

1 **Quantitative proteomics identification of seminal fluid proteins in male**

2 ***Drosophila melanogaster***

3

4 Irem Sepil¹, Ben R Hopkins¹, Rebecca Dean², Marie-Laëtitia Thézénas³, Philip D Charles³,
5 Rebecca Konietzny³, Roman Fischer³, Benedikt M Kessler³ and Stuart Wigby¹

6

7 1. Edward Grey Institute, Department of Zoology, University of Oxford, Oxford, UK

8 2. Department of Genetics, Evolution and Environment, University College London, London,

9 UK

10 3. TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of

11 Medicine, University of Oxford, Oxford, UK

12

13 IS: irem.sepil@zoo.ox.ac.uk

14 BRH: benjamin.hopkins@zoo.ox.ac.uk

15 RD: r.dean@ucl.ac.uk

16 MLT: marie-laetitia.thezenas@lih.lu

17 PDC: philip.charles@ndm.ox.ac.uk

18 RK: rebecca.konietzny@agilent.com

19 RF: roman.fischer@ndm.ox.ac.uk

20 BMK: benedikt.kessler@ndm.ox.ac.uk

21 SW: stuart.wigby@zoo.ox.ac.uk

22

23 **Corresponding author:** Irem Sepil, +441865 271234, irem.sepil@zoo.ox.ac.uk

24 **Running Title:** Novel seminal fluid protein identification in fruit flies

25 **Abbreviations:** Sfps, seminal fluid proteins; GASP, gel-aided sample preparation; DAVID,
26 database for visualization and integrated discovery; GO, gene ontology

27

28 **Summary**

29

30 Seminal fluid contains some of the fastest evolving proteins currently known. These seminal
31 fluid proteins (Sfps) play crucial roles in reproduction, such as supporting sperm function,
32 and – particularly in insects – modifying female physiology and behaviour. Identification of
33 Sfps in small animals is challenging, and often relies on samples taken from the female
34 reproductive tract after mating. A key pitfall of this method is that it might miss Sfps that are
35 of low abundance due to dilution in the female-derived sample or rapid processing in
36 females. Here we present a new and complimentary method, which provides added
37 sensitivity to Sfp identification. We applied label-free quantitative proteomics to *Drosophila*
38 *melanogaster* male reproductive tissue – where Sfps are unprocessed, and highly abundant
39 – and quantified Sfps before and immediately after mating, to infer those transferred during
40 copulation. We also analysed female reproductive tracts immediately before and after
41 copulation to confirm the presence and abundance of known and candidate Sfps, where
42 possible. Results were cross-referenced with transcriptomic and sequence databases to
43 improve confidence in Sfp detection. Our data was consistent with 124 previously reported
44 Sfps. We found 8 high-confidence novel candidate Sfps, which were both depleted in mated
45 *versus* unmated males and identified within the reproductive tract of mated but not virgin
46 females. We also identified 31 more candidates that are likely Sfps based on their
47 abundance, known expression and predicted characteristics, and revealed that four proteins
48 previously identified as Sfps are at best minor contributors to the ejaculate. The estimated
49 copy numbers for our candidate Sfps were lower than for previously identified Sfps,
50 supporting the idea that our technique provides a deeper analysis of the Sfp proteome than
51 previous studies. Our results demonstrate a novel, high-sensitivity approach to the analysis
52 of seminal fluid proteomes, whose application will further our understanding of reproductive
53 biology.

54

55

56 **Introduction**

57

58 Seminal fluid, the non-sperm component of the ejaculate, is a highly complex matrix of bio-
59 molecules including peptides and proteins [1,2]. Seminal fluid proteins (Sfps) are typically
60 produced in specialized secretory glands in males (such as the accessory glands in insects,
61 and the prostate, seminal vesicles, bulbourethral glands and ampullary glands in mammals),
62 and are transferred to females during copulation. Sfps can play roles in sperm capacitation,
63 storage, competition and fertilization, and modulate female post-mating behaviour and
64 physiology [2–8]. In humans, evidence is accumulating that Sfps contribute to sperm
65 fertilization success, and Sfps have been suggested as important biomarkers of male
66 infertility [9]. Given the decline in male fertility over the last few decades [10], and increasing
67 age-related male infertility due to later parenthood in developed countries [11], there is an
68 urgent need for an improved molecular understanding of male reproduction. Proteomics will
69 play an important part in driving forward these advances in the field of human male
70 fertilization biology [12].

71

72 In polyandrous species (in which females mate with multiple males) Sfps can influence
73 sperm competition, whereby the ejaculates of different males overlap in the female
74 reproductive tract, and the sperm of different males compete for fertilization [3]. Sfps evolve
75 rapidly, and are thought to be under sexual selection as a result of both sperm competition
76 and co-evolutionary conflicts between males and females [5,13–15]. Understanding which
77 Sfps contribute to male sperm competition outcomes is especially important in polyandrous
78 insect pests, because the success of key biocontrol methods, such as the Sterile Insect
79 Technique, rely on release of the males with competitively successful ejaculates [16].
80 Moreover, studies in mammalian models show that seminal plasma can even influence the
81 health of offspring [2,17]. Given their important effects for male and female reproductive
82 success and offspring health, considerable recent research effort has focussed on proteomic

83 analyses of Sfps, for a diverse range of taxa. However, identification of the complete set of
84 proteins that are transferred to the female at mating remains a challenge.

85

86 Many mammals are amenable to artificial ejaculation techniques, where the ejaculate is
87 obtained by abdominal massage/squeezing [18,19], the usage of artificial vaginae [20] or
88 electroejaculation [21]. Although these methods allow for direct analyses of Sfps, they can
89 produce abnormal or inconsistent ejaculates, such as seen in mice [22]. Moreover, these
90 techniques are taxonomically restricted, and of limited use for most insect or bird species.

91 An alternative method for the identification of Sfps is whole-organism isotopic labelling
92 methods, whereby the females are metabolically labelled – by feeding a diet enriched in a
93 “heavy” isotope – then mated to unlabelled males. As a result, the female reproductive tract
94 proteome contains labelled female-derived proteins and unlabelled male Sfps that can be
95 distinguished and quantified. ¹⁵N-labelled females have been used to characterize the Sfps
96 of the fruit fly *Drosophila melanogaster*, house mice *Mus domesticus*, and dengue vector
97 mosquito *Aedes aegypti* [22–24]. While isotopic labeling methods have been instrumental for
98 allowing direct characterization of the seminal fluid proteome, they may not be able to detect
99 all male Sfps. Sfps might interact with each other during and after copulation – either in the
100 post ejaculation stage independent from the female, or once inside the female – and this
101 interaction might lead to protein degradation or cleavage, to release biologically active
102 products. For instance, the *D. melanogaster* Sfp, Acp26Aa, is rapidly cleaved within the
103 mated female’s reproductive tract, whereupon two of its cleavage products induce ovulation
104 [25], and is detectable by ELISA for only 1 hour after mating [26]. If some Sfps are even
105 faster processed, they may be hard to detect within the mated female by proteomic
106 methods. In particular, Sfps involved in conflicts between the sexes could be rapidly
107 degraded by the females if the harm is minimized by impairing the Sfp’s function [27].
108 Another potential disadvantage of analyzing female reproductive tract samples after mating
109 is that the Sfps are diluted once they are inside the female, decreasing their relative
110 abundance. Previous work in *D. melanogaster* suggests that only about 15% of peptides are

111 from males in dissected female reproductive tracts (based on comparing the number of
112 peptides without vs. with ^{15}N -label) (G. Findlay, personal communication). Hence, it is likely
113 that methods aimed at identifying Sfps in mated female reproductive tract tissue samples
114 may miss Sfps that are low in abundance within the female.

115

116 Here we present a new quantitative proteomic method, based on the comparison of the
117 accessory gland proteomes of male fruit flies, *Drosophila melanogaster*, before and after
118 mating. This method negates the above issues inherent to the analysis of female derived
119 samples, and allows for the indirect, but potentially powerful, inference of candidate Sfps.
120 *Drosophila* is a model species for ejaculate research and in particular the study of ejaculate-
121 mediated sexual selection and sexual conflict [5,28,29]. The functions of a number of *D.*
122 *melanogaster* Sfps have been investigated in detail, particularly in relation to their roles in
123 modulating behavioural and physiological processes in the female [7,30]. Using ^{15}N -labelling
124 of the female, Findlay *et al.*, 2008 identified 157 Sfps transferred from the male during
125 copulation [23]. A small number of other male-derived proteins have been identified in the
126 reproductive tract of mated females in *Drosophila melanogaster*, bringing the total number to
127 163 proteins [31,32]. We refer to these proteins as 'known Sfps'. In comparison 2,064
128 proteins have been identified in the human seminal fluid. Although this number is an order of
129 magnitude more than the known *Drosophila* Sfps, it is still considerably lower than proteins
130 detected in other human bodily fluids, as for example the 10,000 proteins detected in blood
131 plasma [12]. Hence, it has been suggested that the large range of human Sfp abundance
132 could be hindering the detection of low abundance proteins, a problem that might be shared
133 among taxa including *Drosophila*.

134

135 *D. melanogaster* Sfps are stored in the male reproductive tract secretory tissues - accessory
136 glands, seminal vesicles, ejaculatory duct, ejaculatory bulb and testes [7], but there is no
137 comprehensive map of the particular storage locations for each Sfp. We describe a label-
138 free quantitative proteomics method based on the comparison of male accessory gland

139 proteomes for candidate Sfp identification in *D. melanogaster*. This method is particularly
140 aimed at capturing less abundant or rapidly degrading Sfps, that may have been missed in
141 previous studies. We based the study on the prediction that the abundance of Sfps in male
142 reproductive tract secretory tissues would significantly decrease at copulation. As expected,
143 we found that the vast majority of detected known Sfps were significantly less abundant
144 following mating. Many more proteins were also depleted following mating, indicating
145 possible contribution to the pool of Sfps. These were analysed for the presence of a signal
146 peptide for secretion, or to understand if the protein is exclusively expressed in accessory
147 gland tissues. The proteins that meet these assumptions are suggested as candidate Sfps.
148 No candidates passing both these filters were found in the reproductive tract of virgin
149 females, lending further support to the idea that these are male-originating. Finally, by
150 quantifying the proteome of the accessory glands and ejaculatory duct separately, we
151 demonstrate that a number of known Sfps are mainly or entirely stored in the ejaculatory-
152 duct rather than in the accessory glands.

153

154 **Experimental Procedures**

155

156 **Stock and fly maintenance**

157

158 We used a lab-adapted, outbred Dahomey wild-type stock for all our experimental males,
159 which has been maintained in large population cages with overlapping generations since
160 1970. All flies were maintained at 25 °C on a 12:12 L:D cycle and fed Lewis medium [33].
161 Adult flies were maintained in 36 mL plastic vials containing Lewis medium supplemented
162 with *ad libitum* live yeast grains. Flies were reared using a standard larval density method by
163 placing approximately 200 eggs on 50 mL of food in 250 mL bottles [34]. Virgins were
164 collected on ice anaesthesia within 8h of eclosion and were assigned to their experimental
165 group.

166

167 **Experimental design**

168

169 The general approach to find candidate Sfps was to identify proteins in the male
170 reproductive glands that significantly decreased in abundance after copulation (Fig. 1). We
171 then used transcriptomic data from Flybase and sequence data from UniParc to determine if
172 these proteins are exclusively expressed in the accessory glands, and if they are secreted
173 [35–37], as is expected for Sfp candidates. We also identified the proteins that significantly
174 increase in abundance in the female reproductive tracts after mating to validate the
175 candidate Sfps. Finally; we compared Sfp abundances in accessory glands and ejaculatory
176 ducts in order to determine where they are stored.

177

178 ***Male reproductive gland proteomes***

179 To obtain the quantitative proteome of male reproductive glands before and after mating, we
180 used samples from two independent experiments. These experiments, detailed below,
181 provide a range of conditions for males, which might improve our power to identify proteins if
182 Sfp expression is context-dependent. In the first experiment, male age and mating history
183 were experimentally varied, and in the second experiment the adult social environment
184 (male group size) was experimentally varied (Fig. S1). Any effects of age, mating history or
185 social environment on Sfp abundance *per se*, are beyond the scope of the current study
186 (Sepil et al, *in prep*; Hopkins et al. *in prep*), but were controlled statistically to maximise
187 power (see Statistical Analyses below).

188

189 **Male Dataset 1: males of varying age and mating history**

190 Samples were collected from male flies of experimentally varied age and mating history, as
191 follows (Fig. S1a). Upon eclosion, Dahomey males were housed in groups of 12, either all
192 males (single sex group) or consisting of 3 virgin males and nine virgin Dahomey females
193 (mixed sex group). Males were allowed to age in their group vials for up to five weeks. Males
194 from three age classes were used: 1 week, 3 weeks and 5 weeks old. The single sex group

195 flies were transferred once, and the mixed sex group flies were transferred twice a week to
196 fresh vials using light CO₂ anaesthesia at each transfer. During the transfers, dead or
197 escaped females were replaced with similarly aged mated females. To minimize female co-
198 ageing effects in the 5 week old mixed sex groups, females were replaced at 3 weeks with
199 virgin 3-5 days old females, reared using the same procedures as above. To minimize
200 density effects on mating opportunity in the mixed sex group vials, two vials of the same
201 treatment were merged when a single male was left in a vial owing to previous mortality or
202 censoring. The males from the mixed sex groups were merged into single sex groups of 10-
203 12 males five days before sample collection, in order to allow them to replenish their Sfps.

204

205 The day before the sample collection, 210 virgin females were placed individually in vials.
206 On the day of sample collection, 35 males from each treatment (1 week old single sex
207 group, 3 weeks old single sex group, 5 weeks old single sex group, 1 week old mixed sex
208 group, 3 weeks old mixed sex group, 5 weeks old mixed sex group) were added to the
209 individually housed female vials for mating. The mated males were flash frozen in liquid
210 nitrogen 30 minutes after the start of the mating. These flies formed the “newly mated” male
211 groups (Fig. S1a).

212

213 Another 35 males from each treatment (i.e. 1 week old single sex group, 3 week old single
214 sex group, 5 week old single sex group, 1 week old mixed sex group, 3 week old mixed sex
215 group, 5 week old mixed sex group) were flash frozen in liquid nitrogen without being
216 exposed to females. These flies formed the “unmated” male groups. Hence each of the 6
217 treatments had a ‘newly mated’ and an ‘unmated’ sample that were paired for further
218 analysis (Fig. S1a). We repeated this experiment four times to produce independent
219 biological replicates. We thawed flash frozen males and dissected their accessory glands
220 and ejaculatory duct on ice in PBS buffer. 19 reproductive glands from males of the same
221 treatment and replicate (out of a potential of 35) were pooled in 25 μ l PBS buffer on ice.
222 Hence, we had 6 paired newly mated male and unmated male samples from each replicate

223 and 24 paired newly mated male and unmated male samples in total (i.e. 48 samples
224 overall).

225

226 Male Dataset 2: varied social exposure

227 Upon eclosion, males were randomly allocated to one of three single sex group size
228 treatments: individually housed (treatment 1), housed in pairs (treatment 2), or housed in
229 groups of 8 (treatment 8). The males were aged in their treatment vials for four days (Fig.
230 S1b). The day before sample collection, 105 virgin females were placed individually in vials.
231 On the day of sample collection, 35 males from each treatment (1, 2 and 8) were added to
232 the female vials for mating. The mated males were flash frozen in liquid nitrogen 25 minutes
233 after the start of the mating. These flies formed the “newly mated” male groups (Fig. S1b).

234

235 Another 35 males from each treatment (1, 2 and 8) were flash frozen in liquid nitrogen as
236 virgins without being exposed to females. These flies formed the “unmated” male groups.
237 Hence each treatment (1, 2, 8) had a ‘newly mated’ and ‘unmated’ sample that were paired
238 for further analysis. We repeated this experiment to produce five independent biological
239 replicates. Flash frozen males were dissected as outlined above. 20 reproductive glands
240 from males of the same treatment and replicate were pooled in 25 μ l PBS buffer on ice (Fig.
241 S1b). Hence, we had 3 paired newly mated male and virgin male samples from each
242 replicate and 15 paired newly mated male and virgin male samples in total. Overall we had
243 30 samples.

244

245 ***Sfps in the female reproductive tract***

246 Upon eclosion Dahomey females and Dahomey males were aged in single sex groups of 12
247 for 3 days. The day before sample collection 35 females were placed individually in vials. On
248 the day of sample collection, a single male was added to each female vial for mating. The
249 mated females were flash frozen in liquid nitrogen 30 minutes after the start of the mating.
250 These flies formed the “newly mated” female group. Another 35 females were flash frozen in

251 liquid nitrogen as virgins without being exposed to males. These flies formed the “virgin”
252 female group. The newly mated and virgin samples were paired for further analysis. We
253 repeated this experiment to obtain five independent, biological replicates. Flash frozen
254 females were thawed and their reproductive tracts (uterus, spermathecae, parovarias and
255 the seminal receptacle, excluding the ovaries) were dissected on ice in PBS buffer. 20
256 reproductive glands from females of the same treatment and replicate were pooled in 25 μ l
257 PBS buffer on ice. Hence, we had 5 paired newly mated female and virgin female samples
258 in total. Overall, we had 10 samples.

259

260 ***Male accessory glands and ejaculatory duct proteomes***

261 Upon eclosion, males were aged in single sex groups of 12 for 3 days. 70 males were flash
262 frozen in liquid nitrogen as virgins. We repeated this procedure two more times to have three
263 independent, biological replicates. Flash frozen males were thawed and randomly allocated
264 to one of three dissection regimes: “Accessory Gland” (AG) regime flies only had their
265 accessory glands dissected out, “Ejaculatory Duct (ED) regime flies only had their
266 ejaculatory duct dissected out and “Both” (BO) regime flies had both their accessory glands
267 and ejaculatory duct dissected out. All three biological replicates were split into AG, ED and
268 BO regime dissection groups. 20 reproductive tissues from males of the same dissection
269 group and replicate were pooled in 25 μ l PBS buffer on ice. Overall we had 9 samples.

270

271 **Sample Preparation**

272

273 All samples described above were stored at -80°C until sample preparation for proteomic
274 analysis. The samples were macerated with a clean pestle and washed with 25 μ l of Pierce
275 RIPA Buffer. Then they were digested using the standard gel-aided sample preparation
276 (GASP) protocol as described previously [38]. In brief, samples were reduced with 50 mM
277 DTT for 10 to 20 minutes. Protein lysate was mixed with an equal volume of 40%
278 acrylamide/Bis solution (37.5:1. National Diagnostics) and left at room temperature for 30

279 minutes to facilitate cysteine alkylation to propionamide. 5ul TEMED and 5 ul 10% APS were
280 added to trigger acrylamide polymerization. The resulting gel plug was shredded by
281 centrifugation through a Spin-X filter insert without membrane (CLS9301, Sigma/Corning).
282 Gel pieces were fixed in 40% ethanol /5% acetic acid before 2 successive rounds of buffer
283 exchange with 1.5 M Urea, 0.5 M Thiourea and 50 mM ammonium bicarbonate which were
284 removed with acetonitrile. Immobilized proteins were digested with trypsin (Promega)
285 overnight and peptides extracted with two rounds of acetonitrile replacements. Peptides
286 were first dried before desalting using Sola SPE columns (Thermo) and resuspended in 2%
287 ACN, 0.1 % FA buffer prior LC-MS/MS analysis.

288

289 **LC-MS/MS**

290

291 Peptide samples were analysed on a LC-MS/MS platform consisting of a Dionex Ultimate
292 3000 and a Q-Exactive mass spectrometer (both Thermo). After peptide loading in 0.1%
293 TFA in 2% ACN onto a trap column (PepMAP C18, 300 μ m x5mm, 5 μ m particle, Thermo),
294 peptides were separated on an easy spray column (PepMAP C18, 75 μ m x 500mm, 2 μ m
295 particle, Thermo) with a gradient 2% ACN to 35% ACN in 0.1% formic acid in 5% DMSO.

296

297 MS spectra were acquired in profile mode with a resolution of 70,000 with an ion target of
298 3×10^6 . The instrument was set to pick the 15 most intense features for subsequent MS/MS
299 analysis at a resolution of 17,500 and a maximum acquisition time of 128ms and an AGC
300 target of 1×10^5 after an isolation with 1.6 Th and a dynamic exclusion of 27 seconds.

301

302 **Processing of MS Data**

303

304 RAW files were imported into Progenesis QIP using default settings. MS/MS spectra were
305 converted into MGF files using the 200 most intense peaks without deconvolution before
306 database search in Mascot 2.5.1 using a *Drosophila melanogaster* database retrieved from

307 Uniprot. We used 10 ppm for precursor mass accuracy and 0.05 Da for fragment accuracy in
308 Mascot, allowing variable Oxidation (M), Deamidation (N, Q) and Propionamide (K) as
309 variable modifications and 2 missed cleavage sites. Propionamide modification of Cysteines
310 was set as a fixed modification. We applied 1% FDR at peptide level and an additional
311 Mascot ion score cutoff of 20 before importing search results into Progenesis, where protein
312 quantification was calculated using the Top3 method. Quantitative protein data was further
313 normalized/processed as described below.

314

315 ***In silico* protein annotation**

316

317 We used SignalP and UniProt to predict whether a protein was likely to be secreted, by
318 checking for the presence of a signal peptide [35,36]. We used FlyAtlas to check for
319 exclusive expression in the accessory glands [37]. UniProt was also used to deduce protein
320 function. Lastly the Database for Visualization and Integrated Discovery (DAVID) was used
321 for gene ontology (GO) enrichment analysis [39,40]. The resulting p-values were corrected
322 for multiple testing by the Benjamini–Hochberg procedure.

323

324 **Statistical analysis**

325

326 All analyses were conducted using R v. 3.4.0 (R Team, 2012). Each dataset (Male Dataset
327 1, Male Dataset 2, female reproductive tract proteome, and male accessory glands and
328 ejaculatory duct proteome) was analysed separately. Only proteins identified with at least
329 two unique peptides were included in the final dataset. Quantitative data generated by
330 Progenesis was normalised by log transforming the intensities [$\log_2(x + 1)$]. We followed the
331 method of Keilhauer *et al.* (2015) to determine a ‘background proteome’ for median centring
332 purposes [42]. Briefly, we calculated the standard deviation of the intensity profile for each
333 identified protein, ranked the proteins according to the standard deviation of their profile, and
334 selected the bottom 90% of the data. This ‘background proteome’ was used to median

335 centre the distribution of each sample. For the female reproductive tract dataset, quantified
336 proteins were confirmed with spectral counts for each condition, as some proteins are
337 expected to be present only in a subset of samples. We removed the proteins that had fewer
338 than three spectral counts in total (among the five replicates in mated or virgin samples)
339 from those samples.

340

341 Paired T-tests were performed to compare protein intensities between paired male samples
342 (unmated and newly mated male samples of the same treatment and replicate) and paired
343 female samples (virgin and newly mated female samples of the same replicate). The
344 resulting p-values were corrected for multiple testing using Benjamini–Hochberg procedure.
345 The fold change between the means of the two groups and the negative \log_{10} of fdr-
346 corrected p-values were plotted against each other to create volcano plots. The
347 quantification data was also used to calculate the abundance of each protein in Male
348 Dataset 1 and Male Dataset 2 separately. Then the known Sfps and the candidate Sfps
349 were ranked in abundance to compare the estimated copy numbers of candidate Sfps
350 against known Sfps in these samples. The significance of the abundance differences
351 between known Sfps and candidate Sfps was calculated using Kruskal-Wallis rank sum
352 tests.

353

354 For the male accessory glands and ejaculatory duct proteome dataset we ran linear mixed
355 effect models on the subset of known seminal proteins and the high-confidence candidate
356 Sfps identified in this study to test whether the proteins are significantly more abundant in
357 different tissues. We used the *nlme* package in R. For each protein, the initial model
358 included the dissection regime (AG, DU or BO) as a fixed factor and the replicate number as
359 a random factor. Again, the resulting p-values were corrected for multiple testing using
360 Benjamini–Hochberg procedure.

361

362

363 **Results**

364

365 **Male reproductive glands proteome**

366

367 Two datasets of pooled male reproductive tracts were analysed independently. Candidate

368 Sfps were then identified by applying a set of criteria across the results of both dataset

369 analyses.

370

371 **Male Dataset 1**

372 From the 48 samples where 19 male reproductive tracts were pooled, we found a total of

373 1811 proteins, 1333 of which were identified by at least two unique peptides. We detected

374 109 (out of a total of 163) known Sfps, of which 100 were significantly more abundant in

375 unmated samples ($p \leq 0.02$; $0.3 < \text{Fold change [unmated - mated]} < 3.232$; Fig. 2a; Fig. 3a).

376 A further 159 proteins were found to be significantly more abundant in unmated samples (p

377 ≤ 0.048 ; $0.106 < \text{Fold change [unmated - mated]} < 2.842$; Fig. 3b). Below we apply a set of

378 criteria to these proteins in order to derive our new candidate Sfp proteins.

379

380 **Male Dataset 2**

381 From the 30 samples where 20 male reproductive tracts were pooled, we found a total of

382 2025 proteins, of which 1279 were identified by at least two unique peptides. We detected

383 108 known Sfps and of these 90 were significantly more abundant in unmated samples ($p \leq$

384 0.036; $0.29 < \text{Fold change [unmated - mated]} < 1.982$; Fig. 2b; Fig. 3a). Male Dataset 1 and

385 Male Dataset 2 have 83 known Sfps in common that are significantly more abundant ($p \leq$

386 0.035) in the unmated treatments (Fig. 3a). Another 92 proteins were found to be

387 significantly more abundant in unmated samples ($p \leq 0.049$; $0.277 < \text{Fold change [unmated}$

388 $- \text{mated]} < 2.161$). 38 of these were shared with Male Dataset 1 (Fig. 3b).

389

390

391 ***Candidate Sfps from male datasets***

392 For the proteins that were found to be significantly more abundant in unmated samples in
393 either male dataset (excluding the known Sfps) we checked whether they met a set of
394 criteria to determine candidate Sfps. These criteria were:

395 (1) Significantly higher abundance ($p \leq 0.05$) in unmated male samples (Male
396 Dataset 1) and, if present, higher abundance in unmated male samples (Male
397 Dataset 2)

398 (2) Significantly higher abundance ($p \leq 0.05$) in unmated male samples (Male
399 Dataset 2) and, if present, higher abundance in unmated male samples (Male
400 Dataset 1)

401 (3) Presence of a signal peptide

402 (4) Exclusive expression in accessory glands.

403 We considered proteins that met at least three of the criteria as candidate Sfps. 39 proteins
404 met at least three criteria and are suggested as novel Sfp candidates (Fig. 2). Functional
405 classifications among these 39 proteins included proteases, protease inhibitors, function in
406 cell adhesion, chitin binding, lipid metabolism and DNA interactions. (Table 1; Table S1).

407 These classes are highly similar to the functional classes of known Sfps [23]. DAVID
408 analysis for enriched GO terms within the 39 candidate Sfps (using the complete list of
409 known Sfps plus the candidate Sfps as background) revealed enrichment for presence in
410 extracellular region ($p = 0.034$) and hydrolases ($p = 0.036$). Moreover, candidate Sfps were
411 significantly less abundant than known Sfps in both Male Dataset 1 ($\chi^2_1 = 31.993$; $p =$
412 $1.547e^{-8}$) and Male Dataset 2 ($\chi^2_1 = 26.042$; $p = 3.34e^{-7}$; Fig. 4).

413

414 We similarly checked for functional enrichment in the remaining up and down regulated
415 proteins in both male datasets and largely detected no significant changes. The only
416 exception was in an analysis of the proteins that were significantly more abundant ($p \leq$
417 0.049) in newly mated males in Male Dataset 2 (Fig. 2b - proteins on the left arm of the
418 volcano plot) against all the proteins detected in Male Dataset 2, which revealed enrichment

419 for ribonucleoprotein activity ($p = 3.4e^{-4}$), translation ($p = 0.006$), ribosomal proteins ($p =$
420 0.008), structural constituents of ribosomes ($p = 0.016$) and ribosomes ($p = 0.042$).

421

422 **Female reproductive tract proteome**

423

424 From the 10 samples where 20 female reproductive tracts were pooled, we found a total of
425 2150 proteins, of which 1482 were identified by at least two unique peptides. We detected
426 101 known Sfps, and of these 96 were significantly more abundant in mated samples ($1.25e^{-$
427 $^5 < p < 0.039$; $0.3 < \text{Fold change [mated} - \text{virgin}] < 3.232$; Fig. 5). While the known Sfps
428 were consistently in higher abundance in mated flies, the data appeared to indicate the
429 presence of some Sfps in virgin females at low abundance. The genes for some of these
430 known Sfps are expressed in virgin females, which could explain their presence, but others
431 are thought to be exclusively expressed in the male accessory glands [37]. Of the 60 known
432 Sfps previously identified as exclusively expressed in males, virgin samples had more than
433 two spectral counts for only one protein (5 spectral counts), whereas mated samples had
434 more than two spectral counts for 59 proteins (range of 7 to 1017 spectral counts). The other
435 41 known Sfps had expression profiles in virgin females or did not have an expression
436 profile at all [37]. Of these 41 Sfps, virgin samples had more than two spectral counts for 17
437 proteins (range of 4 to 94 spectral counts), whereas mated samples had for all proteins
438 (range of 3 to 414 spectral counts). Another 204 proteins were found to be significantly more
439 abundant ($p \leq 0.049$) in mated female samples. 89 of these proteins are known sperm
440 proteins and are found in the *Drosophila melanogaster* sperm proteome II [43]. No
441 enrichment was detected when the rest of the proteins significantly higher in mated females
442 (Fig. 5 – black coloured proteins on the upper right arm of the volcano plot) were checked
443 against all the female proteins. However, analysis of the proteins that are significantly more
444 abundant ($p \leq 0.049$) in virgin females (Fig. 5 – proteins on the upper left arm of the volcano
445 plot) revealed enrichment for immunoglobulin-like domains (Table S2).

446

447 The 39 candidate Sfps identified from the male datasets using 4 criteria were checked for
448 two further criteria: (5) Significantly higher abundance in mated female samples; and (6)
449 Presence in mated and absence in virgin female samples on the basis of spectral counts. 8
450 of the 39 novel candidate Sfps also met these additional criteria and are therefore classified
451 as high-confidence candidate Sfps (Fig. 5, Table 2). Two of these high-confidence candidate
452 Sfps have unknown functions (CG3640, BG642163), two are protease inhibitors (CG43145,
453 Spn28Db), one is a protease (CG3097), and one function in cell redox homeostasis
454 (CG31413), lipid metabolism (CG31684) and hormone metabolism (CG9519).

455

456 ***Confirmed known Sfps from male and female datasets***

457 The known Sfps that were found to be significantly more abundant ($p \leq 0.05$) in unmated
458 samples in either male dataset or that were found to be significantly more abundant ($p \leq$
459 0.05) in mated samples in the female dataset were classified as confirmed known Sfps. In
460 total, 124 out of the 163 known Sfps were confirmed in our study (Table S3). Three known
461 Sfps (CG5267, Sfp79B and Sfp84E) were similarly abundant and one known Sfp (CG15116)
462 was less abundant in unmated samples in either male dataset, hence these are at best
463 minor contributors to the ejaculate.

464

465 ***Male accessory glands and ejaculatory duct proteome***

466

467 From the 9 samples where 20 reproductive tissues were pooled, we found 1783 proteins, of
468 which 1346 were identified by at least two unique peptides. Of the 117 known Sfps and high-
469 confidence candidate Sfps detected, 109 varied in abundances between tissue samples. For
470 14 of these, protein abundances were significantly higher ($p \leq 0.012$) in the ejaculatory duct
471 than in the accessory gland (DU compared to AG). The abundances of these 14 proteins
472 were similar between samples containing both the ejaculatory duct and accessory gland
473 (BO) and DU samples, except for CG17242 where the protein was significantly more
474 abundant ($p \leq 0.034$) in the DU sample. Among these 14 proteins, 11 were also significantly

475 more abundant ($p \leq 0.047$) in the samples containing both the ejaculatory duct and
476 accessory gland (BO) compared to the AG samples. Hence they are likely primarily or wholly
477 ejaculatory duct-derived (Fig. 6). The other three proteins, Est-6, NLaz and Obp56g, were
478 considered candidate ejaculatory-duct derived Sfps (Fig. S2). While six of the 11 proteins
479 were known ejaculatory duct proteins (Saudan *et al.*, 2002; Takemori & Yamamoto, 2009),
480 the other five Sfps, CG17242, CG18067, CG31704, CG5402, Met75Ca, had not previously
481 been linked to this tissue (Table S4). DAVID analysis of the 11 proteins against all the
482 known Sfps did not identify any significant classes or functions for the putative ejaculatory-
483 duct stored Sfps.

484

485 **Discussion**

486

487 We utilized label-free quantitative proteomics to identify candidate Sfps, by comparing the
488 Sfp-producing tissues of males, and the reproductive tracts of females, before and after
489 mating. Using this approach, our data showed consistency with 124 previously known Sfps,
490 detected 8 additional proteins that are highly likely to be Sfps, and identified a further 31
491 proteins as candidate Sfps. Lastly, we revealed that 11 Sfps are mainly stored in the
492 ejaculatory duct, 5 of which were not previously linked with that tissue. Taken together,
493 these results demonstrate how label-free quantitative proteomics methods, and our tissue-
494 comparison approach, could be used to complement labelling techniques to expand Sfp
495 characterization and localization.

496

497 The approach we used here relies largely on just two principles. Sfps should decrease in
498 quantity following mating in male secretory organs (Criteria 1 and 2), and Sfps should
499 appear or increase in quantity following mating in female reproductive tracts (Criteria 5 and
500 6). While previous studies have checked whether proteins appear in female reproductive
501 tract following mating as a way to identify Sfps without the usage of labelling techniques [46],
502 a label-free quantitative proteomics approach utilizing male accessory gland proteomes

503 before and after mating has been lacking in the field. This is an important omission for two
504 reasons. Approaches that are solely based on identifying proteins from the female
505 reproductive tract might miss male-derived proteins that get rapidly cleaved/degraded during
506 or soon after ejaculation in the male or female reproductive-tract. Likewise, approaches
507 utilizing females are likely to overlook Sfps that are in low abundance, as they will be further
508 diluted within the female reproductive tract. By comparing the reproductive tract proteome of
509 males, our method has the potential to overcome these issues, and provides a
510 complementary method to techniques that utilize females.

511

512 In this study we used *Drosophila melanogaster*, a species that has its Sfps well
513 characterized through ¹⁵N-labeling [23]. Here, we identify a number of proteins significantly
514 decreasing in abundance following mating (from two independent male datasets). However,
515 we used additional criteria to utilize the wealth of knowledge that exist for flies to expand the
516 seminal fluid proteome. We checked whether these proteins had a signal peptide or were
517 exclusively expressed in the accessory glands, as these are common qualities of Sfps. We
518 considered proteins that met at least three out of the first four criteria to be considered a
519 candidate Sfp. Based on all this information, 39 candidate Sfps were identified. We
520 subsequently analysed female reproductive tracts immediately after copulation to verify the
521 presence of the candidate Sfps, where possible (Criteria 5 and 6). 8 of the 39 candidate Sfps
522 were detected in the females following mating. As the data from the female reproductive
523 tract confirmed the transfer of these 8 proteins we suggest them as high-confidence
524 candidate Sfps. The other 31 of the 39 candidate Sfps are of interest as they might
525 represent the set of proteins that avoid detection in females for the reasons set above. Our
526 criteria are relatively conservative, and should ensure that most of our candidates are
527 genuine Sfps. However, because these proteins were not found elevated in abundance in
528 the female reproductive tract after mating we cannot exclude the possibility that these
529 proteins deplete in the male during copulation for reasons other than being transferred to the
530 female, and are therefore not Sfps. Targeted approaches, analyses of increased sensitivity,

531 and measurements taken at earlier copulation time intervals should be used in the future to
532 confirm which of these candidates are true Sfps.

533

534 The gene ontology enrichment analysis revealed that the new candidate Sfps we identified
535 are more likely to be hydrolases and be present in the extracellular region. Hydrolases
536 function in the cleavage of chemical bonds and are further classified into several subclasses
537 (such as lipases, glycosylases, proteases), based upon the bonds that they cleave. A large
538 number of proteases, lipases and chitinases have already been identified in the seminal
539 fluid; hence our findings suggest that the functional classes of the candidates are broadly
540 similar to the functional classes of the known Sfps [23]. The high number of proteases and
541 protease inhibitors point towards a very delicately regulated protein system to support sperm
542 function and female postmating behaviour. *Drosophila* seminal fluid proteases are known to
543 regulate proteolytic and post-mating reproductive processes [47], hence these candidates
544 warrant further investigation.

545

546 Yet, there are no predicted functions for quarter of the candidate Sfps. Functional analysis of
547 specific candidates through loss of function or overexpression experiments would be
548 necessary to elucidate the role of these proteins. It is also currently unknown if any of these
549 proteins are cleaved or processed in the ejaculate or once inside the female, and further
550 investigations are necessary to test these possibilities. However, as expected, our analyses
551 did reveal that the candidate Sfps are significantly less abundant than the known Sfps. This
552 finding strengthens the possibility that the majority of the candidate Sfps were missed out in
553 previous studies utilizing mated females due to their low copy number in the samples, or
554 rapid processing upon ejaculation.

555

556 Previously, 11 proteins were identified as duct-specific in *D. melanogaster* [44,45,48].
557 However, only seven of these are known Sfps so only these were considered in our study.
558 We verified six of these and found five new Sfps to be ejaculatory-duct specific. The one Sfp

559 that was not verified is Est-6, which was classified as a candidate ejaculatory duct-derived
560 protein in our study. This is because the abundance of Est-6 was similar between accessory
561 gland samples (AG) and combined accessory gland and ejaculatory duct samples (BO)
562 Investigating compositional changes in duct-specific and accessory gland-specific proteins,
563 in relation to male and female condition will provide insights as to whether structural
564 compartmentalization influences ejaculate composition. In *Drosophila melanogaster*, it has
565 already been shown that males can adaptively tailor the composition of proteins in the
566 ejaculate to exploit the effects of a previous male's ejaculate. However the mechanism by
567 which males could adjust the composition of their ejaculate is currently unclear [49]. In *Pieris*
568 *rapae* butterflies, the distinct protein mixtures found in the spermatophore envelope and the
569 inner matrix are stored in separate regions of the male reproductive tract and are transferred
570 to the female sequentially [50]. This partitioning is likely to have important implications for
571 how males strategically tailor their ejaculates, or conversely how pathology in specific Sfp-
572 producing compartments impacts ejaculate composition and quality. For example, the Sfps
573 in the human seminal plasma are stored in multiple compartments, each with specific
574 functions (e.g. prostate, ampullary glands, seminal vesicles, bulbourethral glands, and
575 epididymis), thus infections in specific glands will have distinct signatures in the seminal
576 plasma [51]. Improving our knowledge of the proteomic contribution of each accessory gland
577 is crucial if we are to understand the mechanisms that generate variation in ejaculate
578 composition.

579
580 Gene ontology analysis of proteins that are significantly more abundant in newly mated
581 males (the opposite to Sfps) identified enrichment for translation and ribosome related
582 activity in one of the male datasets. This result is expected considering that males of *D.*
583 *melanogaster* transfer about one third of their accessory gland contents to the female during
584 each mating, and mating induces the rapid transcription and translation of Sfp genes [26,52].
585 However, enrichment for translation in newly mated males was only detected in Male
586 Dataset 2, where males were uniformly young (four days old) but not Male Dataset 1 where

587 males were up to five weeks old. Koppik & Fricke (2017) have recently reported a decrease
588 in male Sfp gene expression with advancing age [53], which could explain why no
589 enrichment was observed in Dataset 1, which included older males. Similarly, semen volume
590 is known to decrease with age in humans, while sperm concentration does not [11]. This
591 suggests that at least part of human male reproductive ageing is non-sperm components of
592 the ejaculate. Investigating the effects of ageing on the male accessory gland proteome is
593 the subject of ongoing work. Moreover, the proteins significantly more abundant in virgin
594 females were enriched for immunoglobulin-like domains that are involved in cell-cell
595 recognition, cell-surface receptors and muscle structure [54]. The suppression of proteins
596 related to these functions might be due to the conformational changes in the female
597 reproductive tract following mating and warrants further investigation.

598

599 **Conclusions**

600

601 In order to understand the role of Sfps in reproduction, it is essential to characterize the full
602 suite of seminal fluid products. In this study, we have described a label-free quantitative
603 proteomics method for Sfp identification that can potentially identify proteins that avoid
604 detection in labelling techniques utilizing females, such as those that are quickly degraded
605 and/or low abundance. We propose both techniques to be used in conjunction for reliable
606 Sfp identification. Our data show that the method is also useful for deciphering the
607 contribution of different male reproductive tissues to the seminal fluid proteome.

608

609 **Acknowledgements**

610

611 We thank Tim Karr for the invitation to contribute to this special issue. We thank Jennifer
612 Perry, Eleanor Bath and Juliano Morimoto for helping with the experiments. I.S. and S.W.
613 were supported by a BBSRC fellowship to S.W. (BB/K014544/1). B.M.K., P.D.C. and R.F.
614 are supported by the Kennedy Trust and John Fell Funds. R.D. is supported by Marie Curie

615 Actions (grant agreement 655392). B.R.H. is funded by the EP Abraham Cephalosporin-
616 Oxford Graduate Scholarship with additional support from the BBSRC DTP.

617

618 **References**

619

620 [1] A. Poiani, Complexity of seminal fluid: A review, *Behav. Ecol. Sociobiol.* 60 (2006)
621 289–310. doi:10.1007/s00265-006-0178-0.

622 [2] L.A. Mcgraw, S.S. Suarez, M.F. Wolfner, On a matter of seminal importance,
623 *BioEssays.* 37 (2015) 142–147. doi:10.1002/bies.201400117.

624 [3] J.C. Perry, L. Sirot, S. Wigby, The seminal symphony: How to compose an ejaculate,
625 *Trends Ecol. Evol.* 28 (2013) 414–422. doi:10.1016/j.tree.2013.03.005.

626 [4] B.R. Hopkins, I. Sepil, S. Wigby, Seminal fluid, *Curr. Biol.* 27 (2017) R404–R405.
627 doi:10.1016/j.cub.2017.03.063.

628 [5] L.K. Sirot, A. Wong, T. Chapman, M.F. Wolfner, Sexual conflict and seminal fluid
629 proteins: A dynamic landscape of sexual interactions, *Cold Spring Harb. Perspect.*
630 *Biol.* 7 (2015). doi:101101/cshperspect.a017533.

631 [6] H. Rodríguez-Martínez, U. Kvist, J. Ernerudh, L. Sanz, J.J. Calvete, Seminal plasma
632 proteins: What role do they play?, *Am. J. Reprod. Immunol.* 66 (2011) 11–22.
633 doi:10.1111/j.1600-0897.2011.01033.x.

634 [7] F.W. Avila, L.K. Sirot, B.A. Laflamme, C.D. Rubinstein, M.F. Wolfner, Insect seminal
635 fluid proteins: identification and function, *Annu. Rev. Entomol.* 56 (2011) 21–40.
636 doi:10.1146/annurev-ento-120709-144823.

637 [8] L.K. Sirot, M.F. Wolfner, Who's Zooming Who? Seminal Fluids and Cryptic Female
638 Choice in Diptera, in: A. V Peretti, A. Aisenberg (Eds.), *Cryptic Female Choice*
639 *Arthropods Patterns, Mech. Prospect.*, Springer International Publishing, Cham, 2015:
640 pp. 351–384. doi:10.1007/978-3-319-17894-3_13.

641 [9] K. Gilany, A. Minai-Tehrani, E. Savadi-Shiraz, H. Rezadoost, N. Lakpour, Exploring
642 the human seminal plasma proteome: An unexplored gold mine of biomarker for male

643 Infertility and male reproduction disorder, *J. Reprod. Infertil.* 16 (2015) 61–71.

644 [10] H. Levine, N. Jørgensen, A. Martino-Andrade, J. Mendiola, D. Weksler-Derri, I.

645 Mindlis, R. Pinotti, S.H. Swan, Temporal trends in sperm count: A systematic review

646 and meta-regression analysis, *Hum. Reprod. Update.* 23 (2017) 646–659.

647 doi:10.1093/humupd/dmx022.

648 [11] S.L. Johnson, J. Dunleavy, N.J. Gemmell, S. Nakagawa, Consistent age-dependent

649 declines in human semen quality: A systematic review and meta-analysis, *Ageing*

650 *Res. Rev.* 19 (2015) 22–33. doi:10.1016/j.arr.2014.10.007.

651 [12] M. Jodar, A. Soler-Ventura, R. Oliva, Semen proteomics and male infertility, *J.*

652 *Proteomics.* 162 (2017) 125–134. doi:10.1016/j.jprot.2016.08.018.

653 [13] T. Chapman, The soup in my fly: Evolution, form and function of seminal fluid

654 proteins, *PLoS Biol.* 6 (2008) 1379–1382. doi:10.1371/journal.pbio.0060179.

655 [14] S.A. Ramm, L. McDonald, J.L. Hurst, R.J. Beynon, P. Stockley, Comparative

656 proteomics reveals evidence for evolutionary diversification of rodent seminal fluid

657 and its functional significance in sperm competition, *Mol. Biol. Evol.* 26 (2009) 189–

658 198. doi:10.1093/molbev/msn237.

659 [15] M.D. Dean, N.L. Clark, G.D. Findlay, R.C. Karn, X. Yi, W.J. Swanson, M.J. MacCoss,

660 M.W. Nachman, Proteomics and comparative genomic investigations reveal

661 heterogeneity in evolutionary rate of male reproductive proteins in mice (*Mus*

662 *domesticus*), *Mol. Biol. Evol.* 26 (2009) 1733–1743. doi:10.1093/molbev/msp094.

663 [16] L. Alphey, M. Benedict, R. Bellini, G.G. Clark, D.A. Dame, M.W. Service, S.L. Dobson,

664 Sterile-insect methods for control of mosquito-borne diseases: an analysis., *Vector*

665 *Borne Zoonotic Dis.* 10 (2010) 295–311. doi:10.1089/vbz.2009.0014.

666 [17] J.J. Bromfield, J.E. Schjenken, P.Y. Chin, A.S. Care, M.J. Jasper, S.A. Robertson,

667 Maternal tract factors contribute to paternal seminal fluid impact on metabolic

668 phenotype in offspring, *Proc. Natl. Acad. Sci.* 111 (2014) 2200–2205.

669 doi:10.1073/pnas.1305609111.

670 [18] B. Baer, J.L. Heazlewood, N.L. Taylor, H. Eubel, A.H. Millar, The seminal fluid

671 proteome of the honeybee *Apis mellifera*, *Proteomics*. 9 (2009) 2085–2097.
672 doi:10.1002/pmic.200800708.

673 [19] K. Borziak, A. Álvarez-Fernández, T. L. Karr, T. Pizzari, S. Dorus, The Seminal fluid
674 proteome of the polyandrous Red junglefowl offers insights into the molecular basis of
675 fertility, reproductive ageing and domestication, *Sci. Rep.* 6 (2016) 35864.
676 doi:10.1038/srep35864.

677 [20] X. Druart, J.P. Rickard, S. Mactier, P.L. Kohnke, C.M. Kershaw-Young, R. Bathgate,
678 Z. Gibb, B. Crossett, G. Tsikis, V. Labas, G. Harichaux, C.G. Grupen, S.P. de Graaf,
679 Proteomic characterization and cross species comparison of mammalian seminal
680 plasma, *J. Proteomics*. 91 (2013) 13–22. doi:10.1016/j.jprot.2013.05.029.

681 [21] R. Tecirlioglu, E. Hayes, A. Trounson, Semen collection from mice: electroejaculation,
682 *Reprod. Fertil. Dev.* 14 (2002) 363–371.

683 [22] M.D. Dean, G.D. Findlay, M.R. Hoopmann, C.C. Wu, M.J. MacCoss, W.J. Swanson,
684 M.W. Nachman, Identification of ejaculated proteins in the house mouse (*Mus*
685 *domesticus*) via isotopic labeling, *BMC Genomics*. 12 (2011) 306. doi:10.1186/1471-
686 2164-12-306.

687 [23] G. Findlay, X. Yi, M. MacCoss, W. Swanson, Proteomics Reveals Novel *Drosophila*
688 Seminal Fluid Proteins Transferred at Mating, *PLoS Biol.* 6 (2008) e178.
689 doi:10.1371/journal.pbio.

690 [24] L.K. Sirot, M.C. Hardstone, M.E. Helinski, J.M. Ribeiro, M. Kimura, P.
691 Deewatthanawong, M.F. Wolfner, L.C. Harrington, Towards a semen proteome of the
692 dengue vector mosquito: protein identification and potential functions, *PLoS Negl Trop*
693 *Dis.* 5 (2011) e989. doi:10.1371/journal.pntd.0000989.

694 [25] Y. Heifetz, L.N. Vandenberg, H.I. Cohn, M.F. Wolfner, Two cleavage products of the
695 *Drosophila* accessory gland protein ovulin can independently induce ovulation, *Proc.*
696 *Natl. Acad. Sci.* 102 (2005) 743–748. doi:10.1073/pnas.0407692102.

697 [26] L.K. Sirot, N.A. Buehner, A.C. Fiumera, M.F. Wolfner, Seminal fluid protein depletion
698 and replenishment in the fruit fly, *Drosophila melanogaster*: An ELISA-based method

699 for tracking individual ejaculates, *Behav. Ecol. Sociobiol.* 63 (2009) 1505–1513.

700 doi:10.1007/s00265-009-0806-6.

701 [27] L.K. Sirot, G.D. Findlay, J.L. Sitnik, D. Frasher, F.W. Avila, M.F. Wolfner, Molecular
702 Characterization and Evolution of a Gene Family Encoding Both Female- and Male-
703 Specific Reproductive Proteins in *Drosophila*, *Mol. Biol. Evol.* 31 (2014) 1554–1567.
704 doi:10.1093/molbev/msu114.

705 [28] A. Bateman, Intra-sexual sexual selection in *Drosophila*, *Heredity (Edinb.)*. (1948)
706 349–368.

707 [29] T. Chapman, G. Arnqvist, J. Bangham, L. Rowe, Sexual conflict, *Trends Ecol. Evol.*
708 18 (2003) 41–47. doi:10.1016/S0169-5347(02)00004-6.

709 [30] K.R. Ram, M.F. Wolfner, Seminal influences: *Drosophila* Acps and the molecular
710 interplay between males and females during reproduction, *Integr. Comp. Biol.* 47
711 (2007) 427–445. doi:10.1093/icb/icm046.

712 [31] K. Ravi Ram, S. Ji, M.F. Wolfner, Fates and targets of male accessory gland proteins
713 in mated female *Drosophila melanogaster*, *Insect Biochem. Mol. Biol.* 35 (2005)
714 1059–1071. doi:10.1016/j.ibmb.2005.05.001.

715 [32] J.L. Mueller, J.L. Page, M.F. Wolfner, An ectopic expression screen reveals the
716 protective and toxic effects of *Drosophila* seminal fluid proteins, *Genetics*. 175 (2007)
717 777–783. doi:10.1534/genetics.106.065318.

718 [33] E. Lewis, A new standard food medium, *Drosoph. Inf. Serv.* 34 (1960) 117–118.

719 [34] D.J. Clancy, Kennington W J, A simple method to achieve consistent larval density in
720 bottle cultures, *Drosoph. Inf. Serv.* 84 (2001) 168–169.

721 [35] A. Bateman, M.J. Martin, C. O'Donovan, M. Magrane, E. Alpi, R. Antunes, B. Bely, M.
722 Bingley, C. Bonilla, R. Britto, B. Bursteinas, H. Bye-AJee, A. Cowley, A. Da Silva, M.
723 De Giorgi, T. Dogan, F. Fazzini, L.G. Castro, L. Figueira, P. Garmiri, G. Georghiou, D.
724 Gonzalez, E. Hatton-Ellis, W. Li, W. Liu, R. Lopez, J. Luo, Y. Lussi, A. MacDougall, A.
725 Nightingale, B. Palka, K. Pichler, D. Poggioli, S. Pundir, L. Pureza, G. Qi, S. Rosanoff,
726 R. Saidi, T. Sawford, A. Shypitsyna, E. Speretta, E. Turner, N. Tyagi, V. Volynkin, T.

727 Wardell, K. Warner, X. Watkins, R. Zaru, H. Zellner, I. Xenarios, L. Bougueret, A.
728 Bridge, S. Poux, N. Redaschi, L. Aimo, G. ArgoudPuy, A. Auchincloss, K. Axelsen, P.
729 Bansal, D. Baratin, M.C. Blatter, B. Boeckmann, J. Bolleman, E. Boutet, L. Breuza, C.
730 Casal-Casas, E. De Castro, E. Coudert, B. Cuche, M. Doche, D. Dornevil, S. Duvaud,
731 A. Estreicher, L. Famiglietti, M. Feuermann, E. Gasteiger, S. Gehant, V. Gerritsen, A.
732 Gos, N. Gruaz-Gumowski, U. Hinz, C. Hulo, F. Jungo, G. Keller, V. Lara, P.
733 Lemercier, D. Lieberherr, T. Lombardot, X. Martin, P. Masson, A. Morgat, T. Neto, N.
734 Nouspikel, S. Paesano, I. Pedruzzi, S. Pilbout, M. Pozzato, M. Pruess, C. Rivoire, B.
735 Roechert, M. Schneider, C. Sigrist, K. Sonesson, S. Staehli, A. Stutz, S. Sundaram,
736 M. Tognolli, L. Verbregue, A.L. Veuthey, C.H. Wu, C.N. Arighi, L. Arminski, C. Chen,
737 Y. Chen, J.S. Garavelli, H. Huang, K. Laiho, P. McGarvey, D.A. Natale, K. Ross, C.R.
738 Vinayaka, Q. Wang, Y. Wang, L.S. Yeh, J. Zhang, UniProt: The universal protein
739 knowledgebase, Nucleic Acids Res. 45 (2017) D158–D169. doi:10.1093/nar/gkw1099.
740 [36] T.N. Petersen, S. Brunak, G. von Heijne, H. Nielsen, SignalP 4.0: discriminating
741 signal peptides from transmembrane regions, Nat. Methods. 8 (2011) 785–786.
742 doi:10.1038/nmeth.1701.
743 [37] V.R. Chintapalli, J. Wang, J.A.T. Dow, Using FlyAtlas to identify better *Drosophila*
744 *melanogaster* models of human disease, Nat. Genet. 39 (2007) 715–720.
745 doi:10.1038/ng2049.
746 [38] R. Fischer, B.M. Kessler, Gel-aided sample preparation (GASP)-A simplified method
747 for gel-assisted proteomic sample generation from protein extracts and intact cells,
748 Proteomics. 15 (2015) 1224–1229. doi:10.1002/pmic.201400436.
749 [39] D.W. Huang, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of
750 large gene lists using DAVID bioinformatics resources, Nat. Protoc. 4 (2009) 44–57.
751 doi:10.1038/nprot.2008.211.
752 [40] D.W. Huang, B.T. Sherman, R.A. Lempicki, Bioinformatics enrichment tools: Paths
753 toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res.
754 37 (2009) 1–13. doi:10.1093/nar/gkn923.

755 [41] R.D.C. Team, R: A Language and Environment for Statistical Computing, R Found.
756 Stat. Comput. Vienna, Austria. (2012) {ISBN} 3-900051-07-0, <http://www.R-project.org>.

757

758 [42] E.C. Keilhauer, M.Y. Hein, M. Mann, Accurate Protein Complex Retrieval by Affinity
759 Enrichment Mass Spectrometry (AE-MS) Rather than Affinity Purification Mass
760 Spectrometry (AP-MS), Mol. Cell. Proteomics. 14 (2015) 120–135.
761 doi:10.1074/mcp.M114.041012.

762 [43] E.R. Wasbrough, S. Dorus, S. Hester, J. Howard-Murkin, K. Lilley, E. Wilkin, A.
763 Polpitiya, K. Petritis, T.L. Karr, The *Drosophila melanogaster* sperm proteome-II
764 (DmSP-II), J. Proteomics. 73 (2010) 2171–2185. doi:10.1016/j.jprot.2010.09.002.

765 [44] P. Saudan, K. Hauck, M. Soller, Y. Choffat, M. Ottiger, M. Spörri, Z. Ding, D. Hess,
766 P.M. Gehrig, S. Klauser, P. Hunziker, E. Kubli, Ductus ejaculatorius peptide 99B
767 (DUP99B), a novel *Drosophila melanogaster* sex-peptide pheromone, Eur. J.
768 Biochem. 269 (2002) 989–997. doi:10.1046/j.0014-2956.2001.02733.x.

769 [45] N. Takemori, M.T. Yamamoto, Proteome mapping of the *Drosophila melanogaster*
770 male reproductive system, Proteomics. 9 (2009) 2484–2493.
771 doi:10.1002/pmic.200800795.

772 [46] L.K. Sirot, R.L. Poulson, M.C. Mckenna, H. Girnary, M.F. Wolfner, L.C. Harrington,
773 Identity and transfer of male reproductive gland proteins of the dengue vector
774 mosquito, *Aedes aegypti*: potential tools for control of female feeding and
775 reproduction, Insect Biochem. Mol. Biol. 38 (2009) 176–189.
776 doi:10.1016/j.ibmb.2007.10.007.Identity.

777 [47] B.A. LaFlamme, K. Ravi Ram, M.F. Wolfner, The *Drosophila melanogaster* seminal
778 fluid protease “Seminase” regulates proteolytic and post-mating reproductive
779 processes, PLoS Genet. 8 (2012) 30–32. doi:10.1371/journal.pgen.1002435.

780 [48] K. Sheehan, R.C. Richmond, B.J. Cochrane, Studies of esterase 6 in *Drosophila*
781 *melanogaster*. III. The developmental pattern and tissue distribution, Insect Biochem.
782 9 (1979) 443–450. doi:10.1016/0020-1790(79)90062-3.

783 [49] L.K. Sirot, M.F. Wolfner, S. Wigby, Protein-specific manipulation of ejaculate
784 composition in response to female mating status in *Drosophila melanogaster*, Proc.
785 Natl. Acad. Sci. 108 (2011) 9922–9926. doi:10.1073/pnas.1100905108.

786 [50] C. Meslin, T.S. Cherwin, M.S. Plakke, B.S. Small, B.J. Goetz, N.I. Morehouse, N.L.
787 Clark, Structural complexity and molecular heterogeneity of a butterfly ejaculate
788 reflect a complex history of selection, Proc. Natl. Acad. Sci. 114 (2017) E5406–
789 E5413. doi:10.1073/pnas.1707680114.

790 [51] S. La Vignera, E. Vicari, R.A. Condorelli, R. D'Agata, A.E. Calogero, Male accessory
791 gland infection and sperm parameters (review), Int. J. Androl. 34 (2011).
792 doi:10.1111/j.1365-2605.2011.01200.x.

793 [52] L.A. Herndon, T. Chapman, J.M. Kalb, S. Lewin, L. Partridge, M.F. Wolfner, Mating
794 and hormonal triggers regulate accessory gland gene expression in male *Drosophila*,
795 J. Insect Physiol. 43 (1997) 1117–1123. doi:10.1016/S0022-1910(97)00062-0.

796 [53] M. Koppik, C. Fricke, Gene expression changes in male accessory glands during
797 ageing are accompanied by reproductive decline in *Drosophila melanogaster*, Mol.
798 Ecol. (2017) 6704–6716. doi:10.1111/mec.14384.

799 [54] S.A. Teichmann, C. Chothia, Immunoglobulin superfamily proteins in *Caenorhabditis*
800 *elephantis*, J. Mol. Biol. 296 (2000) 1367–1383. doi:10.1006/jmbi.1999.3497.

801

802

803

804

805

806

807

808

809

810

811 **Tables**

812

813 **Table 1 – The functional categories of the novel candidate Sfps that are identified in**
814 **this study.**

815

Functional Category	Number of new candidates detected
Unknown function	11
Protease	8
Lipid metabolism	4
Protease inhibitor	4
Chitin binding	2
DNA interactions	2
Cell adhesion	1
Carbohydrate interactions	1
Cell redox homeostasis	1
Defense/immunity	1
Determination of adult lifespan	1
Hormone metabolism	1
odorant binding	1
Sperm storage	1
TOTAL	39

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

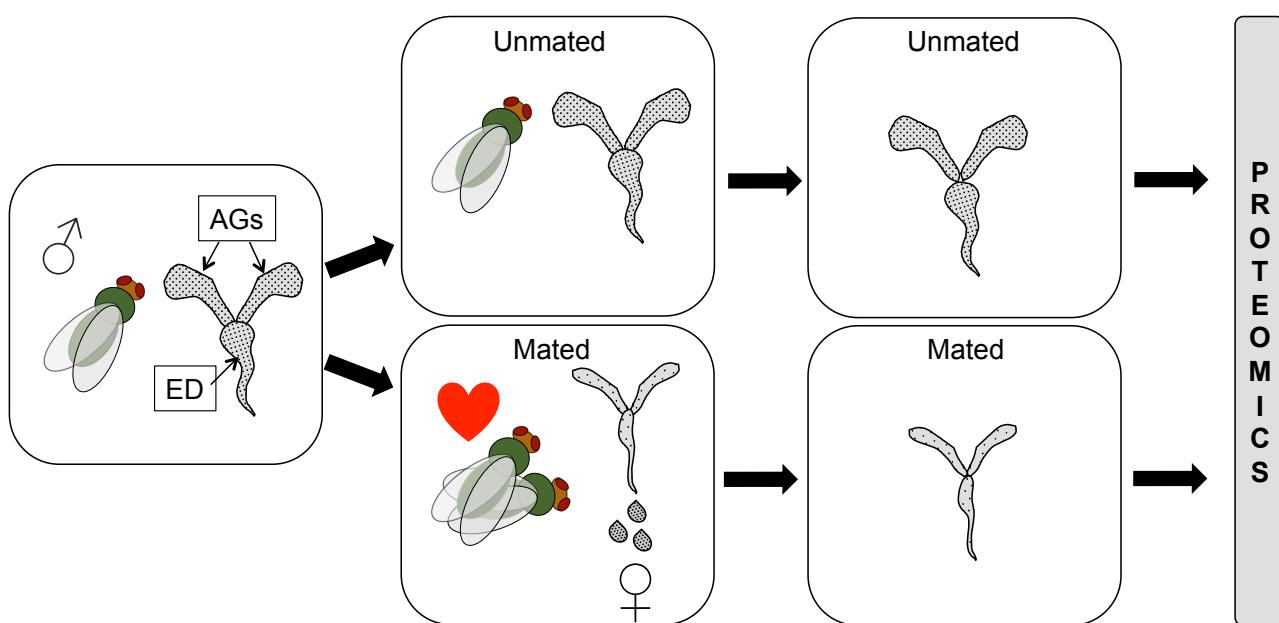
832

833 **Table 2 – The list and classes of the new proteins that are identified as high-**
834 **confidence candidate Sfps in this study**

835

Protein Name	Functional Category
CG31413	Cell Redox Homeostasis
CG3640	Unknown function
BG642163	Unknown function
CG3097	Protease
CG43145	Protease inhibitor
Spn28Db	Protease inhibitor
CG31684	Lipid metabolism
CG9519	Hormone metabolism

836

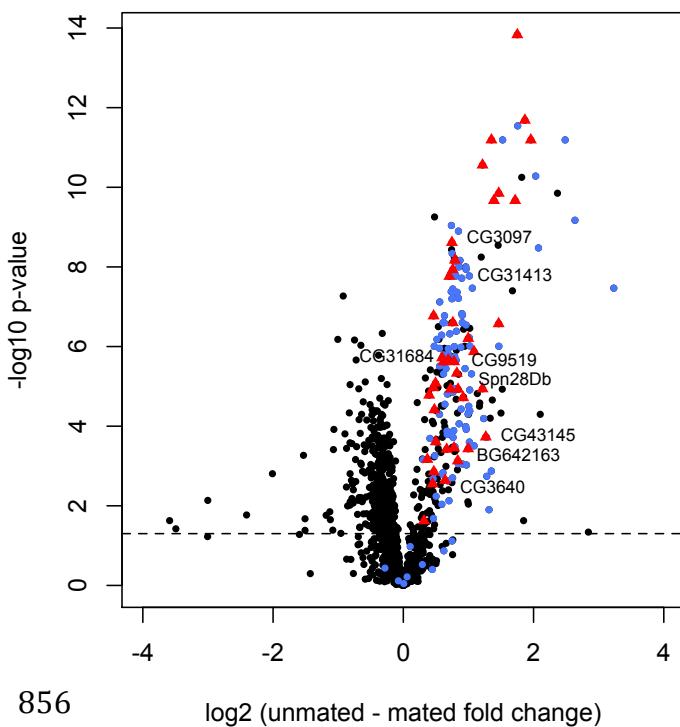

837

838 **Figures**

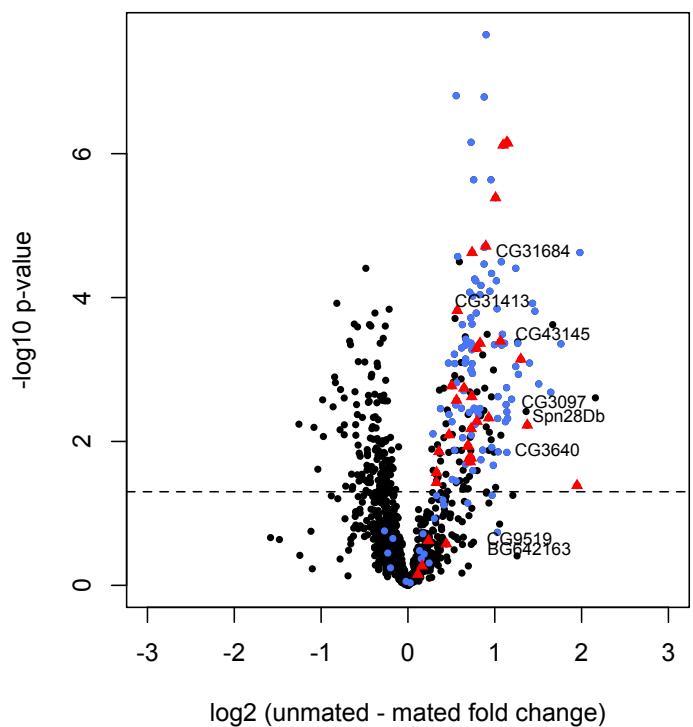
839

840 **Fig. 1 – Experimental design.** Males are expected to lose seminal fluid proteins (Sfps) from
841 the accessory glands (AGs) and ejaculatory duct (ED) at copulation as they are transferred
842 to females. By analysing protein abundance in the AGs and ED immediately after copulation
843 versus in unmated males we can infer Sfps that are likely transferred. Sfps should be
844 significantly more abundant in unmated males than in mated males.

845


846

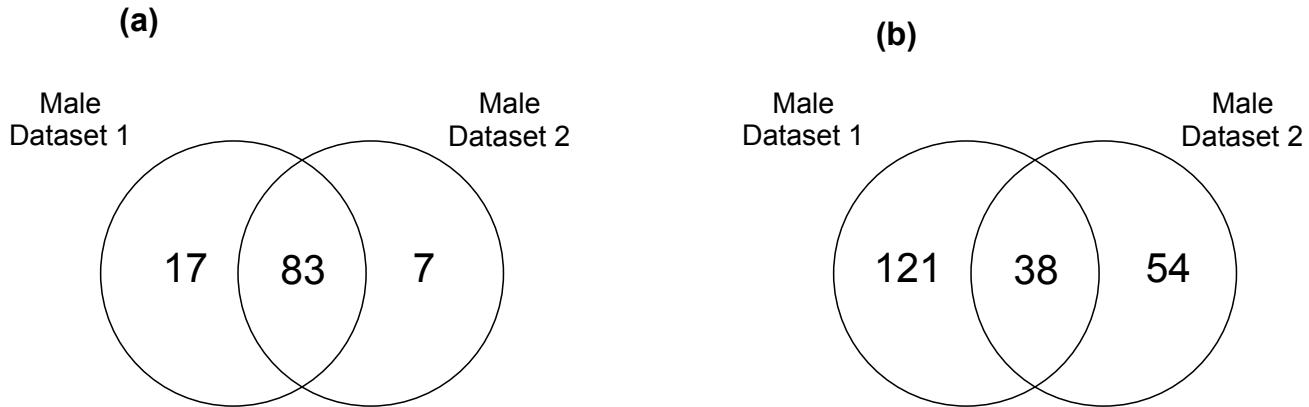
847 **Fig. 2 – Volcano plot displaying all proteins detected in (a) Male Dataset 1 and (b) Male**
848 **Dataset 2 that were identified by at least two unique peptides.** The abundance
849 differences (unmated – newly mated) are shown on the x-axis and significance is displayed
850 on the y-axis as the negative logarithm (\log_{10} scale) of the fdr corrected p value. Known Sfps
851 are coloured in blue. The candidate Sfps identified in this study are displayed as triangles
852 and coloured in red. The high-confidence candidate Sfps are named. The rest of the proteins
853 are coloured black. The significance cutoff ($P < 0.05$) is highlighted with a dashed line.


854

855

(a)

(b)

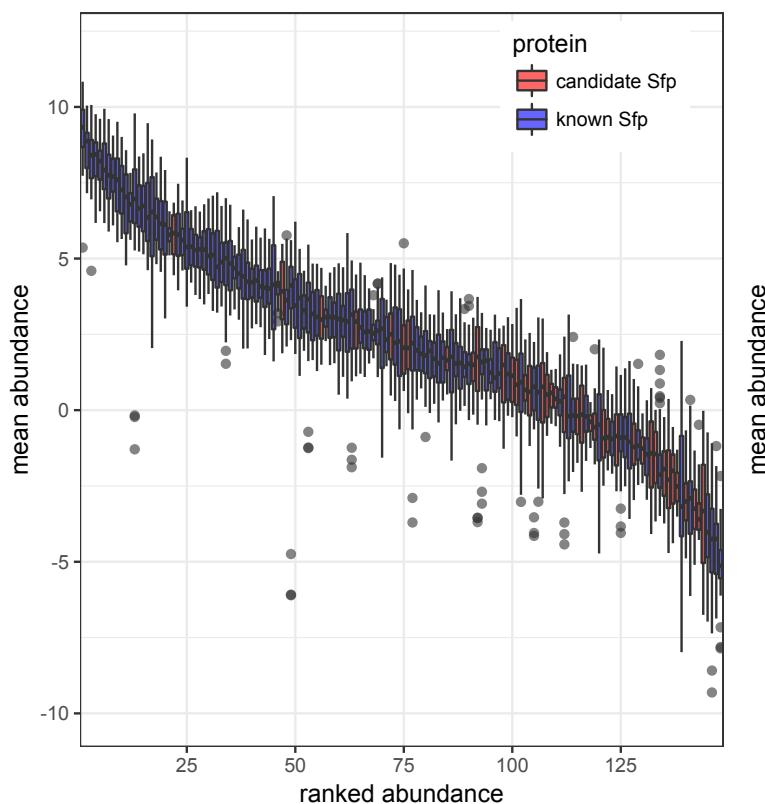


856

log₂ (unmated - mated fold change)

log₂ (unmated - mated fold change)

857 **Fig. 3 – Venn diagram displaying the protein overlap between Male Dataset 1 and Male**
858 **Dataset 2 (a)** for known Sfps significantly higher ($p \leq 0.035$) in unmated samples and **(b)** for
859 the rest of the proteins significantly higher ($p \leq 0.049$) in unmated samples.
860

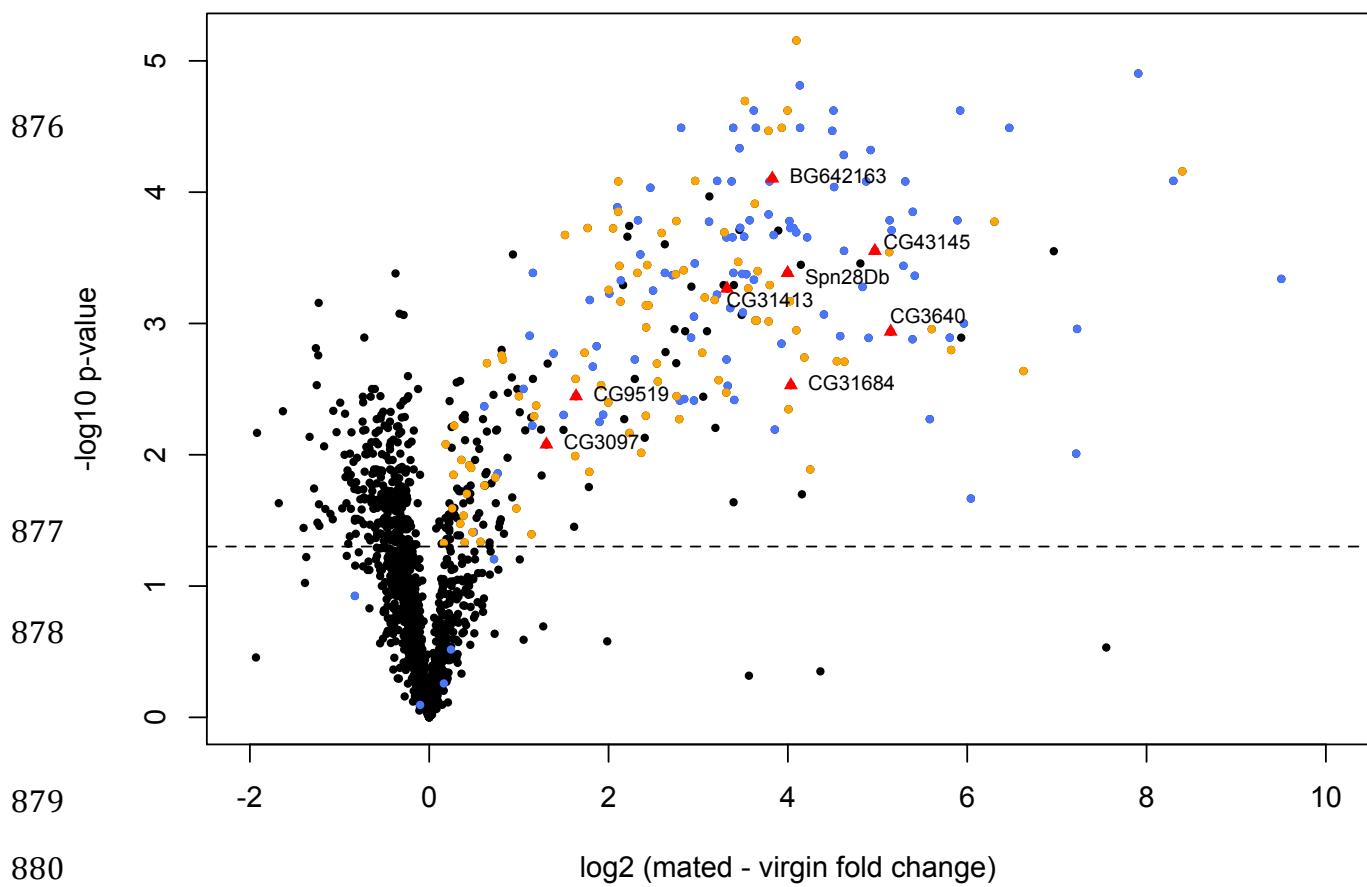


861 **Figure 4 – Boxplot of the relative abundance of known Sfps and candidate Sfps found**
862 **in (a) Male Dataset 1 and (b) Male Dataset 2.** Protein abundances were averaged across
863 all the samples in the experiment and were sorted by decreasing order. Known Sfps are
864 coloured in blue and candidate Sfps are coloured in red.

865

866

(a)

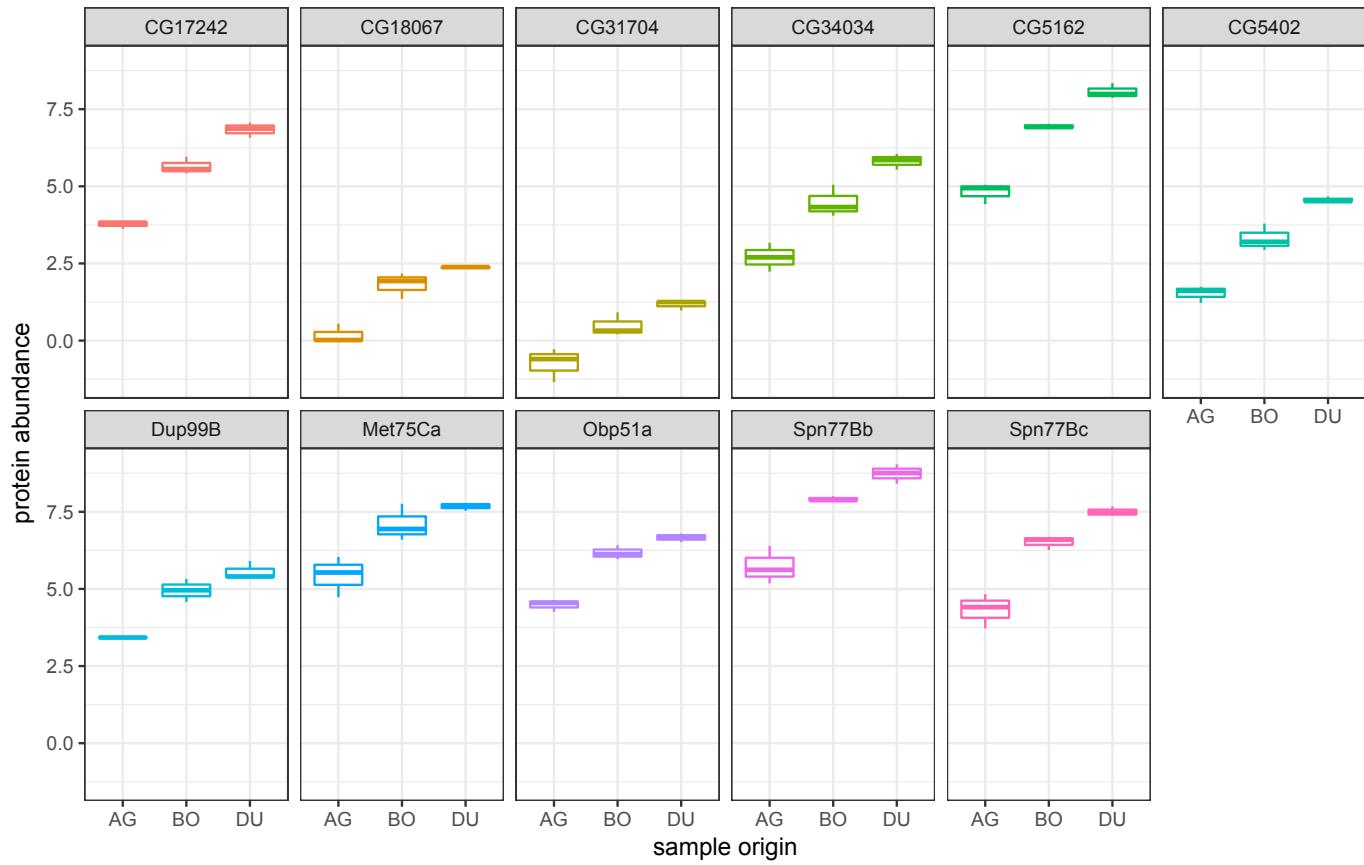

(b)

867

868 **Figure 5 - Volcano plot displaying all proteins detected in the female reproductive
869 tract that were identified by at least two unique peptides.** The abundance differences
870 (newly mated – virgin) are shown on the x-axis and significance is displayed on the y-axis as
871 the negative logarithm (\log_{10} scale) of the fdr corrected p value. Known Sfps are coloured in
872 blue; sperm proteins are coloured in orange and high-confidence candidate Sfps are named,
873 displayed as triangles and coloured in red. The significance cutoff ($P < 0.05$) is highlighted
874 with a dashed line.

875

879


880

log2 (mated - virgin fold change)

881

882 **Figure 6 – Boxplot of the abundances of putative ejaculatory-duct derived proteins in**
883 **accessory gland only samples (AG), ejaculatory duct only samples (DU) and samples**
884 **containing both the ejaculatory duct and accessory gland (BO). The 11 previously known**
885 **Sfps were significantly more abundant ($p \leq 0.05$) both in DU and in BO compared to AG.**

886

887