tissue-specific Mendelian Randomization results
for the Apoliporotein Al associated region on chromosome 11 (rs2727784). Table S6. Tissue-specific
Mendelian randomization results for the Apolipoprotein B associated region on chromosome 1 (rs646776).
Table S7. Tissue-specific Mendelian randomization results for the Apolipoprotein B associated region on
chromosome 19 (rs10419998). Table S8. Tissue-specific Mendelian randomization results for the body
mass index associated region chromosome 2 (rs11693654). Table S9. Tissue-specific Mendelian
randomization results for the cholesterol associated region on chromosome 1 (rs646776). Table S10.
Tissue-specific Mendelian randomization results for the cholesterol associated region on chromosome 11
(rs174538). Table S11. Tissue-specific Mendelian randomization results for the interleukin-6 associated
region on chromosome 1 (rs12129500). Table S12. Tissue-specific Mendelian randomization results for
the interleukin-6 associated region on chromosome 9 (rs600038).Table S13. Tissue-specific Mendelian
randomization results for the low density lipoprotein associated region on chromosome 1 (rs646776). Table
S14. Tissue-specific Mendelian randomization results for the triglyceride associated region on chromosome
8 (rs80026582). Table S15. Tissue-specific Mendelian randomization results for the very low density
lipoprotein associated region on chromosome 8 (rs80026582). Table S16. Moloc results for the
apolipoprotein B associated region on chromosome 1. Table S17. Moloc results for the cholesterol
associated region on chromosome 1. Table S18. Moloc results for the body mass index associated region
on chromosome 2. Table S19. Moloc results for the cholesterol associated region on chromosome 11.
Table S20. Moloc results for the low density lipoprotein associated region on chromosome 1.

28


https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/298687; this version posted June 22, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

References

1. World Health Organization. Cardiovascular Disease: Global Atlas on Cardiovascular
Disease Prevention and Control. Geneva, Switzerland; 2012.

2. Altshuler D, Daly MJ, Lander E. Genetic Mapping in Human Disease. Science (80- ).
2009;322:881-8.

3. Smith JG, Newton-Cheh C. Genome-wide association studies of late-onset
cardiovascular disease. J. Mol. Cell. Cardiol. 2015. p. 131-41.

4. Holmes M V., Asselbergs FW, Palmer TM, Drenos F, Lanktree MB, Nelson CP, et al.
Mendelian randomization of blood lipids for coronary heart disease. Eur Heart J.
2015;36:539-50.

5. Mihaylova B, Emberson J, Blackwell L, Keech A, Simes J, Barnes EH, et al. The
effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular
disease: meta-analysis of individual data from 27 randomised trials. Lancet [Internet].
2012;380:581-90. Available from:
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3437972&tool=pmcentrez&re
ndertype=abstract%0Ahttp://www.sciencedirect.com/science/article/pii/S014067361260
3675

6. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al.
Potential etiologic and functional implications of genome-wide association loci for
human diseases and traits. Proc Natl Acad Sci [Internet]. 2009;106:9362—7. Available
from: http://www.pnas.org/cgi/doi/10.1073/pnas.0903103106

7. Edwards SL, Beesley J, French JD, Dunning M. Beyond GWASSs: llluminating the
dark road from association to function. Am. J. Hum. Genet. 2013. p. 779-97.

8. Joehanes R, Zhang X, Huan T, Yao C, Ying S, Nguyen QT, et al. Integrated genome-
wide analysis of expression quantitative trait loci aids interpretation of genomic
association studies. Genome Biol [Internet]. 2017;18:16. Available from:
http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1142-6

9. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, et al. Integrative
approaches for large-scale transcriptome-wide association studies. Nat Genet [Internet].
Nature Publishing Group; 2016;48:245-52. Available from:
http://www.nature.com/doifinder/10.1038/ng.3506

10. Nica AC, Dermitzakis ET. Expression quantitative trait loci: present and future.
Philos Trans R Soc Lond B Biol Sci [Internet]. 2013;368:20120362. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/23650636%5Cnhttp://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=PMC3682727%5Cnhttp://rstb.royalsocietypublishing.org/content
/368/1620/20120362

11. Wainberg M, Sinnott-Armstrong N, Knowles D, Golan D, Ermel R, Ruusalepp A, et
al. Vulnerabilities of transcriptome-wide association studies. bioRxiv [Internet]. 2017,
Available from: http://biorxiv.org/content/early/2017/10/20/206961.abstract

12. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal
inference in epidemiological studies. Hum Mol Genet [Internet]. 2014;23:R89-98.
Available from:
http://www.ncbi.nlm.nih.gov/pubmed/25064373%5Cnhttp://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=PMC4170722

13. Davey Smith G, Ebrahim S. “Mendelian randomization”: Can genetic epidemiology

29


https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/298687; this version posted June 22, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

contribute to understanding environmental determinants of disease? Int J Epidemiol.
2003;32:1-22.

14. Lawlor DA. Commentary: Two-sample Mendelian randomization: opportunities and
challenges. Int J Epidemiol [Internet]. 2016;45:908-15. Available from:
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyw127

15. Aguet F, Ardlie KG, Cummings BB, Gelfand ET, Getz G, Hadley K, et al. Genetic
effects on gene expression across human tissues. Nature [Internet]. 2017;550:204-13.
Available from: http://www.nature.com/doifinder/10.1038/nature24277

16. Giambartolomei C, Zhenli Liu J, Zhang W, Hauberg M, Shi H, Boocock J, et al. A
Bayesian Framework for Multiple Trait Colocalization from Summary Association
Statistics. bioRxiv [Internet]. 2017; Available from:
http://biorxiv.org/content/early/2017/06/26/155481 .abstract

17. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, et al. Epigenome-wide
association study of body mass index, and the adverse outcomes of adiposity. Nature
[Internet]. 2016;541:81-6. Available from:
http://www.nature.com/doifinder/10.1038/nature20784

18. Qi T, Wu Y, Zeng J, Zhang F, Xue A, Jiang L, et al. Identifying gene targets for
brain-related traits using transcriptomic and methylomic data from blood. Nat Commun.
2018;1-26.

19. Bonder MJ, Luijk R, Zhernakova D V., Moed M, Deelen P, Vermaat M, et al.
Disease variants alter transcription factor levels and methylation of their binding sites.
Nat Genet. 2017;49:131-8.

20. Acharya CR, Owzar K, Allen AS. Mapping eQTL by leveraging multiple tissues and
DNA methylation. BMC Bioinformatics. 2017;18.

21. Hannon E, Dempster E, Viana J, Burrage J, Smith AR, Macdonald R, et al. An
integrated genetic-epigenetic analysis of schizophrenia: Evidence for co-localization of
genetic associations and differential DNA methylation. Genome Biol. 2016;17.

22. Hodgkin J. Seven types of pleiotropy. Int. J. Dev. Biol. 1998. p. 501-5.

23. Hong YM. Atherosclerotic cardiovascular disease beginning in childhood. Korean
Circ. J. 2010. p. 1-9.

24. Golding J, Pembrey M, Jones R. ALSPAC--the Avon Longitudinal Study of Parents
and Children. I. Study methodology. Paediatr Perinat Epidemiol. 2001;15:74-87.

25. Fraser A, Macdonald-wallis C, Tilling K, Boyd A, Golding J, Davey smith G, et al.
Cohort profile: The avon longitudinal study of parents and children: ALSPAC mothers
cohort. Int J Epidemiol. 2013;42:97-110.

26. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort
profile: The 'Children of the 90s’-The index offspring of the avon longitudinal study of
parents and children. Int J Epidemiol. 2013;42:111-27.

27. University of Bristol. Accessing the resource [Internet]. [cited 2018 Jan 29].
Available from: http://www.bristol.ac.uk/alspac/researchers/access/

28. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP,
Kang HM, et al. A global reference for human genetic variation. Nature [Internet].
2015;526:68—74. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/26432245%0Ahttp://www.pubmedcentral.nih.gov/a
rticlerender.fcgi?artid=PMC4750478

29. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A

30


https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/298687; this version posted June 22, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

reference panel of 64,976 haplotypes for genotype imputation. Nat Genet.
2016;48:1279-83.

30. Warnick GR, Knopp RH, Fitzpatrick V, Branson L. Estimating low-density lipoprotein
cholesterol by the Friedewald equation is adequate for classifying patients on the basis
of nationally recommended cutpoints. Clin Chem. 1990;36:15-9.

31. Falaschetti E, Hingorani AD, Jones A, Charakida M, Finer N, Whincup P, et al.
Adiposity and cardiovascular risk factors in a large contemporary population of pre-
pubertal children. Eur Heart J. 2010;31:3063-72.

32. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al.
Systematic identification of trans eQTLs as putative drivers of known disease
associations. Nat Genet. 2013;45:1238-43.

33. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et
al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016.

34. Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-
generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience.
2015;4.

35. Purcell S, Chang C. PLINK 1.9 [Internet]. 2015 [cited 2018 Jan 9]. Available from:
www.cog-genomics.org/plink/1.9/

36. Turner SD. gqgman: an R package for visualizing GWAS results using Q-Q and
manhattan plots [Internet]. bioRxiv. 2014. Available from:
http://biorxiv.org/lookup/doi/10.1101/005165

37. Benner C, Spencer CCA, Havulinna AS, Salomaa V, Ripatti S, Pirinen M.
FINEMAP: Efficient variable selection using summary data from genome-wide
association studies. Bioinformatics. 2016;32:1493-501.

38. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators
for Mendelian randomization. Stat. Methods Med. Res. 2017.

39. Kettunen J, Demirkan A, Wirtz P, Draisma HHM, Haller T, Rawal R, et al. Genome-
wide study for circulating metabolites identifies 62 loci and reveals novel systemic
effects of LPA. Nat Commun. 2016;7.

40. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al.
Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274—
85.

41. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. Genome-wide
genetic data on ~500,000 UK Biobank participants. bioRxiv [Internet]. 2017; Available
from: http://biorxiv.org/content/early/2017/07/20/166298.abstract

42. Hemani G, Zheng J, Wade KH, Laurin C, Elsworth B, Burgess S, et al. MR-Base: a
platform for systematic causal inference across the phenome using billions of genetic
associations. bioRxiv [Internet]. 2016;078972. Available from:
https://www.biorxiv.org/content/early/2016/12/16/078972

43. Wickham H. ggplot2 Elegant Graphics for Data Analysis [Internet]. Media. 2009.
Available from: http://had.co.nz/ggplot2/book

44. Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between
imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13.

45. Relton CL, Gaunt T, McArdle W, Ho K, Duggirala A, Shihab H, et al. Data resource
profile: Accessible resource for integrated epigenomic studies (ARIES). Int J Epidemiol.
2015;44:1181-90.

31


https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/298687; this version posted June 22, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

46. Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs K V., et al.
From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature.
2010;466:714-9.

47. Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, Hinds DA. Detection and
interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48:709—
17.

48. Stergiakouli E, Gaillard R, Tavaré JM, Balthasar N, Loos RJ, Taal HR, et al.
Genome-wide association study of height-adjusted BMI in childhood identifies functional
variant in ADCY3. Obesity. 2014;22:2252-9.

49. Namjou B, Keddache M, Marsolo K, Wagner M, Lingren T, Cobb B, et al. EMR-
linked GWAS study: Investigation of variation landscape of loci for body mass index in
children. Front Genet. 2013;4.

50. Hao R-H, Yang T-L, Rong Y, Yao S, Dong S-S, Chen H, et al. Gene expression
profiles indicate tissue-specific obesity regulation changes and strong obesity relevant
tissues. Int J Obes [Internet]. 2018;1-7. Available from:
http://www.nature.com/doifinder/10.1038/ijo.2017.283

51. Vink RG, Roumans NJ, Fazelzadeh P, Tareen SH, Boekschoten M V, van Baak MA,
et al. Adipose tissue gene expression is differentially regulated with different rates of
weight loss in overweight and obese humans. Int J Obes [Internet]. 2017;41:309-16.
Available from: https://www.ncbi.nim.nih.gov/pubmed/27840413

52. Grarup N, Moltke I, Andersen MK, Dalby M, Vitting-Seerup K, Kern T, et al. Loss-of-
function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat Genet.
2018;

53. Samad F, Pandey M, Loskutoff DJ. Regulation of tissue factor gene expression in
obesity. Blood. 2001;98:3353-8.

54. Franzén O, Ermel R, Cohain A, Akers NK, Di Narzo A, Talukdar HA, et al.
Cardiometabolic risk loci share downstream cis- and trans-gene regulation across
tissues and diseases. Science (80- ). 2016;353:827-30.

55. Dumont J, Huybrechts |, Spinneker A, Gottrand F, Grammatikaki E, Bevilacqua N, et
al. FADS1 Genetic Variability Interacts with Dietary -Linolenic Acid Intake to Affect
Serum Non-HDL-Cholesterol Concentrations in European Adolescents. J Nutr [Internet].
2011;141:1247-53. Available from: http://jn.nutrition.org/cgi/doi/10.3945/jn.111.140392
56. Johansen CT, Kathiresan S, Hegele RA. Genetic determinants of plasma
triglycerides. J Lipid Res [Internet]. 2011;52:189-206. Available from:
http://www.jlr.org/lookup/doi/10.1194/jlr. R009720

57. Humphries SE, Nicaud V, Margalef J, Tiret L, Talmud PJ. Lipoprotein lipase gene
variation is associated with a paternal history of premature coronary artery disease and
fasting and postprandial plasma triglycerides: the European Atherosclerosis Research
Study (EARS). Arterioscler Thromb Vasc Biol. 1998;18:526—-34.

58. Mead JR, Irvine S a, Ramji DP. Lipoprotein lipase: structure, function, regulation,
and role in disease. J Mol Med (Berl) [Internet]. 2002;80:753—-69. Available from:
http://www.ncbi.nlm.nih.gov/pubmed/12483461

59. Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, et al. Variations in DNA
elucidate molecular networks that cause disease. Nature. 2008;452:429-35.

60. Ranganathan G, Ong JM, Yukht A, Saghizadeh M, Simsolo RB, Pauer A, et al.
Tissue-specific expression of human lipoprotein lipase: Effect of the 3???-untranslated

32


https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/298687; this version posted June 22, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

region on translation. J Biol Chem. 1995;270:7149-55.

61. Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol
Endocrinol Metab [Internet]. 2009;297:E271-88. Available from:
http://ajpendo.physiology.org/content/297/2/E271

62. Arvind P, Nair J, Jambunathan S, Kakkar V V., Shanker J. CELSR2-PSRC1-SORT1
gene expression and association with coronary artery disease and plasma lipid levels in
an Asian Indian cohort. J Cardiol. 2014;64:339-46.

63. Schadt EE, Molony C, Chudin E, Hao K, Yang X, Lum PY, et al. Mapping the
genetic architecture of gene expression in human liver. PLoS Biol. 2008;6:1020-32.

64. Ongen H, Brown AA, Delaneau O, Panousis NI, Nica AC, Dermitzakis ET.
Estimating the causal tissues for complex traits and diseases. Nat Genet.
2017;49:1676-83.

65. Albert FW, Kruglyak L. The role of regulatory variation in complex traits and disease.
Nat. Rev. Genet. 2015. p. 197-212.

66. Stranger BE, Brigham LE, Hasz R, Hunter M, Johns C, Johnson M, et al. Enhancing
GTEX by bridging the gaps between genotype, gene expression, and disease. Nat.
Genet. 2017. p. 1664-70.

67. Teschendorff AE, Relton CL. Statistical and integrative system-level analysis of
DNA methylation data. Nat Rev Genet [Internet]. 2017; Available from:
http://www.nature.com/doifinder/10.1038/nrg.2017.86

68. Ford EE, Grimmer MR, Stolzenburg S, Bogdanovic O, de Mendoza A, Farnham PJ,
et al. Frequent lack of repressive capacity of promoter DNA methylation identified
through genome-wide epigenomic manipulation. bioRxiv [Internet]. 2017; Available
from: http://biorxiv.org/content/early/2017/09/20/170506.abstract

69. Torres JM, Barbeira AN, Bonazzola R, Morris AP, Shah KP, Wheeler HE, et al.
Integrative cross tissue analysis of gene expression identifies novel type 2 diabetes
genes. bioRxiv [Internet]. 2017;108134. Available from:
http://biorxiv.org/content/early/2017/02/27/108134

33


https://doi.org/10.1101/298687
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/298687; this version posted June 22, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Figure legends

Figure 1. Explanations for observed associations between SNPs and traits.

1) The genetic variant influences the trait, mediated by the expression of a single
gene at a locus.

2) The genetic variant influences the trait via multiple genes which are co-regulated
with one another.

3) The genetic variant influences the trait via a single gene which is co-regulated with
other non-causal genes.

4) The genetic variant that influences the trait is in linkage disequilibrium with another
variant which is responsible for changes in gene expression that does not affect
the trait.

5) The genetic variant influences both gene expression and the trait outcome by two
independent biological pathways (horizontal pleiotropy).

Figure 2. Manhattan plot illustrating observed associations between eQTLs and
cardiovascular traits in ALSPAC

Analysed SNPs are plotted on the x-axis ordered by chromosomal position against -log10
p values which are plotted on the y-axis. SNPs that survived the multiple testing threshold
(1.8 x 107 — represented by the red horizontal line) are coloured according to their
associated trait and annotated with potential causal gene symbols.

Figure 3. Volcano plots illustrating tissue-specific MR results

(a) Tissue-specific MR results for the observed effect on BMI. ADCY3 gene expression
provided strong evidence that it influenced BMI in comparison to the NCOA1 gene.

(b) Tissue-specific MR results for the observed effect on total cholesterol. All 3 genes
provided strong evidence of association with total cholesterol at this region across various
cardiovascular-specific tissue types.

Figure 4. Multiple-trait colocalization analyses between cardiovascular traits and
molecular phenotypes

(a) Evidence of colocalization between TMEM258 expression and total cholesterol (left)
as well as DNA methylation at cg19610905 and total cholesterol (right) using data derived
from whole blood.

(b) Evidence of colocalization between SORT1 expression using data derived from liver
and total cholesterol (left). However, this evidence diminished when undertaking the same
analysis for SORT1 expression data derived from whole blood (right).
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