

1 **Running title: The transcriptional and translational landscape of equine torovirus**

2 Hazel Stewart^{1‡}, Katherine Brown^{1‡}, Adam M. Dinan^{1¥}, Nerea Irigoyen¹, Eric J.

3 Snijder², Andrew E. Firth^{1*}

4 ¹Division of Virology, Department of Pathology, University of Cambridge, Cambridge,
5 United Kingdom.

6 ²Molecular Virology Laboratory, Department of Medical Microbiology, Leiden
7 University Medical Center, Leiden, The Netherlands.

8 [¥] Current address: Fios Genomics, Edinburgh, United Kingdom.

9 ^{*} corresponding author

10 [‡]These two authors contributed equally.

11 **Abstract**

12 The genus *Torovirus* (subfamily *Torovirinae*, family *Coronaviridae*, order *Nidovirales*)
13 encompasses a range of species that infect domestic ungulates including cattle,
14 sheep, goats, pigs and horses, causing an acute self-limiting gastroenteritis. Using the
15 prototype species equine torovirus (EToV) we performed parallel RNA sequencing
16 (RNA-seq) and ribosome profiling (Ribo-seq) to analyse the relative expression levels
17 of the known torovirus proteins and transcripts, chimaeric sequences produced via
18 discontinuous RNA synthesis (a characteristic of the nidovirus replication cycle) and
19 changes in host transcription and translation as a result of EToV infection. RNA
20 sequencing confirmed that EToV utilises a unique combination of discontinuous and
21 non-discontinuous RNA synthesis to produce its subgenomic RNAs; indeed, we
22 identified transcripts arising from both mechanisms that would result in sgRNAs
23 encoding the nucleocapsid. Our ribosome profiling analysis revealed that ribosomes
24 efficiently translate two novel CUG-initiated ORFs, located within the so-called 5'
25 UTR. We have termed the resulting proteins U1 and U2. Comparative genomic
26 analysis confirmed that these ORFs are conserved across all available torovirus

27 sequences and the inferred amino acid sequences are subject to purifying selection,
28 indicating that U1 and U2 are functionally relevant. This study provides the first high-
29 resolution analysis of transcription and translation in this neglected group of
30 livestock pathogens.

31 **Importance**

32 Toroviruses infect cattle, goats, pigs and horses worldwide and can cause
33 gastrointestinal disease. There is no treatment or vaccine and their ability to spill
34 over into humans has not been assessed. These viruses are related to important
35 human pathogens including severe acute respiratory syndrome (SARS) coronavirus
36 and they share some common features, however the mechanism that they use to
37 produce subgenomic RNA molecules differs. Here we performed deep sequencing to
38 determine how equine torovirus produces subgenomic RNAs. In doing so, we also
39 identified two previously unknown open reading frames “hidden” within the
40 genome. Together these results highlight the similarities and differences between
41 this domestic animal virus and related pathogens of humans and livestock.

42

43 **Introduction**

44 The order *Nidovirales* currently contains four families of positive-sense, single-
45 stranded RNA viruses: the *Coronaviridae*, *Arteriviridae*, *Roniviridae* and
46 *Mesoniviridae* (1). Their grouping into the one taxonomic order is based upon
47 replicase protein conservation, genome organisation and replication strategy.
48 However these viral families are nonetheless very diverse with respect to their virion
49 structure, host range, pathogenic potential and genome size.

50 The genus *Torovirus* (family *Coronaviridae*, subfamily *Torovirinae*) encompasses a
51 range of species with worldwide distribution that infect domestic ungulates including
52 cattle, goats, sheep, pigs and horses, causing an acute self-limiting gastroenteritis.
53 Approximately 55 % of cattle within the United Kingdom are seropositive for bovine
54 torovirus and this pathogen represents a significant burden to the industry (2, 3).
55 Similarly porcine torovirus is endemic in Europe and causes disease in production
56 herds (4-6). Despite this, limited research has been conducted upon these pathogens
57 and neither specific antiviral treatments nor vaccines are available. The prevalence
58 of toroviruses in non-domestic reservoirs and potential for cross-species
59 transmission has not been assessed, although they are known to undergo
60 recombination events (7). The extensive research conducted upon the related
61 coronaviruses would not necessarily be relevant in the event of an emerging
62 torovirus infection, due to the divergent nature of these viruses.

63 The genomes of *Nidovirales* are positive-sense, polycistronic RNAs. One of the
64 hallmarks of this virus order is the utilisation of an unusual transcription mechanism
65 to express the genes encoding structural and accessory proteins, which reside
66 downstream of the large replicase open reading frames (ORFs) 1a and 1b (Figure 1).
67 These proteins are typically translated from a nested set of 3' coterminal
68 subgenomic mRNAs (sg mRNAs). Although, with the exception of the smallest
69 species, these sgRNAs are structurally polycistronic, translation is normally limited to
70 the 5' ORF of each mRNA. Studies of coronaviruses and arteriviruses have revealed
71 that they produce negative-sense subgenome-sized RNAs via a mechanism of
72 "discontinuous" extension (8). This process resembles homology-assisted copy-

73 choice recombination (9) and requires the presence of multiple copies of a species-
74 specific short motif, the transcription regulatory sequence (TRS). TRS motifs are
75 located immediately upstream of the structural protein ORFs (body TRSs) and within
76 the 5' UTR (leader TRS).

77 Negative strand RNA synthesis initiates at the 3' end of the positive-sense viral
78 genome. When the RNA-dependent RNA polymerase (RdRp) has copied a TRS
79 sequence, a translocation event may occur during which the anti-TRS at the 3' end of
80 the nascent strand basepairs with the leader TRS within the 5' UTR. Transcription
81 reinitiates and continues to the 5' end of the genomic template. The resulting “anti-
82 leader” sequence that is added ranges from 55 – 92 nt in coronaviruses to ~200 nt in
83 arteriviruses. These negative-sense transcripts are therefore 5'- and 3'-coterminal
84 with the full length negative RNA strand and are identifiable as chimaeras with
85 distinct leader-body junctions. The anti-leader sequence in each of the negative-
86 sense templates then functions as a promoter, to drive synthesis of a mirror set of
87 positive-sense sgRNAs that are translated to produce the structural proteins.

88 However not all details of the mechanism outlined above are wholly conserved
89 across the *Nidovirales*. Specifically, the two sg mRNAs of roniviruses (pathogens of
90 shrimp) do not possess conserved 5' leader sequences, indicative of the lack of a
91 discontinuous step during their production (10). Despite the presence of a conserved
92 body TRS in each sg mRNA, an equivalent leader TRS is not readily identifiable in the
93 5' UTR. It may therefore be reasoned that the ronivirus body TRSs stimulate
94 termination of RNA synthesis without RdRp translocation and reinitiation.
95 Mesoniviruses (a branch of *Nidovirales* recently identified in insects) are thought to
96 produce two major sgRNAs possessing leader sequences of different lengths,
97 indicating the nidoviral mechanism for discontinuous RNA synthesis may allow two
98 very different leader/body TRS pairs to be utilised in a single viral species (11).

99 Toroviruses appear to represent a nidovirus subgroup with a remarkably flexible
100 transcription strategy: equine torovirus (EToV) possesses a leader TRS-like sequence
101 (CUUUAGA) but it is only involved in the synthesis of the mRNA used for expression
102 of the spike (S) protein gene (12). Despite similarities to the corona- and arteriviral

103 mechanism, the preceding leader sequence incorporated into this mRNA is merely 6
104 nt in length (ACGUAU). Additionally, this case is unusual in that the translocation
105 event is thought to be prompted by an RNA structure - a predicted RNA hairpin
106 upstream of the S protein gene, rather than a body TRS (12). Body TRSs are located
107 upstream of the three remaining structural protein genes, yet a non-discontinuous
108 mechanism is utilised for their production, as is the case for roniviruses. As a result,
109 the sg mRNAs for membrane (M), nucleocapsid (N) and haemagglutinin-esterase
110 (HE) do not normally possess a conserved 5' leader sequence; they each possess a
111 variable and unique extended version of the TRS at their 5' end. It is clear there is
112 significant difference between how the various *Nidovirales* families synthesise their
113 sgRNAs.

114 Here we describe the first high-resolution analysis of viral transcription during
115 infection by EToV, which is one of the few toroviruses that can be propagated in cell
116 culture (13, 14). RNA sequencing (RNA-seq) confirmed previous reports that EToV
117 utilises a unique combination of both discontinuous and non-discontinuous RNA
118 synthesis to generate its repertoire of sgRNAs. Strikingly, we also identified a small
119 proportion of chimaeric transcripts spanning from the leader to the body TRS of the
120 N protein gene, indicating that discontinuous and non-discontinuous mechanisms
121 compete in this location. We also identified numerous locations across the genome
122 where non-canonical RdRp translocation occurs, leading to a vast array of
123 (presumably mostly non-functional) chimaeric transcripts.

124 Ribosome profiling (Ribo-seq) conducted in tandem with the RNA-seq indicated
125 ribosomes were actively translating within the so-called 5' UTR. Further analysis
126 confirmed the existence of two novel ORFs in this region, which are conserved in all
127 torovirus genome sequences analysed to date. The specific function(s) of these
128 proteins will be the topic of future work. Together, these results provide an overview
129 of the transcriptional and translational events that accompany infection by this wide-
130 ranging pathogen.

131 **Results**

132 **Tandem RNA-seq and Ribo-seq of EToV infected cells.** We conducted tandem RNA-
133 seq and Ribo-seq of EToV infected equine dermal (ED) cells. Two biological replicates
134 of virus-infected and mock-infected cells were analysed, generating 25 to 53 million
135 reads per sample. For RNA-seq, 77-92 % of reads mapped to the host genome, of
136 which a mean of 1.5 % mapped to rRNA, 19 % to mRNA, 32 % to ncRNA and 47 %
137 elsewhere in the genome. For Ribo-seq, 46-60 % of reads mapped to the host
138 genome, of which a mean of 56 % mapped to rRNA, 13 % to mRNA, 4.9 % to ncRNA
139 and 26 % elsewhere in the genome (Supplementary Table 1). 1.3 % and 2.3 % of
140 reads mapped to the virus genome in the two EToV-infected RNA-seq replicates and
141 0.41 % and 0.21 % in the two virus-infected Ribo-seq replicates.

142 The viral genome was assembled *de novo* from RNA-seq reads and confirmed as
143 EToV, Berne isolate. A single 27694-nt contig was assembled representing almost the
144 entire viral genome. Only 18 nt at the 5' terminus and 300 nt at the 3' terminus of
145 this contig failed to assemble automatically; however these regions were clearly
146 covered by reads consistent with the reference sequence on inspection and so were
147 added manually to the consensus sequence. Four single nucleotide changes were
148 present in all reads but not the reference sequence compiled from previous
149 sequencing data, at positions 18078 (ORF 1b, C > U), 21429 (ORF S, A > U), 21814
150 (ORF S, C > A) and 25596 (ORF S, C > U). The full-length virus sequence has been
151 deposited in GenBank (Accession MG996765).

152 The distribution of reads on the virus genome and the phasing of these reads are
153 shown in Figure 2. There was good coverage across the viral genome for both RNA-
154 seq and Ribo-seq. The Ribo-seq/RNA-seq ratio along the genome was calculated
155 (Figure 2C) to estimate translation efficiency (note that this simple estimate is naive
156 since it does not account for the fact that the genomic RNA and different sgRNA
157 species overlap one another). Ribo-seq density, RNA-seq density and translational
158 efficiency were also calculated separately for each ORF (Figure 3), based on the
159 density of Ribo-seq reads in each ORF divided by the density of the RNA-seq reads
160 for either the same region (for subgenomic RNAs) or the region of the genome which
161 does not overlap the subgenomic RNAs (for genomic RNA). RNA-seq density was

162 adjusted based on the “decumulation” methodology described previously (15) (see
163 Materials and Methods) to account for the fact that not all of the RNA-seq density in
164 the 3' ORFs derives from transcripts from which the ORFs can be expressed. Ribo-seq
165 coverage is much higher towards the 3' end of the genome, particularly across the M
166 and N genes, reflecting the translation of abundant subgenomic RNAs in this region
167 (Figure 2, Figure 3). ORFs 1a and 1b contain a considerably lower density of Ribo-seq
168 reads. The relatively low translation efficiencies calculated for ORFs 1a and 1b may
169 be partly due to some gRNA being packaged (or destined for packaging) and
170 unavailable for translation but still contributing to the estimate of gRNA RNA-seq
171 density. ORF1a has a higher Ribo-seq density and a higher translational efficiency
172 than ORF1b, reflecting the proportion of ribosomes terminating at the ORF1a stop
173 codon and not undergoing the -1 frameshift into ORF1b (Figure 2, Figure 3). As
174 expected, RNA-seq density is similar across ORF1a and ORF1b, as both are present
175 only on the full-length genomic RNA (Figure 2). The region covering the HE ORF also
176 has low ribosomal coverage (Figure 2), which may be due to the fact that the EToV
177 HE gene is nonfunctional due to a large deletion including the canonical AUG (16). HE
178 is not shown in Figure 3 as the HE transcript is much less abundant than the
179 "upstream" M transcript which makes the decumulation procedure susceptible to
180 noise (see Irigoyen et al., 2016). Translational efficiency appears highest for the M
181 and S subgenomic RNAs. The high RNA-seq density in the 5' UTR may be indicative of
182 one or more defective interfering (DI) RNAs in the sample (see below). Ribosome
183 protected fragments (RPFs) were also identified mapping to the second half of the 5'
184 UTR, mostly in the +2/-1 frame with respect to ORF1a (Figure 2A).

185 To calculate the length distributions of host- and virus-mapped RPFs, we used reads
186 mapping within coding regions. After adaptor trimming, the majority (75 %) of Ribo-
187 seq reads were 27 – 29 nt in length, which is consistent with the expected size of
188 mammalian ribosome footprints. As expected, the distribution of read lengths for
189 RNA-seq was much broader, peaking between 60 and 70 nt (Supplementary Figure
190 1). For quality control, histograms of the 5' end positions of host mRNA Ribo-seq and
191 RNA-seq reads relative to initiation and termination codons were constructed
192 (Supplementary Figures 2, 3). This confirmed we had high quality RPFs arising from

193 host transcripts, with strong triplet periodicity (“phasing”) and very few reads
194 mapping to 3’ UTRs. As in other datasets, a ramp effect of decreased RPF density was
195 seen over a region of ~30 codons following initiation sites; but, unusually, in this
196 dataset we did not observe a density peak at the initiation site itself (cf. Irigoyen et al
197 2016). This may be due to the flash freezing without cycloheximide pretreatment
198 used for these samples, as for a later cycloheximide-treated sample this peak is
199 present (Supplementary Figure 2). Within coding sequences, the 5’ ends of the
200 majority of reads from the host (65-81 %) and virus (60-75 %) mapped to the first
201 positions of codons (Supplementary Figure 4).

202 The relative RPF density allowed us to estimate the efficiency of ribosomal
203 frameshifting in the context of virus infection. After translating ORF1a, a proportion
204 of ribosomes undergo a -1 ribosomal frameshift to translate ORF1b (17). This is
205 (presumably) required to produce a specific ratio of pp1a to pp1ab, thereby
206 controlling the ratio of RNA-synthesizing enzymes such as RdRp and helicase to other
207 components of the replicase complex, including the proteinases and trans-
208 membrane subunits encoded in ORF1a. The ORF1a/1b -1 ribosomal frameshifting
209 event is stimulated by a pseudoknot structure 3'-adjacent to the U_UUA_AAC
210 slippery heptanucleotide frameshift site. The efficiency of -1 ribosomal frameshifting
211 (measured by dividing the mean RPF density in ORF1b by the mean density in ORF1a)
212 was estimated to be 29.9 % for replicate one and 27.5 % for replicate 2, which is in
213 accordance with the rates measured previously outside of the context of virus
214 infection (20 – 30 %) (17).

215 **RNA sequencing indicates both discontinuous and non-discontinuous mechanisms**
216 **are utilised for N protein gene sgRNA synthesis.** RNA sequencing reads that did not
217 map to either the viral genome or host databases were analysed for containing
218 potential viral chimaeric junctions, indicative of leader-to-body joining during
219 discontinuous sgRNA synthesis (Figure 4). Relative abundances were calculated by
220 normalising read counts to the number of non-chimaeric reads spanning each
221 junction. Between the two replicates combined, 8330 reads were identified as
222 chimaeras, mapping to 2837 putative junction sites. Of these, 213 were considered

223 to be highly supported by the data, either due to being identified in at least 10
224 chimaeric reads or containing the full 5' leader and TRS sequence. Adjacent donor or
225 acceptor sites were then merged (see Materials and Methods), leaving 70 unique
226 junctions (Figure 4).

227 Three chimaeric junctions were identified where the first nucleotide of the
228 corresponding read mapped to the first nucleotide of the viral genome. Of these,
229 one junction was consistent with the previously characterised sgRNA produced via
230 discontinuous RNA synthesis encoding the S gene (280 reads, or 3 % of total
231 chimaeric reads) (12). These reads spanned the entire leader-body junction of the S
232 gene, possessing 14 - 18 nt of the 5' UTR (i.e. the actual 5'-derived sequence is at
233 least 14 nt, ACGUAUCUUUAGAA, comprising the so-called 6-nt leader, the leader TRS
234 CUUUAGA, and an additional A), followed by the stretch of ORF1b just upstream of
235 the S gene. A second set of transcripts containing 5' leader sequence was identified
236 by four unique reads starting with the 5' leader (ACGUAU) and TRS sequence
237 (CUUUAGA), where the remainder of the read mapped to the start of the N gene.
238 This indicates that, contrary to previous reports, low levels of discontinuous RNA
239 synthesis are used during production of the N gene negative-strand RNA. The final
240 chimaera which included the 6 nt leader was represented by three reads. These
241 reads included 44 - 46 nt of the 5' UTR (i.e., significantly more than the predicted
242 leader-TRS) followed by a sequence mapping to position 19987-19989 which is
243 within ORF1b.

244 A substantial number of additional chimaeric reads were identified, indicative of
245 non-TRS-driven cases of discontinuous RNA synthesis, although formally it is possible
246 that some of these are template-switching artefacts introduced during library
247 preparation and/or sequencing. Additionally, a large number of reads spanning from
248 the 5' UTR to either within the N protein gene or the 3' UTR were identified. Indeed,
249 the only junction represented by over 1000 reads spanned nucleotides 673 to 27649;
250 similarly the second most commonly identified junction spanned 687 to 27550 (642
251 reads). If chimaeric reads were predominantly a sequencing artefact, the abundance
252 of any particular chimaera would be approximately proportional to the product of

253 the abundances of the sequences from which the 5' and 3' ends of the chimaera are
254 derived (with some variation due to sequence-specific biases), and thus a high
255 density of chimaeras would be expected to fall entirely within the N transcript. In
256 contrast, most of the observed chimaeric reads were between N and the 5' UTR. The
257 relative paucity of reads mapping to generic locations in the ORF1ab region also
258 argues against the majority of chimaeras being simply artefactual. The 5' UTR
259 preference may be due to genome circularisation during negative-sense synthesis as
260 has been proposed for coronaviruses (18). Alternatively these may derive from
261 autonomously replicating defective interfering RNAs, rather than multiple
262 independent RNA translocation and reinitiation events. Such defective interfering
263 RNAs have been extensively analysed previously and are a common complication of
264 EToV studies (19). Consistent with the high level of 5'UTR:N chimaeric sequences,
265 there was high RNA-seq density throughout much of the 5' UTR, with the 3' extent of
266 the region of high density coinciding approximately with the region to which a large
267 number of the chimaeric 5' ends mapped (Figure 2, Figure 4).

268 **Gene expression analysis indicates multiple pathways are perturbed by EToV**
269 **infection.** The RNA-seq data were analysed to identify genes that were differentially
270 expressed between virus-infected and mock-infected ED cells. We identified 61
271 genes that were upregulated in virus-infected cells; amongst which eight gene
272 ontology (GO) terms were overrepresented, mostly related to the nucleosome or
273 immune responses (Figure 5). We found 24 genes that were downregulated in
274 infected cells, amongst which four GO terms were overrepresented, two of which
275 were related to the ribosome. We also analysed differential translational efficiency
276 (based on the RPF to mRNA ratio) between mock- and virus-infected cells. We
277 identified 22 genes that were translated more efficiently in infected cells; GO
278 analysis indicated that these genes tend to encode proteins that are involved in RNA
279 binding. Only two genes were found to be translated less efficiently in infected cells
280 compared to mock (Supplementary Table 2 and Figure 4). Note that these analyses
281 measure changes in individual genes relative to the global mean and do not inform
282 on global changes in host transcription or translation as a result of virus infection.

283 **Two additional proteins are translated from 5' CUG-initiated ORFs.** Our initial
284 dataset indicated an excess density of ribosomes translating within the +2/-1 frame
285 upstream of ORF1a and overlapping the 5' end of ORF1a (Figure 2A). To further
286 investigate this, we repeated the ribosome profiling using infected cells treated with
287 translation inhibitors prior to flash freezing (harringtonine, HAR, and/or
288 cycloheximide, CHX). HAR specifically arrests initiating ribosomes whilst allowing
289 “run-off” of elongating ribosomes; conversely CHX stalls elongating ribosomes whilst
290 allowing on-going accumulation at initiation sites. Our quality control analysis
291 confirmed the datasets were of similar quality to our previous experiment
292 (Supplementary Figures 1, 2 and 4) and mapping of the RPFs provided good coverage
293 of the EToV genome (Figure 6).

294 This Ribo-seq data confirmed translation of two ORFs located within the so-called 5'
295 UTR and overlapping the 5' end of ORF1a. We have termed these U1 (80 codons) and
296 U2 (258 codon). We predict that translation of both U1 and U2 is initiated from CUG
297 codons, as a close inspection indicated that ribosomes accumulated at these two
298 sites (Figure 7). It must be noted that pretreatment with CHX or HAR can introduce
299 artefacts into ribosome profiling data: CHX can lead to an excess of RPF density over
300 ~30 codons following initiation sites when cells are stressed (15, 20). It has also been
301 suggested that both drugs can promote upstream initiation due to scanning pre-
302 initiation complexes stacking behind ribosomes paused at canonical initiation sites
303 (21). However, the distance between the U1 CUG, the U2 CUG and the ORF1a
304 initiation site, besides observation of efficient translation of U2 downstream of the
305 ORF1a initiation site makes these artefacts unlikely to be significant confounding
306 factors in the case of U1 and U2.

307 Revisiting our first non-drug-treated dataset, we calculated the RPF densities and
308 translational efficiencies within the U1 and U2 ORFs (Figure 8). U1 has a higher
309 translational efficiency than any of the other ORFs translated from genomic RNA,
310 whereas U2 has a translational efficiency similar to that of ORF1a.

311 To assess the coding potential of U1, we calculated the ratio of non-synonymous to
312 synonymous substitutions (dN/dS), where dN/dS < 1 indicates selection against non-

313 synonymous substitutions which is a strong indicator that a sequence encodes a
314 functional protein. Application of codeml (22) to a codon alignment of eight
315 torovirus U1 nucleotide sequences resulted in a dN/dS estimate of 0.31 ± 0.08 ,
316 indicating that the U1 ORF is likely to encode a functional protein. MLOGD (23) uses
317 a principle similar to the dN/dS statistic but also accounts for conservative amino
318 acid substitutions (i.e. similar physico-chemical properties) being more probable
319 than non-conservative substitutions in biologically functional polypeptides. MLOGD
320 3-frame “sliding window” analysis of a full-genome alignment revealed a strong
321 coding signature in the known protein-coding ORFs (as expected) and also in the U1
322 ORF (Figure 9).

323 We previously predicted the existence of U2 via an analysis of coding potential and
324 synonymous site conservation across the two torovirus genomes available at that
325 time (24). Six additional torovirus genome sequences have now become available.
326 We therefore extended the bioinformatics analysis using all eight currently available
327 torovirus genome sequences (Figure 9). Since the U2 ORF overlaps ORF1a, leading to
328 constraint on dS, the dN/dS analysis is not appropriate for U2. MLOGD analysis
329 indicated that the U2 ORF has a higher coding potential than the corresponding part
330 of ORF1a (Figure 9). Overlapping genes are thought mainly to evolve through
331 “overprinting” of an ancestral gene by the *de novo* gene (25). The *de novo* gene
332 product is often an accessory protein and often disordered (26). Interestingly, the
333 fragment of pp1a encoded by the region of ORF1a that is overlapped by U2 has no
334 tblastn (27) nor HHpred (28) homologues outside of the *Torovirus* genus. Thus, it is
335 unclear which of U2 and the N-terminal domain of pp1a is ancestral. To provide
336 further comparative genomic evidence for the functionality of U2, we used synplot2
337 to assess conservation at synonymous sites in the ORF1a reading frame, since
338 overlapping functional elements are expected to place extra constraints on
339 synonymous site evolution (29). Consistent with the earlier 2-sequence analysis (24),
340 synplot2 revealed greatly enhanced ORF1a-frame synonymous-site conservation in a
341 region coinciding precisely with the conserved absence of stop codons that defines
342 the U2 ORF (Figure 9), with the mean rate of synonymous substitutions in that region
343 being 0.20 of the genome average. Summed over the 230-codon overlap region, the

344 probability that the observed level of conservation would occur by chance is $p = 6.5 \times$
345 10^{-40} .

346 Both U1 and U2 are conserved in all eight torovirus sequences with no variation in
347 length or initiation or termination position (Supplementary Figure 5). In all
348 sequences, U1 and U2 begin with a CUG codon in a strong initiation context ('A' at -3
349 for U1, and 'A' at -3 and 'G' at +4 for U2) (30). The U1 protein is predicted to contain
350 two central transmembrane domains and has a C-terminus containing many charged
351 amino acids. The U2 protein is predicted to form alternating α helix and antiparallel β
352 sheet domains, however no structural homologs were found through searches of
353 public databases (31-33). Their function(s) will be the topic of future work.

354

355 Discussion

356 **RNA-seq reveals the complexity of torovirus transcription mechanisms.** The factors
357 influencing which transcriptional mechanism is utilised for the synthesis of each
358 sgRNA during torovirus replication have not been elucidated. The EToV genome
359 contains seven occurrences of the canonical TRS motif (CUUUAGA): within the 5' UTR
360 (leader TRS), the end of U1, central ORF1a, central ORF1b, and immediately before
361 the M, HE and N ORFs (Figure 1). Consistent with experimental evidence (12), we did
362 not identify any chimaeric transcripts encompassing the body TRS of M or HE, or
363 those within ORF1b or ORF1a. It appears that these sites do not stimulate
364 interruption of negative strand RNA synthesis followed by subsequent re-pairing and
365 reinitiation. The nucleotides flanking the N, M and HE TRSs are semi-conserved
366 (Supplementary Figure 6) and it has been suggested previously that the motif
367 definition should be extended to cACN₃₋₄CUUUAGA to reflect this (34). It is likely that
368 these flanking nucleotides contribute to the degree of utilisation.

369 For the S gene, the chimaeric junction occurs within the run of uridines 3'-adjacent
370 to the hairpin (Figure S6I). Our results lend support to the hypothesis suggested
371 previously that a short conserved RNA hairpin, 174 nt upstream of the AUG start

372 codon of the EToV S protein gene, mediates discontinuous extension of negative
373 strand RNA synthesis to produce this sgRNA (12) (Supplementary Figure 6). The
374 predicted hairpin structure was not present in S gene chimaeric reads, indicating that
375 translocation may indeed be prompted by the RdRp encountering a physical block
376 after synthesising the reverse complement of the S ORF. This is in contrast to the
377 coronaviral and arteriviral mechanism, wherein RNA structures are insufficient and
378 an accompanying body TRS is required to act as a transcriptional attenuation signal,
379 prompting translocation and re-pairing of the nascent RNA. We cannot
380 unambiguously identify which nucleotides are templated before or after the
381 translocation event, as a GUUU sequence maps to genomic RNA on either side of the
382 breakpoint.

383 The leader-TRS chimaeric reads mapping to the N protein gene initially appear
384 consistent with the coronaviral and arteriviral mechanism of TRS-driven
385 discontinuous RNA synthesis. However close inspection indicated that the
386 homologous motif mediating copy-choice recombination-like translocation and re-
387 pairing of RNA strands was actually a short AGAA sequence, not the true TRS
388 (tetranucleotides underlined in Figures S6A and S6G). This would result in the
389 nascent anti-TRS mispairing with the leader TRS; two nucleotides are “skipped” once
390 reinitiation occurs. This may explain why the discontinuous mechanism is utilised so
391 rarely for this mRNA.

392 This leads to the suggestion that homology between any two sites may be sufficient
393 to induce discontinuous RNA synthesis, i.e. that provided adequate sequence
394 homology exists, the nascent RNA strand may re-pair with upstream sites within the
395 genomic RNA regardless of the presence of a predefined TRS. This is consistent with
396 the 5' UTR-ORF1b chimaeric transcripts, which again revealed a particular sequence
397 that could be templated from either region, in this case AACCUUA rather than the
398 TRS.

399 If TRS sequence-specificity is not required to stimulate EToV discontinuous RNA
400 synthesis, it is presumably constrained by alternative roles. The highly conserved
401 nature of the canonical leader, M, HE and N TRS (CUUUAG[A/U]) across all torovirus

402 genomes (Supplementary Figure 6) suggests it is not tolerant to mutations, however
403 this has not been formally confirmed. Lack of conservation of the EToV U1, ORF1a
404 and ORF1b TRS sequences is consistent with them not being functionally relevant.
405 Our results indicate this essential nature is likely due to a role in transcriptional
406 termination, as we did not identify a significant role of this motif in the generation of
407 chimaeric transcripts. Conversely, the upstream region of the “extended” TRS
408 (cACN₃₋₄CUUUAGA) is tolerant to modifications, reflecting the variable nature within
409 sequences; even when this spacer is extended to six nucleotides, transcripts are still
410 detectable at 20 % of WT levels (34). Again, this is consistent with a role in
411 termination rather than a requirement for re-pairing with upstream sequences. The
412 canonical TRS sequences also presumably contribute to subgenomic promoter
413 recognition, as the initial CAC is essential though the adenylate is the first nucleotide
414 on all positive-strand subgenomic transcripts (34). Initiation of sgRNA transcription at
415 AC dinucleotides is also found in the roniviruses (10). It may be that in these
416 *Nidovirales* families, the conserved TRS is utilised primarily for signalling
417 transcriptional termination followed by promoter recognition, and any use for
418 discontinuous RNA synthesis is merely a byproduct of RdRp promiscuity.

419 The unique combination of discontinuous and non-discontinuous mechanisms within
420 the one virus so far appears unique to the mammalian toroviruses. The one
421 bafinivirus isolated to date (white bream virus, family *Coronaviridae*, subfamily
422 *Torovirinae*, genus *Bafinivirus*) has an extended TRS sequence (CA[G/A]CACUAC)
423 which is not conserved with the mammalian toroviruses analysed in this study.
424 Bafinivirus replication produces three sgRNAs which share an identical 42-nt leader
425 also found at the far 5' terminus of the genome, indicating this species utilises
426 discontinuous RNA synthesis in a manner similar to the corona- and arteriviruses
427 (35). However there was preliminary evidence that two of the three sgRNAs exhibit
428 diversity in their junction sites, suggesting the anti-TRS may bind to multiple sites
429 within the 5' leader during strand transfer, consistent with our suggestion that whilst
430 a threshold level of homology is required this is not limited to particular primary
431 sequences. This is reflected in the fact that the bafinivirus leader-TRS is not fully
432 identical to the body TRSs.

433 It is not known which mechanism was utilised by the last common ancestor of
434 nidovirids, and thus which represents divergence from the original model. It has
435 been suggested that convergent evolution has resulted in the mechanism for
436 discontinuous negative strand synthesis arising multiple times within the *Nidovirales*.
437 Similarly, whether the initial role of the TRS motif was to merely stimulate the
438 attenuation of RNA synthesis or to direct the discontinuous mechanism is not
439 known. Our data suggests that transcription mechanisms in the *Nidovirales* fall into
440 multiple categories, each requiring a distinct role of the TRS: (i) homology-driven
441 reinitiation (canonical discontinuous RNA synthesis, as seen in coronaviruses and
442 arteriviruses and to a low extent, EToV N protein-coding mRNAs); (ii) structure-
443 driven discontinuous transcription (EToV S [protein](#) gene); and (iii) transcription
444 termination (EToV M, HE and the majority of N protein-coding transcripts). These
445 mechanisms all require a RdRp which is prone to translocating when even relatively
446 short homologous sequences are present, potentially leading to a large number of
447 irrelevant transcripts being produced (as previously observed in an arterivirus (36))
448 and also facilitating the production of defective interfering RNAs (34) and
449 recombinant strains (7).

450 **Effects upon the host: transcriptional and translational differential expression.** The
451 differential transcription analysis indicated that infection with EToV induces
452 increased transcription of multiple genes, the products of which are significantly
453 more likely than random to be involved in (i) nucleosome function and DNA binding,
454 and (ii) immune responses to infection than genes which were not differentially
455 transcribed. Some of the identified GO categories, including cytokine signalling,
456 innate immune responses and ribosome biogenesis have been identified in previous
457 RNA-seq analyses of various coronaviruses (37, 38). Similarly, although differential
458 translational analyses or proteomic studies have not been conducted upon
459 toroviruses, some of the identified proteins have been recognised as being
460 incorporated into nidovirid virions (for example, TCP-1 and multiple heat shock
461 proteins within arterivirus particles) (39). Others have been identified as being
462 upregulated upon infection with coronaviruses, such as the solute carrier family 25
463 members (40). Notably, both poly(C) and poly(A) binding proteins were

464 preferentially translated in infected cells; these have been previously identified as
465 interaction partners of arteriviral non-structural protein 1 β and contribute to viral
466 RNA replication (41). It therefore appears that torovirus infection induces a similar
467 host response to many nidovirids.

468 To the best of our knowledge, this is the first analysis of differential gene expression
469 following infection with a torovirus. It would be of interest to repeat this analysis at
470 later time points, as a previous study found that EToV-mediated global inhibition of
471 host protein synthesis was only detectable at 16 h.p.i. (38). The same study found
472 induction of both the intrinsic and extrinsic apoptotic pathways was evident only by
473 24 h.p.i. (42). It is clear that the transcriptional and translational profile of the host
474 cell may differ significantly throughout the course of infection. Additionally, it must
475 be noted that the horse (*Equus caballus*) genome is not highly annotated and thus
476 many Ensembl gene identifications do not possess an annotated orthologue, a
477 limiting factor in our analysis.

478 **What is the function of U1 and U2?** The current lack of a published reverse genetics
479 system to study torovirus replication means we are unable to perform targeted
480 mutagenesis. This would enable definitive experimental confirmation that U1 and U2
481 are translated from their respective CUG codons, followed by phenotypic analysis of
482 knock-out mutants. However the comparative genomic analysis together with the
483 accumulation of ribosomes on both CUG codons is highly suggestive of this being the
484 site of initiation; CUG has previously been reported as the most commonly utilised
485 non-AUG initiation codon in mammalian systems (43). In the case of U1, the coding
486 sequence contains no AUG codons (in any frame), a situation that would facilitate
487 pre-initiation ribosomes to continue scanning to the U2 CUG and the ORF1a AUG
488 initiation sites (44). It remains a possibility that U2 translation initiates at a
489 downstream AUG, however the only in-frame AUG is located 336 nt downstream of
490 our presumed start site and is in a poor initiation context ('C' at -3) and 3' of the
491 ORF1a AUG. We are therefore confident that the CUG codons that were identified in
492 the ribosome profiling data represent the genuine translational start sites.

493 The ORFs of both U1 and U2 are intact in all torovirus genomic sequences that we
494 have analysed to date, including bovine (45, 46), caprine and porcine isolates (47).
495 Most of the U2 ORF is constrained by the fact that the sequence must also retain
496 ORF1a coding capacity in another frame. U1 is not under such limitations, although it
497 is likely that the viral genome must maintain specific 5' UTR structures to facilitate
498 viral replication. Previous investigations utilising defective interfering RNAs have
499 confirmed that no more than the first 604 nt of the 5' UTR and the entirety of the 3'
500 UTR are sufficient to allow both positive and minus strand RNA synthesis (34); it is
501 notable that this region only includes one-third of the U1 ORF (which starts at
502 nucleotide 524) and hence only this subdomain would be constrained by maintaining
503 two distinct functional roles. We suggest that the so-called 5' UTR is actually limited
504 to 523 nt preceding the CUG of U1, and the remainder of U1 and U2 is not under
505 pressure to maintain *cis*-replication elements.

506 Neither ORF could be identified within the white bream virus genome, a bafinivirus
507 that constitutes another genus within the subfamily *Torovirinae* (35), although the
508 lack of multiple bafinivirus sequences makes comparative genomic analysis
509 impossible.

510 The function(s) of the proteins encoded by both U1 and U2 remain to be elucidated.
511 Despite the relatively large size of the U2 protein (~30 kDa), after extensive database
512 searches no structural homologs were identified. By comparison, the U1 protein is
513 small (~10 kDa), highly basic (pI = 10.4) and possesses many of the predicted features
514 of a double-spanning transmembrane protein, including two hydrophobic stretches
515 separated by a 'hinge' and a predicted coiled-coil tertiary topology. Based on
516 structural similarity to known proteins, one potential function might be a virally
517 encoded ion channel (viroporin) embedded in either intracellular or plasma
518 membranes. It is possible that U1 plays a similar role in toroviruses to that of the
519 coronaviral and arteriviral E proteins, which have no known toroviral homologue.
520 The coronavirus E protein is a small transmembrane protein (~10 kDa) which
521 possesses ion channel activity and is required for virion assembly, forming a
522 pentamer that traverses the viral envelope (48). E proteins also possess a

523 membrane-proximal palmitoylated cysteine residue, which is a predicted (and
524 conserved) posttranslational modification for U1 (31).

525 Alternatively viroporin activity may be mediated by a small, basic double-
526 transmembrane protein, the ORF of which is embedded within the EToV N gene in
527 the +1 frame (with respect to N). An analogous “N+1” protein has been identified in
528 some group II coronaviruses and is postulated to play a structural role, however it is
529 not essential for replication (49, 50). Neither our ribosome profiling nor comparative
530 genomic analysis provides evidence that this ORF is utilised in toroviruses. We did
531 not observe ribosomes translating in this frame in either the initial dataset or the
532 drug-treated samples (although Ribo-seq may not always detect poorly translated
533 overlapping genes); further, the ORF is not preserved in all torovirus genomes.

534 Our data has revealed that the transcriptional landscape of a prototypic torovirus is
535 complex and driven by many factors beyond the canonical “multi-loci TRS” model of
536 coronaviruses. The development of a torovirus reverse genetics system would allow
537 manipulation of potential translocation-inducing sequences and allow us to elucidate
538 which features of the toroviral TRS cause them to act as terminators of RNA
539 synthesis, rather than consistently inducing homology-assisted recombination. Our
540 accompanying translational analysis has revealed two conserved novel ORFs, and has
541 shortened the EToV 5' UTR to a mere 523 nt. Together these data provide an insight
542 into the molecular biology of the replication cycle of this neglected pathogen and
543 highlight the disparities between the families of the *Nidovirales*.

544 **Materials and Methods**

545 **Virus isolates.** A plaque-purified isolate of equine torovirus, Berne strain (isolate
546 P138/72) (EToV) was kindly provided by Raoul de Groot (Utrecht University) and
547 cultured in equine dermis (ED) cells. This virus was initially isolated from a
548 symptomatic horse in 1972 (13). ED cells were maintained in Dulbecco's modified
549 Eagle's medium (Invitrogen), supplemented with 10 % foetal calf serum, 100 IU/mL
550 penicillin, 100 µg/mL streptomycin, 1 mM non-essential amino acids, 25 mM HEPES
551 and 1 % L-glutamine in a humidified incubator at 37°C with 5% CO₂.

552 **RNA sequencing and ribosome profiling.** ED cells were infected with EToV for 1 hour
553 (h) in serum-free media (MOI = 0.1) and flash-frozen in liquid nitrogen at 8 h post
554 infection (h.p.i.) prior to either RNA isolation or ribosome purification for profiling.
555 Cells were either not pretreated or, where stated, were treated with a final
556 concentration of 100 µg/mL cycloheximide (CHX) for 2 minutes (Sigma-Aldrich) or 2
557 µg/mL of harringtonine for 3 minutes (LKT Laboratories) followed by CHX for 2
558 minutes, before flash-freezing. RNA and ribosomes were harvested according to
559 previously published protocols (15, 51) with minor modifications. Following either
560 RPF or RNA isolation, duplex-specific nuclease was not utilised but instead rRNA was
561 depleted with the RiboZero [human/mouse/rat] kit (Illumina). Libraries were
562 prepared and sequenced using the NextSeq500 platform (Illumina).

563 **Bioinformatic analysis of Ribo-seq and RNA-seq data.** Both Ribo-seq and RNA-seq
564 reads were demultiplexed and adaptor sequences trimmed using the FASTX-Toolkit
565 (hannonlab.cshl.edu/fastx_toolkit/). Reads shorter than 25 nt after trimming were
566 discarded. Bowtie (version 1.2.1.1) databases were generated as follows. Horse
567 ribosomal RNA (rRNA) sequences were downloaded from the National Center for
568 Biotechnology Information (NCBI) Entrez Nucleotide database (accessions
569 EU081775.1, NR_046271.1, NR_046309.2, EU554425.1, XM_014728542.1 and
570 FN402126.1) (52). As the full-length virus RNA (vRNA) reference genome was not
571 available for EToV, a reference was constructed from the following overlapping
572 segments available from Entrez Nucleotide: DQ310701.1 (positions 1-14531),
573 X52374.1 (13475-21394), X52506.1 (21250-26086), X52505.1 (26054-26850),
574 X52375.1 (26784-27316) and D00563.1 (27264-279923). Horse messenger RNA
575 (mRNA) sequences from EquCab2.0 (GCF_000002305.2) were downloaded from
576 NCBI RefSeq (53). Horse non-coding RNA (ncRNA) sequences were obtained from
577 Ensembl release 89 (54) and combined with horse transfer RNA (tRNA) sequences
578 from GtRNADB (55). Horse genomic DNA (gDNA) was obtained from Ensembl release
579 89. All horse sequences were from the EquCab2.0 genome build. Trimmed reads
580 were then mapped sequentially to the rRNA, vRNA, mRNA and ncRNA databases
581 using bowtie version 1.2.1.1 (56), with parameters -v 2 --best (i.e. maximum 2
582 mismatches, report best match), with only unmapped reads passed to each following

583 stage. Reads that did not align to any of the aforementioned databases were then
584 mapped to the host gDNA using STAR version 2.5.4a (57), again allowing a maximum
585 of 2 mismatches per alignment. Remaining reads were classified as unmapped.

586 Ribo-seq density and RNA-seq density were calculated for each gene in the EToV
587 genome (Figure 3, Figure 8). To normalise for different library sizes, reads per million
588 mapped reads (RPM) values were calculated using the sum of positive-sense virus
589 RNA reads and host RefSeq mRNA reads as the denominator. In order to standardise
590 the regions used to calculate RNA-seq and Ribo-seq density, the following regions
591 were selected: ORF1a, start codon (position 882) to 5' end of frameshift site
592 (position 14518); ORF1b, 3' end of frameshift site (position 14525) to 5' end of the S
593 gene hairpin (position 21118); all other ORFs, initiation codon to termination codon.
594 For U2, a region overlapping with ORF1a was used because only 46 bases are unique
595 to U2 and, for Figure 8, the ORF1a coordinates were updated to exclude the region
596 which overlaps with U2, giving a range from 1552 to 21394. In addition, for all ORFs,
597 only Ribo-seq reads mapping to the predominant phase (i.e. reads mapping to the
598 first positions of codons) were used, as this should greatly diminish misassignment of
599 ORF1a-translating ribosomes to U2 or *vice versa*. Reads mapping to the first five
600 codons at the 5' end of each region or the last six codons at the 3' end of each region
601 were excluded. For subgenomic RNAs, RNA-seq density was calculated for the same
602 regions as described for Ribo-seq. For the genomic RNA the regions for ORF1a and
603 ORF1b were combined into the interval from the start codon of ORF1a (position 882)
604 to the 5' end of the S gene hairpin (position 21118). Ribo-seq and RNA-seq densities
605 were calculated as the number of reads per million mapped reads for which the 5'
606 end maps to each region, divided by the length of the region in nt, multiplied by
607 1000 (i.e. RPKM). For RNA-seq, a decumulation strategy was used to subtract the
608 estimated RNA-seq density for longer overlapping genomic and subgenomic
609 transcripts that would contribute to the RNA-seq density measured for each of the 3'
610 ORFs: the genomic RNA-seq density was subtracted from all subgenomic densities,
611 and then the RNA-seq densities of overlapping "upstream" subgenomic transcripts
612 were iteratively subtracted from "downstream" regions (e.g. RNA-seq density in the
613 unique region of M was subtracted from HE, and this was subtracted from N).

614 Translation efficiency for each gene was calculated as Ribo-seq density /
615 decumulated RNA-seq density. Translational efficiencies for HE could not be
616 accurately estimated as the low expression of the HE transcript made the
617 decumulation procedure for HE susceptible to noise.

618 Read length distributions were calculated for Ribo-seq and RNA-seq reads mapping
619 to positive-sense host mRNA annotated CDSs or to the positive- or negative-sense
620 EToV genome (Supplementary Figure 1). Histograms of host mRNA Ribo-seq and
621 RNA-seq 5' end positions relative to initiation and termination codons
622 (Supplementary Figure 2, Supplementary Figure 3) were derived from reads mapping
623 to mRNAs with annotated CDSs \geq 450 nt in length and annotated 5' and 3' UTRs \geq 60
624 nt in length. Host mRNA Ribo-seq and RNA-seq phasing distributions (Supplementary
625 Figure 4) were calculated taking into account interior regions of annotated coding
626 ORFs only (specifically, reads for which the 5' end mapped between the first
627 nucleotide of the initiation codon and 30 nt 5' of the termination codon) in order to
628 exclude reads on or near initiation or termination codons. For viral genome coverage
629 plots, but not for meta-analyses of host RefSeq mRNA coverage, mapping positions
630 of RPF 5' ends were offset + 12 nt to approximate the location of the ribosomal P-
631 site (15).

632 **Analysis of viral transcripts.** The EToV (Berne isolate) genome sequence was
633 confirmed by *de novo* assembly of unmapped and vRNA reads from the infected
634 RNA-seq samples. Assembly was performed using Trinity (58) with the default
635 settings for stranded single ended (--SS_lib type "F") data. Viral contigs were
636 identified using BLASTN (27) against a database of EToV reference sequences based
637 on the NCBI records listed above. The viral contig was aligned to the reference using
638 the MAFFT L-INS-i method (59).

639 Chimaeric reads were classified as reads for which the entire read mapped uniquely
640 to the viral genome, with no mismatches, after adding a single breakpoint, with a
641 minimum of 12 nt mapping on either side of the breakpoint, at least 5 nt apart. To
642 identify such reads, all unmapped reads were split into two sub-reads at every
643 possible position \geq 12 nt from either end and these sub-reads were mapped to the

644 viral genome using bowtie with no mismatches and no multimapping permitted.
645 Transcription junctions were defined as “donor/acceptor” pairs that were either
646 supported by at least 10 chimaeric reads or contained the entire 5’ leader and TRS
647 sequence in the 5’ segment of the read. At some positions single nucleotide
648 resolution for the chimaeric break-point could not be established; where reads were
649 found to break at adjacent possible positions these positions were merged to give a
650 short region containing the breakpoint. The number of non-chimaeric reads spanning
651 each donor and acceptor site was calculated as the number of reads which
652 overlapped the site by at least 12 nt in either direction (as chimaeric reads
653 overlapping the site by < 12 nt are not detectable). The proportion of chimaeric
654 reads at each “donor” or “acceptor” site is therefore the number of chimaeric reads
655 with a breakpoint at the site divided by this number plus the number of non-
656 chimaeric reads spanning the site (Figure 4B).

657 To visualise TRS conservation, multiple sequence alignments were generated using
658 Clustal Omega with default parameters (60). RNA structure was predicted using RNA-
659 Alifold (61) and visualised using VARNA (62).

660 **Differential gene expression analysis.** For analysis of host differential expression
661 between non-drug treated infected and mock-infected cells, all reads which did not
662 map to rRNA or vRNA were mapped to the EquCab2.0 reference genome and
663 annotations (Ensembl release 89) using STAR (57) with a maximum of two
664 mismatches and removal of non-canonical, non-annotated splice junctions. Read
665 counts were generated using HTSeq 0.8.0 (63). For differential transcription analysis,
666 gene level counts were generated across the Ensembl release 89 EquCab2.0 gtf file,
667 filtered to include only protein-coding genes. For differential translation efficiency
668 analysis only coding regions (CDS) were considered: both RNA-seq and Ribo-seq
669 counts were generated at CDS level using intersection-strict mode, based on the
670 same annotation set. Multimapping reads were excluded from both analyses.
671 Differential transcript abundance analysis was performed using the standard DESeq2
672 (64) pipeline described in the vignette. Genes to which <10 reads mapped were
673 discarded and shrinkage of \log_2 fold changes for lowly expressed genes was

674 performed using the lfcshrink method of DESeq2. All recommended quality control
675 plots were inspected, and no major biases were identified in the data. False
676 discovery rate (FDR) values were calculated using the R fdrtool package (65). Genes
677 with a \log_2 fold change >1 and an FDR less than 0.1 were considered to be
678 differentially expressed. Gene ontology (GO) term enrichment analysis (66) was
679 performed against a background of all horse protein-coding genes in the Ensembl gtf
680 using a Fisher Exact Test and corrected for multiple testing with a Bonferroni
681 correction. GO annotations for horse genes were downloaded from BiomaRt
682 (Ensembl release 90) (67). Differential translational efficiency analysis was carried
683 out using the CDS counts table, normalised using the DESeq2 “sizeFactors”
684 technique. Similar to the differential transcription analysis, genes to which <10 reads
685 mapped were discarded. Again all recommended quality control plots for DESeq2
686 were inspected and no major biases were identified in the data. Differential
687 translation efficiency analysis was performed using Xtail (68), following the standard
688 pipeline described in the vignette. *P*-values were adjusted automatically within Xtail
689 using the Benjamini–Hochberg method. Genes with a \log_2 fold change >1 and an
690 adjusted *p*-value less than 0.1 were considered to be differentially translated. GO
691 enrichment analysis was performed as described for the differential transcript
692 abundance analysis.

693 **Comparative genomics.** The Genbank accession numbers utilised for comparative
694 genomic analysis were as follows: DQ310701.1 (Berne virus), AY427798.1 (Breda
695 virus) (45), KR527150.1 (goat torovirus), JQ860350.1 (porcine torovirus) (47),
696 KM403390.1 (porcine torovirus) (69), LT900503.1 (porcine torovirus), LC088094.1
697 (bovine torovirus) and LC088095.1 (bovine torovirus) (46). The ratio of
698 nonsynonymous to synonymous substitution rates (dN/dS) was estimated using the
699 codeml program in the PAML package (22). The eight torovirus U1 nucleotide
700 sequences were translated, aligned as amino acids with MUSCLE (70), and the amino
701 acid alignment used to guide a codon-based nucleotide alignment (EMBOSS
702 trnalnalign) (71). Alignment columns with gap characters in any sequence were
703 removed, resulting in a reduction from 81 to 79 codon positions. PhyML (72) was
704 used to produce a nucleotide phylogenetic tree for the U1 alignment and, using this

705 tree topology, dN/dS was calculated with codeml. The standard deviation for the
706 codeml dN/dS value was estimated via a bootstrapping procedure, in which codon
707 columns of the alignment were randomly resampled (with replacement); 100
708 randomized alignments were generated, and their dN/dS values calculated with
709 codeml.

710 Coding potential within each reading frame was analysed using MLOGD (23) and
711 synonymous site conservation was analysed with synplot2 (29). For these analyses
712 we generated a codon-respecting alignment of the eight torovirus full-genome
713 sequences using a procedure described previously (29). In brief, each individual
714 genome sequence was aligned to a reference sequence using code2aln version 1.2
715 (73). Breda virus (GenBank accession AY427798) was used as reference, since unlike
716 Berne virus it contains an intact HE gene. Genomes were then mapped to reference
717 sequence coordinates by removing alignment positions that contained a gap
718 character in the reference sequence, and these pairwise alignments were combined
719 to give the multiple sequence alignment. This was analysed with MLOGD using a 40-
720 codon sliding window and a 5-codon step size. For each of the three reading frames,
721 within each window the null model is that the sequence is non-coding whereas the
722 alternative model is that the sequence is coding in the given reading frame.
723 Positive/negative values indicate that the sequences in the alignment are
724 likely/unlikely to be coding in the given reading frame. To assess conservation at
725 synonymous sites, the concatenated coding regions were extracted from the
726 alignment and analysed with synplot2.

727 **Data availability**

728 The sequencing data reported in this paper have been deposited in ArrayExpress
729 (<http://www.ebi.ac.uk/arrayexpress>) under the accession number E-MTAB-6656.

730 **Acknowledgements**

731 We thank Raoul de Groot and Arno van Vliet (Utrecht University) for providing the
732 virus isolates and helpful advice, and Polly Roy (London School of Hygiene and
733 Tropical Medicine) for ED cells.

734 **Funding Information**

735 This work was supported by Wellcome Trust grant [106207] and European Research
736 Council grant [646891] to A.E.F. and NWO-CW ECHO grant 711.014.004 from the
737 Netherlands Organisation for Scientific Research to E.J.S.

738 **Figure Legends**

739 **Figure 1.** Schematic of the equine torovirus genome (EToV). Open reading frames
740 (ORFs) are coloured according to their respective reading frames (pink: phase 0
741 yellow: phase -1; blue: phase +1). Polyproteins pp1a and pp1ab are translated from
742 genomic RNA, with pp1ab generated via -1 programmed ribosomal frameshifting.
743 Structural proteins are translated from a series of subgenomic RNAs. Untranslated
744 regions of subgenomic RNAs are represented by black bars. The leader transcription
745 regulatory sequence (TRS) (green) and putative body TRSs (blue) are displayed below
746 the viral genome. The frameshift site and a putative RNA hairpin involved in S sgRNA
747 synthesis are indicated above the genome.

748 **Figure 2.** Read density of (A) Ribo-seq and (B) RNA-seq reads across the viral genome
749 from EToV infected cells. Red lines represent total reads per million mapped reads at
750 each position; pink: reads in phase 0; yellow: phase -1; blue: phase +1. Densities are
751 smoothed with a 15-nt running mean filter and plotted on a $\log_{10}(1+x)$ scale.
752 Negative-sense reads (grey) are displayed below the x-axis for total reads only. Each
753 line represents a single replicate. For Ribo-seq reads, a +12 nt offset has been
754 applied to read 5' end positions to map approximate P-site positions. (C) The positive
755 sense Ribo-seq/RNA-seq ratio after applying a 100-nt running mean filter to each
756 distribution. Each line represents one of the two paired Ribo-seq and RNA-seq
757 replicates.

758 **Figure 3.** Relative gene expression levels. (A) Ribo-seq density in reads per kilobase
759 per million mapped reads (RPKM) for each ORF in the EToV genome. For each ORF,
760 only reads mapping in the predominant phase (i.e. mapping to first positions of
761 codons) were included. (B) “Decumulated” RNA-seq density in RPKM for each ORF.
762 For subgenomic RNAs, density was calculated across the regions used for Ribo-seq in
763 A; for genomic RNAs the regions for ORF1a and ORF1b were combined, as these
764 ORFs are both translated from gRNA. A decumulation strategy was used to correct
765 for the fact that the measured RNA density in 3' ORFs derives from multiple 3'-
766 coterminous transcripts (see Materials and Methods). (C) Translation efficiency for
767 each gene in the EToV genome, calculated as Ribo-seq density / decumulated RNA-
768 seq density. For each ORF, the two bars represent two repeats.

769 **Figure 4.** Analysis of chimaeric viral reads. (A) Sashimi plot showing junctions in the
770 EToV genome across which chimaeric RNA-seq reads were identified in EToV
771 infected, non-drug treated samples. Chimaeric reads were defined as reads for which
772 the intact read could not be mapped but for which the 5' and 3' ends could be
773 uniquely mapped to non-contiguous regions of the EToV genome. Junctions that
774 were either covered by at least 10 chimaeric reads (grey) and/or for which the 5'
775 section of the read contained the full 5' leader sequence and leader TRS (red) were
776 identified and adjacent positions merged. These junctions are shown as curved lines
777 connecting the position of the 3' end of the 5' mapped segment of the read and the
778 5' end of the 3' mapped segment of the read. The apical height of each curved line
779 shows the absolute number of reads spanning this junction on a $\log_{10}(1+x)$ scale. (B)
780 Inverted bar chart showing, for the 5' (orange) and 3' (blue) breakpoints for each
781 junction, the number of chimaeric reads as a fraction of the total number of
782 chimaeric and non-chimaeric reads at each site.

783 **Figure 5.** Volcano plots showing the results of (A) differential transcription analysis
784 performed using DESeq2 (64) and (B) differential translation efficiency analysis
785 performed using Xtail (68), between cells infected with EToV (infected) and
786 uninfected cells (mock). Genes which were expressed at significantly higher levels
787 (FDR ≤ 0.05 and absolute $\log_2(\text{fold change}) \geq 1$) in infected cells are highlighted in

788 pink (transcription, A) and blue (translational efficiency, B). Genes which were
789 expressed at significantly higher levels in mock infected cells are highlighted in green
790 (transcription, A) and orange (translational efficiency, B). The five most significant
791 genes in each category are labelled with the gene symbol where available and
792 otherwise with the Ensembl gene ID. (C) Absolute \log_2 (fold change) for all gene
793 ontology (GO) terms which were significantly overrepresented compared to a
794 background of all horse protein-coding genes for genes significantly more
795 transcribed in infected cells (pink), genes significantly more efficiently translated in
796 infected cells (blue) and genes significantly more transcribed in mock cells (green).
797 No terms were identified for genes significantly more efficiently translated in mock
798 cells.

799 **Figure 6.** Read density of Ribo-seq reads along the viral genome for EToV infected
800 cells pretreated with (A) cycloheximide or (B) harringtonine. Red lines represent total
801 reads per million mapped reads (RPM) at each position. Densities are smoothed with
802 a 15-nt running mean filter and plotted on a $\log_{10}(1+x)$ scale. Negative-sense reads
803 (grey) are displayed below the x-axis. Each line represents a single replicate. A +12 nt
804 offset has been applied to read 5' end positions to map approximate P-site positions.

805 **Figure 7.** Read density of Ribo-seq reads across (A) U1, U2 and ORF1a; and (B) the U1
806 ORF and surrounding regions, for EToV infected cells with no drug treatment or with
807 cycloheximide or harringtonine pretreatment. Pink: reads in phase 0; yellow: phase -
808 1; blue: phase +1. Graphs show total reads per million mapped reads (RPM) at each
809 position. In (A) densities are smoothed with a 15-nt running mean filter while (B)
810 shows the RPM counts at single-nt resolution. Each plot represents a single replicate.
811 A +12 nt offset has been applied to read 5' end positions to map approximate P-site
812 positions.

813 **Figure 8.** Relative translation efficiencies for U1, U2, ORF1a and ORF1b. To reduce
814 misassignment of reads in the U2/ORF1a overlap region, for all ORFs only reads
815 mapping in the predominant phase (i.e. mapping to first positions of codons) were
816 included. Ribo-seq densities were divided by the ORF1ab RNA-seq densities for the
817 corresponding paired sample. For each ORF, the two bars represent two repeats.

818 **Figure 9.** Coding potential statistics for the torovirus genome. A map of the torovirus
819 genome is shown at top. Breda virus (AY427798.1) was used as the reference
820 genome for this analysis since EToV has a deletion in the HE gene. In Breda virus, U1
821 is in-frame with ORF1a due to a 2-nt insertion relative to EToV in the short non-
822 coding region between U1 and U2. The next four panels show an analysis of
823 synonymous site conservation in the concatenated coding ORFs (with the reading
824 frame of the longer ORF being used wherever two ORFs overlap). Red lines show the
825 probability that the degree of conservation within a given window (25- or 65-codons
826 as indicated) could be obtained under a null model of neutral evolution at
827 synonymous sites, whereas brown lines depict the absolute amount of conservation
828 as represented by the ratio of the observed number of substitutions within a given
829 window to the number expected under the null model. Greatly enhanced
830 synonymous site conservation is seen in the region of ORF1a that is overlapped by
831 the U2 ORF. The next three panels show MLOGD coding potential scores and stop
832 codon plots for each of the three reading frames. The positions of stop codons are
833 shown for each of the eight torovirus sequences mapped onto the Breda virus
834 reference sequence coordinates. Note the conserved absence of stop codons in the
835 U1 and U2 ORFs. MLOGD was applied in a 40-codon sliding-window (5-codon step
836 size). Positive scores indicate that the sequence is likely to be coding in the given
837 reading frame. Note the positive scores within the U1 and U2 ORFs besides the
838 previously known ORFs. The bottom panel (green line) indicates the total amount of
839 phylogenetic divergence contributing to the analyses at each alignment position
840 (regions containing alignment gaps have reduced summed divergence leading to
841 reduced statistical power). Pink regions in the stop codon plots (e.g. EToV sequence
842 in the HE region) indicate regions excluded from the analyses due to poor or locally
843 out-of-frame mapping to the Breda reference sequence (see Firth, 2014 for details).

844 **Supplementary Table 1.** Read counts for each sample. Too short, adaptor only, rRNA
845 forward/reverse, mRNA forward/reverse, ncRNA forward/reverse, gDNA
846 forward/reverse, and vRNA forward/reverse reads were summed to give the total
847 mapped read count. Remaining reads were classified as unmapped.

848 **Supplementary Table 2.** Gene descriptions (Ensembl gene identifiers and gene
849 symbols) for transcripts which were differentially transcribed or translated, in EToV
850 compared to mock infected cells.

851 **Supplementary Figure 1.** Comparison of read length distribution for reads mapping
852 to EToV in infected cells (orange), host mRNAs in non-infected cells (blue) and host
853 mRNAs in infected cells (red) for (A) Ribo-seq data in non-drug treated cells; (B) RNA-
854 seq data in non-drug treated cells; (C) Ribo-seq data in cycloheximide-treated cells;
855 and (D) Ribo-seq data in harringtonine-treated cells.

856 **Supplementary Figure 2.** Histograms of Ribo-seq read 5' end positions (nt) relative to
857 annotated initiation (left) and termination (right) sites, summed across all host
858 mRNAs. Bars are coloured by phase relative to the first base of the start codon (pink:
859 phase 0; blue: phase +1; yellow: phase -1). Histograms are scaled so that the
860 maximum value is 1. For clarity, the y-axis is cropped at 0.3 for non-drug treated and
861 0.1 for drug treated cells; bars which extended beyond this point are marked with an
862 asterisk (*).

863 **Supplementary Figure 3.** Histograms of RNA-seq read 5' end positions (nt) relative to
864 annotated initiation (left) and termination (right) sites, summed across all host
865 mRNAs. Bars are coloured by phase relative to the first base of the start codon (pink:
866 phase 0; blue: phase +1; yellow: phase -1). Histograms are scaled so that the
867 maximum value is 1.

868 **Supplementary Figure 4.** Phasing of the 5' ends of reads (pink: phase 0; blue: phase
869 +1; yellow: phase -1) for (A) Ribo-seq reads mapping to host mRNA coding regions,
870 (B) RNA-seq reads mapping to host mRNA coding regions, (C) Ribo-seq reads
871 mapping to virus mRNA coding regions and (D) RNA-seq reads mapping to virus
872 mRNA coding regions.

873 **Supplementary Figure 5.** Conservation of uORF1 and uORF2 in the eight publicly
874 available torovirus genomes. Individual amino acid residues are coloured according
875 to their biochemical properties.

876 **Supplementary Figure 6.** Conservation of TRSs and regulatory structures in the eight
877 publicly available torovirus genomes. Regions were selected based on the presence
878 of a putative TRS in the EToV genome. The TRS and six flanking nucleotides are
879 displayed; putative TRS nucleotides are highlighted in red. Nucleotide conservation
880 between all eight sequences is indicated by an asterisk (*). The predicted hairpin
881 structure (I) is based upon nucleotide conservation across all eight genomes. Variant
882 nucleotides are circled in either red (covariance indicates the predicted pairing may
883 occur in all but one genome) or blue (variable). R indicates a purine exists in all
884 genomes.

885

886 **References**

887

888

889 1. Lauber C, Ziebuhr J, Junglen S, Drosten C, Zirkel F, Nga PT, Morita K,
890 Snijder EJ, Gorbalyena AE. 2012. Mesoniviridae: a proposed new family in
891 the order Nidovirales formed by a single species of mosquito-borne
892 viruses. *Arch Virol* 157:1623-8.

893 2. Brown DW, Beards GM, Flewett TH. 1987. Detection of Breda virus
894 antigen and antibody in humans and animals by enzyme immunoassay. *J
895 Clin Microbiol* 25:637-40.

896 3. Hoet AE, Saif LJ. 2004. Bovine torovirus (Breda virus) revisited. *Anim
897 Health Res Rev* 5:157-71.

898 4. Hanke D, Pohlmann A, Sauter-Louis C, Hoper D, Stadler J, Ritzmann M,
899 Steinrigl A, Schwarz BA, Akimkin V, Fux R, Blome S, Beer M. 2017. Porcine
900 Epidemic Diarrhea in Europe: In-Detail Analyses of Disease Dynamics and
901 Molecular Epidemiology. *Viruses* 9.

902 5. Pignatelli J, Grau-Roma L, Jimenez M, Segales J, Rodriguez D. 2010.
903 Longitudinal serological and virological study on porcine torovirus
904 (PToV) in piglets from Spanish farms. *Vet Microbiol* 146:260-8.

905 6. Alonso-Padilla J, Pignatelli J, Simon-Grife M, Plazuelo S, Casal J, Rodriguez
906 D. 2012. Seroprevalence of porcine torovirus (PToV) in Spanish farms.
907 *BMC Res Notes* 5:675.

908 7. Smits SL, Lavazza A, Matiz K, Horzinek MC, Koopmans MP, de Groot RJ.
909 2003. Phylogenetic and evolutionary relationships among torovirus field
910 variants: evidence for multiple intertypic recombination events. *J Virol*
911 77:9567-77.

912 8. Pasternak AO, Spaan WJ, Snijder EJ. 2006. Nidovirus transcription: how to
913 make sense...? *J Gen Virol* 87:1403-21.

914 9. van Marle G, Dobbe JC, Gulyaev AP, Luytjes W, Spaan WJ, Snijder EJ. 1999.
915 Arterivirus discontinuous mRNA transcription is guided by base pairing

916 between sense and antisense transcription-regulating sequences. Proc
917 Natl Acad Sci U S A 96:12056-61.

918 10. Cowley JA, Dimmock CM, Walker PJ. 2002. Gill-associated nidovirus of
919 Penaeus monodon prawns transcribes 3'-coterminal subgenomic mRNAs
920 that do not possess 5'-leader sequences. J Gen Virol 83:927-35.

921 11. Zirkel F, Roth H, Kurth A, Drosten C, Ziebuhr J, Junglen S. 2013.
922 Identification and characterization of genetically divergent members of
923 the newly established family Mesoniviridae. J Virol 87:6346-58.

924 12. van Vliet AL, Smits SL, Rottier PJ, de Groot RJ. 2002. Discontinuous and
925 non-discontinuous subgenomic RNA transcription in a nidovirus. EMBO J
926 21:6571-80.

927 13. Weiss M, Steck F, Horzinek MC. 1983. Purification and partial
928 characterization of a new enveloped RNA virus (Berne virus). J Gen Virol
929 64 (Pt 9):1849-58.

930 14. Kuwabara M, Wada K, Maeda Y, Miyazaki A, Tsunemitsu H. 2007. First
931 isolation of cytopathogenic bovine torovirus in cell culture from a calf
932 with diarrhea. Clin Vaccine Immunol 14:998-1004.

933 15. Irigoyen N, Firth AE, Jones JD, Chung BY, Siddell SG, Brierley I. 2016. High-
934 Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing
935 and Ribosome Profiling. PLoS Pathog 12:e1005473.

936 16. Snijder EJ, den Boon JA, Horzinek MC, Spaan WJ. 1991. Comparison of the
937 genome organization of toro- and coronaviruses: evidence for two
938 nonhomologous RNA recombination events during Berne virus evolution.
939 Virology 180:448-52.

940 17. Snijder EJ, den Boon JA, Bredenbeek PJ, Horzinek MC, Rijnbrand R, Spaan
941 WJ. 1990. The carboxyl-terminal part of the putative Berne virus
942 polymerase is expressed by ribosomal frameshifting and contains
943 sequence motifs which indicate that toro- and coronaviruses are
944 evolutionarily related. Nucleic Acids Res 18:4535-42.

945 18. Yang D, Leibowitz JL. 2015. The structure and functions of coronavirus
946 genomic 3' and 5' ends. Virus Res 206:120-33.

947 19. Snijder EJ, den Boon JA, Horzinek MC, Spaan WJ. 1991. Characterization of
948 defective interfering RNAs of Berne virus. J Gen Virol 72 (Pt 7):1635-43.

949 20. Geraschenko MV, Gladyshev VN. 2014. Translation inhibitors cause
950 abnormalities in ribosome profiling experiments. Nucleic Acids Res
951 42:e134.

952 21. Andreev DE, O'Connor PB, Loughran G, Dmitriev SE, Baranov PV, Shatsky
953 IN. 2017. Insights into the mechanisms of eukaryotic translation gained
954 with ribosome profiling. Nucleic Acids Res 45:513-526.

955 22. Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol
956 Biol Evol 24:1586-91.

957 23. Firth AE, Brown CM. 2006. Detecting overlapping coding sequences in
958 virus genomes. BMC Bioinformatics 7:75.

959 24. Firth AE, Atkins JF. 2009. A case for a CUG-initiated coding sequence
960 overlapping torovirus ORF1a and encoding a novel 30 kDa product. Virol J
961 6:136.

962 25. Keese PK, Gibbs A. 1992. Origins of genes: "big bang" or continuous
963 creation? Proc Natl Acad Sci U S A 89:9489-93.

964 26. Rancurel C, Khosravi M, Dunker AK, Romero PR, Karlin D. 2009.
965 Overlapping genes produce proteins with unusual sequence properties
966 and offer insight into de novo protein creation. *J Virol* 83:10719-36.
967 27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local
968 alignment search tool. *J Mol Biol* 215:403-10.
969 28. Soding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for
970 protein homology detection and structure prediction. *Nucleic Acids Res*
971 33:W244-8.
972 29. Firth AE. 2014. Mapping overlapping functional elements embedded
973 within the protein-coding regions of RNA viruses. *Nucleic Acids Res*
974 42:12425-39.
975 30. Kozak M. 1986. Point mutations define a sequence flanking the AUG
976 initiator codon that modulates translation by eukaryotic ribosomes. *Cell*
977 44:283-92.
978 31. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2
979 web portal for protein modeling, prediction and analysis. *Nat Protoc*
980 10:845-58.
981 32. Haas J, Roth S, Arnold K, Kiefer F, Schmidt T, Bordoli L, Schwede T. 2013.
982 The Protein Model Portal--a comprehensive resource for protein
983 structure and model information. *Database (Oxford)* 2013:bat031.
984 33. McGuffin LJ, Bryson K, Jones DT. 2000. The PSIPRED protein structure
985 prediction server. *Bioinformatics* 16:404-5.
986 34. Smits SL, van Vliet AL, Segeren K, el Azzouzi H, van Essen M, de Groot RJ.
987 2005. Torovirus non-discontinuous transcription: mutational analysis of a
988 subgenomic mRNA promoter. *J Virol* 79:8275-81.
989 35. Schutze H, Ulferts R, Schelle B, Bayer S, Granzow H, Hoffmann B,
990 Mettenleiter TC, Ziebuhr J. 2006. Characterization of White bream virus
991 reveals a novel genetic cluster of nidoviruses. *J Virol* 80:11598-609.
992 36. Di H, Madden JC, Jr., Morantz EK, Tang HY, Graham RL, Baric RS, Brinton
993 MA. 2017. Expanded subgenomic mRNA transcriptome and coding
994 capacity of a nidovirus. *Proc Natl Acad Sci U S A* 114:E8895-E8904.
995 37. Cong F, Liu X, Han Z, Shao Y, Kong X, Liu S. 2013. Transcriptome analysis
996 of chicken kidney tissues following coronavirus avian infectious
997 bronchitis virus infection. *BMC Genomics* 14:743.
998 38. Raaben M, Groot Koerkamp MJ, Rottier PJ, de Haan CA. 2007. Mouse
999 hepatitis coronavirus replication induces host translational shutoff and
1000 mRNA decay, with concomitant formation of stress granules and
1001 processing bodies. *Cell Microbiol* 9:2218-29.
1002 39. Zhang C, Xue C, Li Y, Kong Q, Ren X, Li X, Shu D, Bi Y, Cao Y. 2010. Profiling
1003 of cellular proteins in porcine reproductive and respiratory syndrome
1004 virus virions by proteomics analysis. *Virol J* 7:242.
1005 40. VanLeuven JT, Ridenhour BJ, Gonzalez AJ, Miller CR, Miura TA. 2017. Lung
1006 epithelial cells have virus-specific and shared gene expression responses
1007 to infection by diverse respiratory viruses. *PLoS One* 12:e0178408.
1008 41. Beura LK, Dinh PX, Osorio FA, Pattnaik AK. 2011. Cellular poly(c) binding
1009 proteins 1 and 2 interact with porcine reproductive and respiratory
1010 syndrome virus nonstructural protein 1beta and support viral replication.
1011 *J Virol* 85:12939-49.

1012 42. Maestre AM, Garzon A, Rodriguez D. 2011. Equine torovirus (BEV)
1013 induces caspase-mediated apoptosis in infected cells. *PLoS One* 6:e20972.
1014 43. Touriol C, Bornes S, Bonnal S, Audiger S, Prats H, Prats AC, Vagner S.
1015 2003. Generation of protein isoform diversity by alternative initiation of
1016 translation at non-AUG codons. *Biol Cell* 95:169-78.
1017 44. Firth AE, Brierley I. 2012. Non-canonical translation in RNA viruses. *J Gen*
1018 *Virol* 93:1385-409.
1019 45. Draker R, Roper RL, Petric M, Tellier R. 2006. The complete sequence of
1020 the bovine torovirus genome. *Virus Res* 115:56-68.
1021 46. Ito M, Tsuchiaka S, Naoi Y, Otomaru K, Sato M, Masuda T, Haga K, Oka T,
1022 Yamasato H, Omatsu T, Sugimura S, Aoki H, Furuya T, Katayama Y, Oba M,
1023 Shirai J, Katayama K, Mizutani T, Nagai M. 2016. Whole genome analysis of
1024 Japanese bovine toroviruses reveals natural recombination between
1025 porcine and bovine toroviruses. *Infect Genet Evol* 38:90-95.
1026 47. Sun H, Lan D, Lu L, Chen M, Wang C, Hua X. 2014. Molecular
1027 characterization and phylogenetic analysis of the genome of porcine
1028 torovirus. *Arch Virol* 159:773-8.
1029 48. Ruch TR, Machamer CE. 2012. The coronavirus E protein: assembly and
1030 beyond. *Viruses* 4:363-82.
1031 49. Senanayake SD, Hofmann MA, Maki JL, Brian DA. 1992. The nucleocapsid
1032 protein gene of bovine coronavirus is bicistronic. *J Virol* 66:5277-83.
1033 50. Fischer F, Peng D, Hingley ST, Weiss SR, Masters PS. 1997. The internal
1034 open reading frame within the nucleocapsid gene of mouse hepatitis virus
1035 encodes a structural protein that is not essential for viral replication. *J*
1036 *Virol* 71:996-1003.
1037 51. Irigoyen N, Dinan AM, Brierley I, Firth AE. 2018. Ribosome profiling of the
1038 retrovirus murine leukemia virus. *Retrovirology* 15:10.
1039 52. Coordinators NR. 2016. Database resources of the National Center for
1040 Biotechnology Information. *Nucleic Acids Res* 44:D7-19.
1041 53. Pruitt KD, Tatusova T, Brown GR, Maglott DR. 2012. NCBI Reference
1042 Sequences (RefSeq): current status, new features and genome annotation
1043 policy. *Nucleic Acids Res* 40:D130-5.
1044 54. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham
1045 P, Coates G, Fairley S, Fitzgerald S, Gil L, Gordon L, Hendrix M, Hourlier T,
1046 Johnson N, Kahari AK, Keefe D, Keenan S, Kinsella R, Komorowska M,
1047 Koscielny G, Kulesha E, Larsson P, Longden I, McLaren W, Muffato M,
1048 Overduin B, Pignatelli M, Pritchard B, Riat HS, Ritchie GR, Ruffier M,
1049 Schuster M, Sobral D, Tang YA, Taylor K, Trevanion S, Vandrovicova J,
1050 White S, Wilson M, Wilder SP, Aken BL, Birney E, Cunningham F, Dunham
1051 I, Durbin R, Fernandez-Suarez XM, Harrow J, Herrero J, Hubbard TJ, et al.
1052 2012. Ensembl 2012. *Nucleic Acids Res* 40:D84-90.
1053 55. Chan PP, Lowe TM. 2016. GtRNAdb 2.0: an expanded database of transfer
1054 RNA genes identified in complete and draft genomes. *Nucleic Acids Res*
1055 44:D184-9.
1056 56. Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-
1057 efficient alignment of short DNA sequences to the human genome.
1058 *Genome Biol* 10:R25.

1059 57. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
1060 Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner.
1061 *Bioinformatics* 29:15-21.

1062 58. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis
1063 X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke
1064 A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman
1065 N, Regev A. 2011. Full-length transcriptome assembly from RNA-Seq data
1066 without a reference genome. *Nat Biotechnol* 29:644-52.

1067 59. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment
1068 software version 7: improvements in performance and usability. *Mol Biol*
1069 *Evol* 30:772-80.

1070 60. Sievers F, Higgins DG. 2014. Clustal omega. *Curr Protoc Bioinformatics*
1071 48:3 13 1-16.

1072 61. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF. 2008. RNAalifold:
1073 improved consensus structure prediction for RNA alignments. *BMC*
1074 *Bioinformatics* 9:474.

1075 62. Darty K, Denise A, Ponty Y. 2009. VARNA: Interactive drawing and editing
1076 of the RNA secondary structure. *Bioinformatics* 25:1974-5.

1077 63. Anders S, Pyl PT, Huber W. 2015. HTSeq--a Python framework to work
1078 with high-throughput sequencing data. *Bioinformatics* 31:166-9.

1079 64. Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change
1080 and dispersion for RNA-seq data with DESeq2. *Genome Biol* 15:550.

1081 65. Strimmer K. 2008. fdrtool: a versatile R package for estimating local and
1082 tail area-based false discovery rates. *Bioinformatics* 24:1461-2.

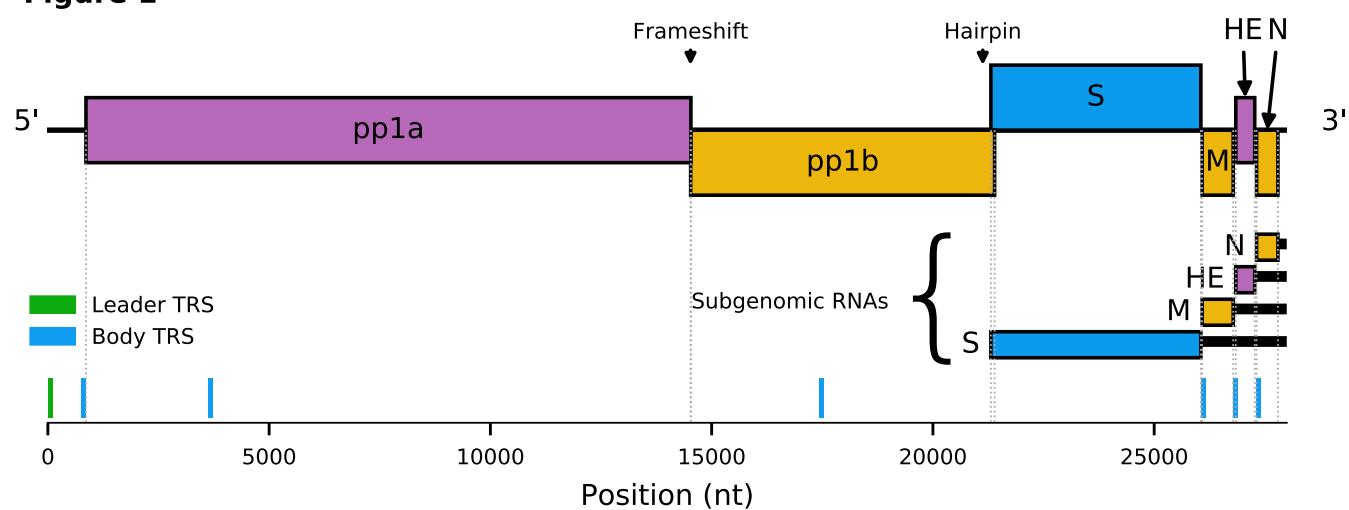
1083 66. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
1084 Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L,
1085 Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM,
1086 Sherlock G. 2000. Gene ontology: tool for the unification of biology. The
1087 Gene Ontology Consortium. *Nat Genet* 25:25-9.

1088 67. Durinck S, Spellman PT, Birney E, Huber W. 2009. Mapping identifiers for
1089 the integration of genomic datasets with the R/Bioconductor package
1090 biomaRt. *Nat Protoc* 4:1184-91.

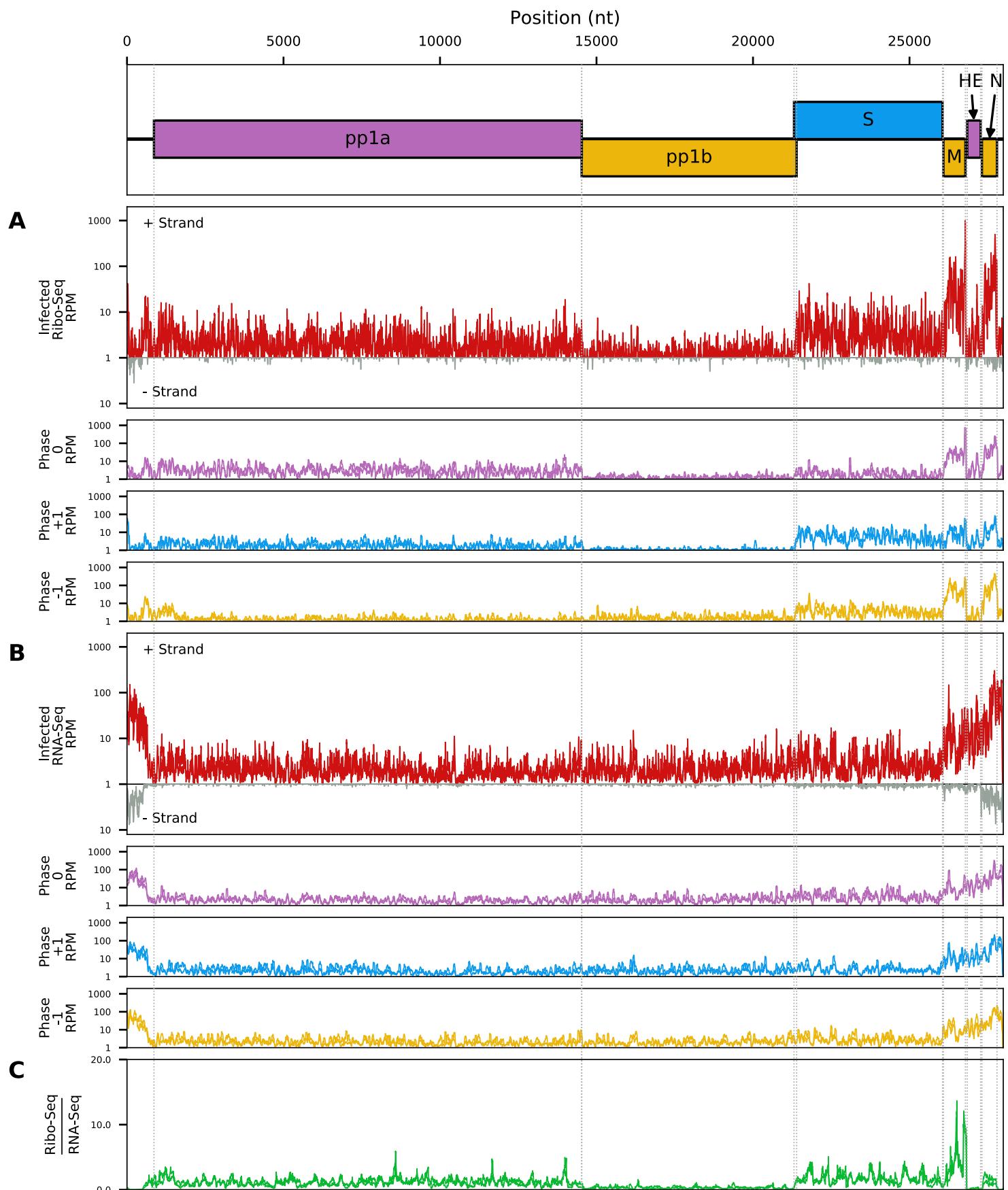
1091 68. Xiao Z, Zou Q, Liu Y, Yang X. 2016. Genome-wide assessment of differential
1092 translations with ribosome profiling data. *Nat Commun* 7:11194.

1093 69. Anbalagan S, Peterson J, Wassman B, Elston J, Schwartz K. 2014. Genome
1094 sequence of torovirus identified from a pig with porcine epidemic
1095 diarrhea virus from the United States. *Genome Announc* 2.

1096 70. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high
1097 accuracy and high throughput. *Nucleic Acids Res* 32:1792-7.


1098 71. Rice P, Longden I, Bleasby A. 2000. EMBOSS: the European Molecular
1099 Biology Open Software Suite. *Trends Genet* 16:276-7.

1100 72. Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to
1101 estimate large phylogenies by maximum likelihood. *Syst Biol* 52:696-704.


1102 73. Stocsits RR, Hofacker IL, Fried C, Stadler PF. 2005. Multiple sequence
1103 alignments of partially coding nucleic acid sequences. *BMC Bioinformatics*
1104 6:160.

1105

Figure 1

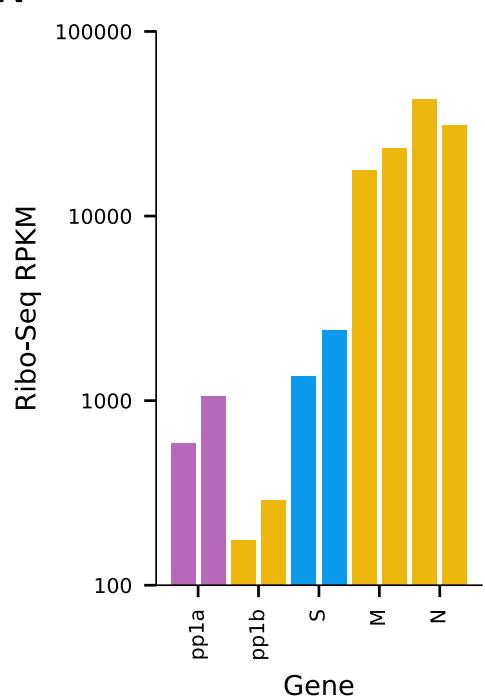
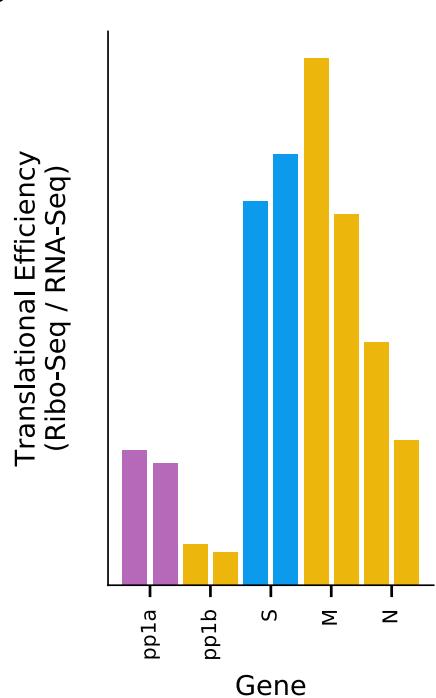
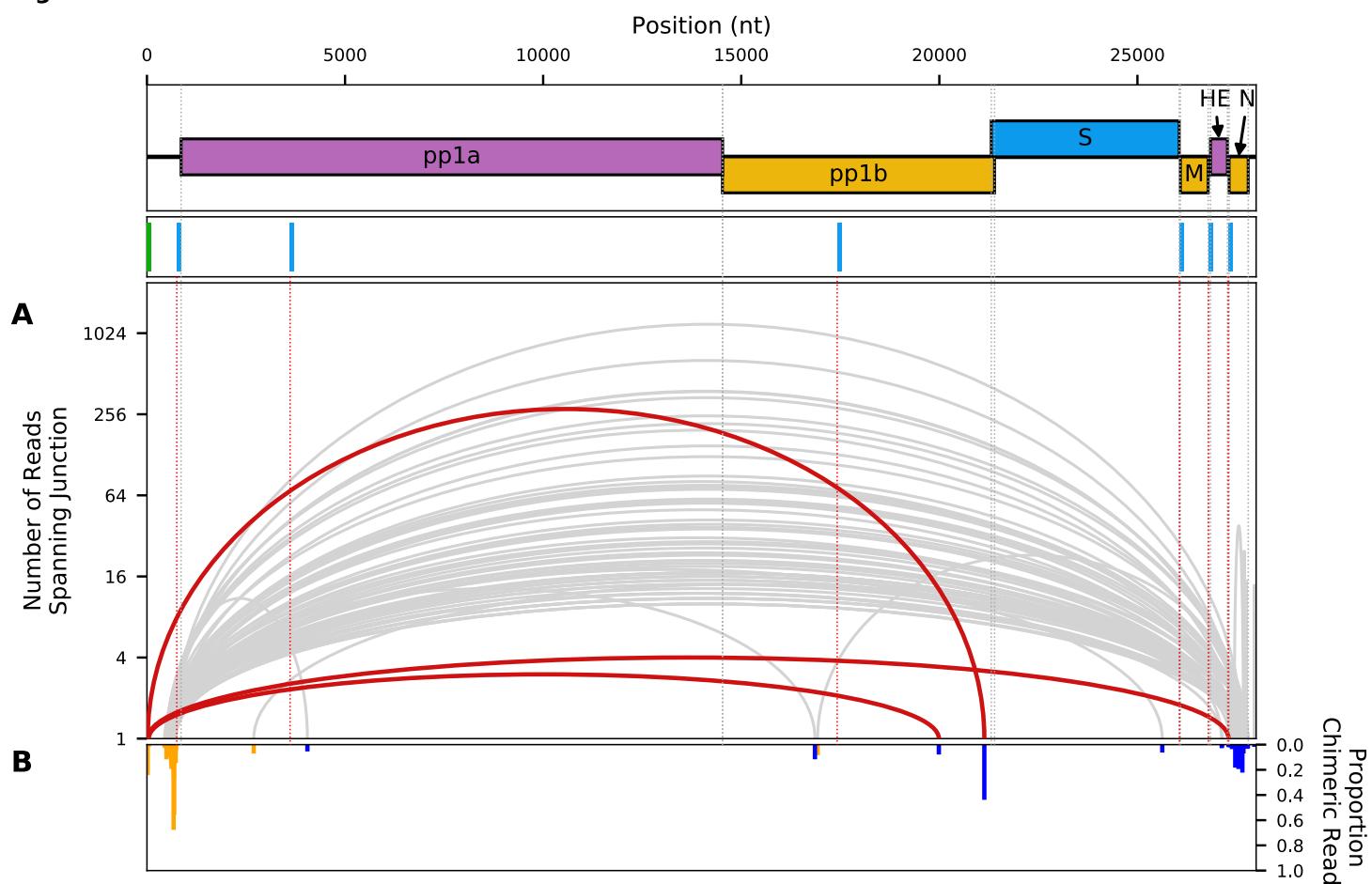


Figure 2



Figure 3


A


B

C

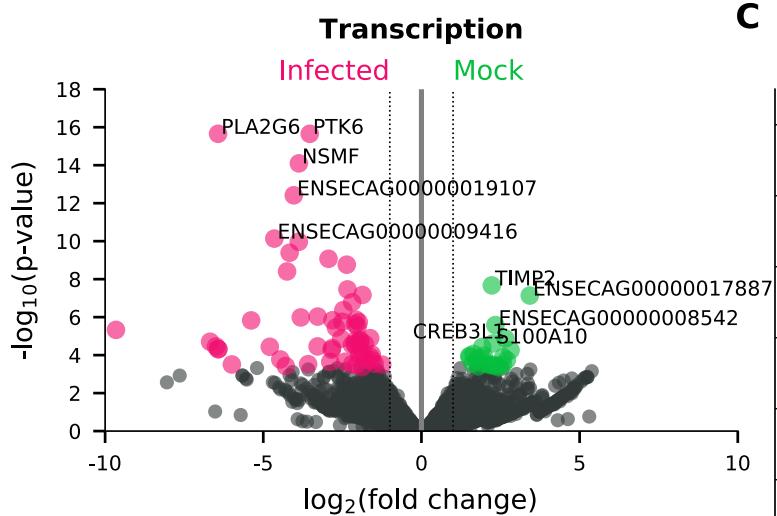
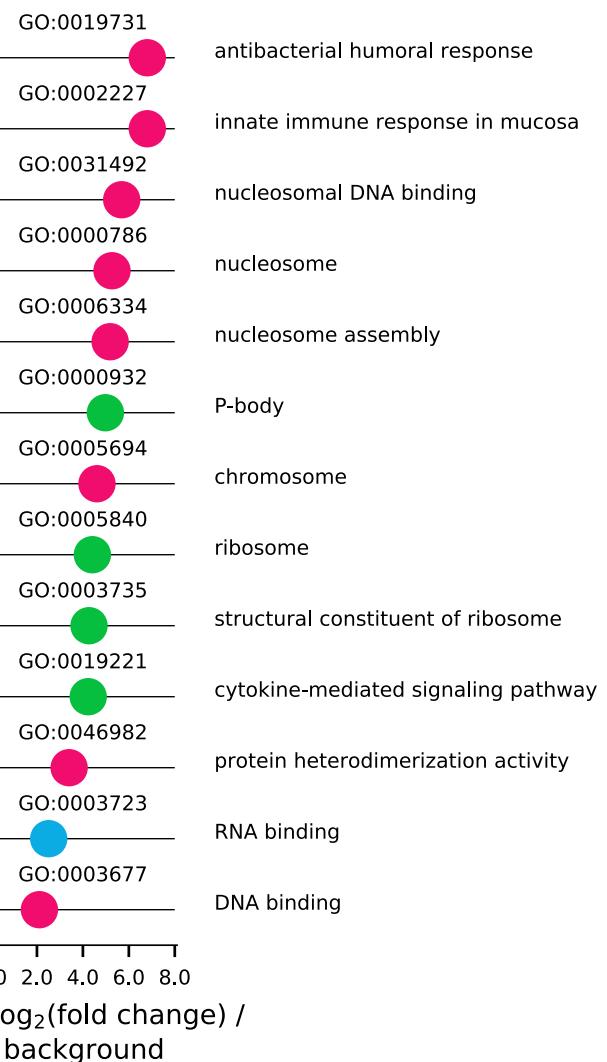
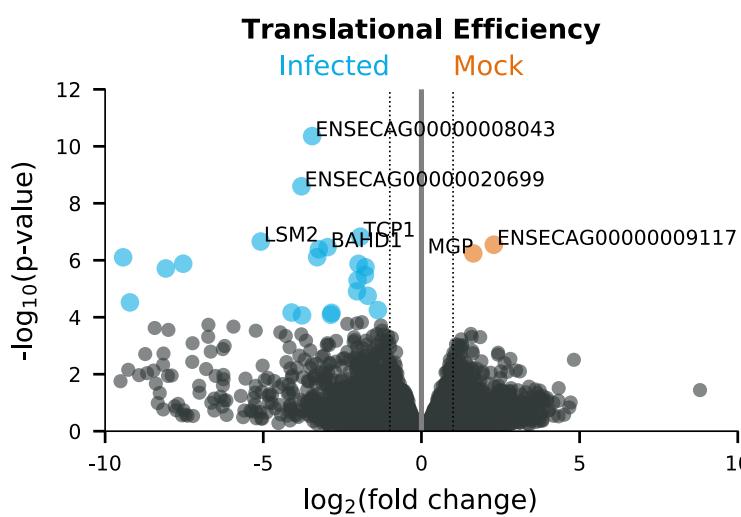


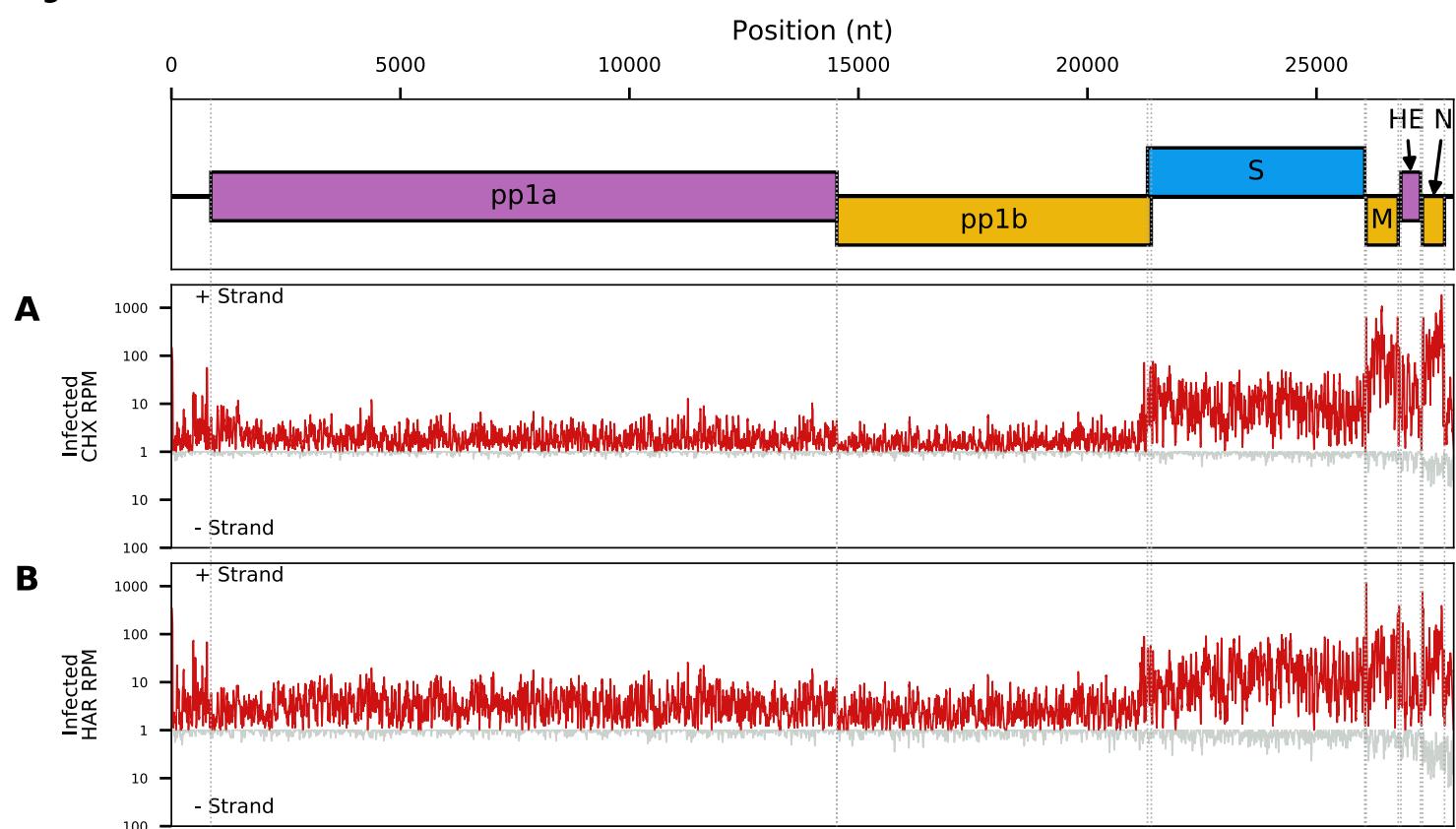
Figure 4

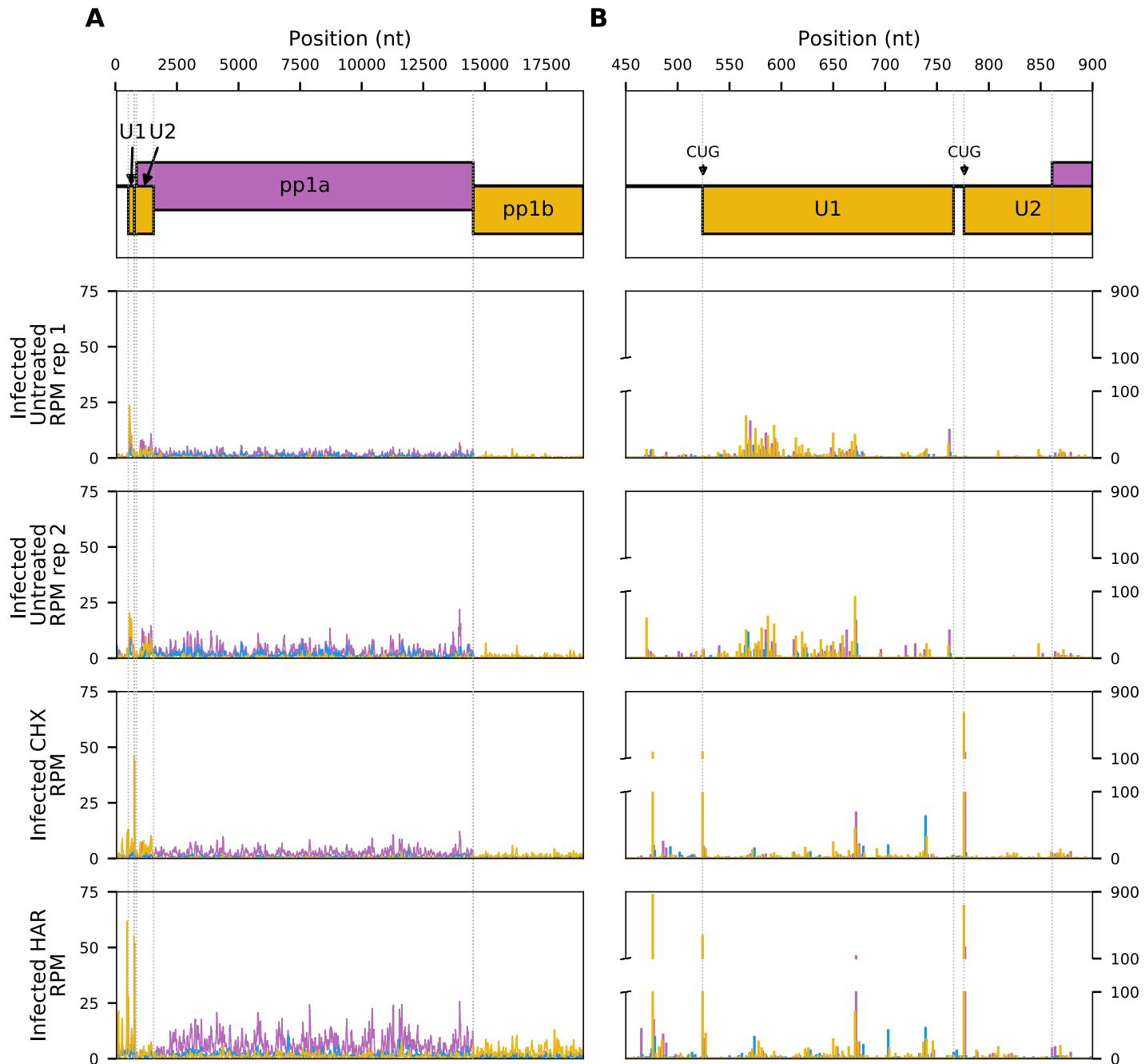

Figure 5

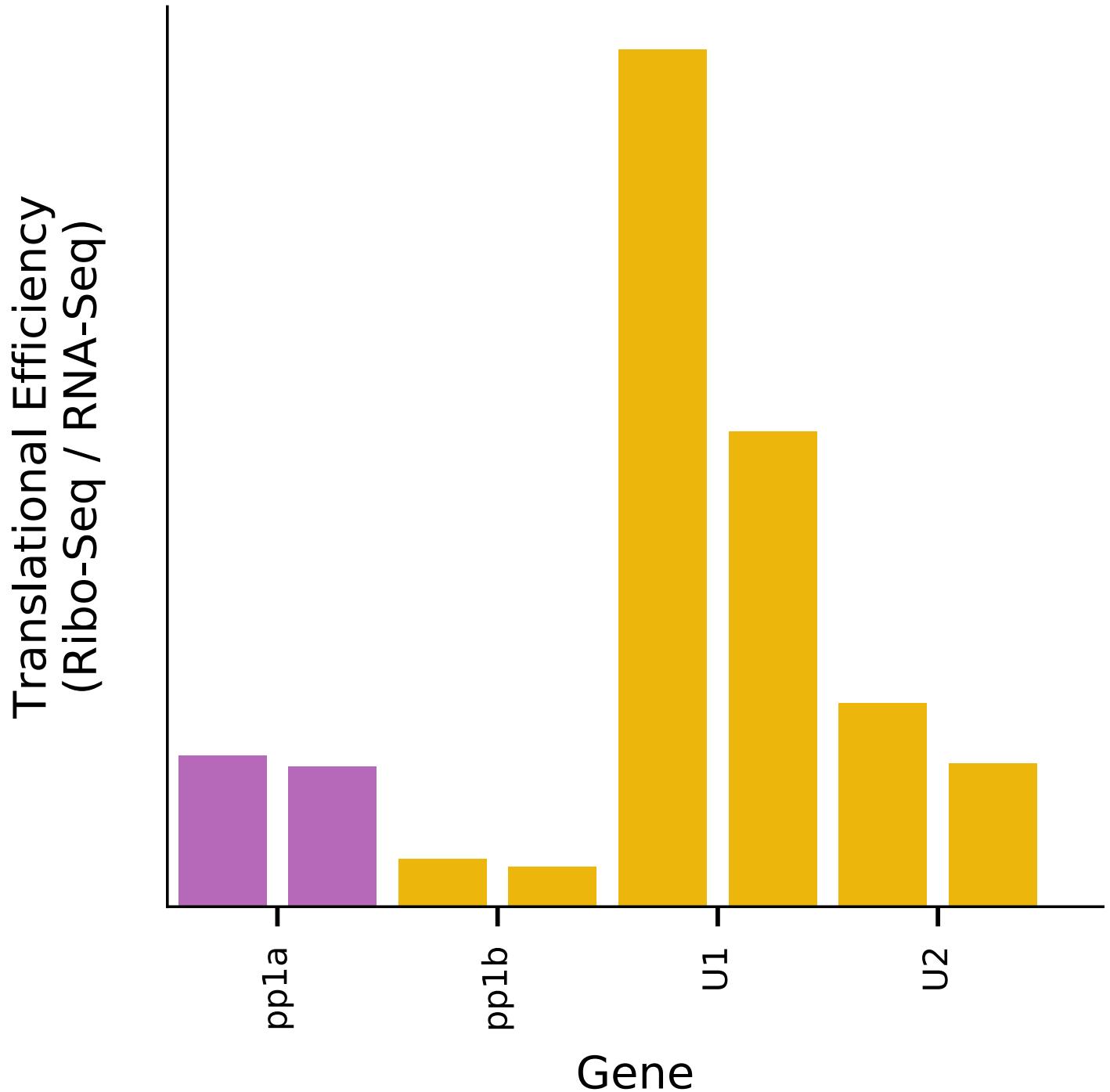
A

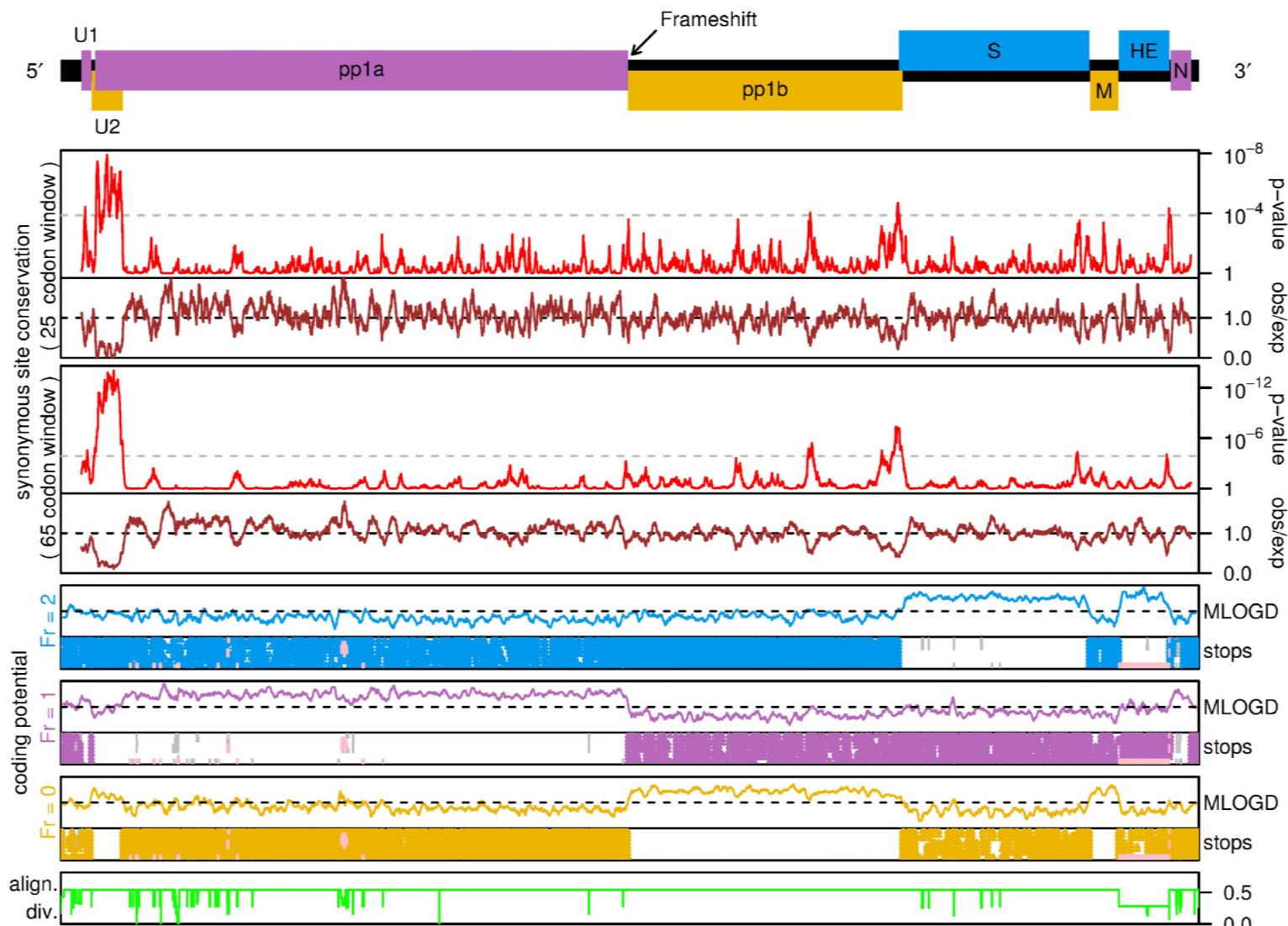


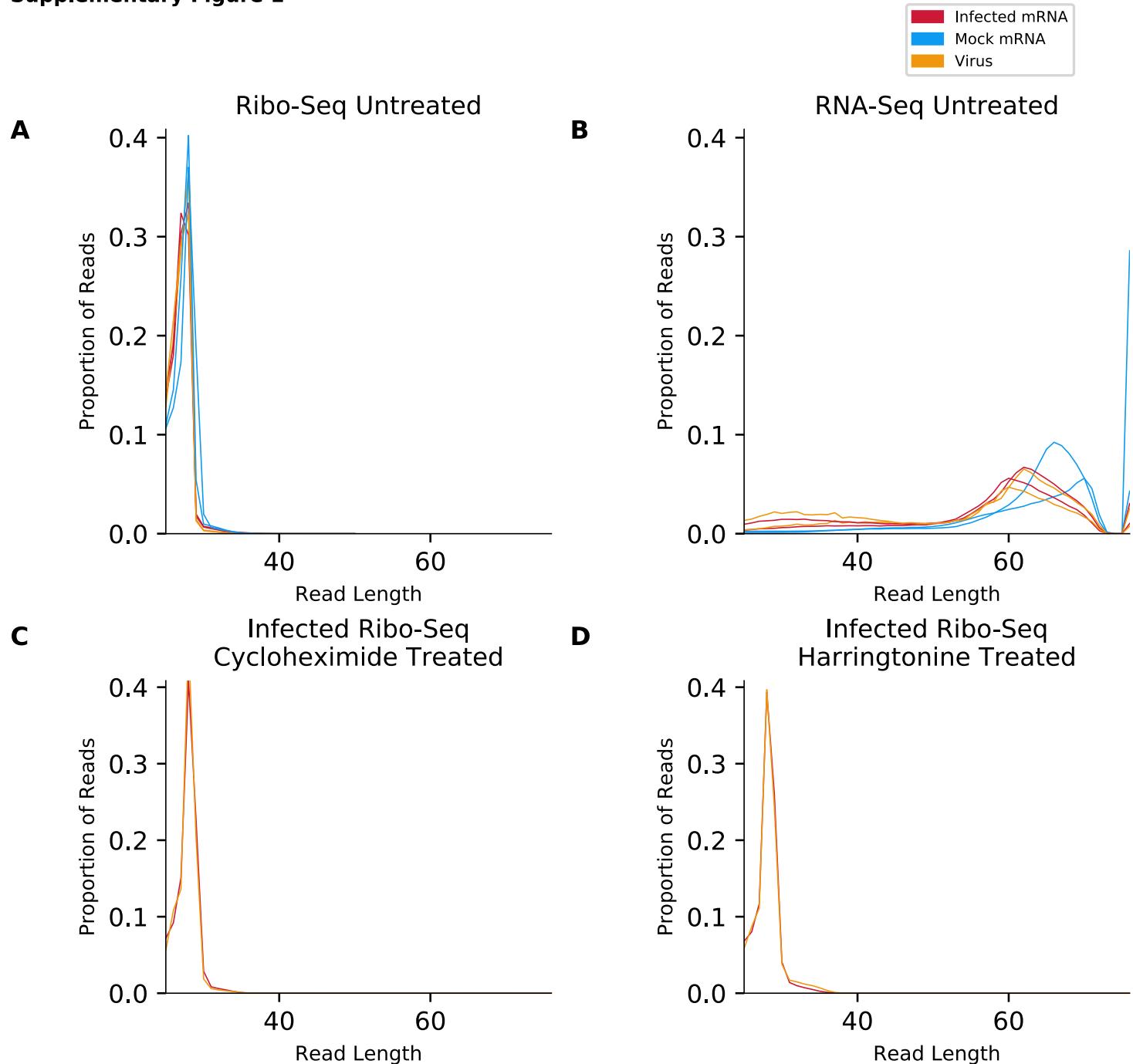
C

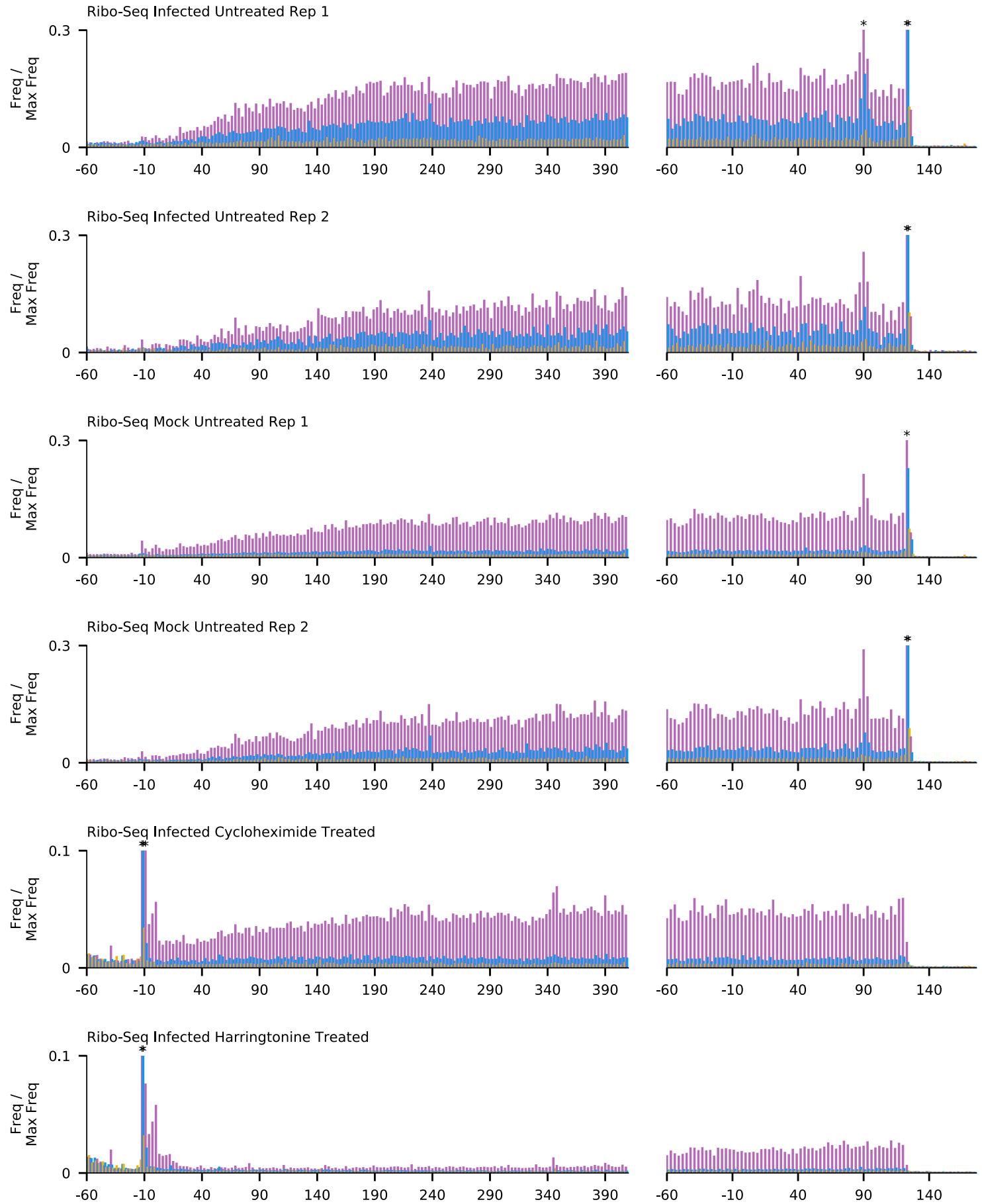

GO Term Enrichment


B


Figure 6

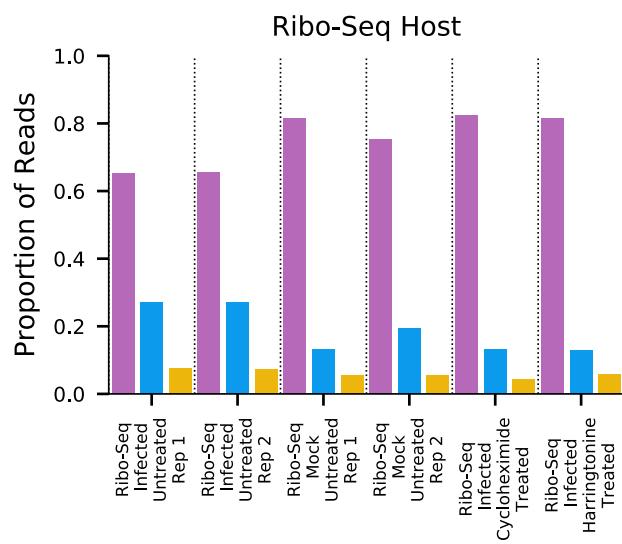

Figure 7


Figure 8

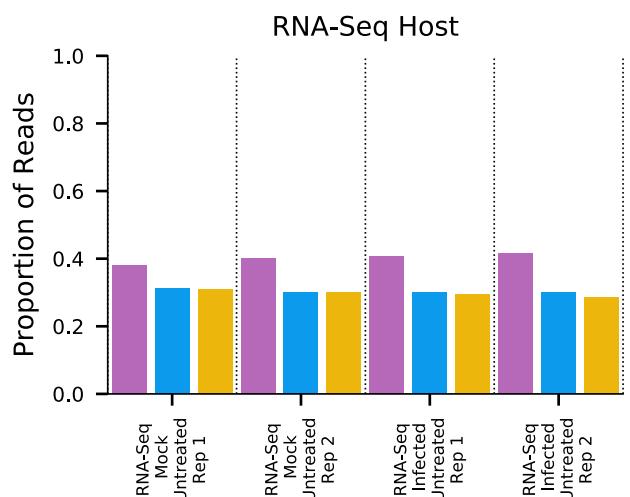

Figure 9


Supplementary Figure 1

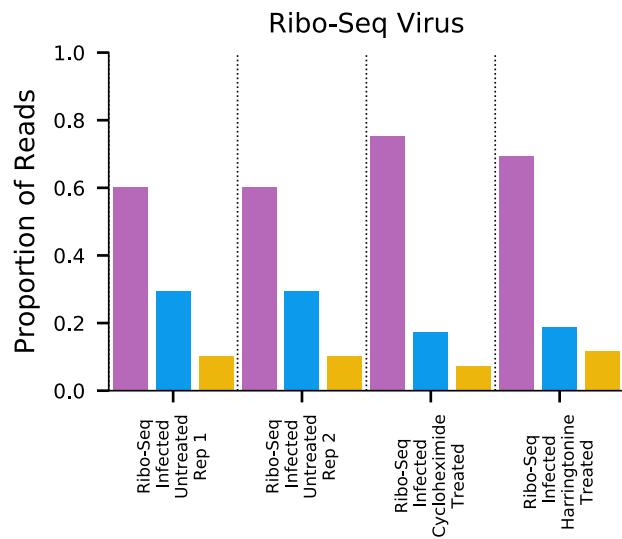
Supplementary Figure 2

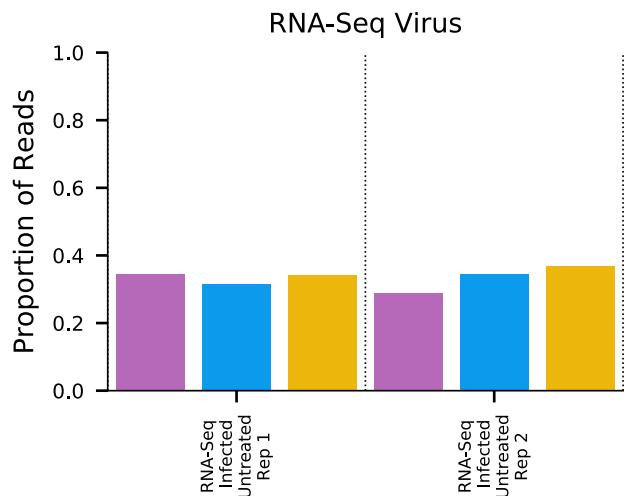


Supplementary Figure 3

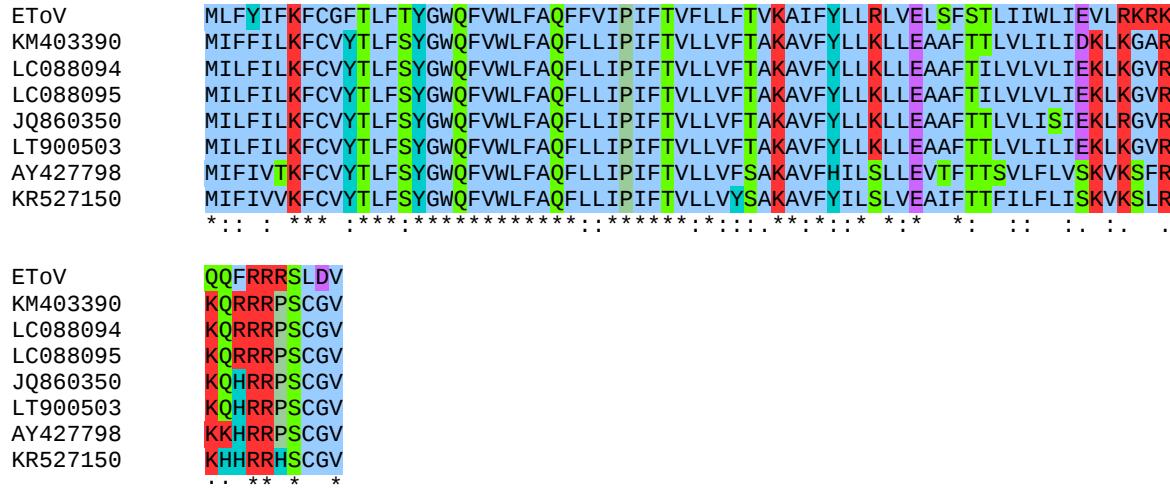


Supplementary Figure 4

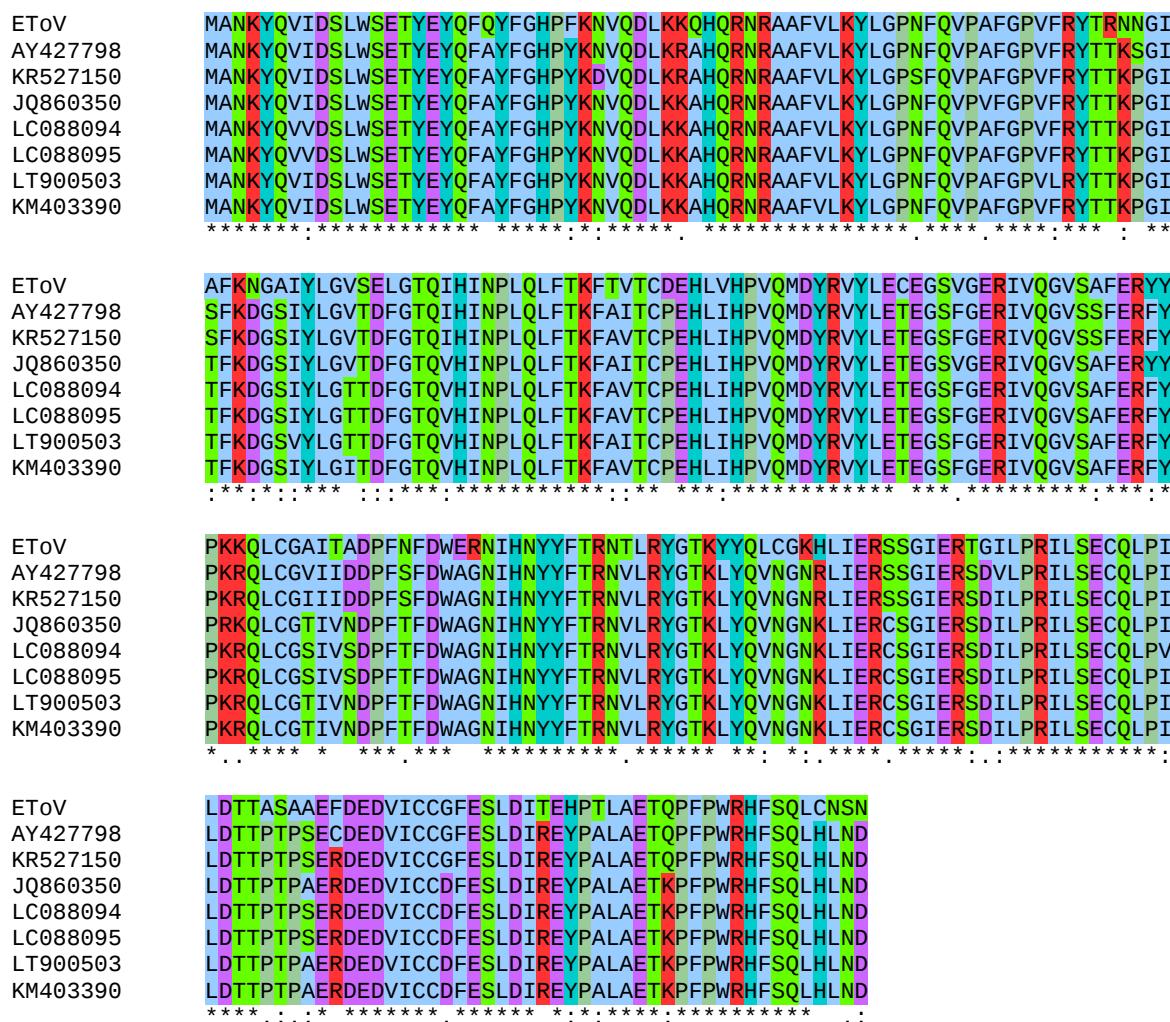

A


B

C



D



Supplementary Figure 5

uORF1

uORF2

I Hydrophobic position K Basic position Y Tyrosine or Histidine
D Acidic position S Other polar position P Proline

Supplementary Figure 6

(A) Leader + TRS + 6 nt

EToV	ACGUUAU CUUUAGA AGUUUA
AY427798	ACGUUAU CUUUAG UUGAUUU
KR527150	ACGUUAU CUUUAG UUGAUUU
LC088094	ACGUUAU CUUUAG UUGAUUU
LC088095	ACGUUAU CUUUAG UUGAUUU
LT900503	-----
JQ860350	ACGUUAU CUUUAG UUGAUUU
KM403390	ACGUUAU CUUUAG UUGAUUU
	***** * ***

(F) 6 nt + HE TRS + 6 nt

EToV	ACUUAU CUUUAGAAGA AUGU
AY427798	ACUUAU CUUUAGAAGA AUGC
KR527150	ACUUAU CUUUAGAAGA AUGC
LC088094	ACGUUAU CUUUAGAAGA AUGC
LC088095	ACUUAU CUUUAGAAGA AUGC
LT900503	ACUUAU CUUUAGAAGA AUGU
JQ860350	ACUUAU CUUUAGAAGA AUGU
KM403390	ACUUAU CUUUAGAAGA AUGU
	** *****

(B) 6 nt + U1 TRS + 6 nt

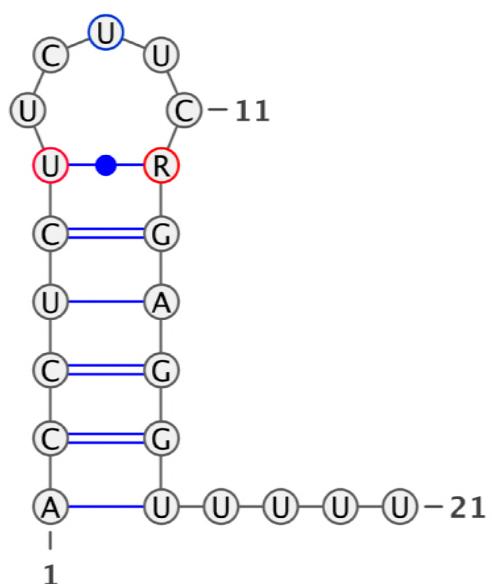
EToV	GUCGUU CUUUAGA CGUCUA
AY427798	GCCCAU CUUGUGG GUGUCUA
KR527150	GCCAUU CUUGUGG GUGUCUA
LC088094	GCCCUU CUUGUGG GUGUCUA
LC088095	GCCCUU CUUGUGG GUGUCUA
LT900503	GCCCUU CUUGUGG GUGUCUA
JQ860350	GCCCUU CUUGUGG GUGUCUA
KM403390	GCCCUU CUUGUGG GUGUCUA
	* * * *** * * ***

(G) 6 nt + N TRS + 6 nt

EToV	CACUAU CUUUAG -A AAAAGA
AY427798	CACUAU CUUUAG -A GAGAGA
KR527150	CACUAU CUUUAG -A GAGAGA
LC088094	CACUAU CUUUAG -UGAGUGA
LC088095	CACUAU CUUUAG UGAGUGA
LT900503	CACUAU CUUUAG -UGAGUGA
JQ860350	CACUAU CUUUAG -UGAGUGA
KM403390	CACUAU CUUUAG -UGAGUGA
	***** * * *

(C) 6 nt + 1a TRS + 6 nt

EToV	GUCGGC CUUUAGA GAAAUU
AY427798	AUUGUC CUAUGG AAUUU
KR527150	GUCCUC CUAUGG AAUUU
LC088094	GCUGUC CUUUGG GAAUCU
LC088095	GCUGUC CUUUGG GAGAGC
LT900503	GCUGCC CUUUAGA GAAGUU
JQ860350	GUUGCC CAUUGG GAAGUU
KM403390	GUUGUC CAUAGA GAGUUU
	* * * * * * *


(H) Hairpin

EToV	(((((.))))))
AY427798	ACCUCCUCUUCGGAGGUUUUU
KR527150	ACCUCUUCUUCAGAGGUUUUU
LC088094	ACCUCUUCUUCAGAGGUUUUU
LC088095	ACCUCUUCUUCAGAGGUUUUU
LT900503	ACCUCGUCUUCAGAGGUUUUU
JQ860350	ACCUCUUCUUCAGAGGUUUUU
KM403390	ACCUCUUCGUCAGAGGUUUUU
	***** * * * *

(D) 6 nt + 1b TRS + 6 nt

EToV	AUGUAU CUUUAGA CUGGAA
AY427798	AUGUGU CUUUGG AUUGGAA
KR527150	AUGUGU CUUUGG AUUGGAA
LC088094	AUAUUU CAUAGA AUUGGAA
LC088095	AUAUUU CAUAGA AUUGGAA
LT900503	ACAUUU CAUAGA CUGGAA
JQ860350	AUAUUU CUUUAGA AUUGGAA
KM403390	AUAUUU CAUAGA AUUGGAA
	* * * * * * *

(I)

(E) 6 nt + M TRS + 6 nt

EToV	CACUUU CUUUAGA AGAAGG
AY427798	CACUAU CUUUAG UUGAAGG
KR527150	CACUAU CUUUAG UUGAAGG
LC088094	CACUAU CUUUAG UUGAAGG
LC088095	CACUAU CUUUAG UUGAAGG
LT900503	CACUAU CUUUAG UUGAAGA
JQ860350	CACUAU CUUUAG UUGAAGA
KM403390	CACUAU CUUUAG UUGAAGA
	***** * * * *