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Abstract
The unique mapping of structural and functional brain connectivity (SC, FC) on cognition
is currently not well understood. It is not clear whether cognition is mapped via a global
connectome pattern or instead is underpinned by several sets of distributed connectivity
patterns. Moreover, we also do not know whether the pattern of SC and of FC that underlie
cognition are overlapping or distinct. Here, we study the relationship between SC and FC
and an array of psychological tasks in 609 subjects from the Human Connectome Project
(HCP). We identified several sets of connections that each uniquely map onto different
aspects of cognitive function. We found a small number of distributed SC and a larger set
of cortico-cortical and cortico-subcortical FC that express this association. Importantly, SC
and FC each show unique and distinct patterns of variance across subjects and differential
relationships to cognition. The results suggest that a complete understanding of

connectome underpinnings of cognition calls for a combination of the two modalities.
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Significance Statement
Structural connectivity (SC), the physical white-matter inter-regional pathways in the brain,
and functional connectivity (FC), the temporal co-activations between activity of brain
regions, have each been studied extensively. Little is known, however, about the
distribution of variance in connections as they relate to cognition. Here, in a large sample
of subjects (N = 609), we showed that two sets of brain-behavioural patterns capture the
correlations between SC, and FC with a wide range of cognitive tasks, respectively. These
brain-behavioural patterns reveal distinct sets of connections within the SC and the FC
network and provide new evidence that SC and FC each provide unique information for

cognition.
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Introduction

In neuroscience, big data initiatives such as the Human Connectome Project (HCP)
acquire connectomic and phenotypic data from a large number of individuals in an effort to
understand how brain networks relate to individual behaviour (Van Essen et al., 2013;
Fornito, 2016). Connectomes can represent either structural connectivity (SC), the white-
matter inter-regional pathways estimated from diffusion-weighted MR imaging
(Baldassarre et al., 2012), or functional connectivity (FC), the patterns of temporal
dependencies between regional activity measurements such as blood oxygen level
dependent functional magnetic resonance imaging (fMRI) timeseries. The most commonly
studied form of FC, resting-state FC (rsFC), is measured in the absence of an explicit task.
It represents meaningful coordinated fluctuations that have been related to task FC and
performance (Mennes et al., 2010; Baldassarre et al., 2012; Stevens and Spreng, 2014).

Both SC (Matejko et al., 2013; Willmes et al., 2014; Moeller et al., 2015; Klein et
al., 2016) and rsFC (Song et al., 2008; Song et al., 2009; Pamplona et al., 2015;
Santarnecchi et al., 2015; Hearne et al., 2016; Smith, 2016; Ferguson MA, 2017; Pezoulas
et al., 2017) have been linked to cognitive functioning, including higher order cognitive
processes such as fluid and crystallized intelligence, visuospatial processing (Ponsoda et al.,
2017), or numerical cognition (Matejko et al., 2013; Willmes et al., 2014; Moeller et al.,
2015; Klein et al., 2016).

What remains unclear, however, is the specificity of the behaviourally-relevant
aspect of the connectome. That is, can individual variability across connectomes be
explained by a single set of connections that is highly predictive of cognitive function

more generally? Or are there multiple sets of connections that each predict different
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aspects of cognitive functioning? The former suggests that connectomes are relevant for
understanding general differences in global cognitive functioning whilst the latter suggests
that individual differences in particular networks can inform specific types of cognitive
functioning, such attention, memory, or executive function. Evidence of both views exists.
For instance, Rosenberg et al. (2013) showed that a particular set of connectivity patterns
predicted individuals’ attention ability, supporting the notion of specific connectome-
behaviour associations. The connections identified were specific to attention ability and
did not predict cognition more generally. In contrast, other research has shown that a single
mode of covariation can capture relationships between a distributed set of functional
connections and a wide set of behavioural and demographic variables (Smith et al., 2015).
The same question can be asked for SC.

Currently, little is known about the overlap between the two modalities in their
mapping to individual differences in cognition. Given the limitations of mapping
individual SC to FC (Koch et al., 2002; Skudlarski et al., 2008; Honey et al., 2009;
Zimmermann et al., 2016; Zimmermann et al., 2018), we might expect that the two
modalities provide unique and distinct sources of cognitive-related variability (Duda et al.,
2010; Hirsiger et al., 2016). On the other hand, cognition arises from an interplay of
structure and function, and so a degree of overlap in the spatial pattern of networks that
give rise to cognitive function is expected.

In the present study, we examine how cortical and subcortical SC and rsFC from
609 subjects from the Human Connectome Project relates to a wide range of cognitive
functions, including working memory, executive function/cognitive flexibility, processing

speed, fluid intelligence, episodic memory, and attention/inhibitory control. We examined
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1) whether there exists a single set of connections that generally map onto cognition, or
rather several sets of connections that map onto different aspects of cognition, and 2)
whether the patterns of connectivity that map onto cognition are independent and unique
for SC versus rsFC or whether they provide common information. We used Partial Least
Squares to map orthogonal patterns of brain-behavioural relationships (Mclntosh and
Lobaugh, 2004; Krishnan et al., 2011). This method is comparable to canonical correlation,
however, is more suitable for neuroimaging data as it is robust to collinearity within the

datasets.

Methods
Subjects and behavioural measures

The sample included 609 genetically unrelated subjects from the Q7 HCP release
(M/F =269/340 female; age range = 22-36) (Van Essen et al., 2013). The research was
performed in compliance with the Code of Ethics of the World Medical Association
(Declaration of Helsinki). All subjects provided written informed consent, approved by the
ethics committee in accordance with guidelines of HCP WU-Minn. In the current study, 11
behavioural measures of cognitive function were correlated with SC and FC (described
below). Cognitive measures covered a range of processes. Note that the working memory
0-back and 2-back tasks each included 2 measures: accuracy and reaction time. The
measures are described in Table 1 below and in detail in the following:
https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-

+500+Subject+Release. Note that cognitive scores were age adjusted.
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Table 1. Cognitive tests and corresponding function

Test Function M (SD), range
Working memory
ListSort AgeAd; 103 (13), 63-141
(List sorting)
Episodic Memory
PicSeq_AgeAd;j 106 (17), 56-135

(Picture sequence memory)
Executive Function / Cognitive

CardSort AgeAd; flexibility 102 (10), 58-123
(Dimensional Change card sort)
Executive Function/Inhibition

Flanker AgeAdj 102 (10), 74-124
(Flanker Task)

Processing Speed

ProcSpeed AgeAdj (Pattern Completion Processing 103 (19), 45-149
Speed)
Working Memory accuracy

WM Task 2bk Acc 83 (11),37-100

(2-back task)

Working Memory reaction time
WM Task 2bk Median RT 970 (143), 602-1440
(2-back task)

Working Memory accuracy

WM Task Obk Acc 89 (11), 48-100
(0-back task)

WM Task Obk Median RT Working memory reaction time 775 (139), 506-1571
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(0-back task)

Fluid Intelligence correct
PMAT24 A CR responses 17 (5), 5-24
(Penn Progressive Matrices)

Fluid Intelligence reaction time,
15454 (2976),
PMAT24 A RTCR correct responses
1989-61641
(Penn Progressive Matrices)

MRI acquisition and preprocessing

Data acquisition details for the WU-Minn HCP corpus (Van Essen et al., 2013)
were described in detail elsewhere (Smith et al., 2013; Sotiropoulos et al., 2013; Ugurbil et
al., 2013). The present study made use of resting-state BOLD fMRI, multi-shell (multiple
non zero b-values) high-resolution dwMRI, and structural (T1-weighted MRI) data from
the HCP minimally preprocessed pipeline (Glasser et al., 2013; Smith et al., 2013).

Diffusion data with a spin-echo multiband EPI sequence, with 111 slices of 1.25
mm isotropic voxels (Feinberg et al., 2010; Sotiropoulos et al., 2013; Ugurbil et al., 2013),
distortion corrected (Andersson et al., 2003; Andersson and Sotiropoulos, 2015) were used.
Segmentation and parcellation was performed on the basis of the high-resolution T1-
weighted image (voxel size: 0.7 mm isotropic) of each subject using FreeSurfer (Fischl,
2012), automatically parcellating the brain into 83 cortical and subcortical ROIs (41 per
hemisphere, plus brainstem) according to the Lausanne 2008 atlas (Daducci et al., 2012).
An 83 x 83 connectivity matrix was formed, representing for each pair of regions their

reconstructed pathways. Deterministic tractography using Dipy software (Garyfallidis et al.,
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2014) was performed on minimally preprocessed data using a method similar to that of
Hagmann et al (2008) and Cammoun et al (2012). Streamlines were computed from 60
equally spaced points within each voxel on the grey-white matter interface via the EuDX
algorithm (Garyfallidis et al (2012). Streamlines that were shorter than 10mm or longer
than 250mm were discarded, as well as those that did not terminate at the grey-white
matter interface. The strength of the reconstructed connections was measured as streamline
density, computed as the number of tractography streamlines that touched both cortical
regions (Hagmann et al., 2008).

Whole brain echo-planar images (EPI) (TR = 720 ms, 2 mm’ voxels) (Moeller et al.,
2010; Ugurbil et al., 2013) with denoising procedures from the resting-state FIX denoised
dataset were used (Glasser et al., 2013; Smith et al., 2013). Data included both phase
encoding acquisition directions (L-R, R-L) (acquisition time = 14 mins, 33 sec). We
computed average regional timeseries from these voxels, based on the 83 cortical and
subcortical regions. Pearson’s correlations were calculated for each pair of timeseries to
compute the FC between all regions; these were then Fisher Z-transformed, and the two
(L-R and R-L) pairs of matrices were averaged for each subject. The resulting FC matrices
were 83x83 for the 609 subjects. Global signal regression was not performed for
comparability with previous resting state studies. Note that age was regressed from SC and

Fisher’s z-transformed FC, and residuals were used for analysis.

Experimental Design and Statistical Analysis

Cognitive Measures
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The 11 cognitive measures were correlated (Pearson’s) with one another to quantify
the relationship between them. The resulting p-value cross-correlation matrix was of size
11 x 11. The p-value of each correlation value was corrected for multiple comparisons
using FDR (Matlab function fdr bky) (Benjamini, 2006). We also wanted to understand
whether the cognitive measures describe a single global cognitive component of
intelligence, or whether numerous components are required to capture the different
subtypes of cognitive functioning. To this end, we conducted a principal components
analysis (PCA) of the cognitive measures (Matlab function princomp). To assess the
significance of the resulting eigenvalues, we permuted the cognitive measures 100 times
(scrambled across cognitive measures and subjects) and decomposed (PCA) the permuted
cognitive matrices to obtain a null distribution of eigenvalues for each PC. We then
calculated the p-value per PC eigenvalue as the proportion of times the permuted

eigenvalue exceeded the obtained eigenvalue.

Correlation between cognition and connectivity

We used Partial Least Squares (PLS) for neuroimaging (MclIntosh and Lobaugh,
2004; Krishnan et al., 2011) in order to assess the multidimensional connectome-cognition
relationships. We used the Behavioral PLS correlation function described there, ran in
Matlab using custom code. As the connectivity matrices are symmetric, we used the
vectorized upper triangle of the connectivity matrices from the 609 subjects. Connections
that were 0 for 66% of subjects or more were not included in the analysis, resulting in 870
remaining connections for SC and 3403 connections for FC. Vectorized connectomes were

then stacked resulting in a subjects*connections brain matrix, for SC = 609*870, and for
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FC = 609*3403. The behavioural matrix was subjects*behavioural measures, of size
609*11.

The brain and behavioural matrices were then cross-correlated to start the PLS
analysis. PLS is multivariate analysis method comparable to canonical correlation, and
captures maximally covarying brain-behaviour relationships in mutually orthogonal latent
variables (LVs). The significance of LVs is assessed via permutation tests (1000 iterations)
of the singular values from singular value decomposition (SVD) of the brain and
behavioural correlation matrices, and reliability of each connectivity estimate to the LV is
assessed via bootstrap resampling (3000 iterations). The reliability of each connection’s
loading onto the brain-behaviour relationship in each LV is represented as a bootstrap ratio,
the ratio of a connection’s weight over its estimated standard error. The ratio can be
considered equivalent to a z-score, but is used to impart reliability rather than significance.
A connection with a positive high bootstrap ratio contributes positively and reliably to the
brain-behaviour correlation obtained for that LV, whereas a connection with a negative
high bootstrap ratio contributes negatively and reliably to the brain-behaviour relationship.
Bootstrapping is also used to construct confidence intervals on the brain-behaviour

correlations.

SC-Cognition vs FC-Cognition

In order to compare the connections that contributed to the SC-cognition
relationship and those that contributed to the FC-cognition relationship, we calculated the
scalar dot product (Matlab function dot) between the brain scores (“U”’) from the PLS SVD

expressed in the FC-cognition and those expressed in the SC-cognition, across all
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significant LVs. We did the same thing for cognitive measures between analyses, using
Pearson’s correlations instead of dot products. Note that these correlations were corrected

for multiple comparisons using FDR (Matlab function fdr bky) (Benjamini, 2006).
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Results

Cognitive measures

The cognitive scores correlated positively amongst one another, with the exception
of the WM reaction time tasks, which correlated negatively with all other cognitive tests

(See Figure 1). All correlations were significant (all p <0.001, MC corrected, See

Methods).
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Figure 1. Correlation (Pearson’s) amongst the cognitive tests.

A PCA of the 11 cognitive test scores yielded three significant PCs, where

significance was assessed by permutation testing (See Methods) (A = 3.5072, 1.8679, and

1.2026, % variance explained = 61, 17, 7 respectively) (Figure 2). All cognitive tests
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loaded onto the first PC, with an emphasis on the speed-accuracy trade-oft for the two WM
tests. Thus, participants who were more accurate were also slower on these WM tests. The
second PC emphasized the PMAT tests; note that reaction time for correct responses
(PMAT RT) and the number of correct responses (PMAT CR) were positively correlated.
The third PC emphasized similarities between the two WM RT tests and the remaining

tests, in opposition to the two WM accuracy measures.

A B C
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WM Obck RT WM Obck RT [ ] WM Obck RT: [
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Figure 2. PCA of the 11 cognitive tests. Shown here are the principal component

coefficients (loadings) on each PC. A) PC1 B) PC2 C) PC3.

Correlation between cognition and connectivity

PLS analyses identified two significant LVs that describe the relationship between
SC and cognition, and FC and cognition each, respectively.
SC-Cognition

The two LVs that captured the SC-cognition association revealed two distinct
patterns of cognitive functions that mapped onto two sets of unique structural connections

(Figure 3). (LV1 SC: 37.22% of total covariance, singular value = 2.53, p = 0.04, LV2 SC:
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14.81% of total covariance, singular value = 1.6, p = 0.03). For both LVs, a small number
of connections across cortical and subcortical regions were stable by bootstrap.
Connections loaded positively and negatively onto each of the SC-cognition LVs (See
bootstrap ratios in Figure 3B, 3D). For the cognitive measures, the first LV strongly
expressed the full array of cognitive tests, with a speed-accuracy trade-off for the WM tests.

The second LV expressed primarily the two PMAT tests.
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Figure 3. SC-Cognition A) LV1 correlations between SC and cognition, with CIs from
bootstrap resampling, B) LV1 bootstrap ratios, these are connection loadings on the SC-
cognition relationship, bootstrap threshold = -2.5, 2.5. Connections with positive bootstrap

ratios contribute positively to the SC-cognition correlation, negative bootstrap ratios
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contribute negatively to the SC-cognition correlation. Right and left hemisphere regions,
and subcortical and cortical regions, are separated by a space in the circular plot. C) LV2
correlations between SC and cognition D) LV2 bootstrap ratios
FC-Cognition

The two LVs that captured the FC-cognition association revealed two distinct
patterns of cognitive functions that map onto two sets of functional connections (Figure 4).
(LV1 FC: 41.5% of total covariance, singular value = 6.45, p = 0.01 LV2 FC: 33% of total
covariance, singular value =5.75, p = 0.046).

The first LV revealed FC-cognition correlations expressed across an array of
cognitive tests, and a large number of cortical, mainly fronto-parietal connections (as well
as insula, transverse temporal) that load negatively onto this relationship (See bootstrap
ratios in Figure 4B, 4D). Thus, better performance on card-sorting, processing speed, WM
accuracy, as well as better performance on the three RT measures (better performance =
lower RT) was associated with lower FC. Only 4 connections loaded negatively onto this
LV, 3 of which were connections of the R entorhinal. The second LV revealed FC-
cognition correlations that were expressed primarily with the PMAT cognitive tests. A
large number of inter-hemispheric cortico-cortical and cortico-subcortical connections
loaded positively onto this LV. Thus, better performance on the PMAT tasks correlated

with higher FC.
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Figure 4. FC-Cognition A) LV1 correlations between FC and cognition, with CIs from
bootstrap resampling, B) LV1 bootstrap ratios, these are connection loadings on the FC-
Cognition relationship, bootstrap threshold = -3, 3. Connections with high bootstrap ratios
contribute positively to the FC-cognition correlation, low bootstrap ratios contribute

negatively to the FC-cognition correlation. Right and left hemisphere regions, and
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subcortical and cortical regions, are separated by a space in the circular plot. B) LV2

correlations between FC and cognition D) LV2 bootstrap ratios.

SC-Cognition vs FC-Cognition

As evident from Fig 3 and 4, there were more connections in the FC that correlate
with cognition compared to in the SC. This can be shown as the number of connections
that exceeded the bootstrap ratio threshold for each connection-cognition LV, expressed as
a proportion of the number of connections that entered the PLS analysis (3403 vs 870, FC,
SC). The proportion of connections that exceeded the bootstrap threshold were as follows,
FC: LVI1 =15%, LV2 =9%; SC: LV1 =2%, LV2 = 1%. We hypothesized that this may be
due to the difference in total between-subjects variance in the SC and FC. To this end, we
conducted a SVD of the subject-wise SC (609 subjects * 870 connections) as well as the
subject-wise FC (609 subjects * 3403 connections) and compared the sum of the squared
singular values corrected by the number of connections that entered the analysis, in order

to account for the sparsity of the SC (ZSzcorrected). Indeed, we found that the total corrected
variance in subject-wise SC was smaller than in the subject-wise FC (Zstc_comcted =
0.0198, ¥S%kc cormected = 0.0294).

We observed that a very different pattern of connections in the SC related to
cognition than in the FC. This can be expressed quantitatively as the dot product of the
PLS brain scores (“U”) from the FC-cognition SVD and from the SC-cognition SVD,
across both LVs. These dot products were close to zero (Table 2). This comparison was
made for the behaviour contributions to each LV as well. To this end, we calculated the dot

product of the PLS cognitive scores (“V”’) from the FC-cognition SVD and the cognitive
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scores from the SC-cognition SVD (Table 3). In order to map which cognitive PCs were
expressed in which LVs, we correlated the cognitive PC loadings with the SC-cognition
and FC-cognition correlations on each LV (Table 4). Note that these correlations were all
significant, p < 0.001, MC corrected (See Methods). We found that some cognitive PCs
were particularly strongly captured in specific connectivity-cognition LVs. For example,
the first cognitive PC was expressed very strongly in the first SC-cognition LV. Yet, even

the second SC-cognition LV correlated well with this PC.

Table 2. Dot product between brain scores for FC-cognition and SC-cognition across both

LVs.

FC-Cognition
SC-Cognition LVI LV2
LV1 0.0043 0.0792
LV2 0.0159 -0.0419

Table 3. Dot product between behavioural scores for FC-cognition and SC-cognition

across both LVs.

FC-Cognition
SC-Cognition LVI LV2
LV1 0.51 0.83

LV2 0.38 -0.07
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Table 4. Correlations of cognitive PCs loadings and SC-Cognition and FC-Cognition

LVcorrs.

SC-Cog FC-Cog
Cognition LV1 LV2 LV1 LV2
PC1 0.9825 0.7415 0.6798 0.6473
PC2 -0.2102 -0.4327 -0.8290 0.3725
PC3 -0.5635 -0.2377 -0.0664 -0.5344
Discussion

In the present study, we compared whole-brain cortical and subcortical SC and

rsFC from 609 subjects from the Human Connectome Project with individual cognitive

function across an array of 11 measures, including measures of working memory (WM n-

back accuracy and RT, and ListSort), executive function/cognitive flexibility (CardSort),

processing speed (ProcSpeed), fluid intelligence (PMAT), episodic memory (PicSeq), and

attention/inhibitory control (Flanker). We first showed that the cognitive measures mapped

onto three principal components (PCs) reflecting the heterogenous nature of functions

measured via the tests. PC1 was a global cognition component that emphasized a speed-

accuracy trade-off for the two WM tests. PC2 expressed fluid intelligence (PMAT). PC3

emphasized a more deliberate, slower, executive function/cognitive flexibility and

attention/inhibitory control.

The conclusions of the study are two-fold: 1) that unique sets of connections map

onto specific components of cognitive function, and 2) that SC and FC each capture
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independent and unique connections that relate to cognition. Importantly, previous
approaches to studying connectivity-cognition relations have constrained the
dimensionality via PCA before conducting Canonical Correlation Analysis (CCA) (Smith,
2016), which constrains how the behaviour can be projected into the brain space. In
contrast, we compared the conjunction of brain and behaviour without first constraining
dimensionality by PCA. Moreover, unlike CCA, PLS is robust to the colinearity that may
be present in connectivity data. Thus, our method may be more sensitive in being able to

extract the dimensions that relate brain and behaviour.

Unique sets of connections map onto specific components of cognitive functions

First, we showed that SC and rsFC each capture multiple sets of connection-
cognition associations. Two LVs for SC, and two for FC, each expressed a distinct and
unique set of connections and components of cognitive function. This is in line with the
view that distinct sets of connections are required to support heterogenous components of
cognitive function, implying more specialized connectivity (Rosenberg et al., 2013) as
opposed to the view that a global cognitive factor can be captured via a single set of
connections (Malpas et al., 2016; Smith, 2016).

The two SC-cognition LVs each captured a limited, unique set of primarily intra-
hemispheric cortical and subcortical connections. The first SC-cognition LV mapped
almost perfectly onto the first global cognition PC, which can be attributed to the low
variability across SCs. The second SC-cognition LV strongly expressed fluid intelligence

(PMAT test) via a set of distributed cortical and subcortical connections.
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The two FC-cognition LVs each captured a large set of unique inter and intra-
hemispheric connections. The connectivity-cognition correlations we found were
comparable to those identified previously with the HCP dataset (i.e., » = 0.045) (Hearne et
al., 2016). The first FC-cognition LV expressed fronto-parietal, visual, and cingulate
cortical connections, as well as transverse temporal, insula and L hippocampus connections
to the rest of the cortex. rsFC in these regions was negatively associated with processing
speed, executive function/cognitive flexibility, and working memory performance. The
second FC-cognition LV was expressed via widely distributed cortico-cortical and cortico-
subcortical connections, with strong contributions from the bilateral caudate and putamen
connections to cortical regions. A large number of inter-hemispheric connections were
expressed in this LV. The PMAT fluid intelligence measures were particularly dominant,
with higher rsFC correlating with higher PMAT correct response as well as reaction time
scores, so that subjects with higher rsFC were more accurate, but slower. We note that for
both SC and FC, the PMAT measures were strongly expressed in the second LVs. The
PMAT is an abbreviated version of the Raven’s Progressive Matrices (Prabhakaran et al.,
1997; Gray et al., 2003; Wendelken et al., 2008), and is a measure of fluid intelligence that
has been previously linked to individual differences in FC (Finn et al., 2015; Hearne et al.,
2016; Smith, 2016; Ferguson MA, 2017).

The patterns of connectivity that were correlated with cognitive variability in our
study were consistent with those observed previously. On the side of SC, the limited,
widespread connections that associated with cognition were consistent with what had
previously been reported by Ponsoda, Martinez et al (2017), where only 36 connections

distributed across the entire brain predicted higher order cognitive functions. A number of
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these connections mapped closely onto the SC connections that we identified across the
two LVs. On the side of the rsFC, connectivity distributed across the cortex likely supports
cognitive function (Ferguson MA, 2017). Positive rsFC-cognition associations have
typically been identified in fronto-parietal regions (Hearne et al., 2016), and negative
associations in the default mode and dorsal attention network including visual and
cingulate-parietal connectivity (Song et al., 2008; Song et al., 2009; Pamplona et al., 2015;
Santarnecchi et al., 2015). Our first and second FC-cognition LV captured these negative
and positive associations, respectively. Our second FC-cognition LV expressed several
cortico-subcortical connections, primarily between the putamen, caudate, thalamus and the
rest of the cortex. This is not surprising, as the cortical control of behaviour is mediated via
several cortico-striatal-thalamic-cortical circuits (Alexander et al., 1986; Peters et al.,
2016) that can be identified via structural and functional imaging (Seeley et al., 2007;
Metzger et al., 2010). Connectivity from subcortical areas including the striatum have
previously been tied to individual differences in phenotype and behaviour (Vaidya and
Gordon, 2013). The cortico-striatal-thalamic cognitive control loop also includes the
brainstem (Peters et al., 2016), which exhibited cognition-related connectivity with the
caudate in our LV2. Moreover, the striatum (putamen and caudate) is specifically involved
in learning, storing and processing memories (Packard and Knowlton, 2002), and higher
WM performance has been tied to higher connectivity between the cingulo-opercular
network and putamen rsFC (Tu et al., 2012). In our first LV, the only subcortical region
that had negative rsFC associations with cognition was the L hippocampus, consistent with

prior work (Salami et al., 2014). Insular connectivity, primarily with anterior cingulate
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regions, was also particularly prominent in the first LV, a region that may be important for
reactive attentional control (Jiang et al., 2015).

Interestingly, in a sample of 317 HCP subjects, Hearne et al. (2016) identified only
positive network-level associations between rsFC and two cognitive measures (one of
these was the same PMAT measure used in the present study). As the authors themselves
note, this may be because their network-level approach overlooks any existing edge level
connectivity-cognition relationships that may exist (Song et al., 2008; Song et al., 2009;
Pamplona et al., 2015; Santarnecchi et al., 2015). We replicated the positive association
between rsFC and PMAT scores that was found previously (Hearne et al., 2016) within our
second FC-cognition LV, where fluid intelligence was emphasized as the strongest

cognitive correlate.

SC and FC each capture independent and unique connections that relate to cognition
Second, we showed that that SC and FC each captured independent and
complementary features of the connectome that were linked to cognitive function. The
connections that expressed the SC-cognition association did not overlap with
behaviourally-relevant connections in the FC, evidenced by the comparison of the spatial
pattern of brain scores between the two analyses. While a similar suggestion has
previously been made for SC versus task FC (Duda et al., 2010) and rsFC in select
pathways (Hirsiger et al., 2016), it has not as of yet been examined in whole-brain SC-
rsFC in as large a sample as ours. We found that far fewer connections within the SC
compared to the FC associated with cognition, even when correcting for the sparsity of the

SC. This was likely due to the comparably smaller amount of total variance in the SC
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across subjects. The limited, yet distributed nature of the SC network that varies with
cognition has previously been reported (Ponsoda et al., 2017). Yet, we note that the
amount of covariance accounted for by SC and by FC towards cognition was comparable.
This suggests that both modalities are equally important for understanding individual
differences in cognition.

It is important to consider that the imperfect association between SC and FC (Koch
et al., 2002; Skudlarski et al., 2008; Honey et al., 2009) may impose limitations on the
amount of overlapping information that can be provided by the two modalities. Moreover,
the large repertoire of cognitive brain function is made possible by virtue of the dynamic
nature of FC, which arises from a static SC backbone (Park and Friston, 2013). In this vein,
an investigation into functional connectivity dynamics may help describe how the spatial
contributions of SC and rsFC to cognition fluctuate over time. This investigation is,

however, beyond the scope of this study.
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